xref: /linux/net/sctp/associola.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Jon Grimm             <jgrimm@us.ibm.com>
36  *    Xingang Guo           <xingang.guo@intel.com>
37  *    Hui Huang             <hui.huang@nokia.com>
38  *    Sridhar Samudrala	    <sri@us.ibm.com>
39  *    Daisy Chang	    <daisyc@us.ibm.com>
40  *    Ryan Layer	    <rmlayer@us.ibm.com>
41  *    Kevin Gao             <kevin.gao@intel.com>
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50 
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56 
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62 
63 /* 1st Level Abstractions. */
64 
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(
67 					struct sctp_association *asoc,
68 					const struct sctp_endpoint *ep,
69 					const struct sock *sk,
70 					enum sctp_scope scope, gfp_t gfp)
71 {
72 	struct net *net = sock_net(sk);
73 	struct sctp_sock *sp;
74 	struct sctp_paramhdr *p;
75 	int i;
76 
77 	/* Retrieve the SCTP per socket area.  */
78 	sp = sctp_sk((struct sock *)sk);
79 
80 	/* Discarding const is appropriate here.  */
81 	asoc->ep = (struct sctp_endpoint *)ep;
82 	asoc->base.sk = (struct sock *)sk;
83 
84 	sctp_endpoint_hold(asoc->ep);
85 	sock_hold(asoc->base.sk);
86 
87 	/* Initialize the common base substructure.  */
88 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
89 
90 	/* Initialize the object handling fields.  */
91 	refcount_set(&asoc->base.refcnt, 1);
92 
93 	/* Initialize the bind addr area.  */
94 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
95 
96 	asoc->state = SCTP_STATE_CLOSED;
97 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
98 	asoc->user_frag = sp->user_frag;
99 
100 	/* Set the association max_retrans and RTO values from the
101 	 * socket values.
102 	 */
103 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
104 	asoc->pf_retrans  = net->sctp.pf_retrans;
105 
106 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
107 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
108 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
109 
110 	/* Initialize the association's heartbeat interval based on the
111 	 * sock configured value.
112 	 */
113 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
114 
115 	/* Initialize path max retrans value. */
116 	asoc->pathmaxrxt = sp->pathmaxrxt;
117 
118 	asoc->flowlabel = sp->flowlabel;
119 	asoc->dscp = sp->dscp;
120 
121 	/* Initialize default path MTU. */
122 	asoc->pathmtu = sp->pathmtu;
123 
124 	/* Set association default SACK delay */
125 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
126 	asoc->sackfreq = sp->sackfreq;
127 
128 	/* Set the association default flags controlling
129 	 * Heartbeat, SACK delay, and Path MTU Discovery.
130 	 */
131 	asoc->param_flags = sp->param_flags;
132 
133 	/* Initialize the maximum number of new data packets that can be sent
134 	 * in a burst.
135 	 */
136 	asoc->max_burst = sp->max_burst;
137 
138 	/* initialize association timers */
139 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
140 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
141 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
142 
143 	/* sctpimpguide Section 2.12.2
144 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
145 	 * recommended value of 5 times 'RTO.Max'.
146 	 */
147 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
148 		= 5 * asoc->rto_max;
149 
150 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
151 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
152 
153 	/* Initializes the timers */
154 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
155 		timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
156 
157 	/* Pull default initialization values from the sock options.
158 	 * Note: This assumes that the values have already been
159 	 * validated in the sock.
160 	 */
161 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
162 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
163 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
164 
165 	asoc->max_init_timeo =
166 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
167 
168 	/* Set the local window size for receive.
169 	 * This is also the rcvbuf space per association.
170 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
171 	 * 1500 bytes in one SCTP packet.
172 	 */
173 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
174 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
175 	else
176 		asoc->rwnd = sk->sk_rcvbuf/2;
177 
178 	asoc->a_rwnd = asoc->rwnd;
179 
180 	/* Use my own max window until I learn something better.  */
181 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
182 
183 	/* Initialize the receive memory counter */
184 	atomic_set(&asoc->rmem_alloc, 0);
185 
186 	init_waitqueue_head(&asoc->wait);
187 
188 	asoc->c.my_vtag = sctp_generate_tag(ep);
189 	asoc->c.my_port = ep->base.bind_addr.port;
190 
191 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
192 
193 	asoc->next_tsn = asoc->c.initial_tsn;
194 
195 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
196 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
197 	asoc->highest_sacked = asoc->ctsn_ack_point;
198 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
199 
200 	/* ADDIP Section 4.1 Asconf Chunk Procedures
201 	 *
202 	 * When an endpoint has an ASCONF signaled change to be sent to the
203 	 * remote endpoint it should do the following:
204 	 * ...
205 	 * A2) a serial number should be assigned to the chunk. The serial
206 	 * number SHOULD be a monotonically increasing number. The serial
207 	 * numbers SHOULD be initialized at the start of the
208 	 * association to the same value as the initial TSN.
209 	 */
210 	asoc->addip_serial = asoc->c.initial_tsn;
211 	asoc->strreset_outseq = asoc->c.initial_tsn;
212 
213 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
214 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
215 
216 	/* Make an empty list of remote transport addresses.  */
217 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
218 
219 	/* RFC 2960 5.1 Normal Establishment of an Association
220 	 *
221 	 * After the reception of the first data chunk in an
222 	 * association the endpoint must immediately respond with a
223 	 * sack to acknowledge the data chunk.  Subsequent
224 	 * acknowledgements should be done as described in Section
225 	 * 6.2.
226 	 *
227 	 * [We implement this by telling a new association that it
228 	 * already received one packet.]
229 	 */
230 	asoc->peer.sack_needed = 1;
231 	asoc->peer.sack_generation = 1;
232 
233 	/* Assume that the peer will tell us if he recognizes ASCONF
234 	 * as part of INIT exchange.
235 	 * The sctp_addip_noauth option is there for backward compatibility
236 	 * and will revert old behavior.
237 	 */
238 	if (net->sctp.addip_noauth)
239 		asoc->peer.asconf_capable = 1;
240 
241 	/* Create an input queue.  */
242 	sctp_inq_init(&asoc->base.inqueue);
243 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
244 
245 	/* Create an output queue.  */
246 	sctp_outq_init(asoc, &asoc->outqueue);
247 
248 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
249 		goