1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@us.ibm.com> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com> 41 * Kevin Gao <kevin.gao@intel.com> 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/types.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 51 #include <linux/slab.h> 52 #include <linux/in.h> 53 #include <net/ipv6.h> 54 #include <net/sctp/sctp.h> 55 #include <net/sctp/sm.h> 56 57 /* Forward declarations for internal functions. */ 58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init( 67 struct sctp_association *asoc, 68 const struct sctp_endpoint *ep, 69 const struct sock *sk, 70 enum sctp_scope scope, gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 struct sctp_paramhdr *p; 75 int i; 76 77 /* Retrieve the SCTP per socket area. */ 78 sp = sctp_sk((struct sock *)sk); 79 80 /* Discarding const is appropriate here. */ 81 asoc->ep = (struct sctp_endpoint *)ep; 82 asoc->base.sk = (struct sock *)sk; 83 84 sctp_endpoint_hold(asoc->ep); 85 sock_hold(asoc->base.sk); 86 87 /* Initialize the common base substructure. */ 88 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 89 90 /* Initialize the object handling fields. */ 91 refcount_set(&asoc->base.refcnt, 1); 92 93 /* Initialize the bind addr area. */ 94 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 95 96 asoc->state = SCTP_STATE_CLOSED; 97 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 98 asoc->user_frag = sp->user_frag; 99 100 /* Set the association max_retrans and RTO values from the 101 * socket values. 102 */ 103 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 104 asoc->pf_retrans = net->sctp.pf_retrans; 105 106 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 107 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 108 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 109 110 /* Initialize the association's heartbeat interval based on the 111 * sock configured value. 112 */ 113 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 114 115 /* Initialize path max retrans value. */ 116 asoc->pathmaxrxt = sp->pathmaxrxt; 117 118 asoc->flowlabel = sp->flowlabel; 119 asoc->dscp = sp->dscp; 120 121 /* Initialize default path MTU. */ 122 asoc->pathmtu = sp->pathmtu; 123 124 /* Set association default SACK delay */ 125 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 126 asoc->sackfreq = sp->sackfreq; 127 128 /* Set the association default flags controlling 129 * Heartbeat, SACK delay, and Path MTU Discovery. 130 */ 131 asoc->param_flags = sp->param_flags; 132 133 /* Initialize the maximum number of new data packets that can be sent 134 * in a burst. 135 */ 136 asoc->max_burst = sp->max_burst; 137 138 /* initialize association timers */ 139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 140 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 141 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 142 143 /* sctpimpguide Section 2.12.2 144 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 145 * recommended value of 5 times 'RTO.Max'. 146 */ 147 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 148 = 5 * asoc->rto_max; 149 150 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 151 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 152 153 /* Initializes the timers */ 154 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 155 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0); 156 157 /* Pull default initialization values from the sock options. 158 * Note: This assumes that the values have already been 159 * validated in the sock. 160 */ 161 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 162 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 163 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 164 165 asoc->max_init_timeo = 166 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 167 168 /* Set the local window size for receive. 169 * This is also the rcvbuf space per association. 170 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 171 * 1500 bytes in one SCTP packet. 172 */ 173 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 174 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 175 else 176 asoc->rwnd = sk->sk_rcvbuf/2; 177 178 asoc->a_rwnd = asoc->rwnd; 179 180 /* Use my own max window until I learn something better. */ 181 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 182 183 /* Initialize the receive memory counter */ 184 atomic_set(&asoc->rmem_alloc, 0); 185 186 init_waitqueue_head(&asoc->wait); 187 188 asoc->c.my_vtag = sctp_generate_tag(ep); 189 asoc->c.my_port = ep->base.bind_addr.port; 190 191 asoc->c.initial_tsn = sctp_generate_tsn(ep); 192 193 asoc->next_tsn = asoc->c.initial_tsn; 194 195 asoc->ctsn_ack_point = asoc->next_tsn - 1; 196 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 197 asoc->highest_sacked = asoc->ctsn_ack_point; 198 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 199 200 /* ADDIP Section 4.1 Asconf Chunk Procedures 201 * 202 * When an endpoint has an ASCONF signaled change to be sent to the 203 * remote endpoint it should do the following: 204 * ... 205 * A2) a serial number should be assigned to the chunk. The serial 206 * number SHOULD be a monotonically increasing number. The serial 207 * numbers SHOULD be initialized at the start of the 208 * association to the same value as the initial TSN. 209 */ 210 asoc->addip_serial = asoc->c.initial_tsn; 211 asoc->strreset_outseq = asoc->c.initial_tsn; 212 213 INIT_LIST_HEAD(&asoc->addip_chunk_list); 214 INIT_LIST_HEAD(&asoc->asconf_ack_list); 215 216 /* Make an empty list of remote transport addresses. */ 217 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 218 219 /* RFC 2960 5.1 Normal Establishment of an Association 220 * 221 * After the reception of the first data chunk in an 222 * association the endpoint must immediately respond with a 223 * sack to acknowledge the data chunk. Subsequent 224 * acknowledgements should be done as described in Section 225 * 6.2. 226 * 227 * [We implement this by telling a new association that it 228 * already received one packet.] 229 */ 230 asoc->peer.sack_needed = 1; 231 asoc->peer.sack_generation = 1; 232 233 /* Assume that the peer will tell us if he recognizes ASCONF 234 * as part of INIT exchange. 235 * The sctp_addip_noauth option is there for backward compatibility 236 * and will revert old behavior. 237 */ 238 if (net->sctp.addip_noauth) 239 asoc->peer.asconf_capable = 1; 240 241 /* Create an input queue. */ 242 sctp_inq_init(&asoc->base.inqueue); 243 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 244 245 /* Create an output queue. */ 246 sctp_outq_init(asoc, &asoc->outqueue); 247 248 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 249 goto fail_init; 250 251 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 252 0, gfp)) 253 goto fail_init; 254 255 /* Assume that peer would support both address types unless we are 256 * told otherwise. 257 */ 258 asoc->peer.ipv4_address = 1; 259 if (asoc->base.sk->sk_family == PF_INET6) 260 asoc->peer.ipv6_address = 1; 261 INIT_LIST_HEAD(&asoc->asocs); 262 263 asoc->default_stream = sp->default_stream; 264 asoc->default_ppid = sp->default_ppid; 265 asoc->default_flags = sp->default_flags; 266 asoc->default_context = sp->default_context; 267 asoc->default_timetolive = sp->default_timetolive; 268 asoc->default_rcv_context = sp->default_rcv_context; 269 270 /* AUTH related initializations */ 271 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 272 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp)) 273 goto stream_free; 274 275 asoc->active_key_id = ep->active_key_id; 276 asoc->prsctp_enable = ep->prsctp_enable; 277 asoc->reconf_enable = ep->reconf_enable; 278 asoc->strreset_enable = ep->strreset_enable; 279 280 /* Save the hmacs and chunks list into this association */ 281 if (ep->auth_hmacs_list) 282 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 283 ntohs(ep->auth_hmacs_list->param_hdr.length)); 284 if (ep->auth_chunk_list) 285 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 286 ntohs(ep->auth_chunk_list->param_hdr.length)); 287 288 /* Get the AUTH random number for this association */ 289 p = (struct sctp_paramhdr *)asoc->c.auth_random; 290 p->type = SCTP_PARAM_RANDOM; 291 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH); 292 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 293 294 return asoc; 295 296 stream_free: 297 sctp_stream_free(&asoc->stream); 298 fail_init: 299 sock_put(asoc->base.sk); 300 sctp_endpoint_put(asoc->ep); 301 return NULL; 302 } 303 304 /* Allocate and initialize a new association */ 305 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 306 const struct sock *sk, 307 enum sctp_scope scope, gfp_t gfp) 308 { 309 struct sctp_association *asoc; 310 311 asoc = kzalloc(sizeof(*asoc), gfp); 312 if (!asoc) 313 goto fail; 314 315 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 316 goto fail_init; 317 318 SCTP_DBG_OBJCNT_INC(assoc); 319 320 pr_debug("Created asoc %p\n", asoc); 321 322 return asoc; 323 324 fail_init: 325 kfree(asoc); 326 fail: 327 return NULL; 328 } 329 330 /* Free this association if possible. There may still be users, so 331 * the actual deallocation may be delayed. 332 */ 333 void sctp_association_free(struct sctp_association *asoc) 334 { 335 struct sock *sk = asoc->base.sk; 336 struct sctp_transport *transport; 337 struct list_head *pos, *temp; 338 int i; 339 340 /* Only real associations count against the endpoint, so 341 * don't bother for if this is a temporary association. 342 */ 343 if (!list_empty(&asoc->asocs)) { 344 list_del(&asoc->asocs); 345 346 /* Decrement the backlog value for a TCP-style listening 347 * socket. 348 */ 349 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 350 sk->sk_ack_backlog--; 351 } 352 353 /* Mark as dead, so other users can know this structure is 354 * going away. 355 */ 356 asoc->base.dead = true; 357 358 /* Dispose of any data lying around in the outqueue. */ 359 sctp_outq_free(&asoc->outqueue); 360 361 /* Dispose of any pending messages for the upper layer. */ 362 sctp_ulpq_free(&asoc->ulpq); 363 364 /* Dispose of any pending chunks on the inqueue. */ 365 sctp_inq_free(&asoc->base.inqueue); 366 367 sctp_tsnmap_free(&asoc->peer.tsn_map); 368 369 /* Free stream information. */ 370 sctp_stream_free(&asoc->stream); 371 372 if (asoc->strreset_chunk) 373 sctp_chunk_free(asoc->strreset_chunk); 374 375 /* Clean up the bound address list. */ 376 sctp_bind_addr_free(&asoc->base.bind_addr); 377 378 /* Do we need to go through all of our timers and 379 * delete them? To be safe we will try to delete all, but we 380 * should be able to go through and make a guess based 381 * on our state. 382 */ 383 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 384 if (del_timer(&asoc->timers[i])) 385 sctp_association_put(asoc); 386 } 387 388 /* Free peer's cached cookie. */ 389 kfree(asoc->peer.cookie); 390 kfree(asoc->peer.peer_random); 391 kfree(asoc->peer.peer_chunks); 392 kfree(asoc->peer.peer_hmacs); 393 394 /* Release the transport structures. */ 395 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 396 transport = list_entry(pos, struct sctp_transport, transports); 397 list_del_rcu(pos); 398 sctp_unhash_transport(transport); 399 sctp_transport_free(transport); 400 } 401 402 asoc->peer.transport_count = 0; 403 404 sctp_asconf_queue_teardown(asoc); 405 406 /* Free pending address space being deleted */ 407 kfree(asoc->asconf_addr_del_pending); 408 409 /* AUTH - Free the endpoint shared keys */ 410 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 411 412 /* AUTH - Free the association shared key */ 413 sctp_auth_key_put(asoc->asoc_shared_key); 414 415 sctp_association_put(asoc); 416 } 417 418 /* Cleanup and free up an association. */ 419 static void sctp_association_destroy(struct sctp_association *asoc) 420 { 421 if (unlikely(!asoc->base.dead)) { 422 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 423 return; 424 } 425 426 sctp_endpoint_put(asoc->ep); 427 sock_put(asoc->base.sk); 428 429 if (asoc->assoc_id != 0) { 430 spin_lock_bh(&sctp_assocs_id_lock); 431 idr_remove(&sctp_assocs_id, asoc->assoc_id); 432 spin_unlock_bh(&sctp_assocs_id_lock); 433 } 434 435 WARN_ON(atomic_read(&asoc->rmem_alloc)); 436 437 kfree(asoc); 438 SCTP_DBG_OBJCNT_DEC(assoc); 439 } 440 441 /* Change the primary destination address for the peer. */ 442 void sctp_assoc_set_primary(struct sctp_association *asoc, 443 struct sctp_transport *transport) 444 { 445 int changeover = 0; 446 447 /* it's a changeover only if we already have a primary path 448 * that we are changing 449 */ 450 if (asoc->peer.primary_path != NULL && 451 asoc->peer.primary_path != transport) 452 changeover = 1 ; 453 454 asoc->peer.primary_path = transport; 455 456 /* Set a default msg_name for events. */ 457 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 458 sizeof(union sctp_addr)); 459 460 /* If the primary path is changing, assume that the 461 * user wants to use this new path. 462 */ 463 if ((transport->state == SCTP_ACTIVE) || 464 (transport->state == SCTP_UNKNOWN)) 465 asoc->peer.active_path = transport; 466 467 /* 468 * SFR-CACC algorithm: 469 * Upon the receipt of a request to change the primary 470 * destination address, on the data structure for the new 471 * primary destination, the sender MUST do the following: 472 * 473 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 474 * to this destination address earlier. The sender MUST set 475 * CYCLING_CHANGEOVER to indicate that this switch is a 476 * double switch to the same destination address. 477 * 478 * Really, only bother is we have data queued or outstanding on 479 * the association. 480 */ 481 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 482 return; 483 484 if (transport->cacc.changeover_active) 485 transport->cacc.cycling_changeover = changeover; 486 487 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 488 * a changeover has occurred. 489 */ 490 transport->cacc.changeover_active = changeover; 491 492 /* 3) The sender MUST store the next TSN to be sent in 493 * next_tsn_at_change. 494 */ 495 transport->cacc.next_tsn_at_change = asoc->next_tsn; 496 } 497 498 /* Remove a transport from an association. */ 499 void sctp_assoc_rm_peer(struct sctp_association *asoc, 500 struct sctp_transport *peer) 501 { 502 struct list_head *pos; 503 struct sctp_transport *transport; 504 505 pr_debug("%s: association:%p addr:%pISpc\n", 506 __func__, asoc, &peer->ipaddr.sa); 507 508 /* If we are to remove the current retran_path, update it 509 * to the next peer before removing this peer from the list. 510 */ 511 if (asoc->peer.retran_path == peer) 512 sctp_assoc_update_retran_path(asoc); 513 514 /* Remove this peer from the list. */ 515 list_del_rcu(&peer->transports); 516 /* Remove this peer from the transport hashtable */ 517 sctp_unhash_transport(peer); 518 519 /* Get the first transport of asoc. */ 520 pos = asoc->peer.transport_addr_list.next; 521 transport = list_entry(pos, struct sctp_transport, transports); 522 523 /* Update any entries that match the peer to be deleted. */ 524 if (asoc->peer.primary_path == peer) 525 sctp_assoc_set_primary(asoc, transport); 526 if (asoc->peer.active_path == peer) 527 asoc->peer.active_path = transport; 528 if (asoc->peer.retran_path == peer) 529 asoc->peer.retran_path = transport; 530 if (asoc->peer.last_data_from == peer) 531 asoc->peer.last_data_from = transport; 532 533 if (asoc->strreset_chunk && 534 asoc->strreset_chunk->transport == peer) { 535 asoc->strreset_chunk->transport = transport; 536 sctp_transport_reset_reconf_timer(transport); 537 } 538 539 /* If we remove the transport an INIT was last sent to, set it to 540 * NULL. Combined with the update of the retran path above, this 541 * will cause the next INIT to be sent to the next available 542 * transport, maintaining the cycle. 543 */ 544 if (asoc->init_last_sent_to == peer) 545 asoc->init_last_sent_to = NULL; 546 547 /* If we remove the transport an SHUTDOWN was last sent to, set it 548 * to NULL. Combined with the update of the retran path above, this 549 * will cause the next SHUTDOWN to be sent to the next available 550 * transport, maintaining the cycle. 551 */ 552 if (asoc->shutdown_last_sent_to == peer) 553 asoc->shutdown_last_sent_to = NULL; 554 555 /* If we remove the transport an ASCONF was last sent to, set it to 556 * NULL. 557 */ 558 if (asoc->addip_last_asconf && 559 asoc->addip_last_asconf->transport == peer) 560 asoc->addip_last_asconf->transport = NULL; 561 562 /* If we have something on the transmitted list, we have to 563 * save it off. The best place is the active path. 564 */ 565 if (!list_empty(&peer->transmitted)) { 566 struct sctp_transport *active = asoc->peer.active_path; 567 struct sctp_chunk *ch; 568 569 /* Reset the transport of each chunk on this list */ 570 list_for_each_entry(ch, &peer->transmitted, 571 transmitted_list) { 572 ch->transport = NULL; 573 ch->rtt_in_progress = 0; 574 } 575 576 list_splice_tail_init(&peer->transmitted, 577 &active->transmitted); 578 579 /* Start a T3 timer here in case it wasn't running so 580 * that these migrated packets have a chance to get 581 * retransmitted. 582 */ 583 if (!timer_pending(&active->T3_rtx_timer)) 584 if (!mod_timer(&active->T3_rtx_timer, 585 jiffies + active->rto)) 586 sctp_transport_hold(active); 587 } 588 589 asoc->peer.transport_count--; 590 591 sctp_transport_free(peer); 592 } 593 594 /* Add a transport address to an association. */ 595 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 596 const union sctp_addr *addr, 597 const gfp_t gfp, 598 const int peer_state) 599 { 600 struct net *net = sock_net(asoc->base.sk); 601 struct sctp_transport *peer; 602 struct sctp_sock *sp; 603 unsigned short port; 604 605 sp = sctp_sk(asoc->base.sk); 606 607 /* AF_INET and AF_INET6 share common port field. */ 608 port = ntohs(addr->v4.sin_port); 609 610 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 611 asoc, &addr->sa, peer_state); 612 613 /* Set the port if it has not been set yet. */ 614 if (0 == asoc->peer.port) 615 asoc->peer.port = port; 616 617 /* Check to see if this is a duplicate. */ 618 peer = sctp_assoc_lookup_paddr(asoc, addr); 619 if (peer) { 620 /* An UNKNOWN state is only set on transports added by 621 * user in sctp_connectx() call. Such transports should be 622 * considered CONFIRMED per RFC 4960, Section 5.4. 623 */ 624 if (peer->state == SCTP_UNKNOWN) { 625 peer->state = SCTP_ACTIVE; 626 } 627 return peer; 628 } 629 630 peer = sctp_transport_new(net, addr, gfp); 631 if (!peer) 632 return NULL; 633 634 sctp_transport_set_owner(peer, asoc); 635 636 /* Initialize the peer's heartbeat interval based on the 637 * association configured value. 638 */ 639 peer->hbinterval = asoc->hbinterval; 640 641 /* Set the path max_retrans. */ 642 peer->pathmaxrxt = asoc->pathmaxrxt; 643 644 /* And the partial failure retrans threshold */ 645 peer->pf_retrans = asoc->pf_retrans; 646 647 /* Initialize the peer's SACK delay timeout based on the 648 * association configured value. 649 */ 650 peer->sackdelay = asoc->sackdelay; 651 peer->sackfreq = asoc->sackfreq; 652 653 if (addr->sa.sa_family == AF_INET6) { 654 __be32 info = addr->v6.sin6_flowinfo; 655 656 if (info) { 657 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK); 658 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 659 } else { 660 peer->flowlabel = asoc->flowlabel; 661 } 662 } 663 peer->dscp = asoc->dscp; 664 665 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 666 * based on association setting. 667 */ 668 peer->param_flags = asoc->param_flags; 669 670 /* Initialize the pmtu of the transport. */ 671 sctp_transport_route(peer, NULL, sp); 672 673 /* If this is the first transport addr on this association, 674 * initialize the association PMTU to the peer's PMTU. 675 * If not and the current association PMTU is higher than the new 676 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 677 */ 678 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ? 679 min_t(int, peer->pathmtu, asoc->pathmtu) : 680 peer->pathmtu); 681 682 peer->pmtu_pending = 0; 683 684 /* The asoc->peer.port might not be meaningful yet, but 685 * initialize the packet structure anyway. 686 */ 687 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 688 asoc->peer.port); 689 690 /* 7.2.1 Slow-Start 691 * 692 * o The initial cwnd before DATA transmission or after a sufficiently 693 * long idle period MUST be set to 694 * min(4*MTU, max(2*MTU, 4380 bytes)) 695 * 696 * o The initial value of ssthresh MAY be arbitrarily high 697 * (for example, implementations MAY use the size of the 698 * receiver advertised window). 699 */ 700 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 701 702 /* At this point, we may not have the receiver's advertised window, 703 * so initialize ssthresh to the default value and it will be set 704 * later when we process the INIT. 705 */ 706 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 707 708 peer->partial_bytes_acked = 0; 709 peer->flight_size = 0; 710 peer->burst_limited = 0; 711 712 /* Set the transport's RTO.initial value */ 713 peer->rto = asoc->rto_initial; 714 sctp_max_rto(asoc, peer); 715 716 /* Set the peer's active state. */ 717 peer->state = peer_state; 718 719 /* Add this peer into the transport hashtable */ 720 if (sctp_hash_transport(peer)) { 721 sctp_transport_free(peer); 722 return NULL; 723 } 724 725 /* Attach the remote transport to our asoc. */ 726 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 727 asoc->peer.transport_count++; 728 729 /* If we do not yet have a primary path, set one. */ 730 if (!asoc->peer.primary_path) { 731 sctp_assoc_set_primary(asoc, peer); 732 asoc->peer.retran_path = peer; 733 } 734 735 if (asoc->peer.active_path == asoc->peer.retran_path && 736 peer->state != SCTP_UNCONFIRMED) { 737 asoc->peer.retran_path = peer; 738 } 739 740 return peer; 741 } 742 743 /* Delete a transport address from an association. */ 744 void sctp_assoc_del_peer(struct sctp_association *asoc, 745 const union sctp_addr *addr) 746 { 747 struct list_head *pos; 748 struct list_head *temp; 749 struct sctp_transport *transport; 750 751 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 752 transport = list_entry(pos, struct sctp_transport, transports); 753 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 754 /* Do book keeping for removing the peer and free it. */ 755 sctp_assoc_rm_peer(asoc, transport); 756 break; 757 } 758 } 759 } 760 761 /* Lookup a transport by address. */ 762 struct sctp_transport *sctp_assoc_lookup_paddr( 763 const struct sctp_association *asoc, 764 const union sctp_addr *address) 765 { 766 struct sctp_transport *t; 767 768 /* Cycle through all transports searching for a peer address. */ 769 770 list_for_each_entry(t, &asoc->peer.transport_addr_list, 771 transports) { 772 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 773 return t; 774 } 775 776 return NULL; 777 } 778 779 /* Remove all transports except a give one */ 780 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 781 struct sctp_transport *primary) 782 { 783 struct sctp_transport *temp; 784 struct sctp_transport *t; 785 786 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 787 transports) { 788 /* if the current transport is not the primary one, delete it */ 789 if (t != primary) 790 sctp_assoc_rm_peer(asoc, t); 791 } 792 } 793 794 /* Engage in transport control operations. 795 * Mark the transport up or down and send a notification to the user. 796 * Select and update the new active and retran paths. 797 */ 798 void sctp_assoc_control_transport(struct sctp_association *asoc, 799 struct sctp_transport *transport, 800 enum sctp_transport_cmd command, 801 sctp_sn_error_t error) 802 { 803 struct sctp_ulpevent *event; 804 struct sockaddr_storage addr; 805 int spc_state = 0; 806 bool ulp_notify = true; 807 808 /* Record the transition on the transport. */ 809 switch (command) { 810 case SCTP_TRANSPORT_UP: 811 /* If we are moving from UNCONFIRMED state due 812 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 813 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 814 */ 815 if (SCTP_UNCONFIRMED == transport->state && 816 SCTP_HEARTBEAT_SUCCESS == error) 817 spc_state = SCTP_ADDR_CONFIRMED; 818 else 819 spc_state = SCTP_ADDR_AVAILABLE; 820 /* Don't inform ULP about transition from PF to 821 * active state and set cwnd to 1 MTU, see SCTP 822 * Quick failover draft section 5.1, point 5 823 */ 824 if (transport->state == SCTP_PF) { 825 ulp_notify = false; 826 transport->cwnd = asoc->pathmtu; 827 } 828 transport->state = SCTP_ACTIVE; 829 break; 830 831 case SCTP_TRANSPORT_DOWN: 832 /* If the transport was never confirmed, do not transition it 833 * to inactive state. Also, release the cached route since 834 * there may be a better route next time. 835 */ 836 if (transport->state != SCTP_UNCONFIRMED) 837 transport->state = SCTP_INACTIVE; 838 else { 839 sctp_transport_dst_release(transport); 840 ulp_notify = false; 841 } 842 843 spc_state = SCTP_ADDR_UNREACHABLE; 844 break; 845 846 case SCTP_TRANSPORT_PF: 847 transport->state = SCTP_PF; 848 ulp_notify = false; 849 break; 850 851 default: 852 return; 853 } 854 855 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 856 * to the user. 857 */ 858 if (ulp_notify) { 859 memset(&addr, 0, sizeof(struct sockaddr_storage)); 860 memcpy(&addr, &transport->ipaddr, 861 transport->af_specific->sockaddr_len); 862 863 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 864 0, spc_state, error, GFP_ATOMIC); 865 if (event) 866 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 867 } 868 869 /* Select new active and retran paths. */ 870 sctp_select_active_and_retran_path(asoc); 871 } 872 873 /* Hold a reference to an association. */ 874 void sctp_association_hold(struct sctp_association *asoc) 875 { 876 refcount_inc(&asoc->base.refcnt); 877 } 878 879 /* Release a reference to an association and cleanup 880 * if there are no more references. 881 */ 882 void sctp_association_put(struct sctp_association *asoc) 883 { 884 if (refcount_dec_and_test(&asoc->base.refcnt)) 885 sctp_association_destroy(asoc); 886 } 887 888 /* Allocate the next TSN, Transmission Sequence Number, for the given 889 * association. 890 */ 891 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 892 { 893 /* From Section 1.6 Serial Number Arithmetic: 894 * Transmission Sequence Numbers wrap around when they reach 895 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 896 * after transmitting TSN = 2*32 - 1 is TSN = 0. 897 */ 898 __u32 retval = asoc->next_tsn; 899 asoc->next_tsn++; 900 asoc->unack_data++; 901 902 return retval; 903 } 904 905 /* Compare two addresses to see if they match. Wildcard addresses 906 * only match themselves. 907 */ 908 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 909 const union sctp_addr *ss2) 910 { 911 struct sctp_af *af; 912 913 af = sctp_get_af_specific(ss1->sa.sa_family); 914 if (unlikely(!af)) 915 return 0; 916 917 return af->cmp_addr(ss1, ss2); 918 } 919 920 /* Return an ecne chunk to get prepended to a packet. 921 * Note: We are sly and return a shared, prealloced chunk. FIXME: 922 * No we don't, but we could/should. 923 */ 924 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 925 { 926 if (!asoc->need_ecne) 927 return NULL; 928 929 /* Send ECNE if needed. 930 * Not being able to allocate a chunk here is not deadly. 931 */ 932 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 933 } 934 935 /* 936 * Find which transport this TSN was sent on. 937 */ 938 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 939 __u32 tsn) 940 { 941 struct sctp_transport *active; 942 struct sctp_transport *match; 943 struct sctp_transport *transport; 944 struct sctp_chunk *chunk; 945 __be32 key = htonl(tsn); 946 947 match = NULL; 948 949 /* 950 * FIXME: In general, find a more efficient data structure for 951 * searching. 952 */ 953 954 /* 955 * The general strategy is to search each transport's transmitted 956 * list. Return which transport this TSN lives on. 957 * 958 * Let's be hopeful and check the active_path first. 959 * Another optimization would be to know if there is only one 960 * outbound path and not have to look for the TSN at all. 961 * 962 */ 963 964 active = asoc->peer.active_path; 965 966 list_for_each_entry(chunk, &active->transmitted, 967 transmitted_list) { 968 969 if (key == chunk->subh.data_hdr->tsn) { 970 match = active; 971 goto out; 972 } 973 } 974 975 /* If not found, go search all the other transports. */ 976 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 977 transports) { 978 979 if (transport == active) 980 continue; 981 list_for_each_entry(chunk, &transport->transmitted, 982 transmitted_list) { 983 if (key == chunk->subh.data_hdr->tsn) { 984 match = transport; 985 goto out; 986 } 987 } 988 } 989 out: 990 return match; 991 } 992 993 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 994 static void sctp_assoc_bh_rcv(struct work_struct *work) 995 { 996 struct sctp_association *asoc = 997 container_of(work, struct sctp_association, 998 base.inqueue.immediate); 999 struct net *net = sock_net(asoc->base.sk); 1000 union sctp_subtype subtype; 1001 struct sctp_endpoint *ep; 1002 struct sctp_chunk *chunk; 1003 struct sctp_inq *inqueue; 1004 int first_time = 1; /* is this the first time through the loop */ 1005 int error = 0; 1006 int state; 1007 1008 /* The association should be held so we should be safe. */ 1009 ep = asoc->ep; 1010 1011 inqueue = &asoc->base.inqueue; 1012 sctp_association_hold(asoc); 1013 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1014 state = asoc->state; 1015 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1016 1017 /* If the first chunk in the packet is AUTH, do special 1018 * processing specified in Section 6.3 of SCTP-AUTH spec 1019 */ 1020 if (first_time && subtype.chunk == SCTP_CID_AUTH) { 1021 struct sctp_chunkhdr *next_hdr; 1022 1023 next_hdr = sctp_inq_peek(inqueue); 1024 if (!next_hdr) 1025 goto normal; 1026 1027 /* If the next chunk is COOKIE-ECHO, skip the AUTH 1028 * chunk while saving a pointer to it so we can do 1029 * Authentication later (during cookie-echo 1030 * processing). 1031 */ 1032 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) { 1033 chunk->auth_chunk = skb_clone(chunk->skb, 1034 GFP_ATOMIC); 1035 chunk->auth = 1; 1036 continue; 1037 } 1038 } 1039 1040 normal: 1041 /* SCTP-AUTH, Section 6.3: 1042 * The receiver has a list of chunk types which it expects 1043 * to be received only after an AUTH-chunk. This list has 1044 * been sent to the peer during the association setup. It 1045 * MUST silently discard these chunks if they are not placed 1046 * after an AUTH chunk in the packet. 1047 */ 1048 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1049 continue; 1050 1051 /* Remember where the last DATA chunk came from so we 1052 * know where to send the SACK. 1053 */ 1054 if (sctp_chunk_is_data(chunk)) 1055 asoc->peer.last_data_from = chunk->transport; 1056 else { 1057 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1058 asoc->stats.ictrlchunks++; 1059 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1060 asoc->stats.isacks++; 1061 } 1062 1063 if (chunk->transport) 1064 chunk->transport->last_time_heard = ktime_get(); 1065 1066 /* Run through the state machine. */ 1067 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1068 state, ep, asoc, chunk, GFP_ATOMIC); 1069 1070 /* Check to see if the association is freed in response to 1071 * the incoming chunk. If so, get out of the while loop. 1072 */ 1073 if (asoc->base.dead) 1074 break; 1075 1076 /* If there is an error on chunk, discard this packet. */ 1077 if (error && chunk) 1078 chunk->pdiscard = 1; 1079 1080 if (first_time) 1081 first_time = 0; 1082 } 1083 sctp_association_put(asoc); 1084 } 1085 1086 /* This routine moves an association from its old sk to a new sk. */ 1087 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1088 { 1089 struct sctp_sock *newsp = sctp_sk(newsk); 1090 struct sock *oldsk = assoc->base.sk; 1091 1092 /* Delete the association from the old endpoint's list of 1093 * associations. 1094 */ 1095 list_del_init(&assoc->asocs); 1096 1097 /* Decrement the backlog value for a TCP-style socket. */ 1098 if (sctp_style(oldsk, TCP)) 1099 oldsk->sk_ack_backlog--; 1100 1101 /* Release references to the old endpoint and the sock. */ 1102 sctp_endpoint_put(assoc->ep); 1103 sock_put(assoc->base.sk); 1104 1105 /* Get a reference to the new endpoint. */ 1106 assoc->ep = newsp->ep; 1107 sctp_endpoint_hold(assoc->ep); 1108 1109 /* Get a reference to the new sock. */ 1110 assoc->base.sk = newsk; 1111 sock_hold(assoc->base.sk); 1112 1113 /* Add the association to the new endpoint's list of associations. */ 1114 sctp_endpoint_add_asoc(newsp->ep, assoc); 1115 } 1116 1117 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1118 int sctp_assoc_update(struct sctp_association *asoc, 1119 struct sctp_association *new) 1120 { 1121 struct sctp_transport *trans; 1122 struct list_head *pos, *temp; 1123 1124 /* Copy in new parameters of peer. */ 1125 asoc->c = new->c; 1126 asoc->peer.rwnd = new->peer.rwnd; 1127 asoc->peer.sack_needed = new->peer.sack_needed; 1128 asoc->peer.auth_capable = new->peer.auth_capable; 1129 asoc->peer.i = new->peer.i; 1130 1131 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1132 asoc->peer.i.initial_tsn, GFP_ATOMIC)) 1133 return -ENOMEM; 1134 1135 /* Remove any peer addresses not present in the new association. */ 1136 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1137 trans = list_entry(pos, struct sctp_transport, transports); 1138 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1139 sctp_assoc_rm_peer(asoc, trans); 1140 continue; 1141 } 1142 1143 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1144 sctp_transport_reset(trans); 1145 } 1146 1147 /* If the case is A (association restart), use 1148 * initial_tsn as next_tsn. If the case is B, use 1149 * current next_tsn in case data sent to peer 1150 * has been discarded and needs retransmission. 1151 */ 1152 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1153 asoc->next_tsn = new->next_tsn; 1154 asoc->ctsn_ack_point = new->ctsn_ack_point; 1155 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1156 1157 /* Reinitialize SSN for both local streams 1158 * and peer's streams. 1159 */ 1160 sctp_stream_clear(&asoc->stream); 1161 1162 /* Flush the ULP reassembly and ordered queue. 1163 * Any data there will now be stale and will 1164 * cause problems. 1165 */ 1166 sctp_ulpq_flush(&asoc->ulpq); 1167 1168 /* reset the overall association error count so 1169 * that the restarted association doesn't get torn 1170 * down on the next retransmission timer. 1171 */ 1172 asoc->overall_error_count = 0; 1173 1174 } else { 1175 /* Add any peer addresses from the new association. */ 1176 list_for_each_entry(trans, &new->peer.transport_addr_list, 1177 transports) 1178 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) && 1179 !sctp_assoc_add_peer(asoc, &trans->ipaddr, 1180 GFP_ATOMIC, trans->state)) 1181 return -ENOMEM; 1182 1183 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1184 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1185 1186 if (sctp_state(asoc, COOKIE_WAIT)) 1187 sctp_stream_update(&asoc->stream, &new->stream); 1188 1189 /* get a new assoc id if we don't have one yet. */ 1190 if (sctp_assoc_set_id(asoc, GFP_ATOMIC)) 1191 return -ENOMEM; 1192 } 1193 1194 /* SCTP-AUTH: Save the peer parameters from the new associations 1195 * and also move the association shared keys over 1196 */ 1197 kfree(asoc->peer.peer_random); 1198 asoc->peer.peer_random = new->peer.peer_random; 1199 new->peer.peer_random = NULL; 1200 1201 kfree(asoc->peer.peer_chunks); 1202 asoc->peer.peer_chunks = new->peer.peer_chunks; 1203 new->peer.peer_chunks = NULL; 1204 1205 kfree(asoc->peer.peer_hmacs); 1206 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1207 new->peer.peer_hmacs = NULL; 1208 1209 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1210 } 1211 1212 /* Update the retran path for sending a retransmitted packet. 1213 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1214 * 1215 * When there is outbound data to send and the primary path 1216 * becomes inactive (e.g., due to failures), or where the 1217 * SCTP user explicitly requests to send data to an 1218 * inactive destination transport address, before reporting 1219 * an error to its ULP, the SCTP endpoint should try to send 1220 * the data to an alternate active destination transport 1221 * address if one exists. 1222 * 1223 * When retransmitting data that timed out, if the endpoint 1224 * is multihomed, it should consider each source-destination 1225 * address pair in its retransmission selection policy. 1226 * When retransmitting timed-out data, the endpoint should 1227 * attempt to pick the most divergent source-destination 1228 * pair from the original source-destination pair to which 1229 * the packet was transmitted. 1230 * 1231 * Note: Rules for picking the most divergent source-destination 1232 * pair are an implementation decision and are not specified 1233 * within this document. 1234 * 1235 * Our basic strategy is to round-robin transports in priorities 1236 * according to sctp_trans_score() e.g., if no such 1237 * transport with state SCTP_ACTIVE exists, round-robin through 1238 * SCTP_UNKNOWN, etc. You get the picture. 1239 */ 1240 static u8 sctp_trans_score(const struct sctp_transport *trans) 1241 { 1242 switch (trans->state) { 1243 case SCTP_ACTIVE: 1244 return 3; /* best case */ 1245 case SCTP_UNKNOWN: 1246 return 2; 1247 case SCTP_PF: 1248 return 1; 1249 default: /* case SCTP_INACTIVE */ 1250 return 0; /* worst case */ 1251 } 1252 } 1253 1254 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1255 struct sctp_transport *trans2) 1256 { 1257 if (trans1->error_count > trans2->error_count) { 1258 return trans2; 1259 } else if (trans1->error_count == trans2->error_count && 1260 ktime_after(trans2->last_time_heard, 1261 trans1->last_time_heard)) { 1262 return trans2; 1263 } else { 1264 return trans1; 1265 } 1266 } 1267 1268 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1269 struct sctp_transport *best) 1270 { 1271 u8 score_curr, score_best; 1272 1273 if (best == NULL || curr == best) 1274 return curr; 1275 1276 score_curr = sctp_trans_score(curr); 1277 score_best = sctp_trans_score(best); 1278 1279 /* First, try a score-based selection if both transport states 1280 * differ. If we're in a tie, lets try to make a more clever 1281 * decision here based on error counts and last time heard. 1282 */ 1283 if (score_curr > score_best) 1284 return curr; 1285 else if (score_curr == score_best) 1286 return sctp_trans_elect_tie(best, curr); 1287 else 1288 return best; 1289 } 1290 1291 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1292 { 1293 struct sctp_transport *trans = asoc->peer.retran_path; 1294 struct sctp_transport *trans_next = NULL; 1295 1296 /* We're done as we only have the one and only path. */ 1297 if (asoc->peer.transport_count == 1) 1298 return; 1299 /* If active_path and retran_path are the same and active, 1300 * then this is the only active path. Use it. 1301 */ 1302 if (asoc->peer.active_path == asoc->peer.retran_path && 1303 asoc->peer.active_path->state == SCTP_ACTIVE) 1304 return; 1305 1306 /* Iterate from retran_path's successor back to retran_path. */ 1307 for (trans = list_next_entry(trans, transports); 1; 1308 trans = list_next_entry(trans, transports)) { 1309 /* Manually skip the head element. */ 1310 if (&trans->transports == &asoc->peer.transport_addr_list) 1311 continue; 1312 if (trans->state == SCTP_UNCONFIRMED) 1313 continue; 1314 trans_next = sctp_trans_elect_best(trans, trans_next); 1315 /* Active is good enough for immediate return. */ 1316 if (trans_next->state == SCTP_ACTIVE) 1317 break; 1318 /* We've reached the end, time to update path. */ 1319 if (trans == asoc->peer.retran_path) 1320 break; 1321 } 1322 1323 asoc->peer.retran_path = trans_next; 1324 1325 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1326 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1327 } 1328 1329 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1330 { 1331 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1332 struct sctp_transport *trans_pf = NULL; 1333 1334 /* Look for the two most recently used active transports. */ 1335 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1336 transports) { 1337 /* Skip uninteresting transports. */ 1338 if (trans->state == SCTP_INACTIVE || 1339 trans->state == SCTP_UNCONFIRMED) 1340 continue; 1341 /* Keep track of the best PF transport from our 1342 * list in case we don't find an active one. 1343 */ 1344 if (trans->state == SCTP_PF) { 1345 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1346 continue; 1347 } 1348 /* For active transports, pick the most recent ones. */ 1349 if (trans_pri == NULL || 1350 ktime_after(trans->last_time_heard, 1351 trans_pri->last_time_heard)) { 1352 trans_sec = trans_pri; 1353 trans_pri = trans; 1354 } else if (trans_sec == NULL || 1355 ktime_after(trans->last_time_heard, 1356 trans_sec->last_time_heard)) { 1357 trans_sec = trans; 1358 } 1359 } 1360 1361 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1362 * 1363 * By default, an endpoint should always transmit to the primary 1364 * path, unless the SCTP user explicitly specifies the 1365 * destination transport address (and possibly source transport 1366 * address) to use. [If the primary is active but not most recent, 1367 * bump the most recently used transport.] 1368 */ 1369 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1370 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1371 asoc->peer.primary_path != trans_pri) { 1372 trans_sec = trans_pri; 1373 trans_pri = asoc->peer.primary_path; 1374 } 1375 1376 /* We did not find anything useful for a possible retransmission 1377 * path; either primary path that we found is the the same as 1378 * the current one, or we didn't generally find an active one. 1379 */ 1380 if (trans_sec == NULL) 1381 trans_sec = trans_pri; 1382 1383 /* If we failed to find a usable transport, just camp on the 1384 * active or pick a PF iff it's the better choice. 1385 */ 1386 if (trans_pri == NULL) { 1387 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1388 trans_sec = trans_pri; 1389 } 1390 1391 /* Set the active and retran transports. */ 1392 asoc->peer.active_path = trans_pri; 1393 asoc->peer.retran_path = trans_sec; 1394 } 1395 1396 struct sctp_transport * 1397 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1398 struct sctp_transport *last_sent_to) 1399 { 1400 /* If this is the first time packet is sent, use the active path, 1401 * else use the retran path. If the last packet was sent over the 1402 * retran path, update the retran path and use it. 1403 */ 1404 if (last_sent_to == NULL) { 1405 return asoc->peer.active_path; 1406 } else { 1407 if (last_sent_to == asoc->peer.retran_path) 1408 sctp_assoc_update_retran_path(asoc); 1409 1410 return asoc->peer.retran_path; 1411 } 1412 } 1413 1414 void sctp_assoc_update_frag_point(struct sctp_association *asoc) 1415 { 1416 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu, 1417 sctp_datachk_len(&asoc->stream)); 1418 1419 if (asoc->user_frag) 1420 frag = min_t(int, frag, asoc->user_frag); 1421 1422 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN - 1423 sctp_datachk_len(&asoc->stream)); 1424 1425 asoc->frag_point = SCTP_TRUNC4(frag); 1426 } 1427 1428 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu) 1429 { 1430 if (asoc->pathmtu != pmtu) { 1431 asoc->pathmtu = pmtu; 1432 sctp_assoc_update_frag_point(asoc); 1433 } 1434 1435 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1436 asoc->pathmtu, asoc->frag_point); 1437 } 1438 1439 /* Update the association's pmtu and frag_point by going through all the 1440 * transports. This routine is called when a transport's PMTU has changed. 1441 */ 1442 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1443 { 1444 struct sctp_transport *t; 1445 __u32 pmtu = 0; 1446 1447 if (!asoc) 1448 return; 1449 1450 /* Get the lowest pmtu of all the transports. */ 1451 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 1452 if (t->pmtu_pending && t->dst) { 1453 sctp_transport_update_pmtu(t, sctp_dst_mtu(t->dst)); 1454 t->pmtu_pending = 0; 1455 } 1456 if (!pmtu || (t->pathmtu < pmtu)) 1457 pmtu = t->pathmtu; 1458 } 1459 1460 sctp_assoc_set_pmtu(asoc, pmtu); 1461 } 1462 1463 /* Should we send a SACK to update our peer? */ 1464 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1465 { 1466 struct net *net = sock_net(asoc->base.sk); 1467 switch (asoc->state) { 1468 case SCTP_STATE_ESTABLISHED: 1469 case SCTP_STATE_SHUTDOWN_PENDING: 1470 case SCTP_STATE_SHUTDOWN_RECEIVED: 1471 case SCTP_STATE_SHUTDOWN_SENT: 1472 if ((asoc->rwnd > asoc->a_rwnd) && 1473 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1474 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1475 asoc->pathmtu))) 1476 return true; 1477 break; 1478 default: 1479 break; 1480 } 1481 return false; 1482 } 1483 1484 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1485 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1486 { 1487 struct sctp_chunk *sack; 1488 struct timer_list *timer; 1489 1490 if (asoc->rwnd_over) { 1491 if (asoc->rwnd_over >= len) { 1492 asoc->rwnd_over -= len; 1493 } else { 1494 asoc->rwnd += (len - asoc->rwnd_over); 1495 asoc->rwnd_over = 0; 1496 } 1497 } else { 1498 asoc->rwnd += len; 1499 } 1500 1501 /* If we had window pressure, start recovering it 1502 * once our rwnd had reached the accumulated pressure 1503 * threshold. The idea is to recover slowly, but up 1504 * to the initial advertised window. 1505 */ 1506 if (asoc->rwnd_press) { 1507 int change = min(asoc->pathmtu, asoc->rwnd_press); 1508 asoc->rwnd += change; 1509 asoc->rwnd_press -= change; 1510 } 1511 1512 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1513 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1514 asoc->a_rwnd); 1515 1516 /* Send a window update SACK if the rwnd has increased by at least the 1517 * minimum of the association's PMTU and half of the receive buffer. 1518 * The algorithm used is similar to the one described in 1519 * Section 4.2.3.3 of RFC 1122. 1520 */ 1521 if (sctp_peer_needs_update(asoc)) { 1522 asoc->a_rwnd = asoc->rwnd; 1523 1524 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1525 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1526 asoc->a_rwnd); 1527 1528 sack = sctp_make_sack(asoc); 1529 if (!sack) 1530 return; 1531 1532 asoc->peer.sack_needed = 0; 1533 1534 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); 1535 1536 /* Stop the SACK timer. */ 1537 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1538 if (del_timer(timer)) 1539 sctp_association_put(asoc); 1540 } 1541 } 1542 1543 /* Decrease asoc's rwnd by len. */ 1544 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1545 { 1546 int rx_count; 1547 int over = 0; 1548 1549 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1550 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1551 "asoc->rwnd_over:%u!\n", __func__, asoc, 1552 asoc->rwnd, asoc->rwnd_over); 1553 1554 if (asoc->ep->rcvbuf_policy) 1555 rx_count = atomic_read(&asoc->rmem_alloc); 1556 else 1557 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1558 1559 /* If we've reached or overflowed our receive buffer, announce 1560 * a 0 rwnd if rwnd would still be positive. Store the 1561 * the potential pressure overflow so that the window can be restored 1562 * back to original value. 1563 */ 1564 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1565 over = 1; 1566 1567 if (asoc->rwnd >= len) { 1568 asoc->rwnd -= len; 1569 if (over) { 1570 asoc->rwnd_press += asoc->rwnd; 1571 asoc->rwnd = 0; 1572 } 1573 } else { 1574 asoc->rwnd_over += len - asoc->rwnd; 1575 asoc->rwnd = 0; 1576 } 1577 1578 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1579 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1580 asoc->rwnd_press); 1581 } 1582 1583 /* Build the bind address list for the association based on info from the 1584 * local endpoint and the remote peer. 1585 */ 1586 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1587 enum sctp_scope scope, gfp_t gfp) 1588 { 1589 int flags; 1590 1591 /* Use scoping rules to determine the subset of addresses from 1592 * the endpoint. 1593 */ 1594 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1595 if (asoc->peer.ipv4_address) 1596 flags |= SCTP_ADDR4_PEERSUPP; 1597 if (asoc->peer.ipv6_address) 1598 flags |= SCTP_ADDR6_PEERSUPP; 1599 1600 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1601 &asoc->base.bind_addr, 1602 &asoc->ep->base.bind_addr, 1603 scope, gfp, flags); 1604 } 1605 1606 /* Build the association's bind address list from the cookie. */ 1607 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1608 struct sctp_cookie *cookie, 1609 gfp_t gfp) 1610 { 1611 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1612 int var_size3 = cookie->raw_addr_list_len; 1613 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1614 1615 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1616 asoc->ep->base.bind_addr.port, gfp); 1617 } 1618 1619 /* Lookup laddr in the bind address list of an association. */ 1620 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1621 const union sctp_addr *laddr) 1622 { 1623 int found = 0; 1624 1625 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1626 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1627 sctp_sk(asoc->base.sk))) 1628 found = 1; 1629 1630 return found; 1631 } 1632 1633 /* Set an association id for a given association */ 1634 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1635 { 1636 bool preload = gfpflags_allow_blocking(gfp); 1637 int ret; 1638 1639 /* If the id is already assigned, keep it. */ 1640 if (asoc->assoc_id) 1641 return 0; 1642 1643 if (preload) 1644 idr_preload(gfp); 1645 spin_lock_bh(&sctp_assocs_id_lock); 1646 /* 0 is not a valid assoc_id, must be >= 1 */ 1647 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1648 spin_unlock_bh(&sctp_assocs_id_lock); 1649 if (preload) 1650 idr_preload_end(); 1651 if (ret < 0) 1652 return ret; 1653 1654 asoc->assoc_id = (sctp_assoc_t)ret; 1655 return 0; 1656 } 1657 1658 /* Free the ASCONF queue */ 1659 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1660 { 1661 struct sctp_chunk *asconf; 1662 struct sctp_chunk *tmp; 1663 1664 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1665 list_del_init(&asconf->list); 1666 sctp_chunk_free(asconf); 1667 } 1668 } 1669 1670 /* Free asconf_ack cache */ 1671 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1672 { 1673 struct sctp_chunk *ack; 1674 struct sctp_chunk *tmp; 1675 1676 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1677 transmitted_list) { 1678 list_del_init(&ack->transmitted_list); 1679 sctp_chunk_free(ack); 1680 } 1681 } 1682 1683 /* Clean up the ASCONF_ACK queue */ 1684 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1685 { 1686 struct sctp_chunk *ack; 1687 struct sctp_chunk *tmp; 1688 1689 /* We can remove all the entries from the queue up to 1690 * the "Peer-Sequence-Number". 1691 */ 1692 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1693 transmitted_list) { 1694 if (ack->subh.addip_hdr->serial == 1695 htonl(asoc->peer.addip_serial)) 1696 break; 1697 1698 list_del_init(&ack->transmitted_list); 1699 sctp_chunk_free(ack); 1700 } 1701 } 1702 1703 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1704 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1705 const struct sctp_association *asoc, 1706 __be32 serial) 1707 { 1708 struct sctp_chunk *ack; 1709 1710 /* Walk through the list of cached ASCONF-ACKs and find the 1711 * ack chunk whose serial number matches that of the request. 1712 */ 1713 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1714 if (sctp_chunk_pending(ack)) 1715 continue; 1716 if (ack->subh.addip_hdr->serial == serial) { 1717 sctp_chunk_hold(ack); 1718 return ack; 1719 } 1720 } 1721 1722 return NULL; 1723 } 1724 1725 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1726 { 1727 /* Free any cached ASCONF_ACK chunk. */ 1728 sctp_assoc_free_asconf_acks(asoc); 1729 1730 /* Free the ASCONF queue. */ 1731 sctp_assoc_free_asconf_queue(asoc); 1732 1733 /* Free any cached ASCONF chunk. */ 1734 if (asoc->addip_last_asconf) 1735 sctp_chunk_free(asoc->addip_last_asconf); 1736 } 1737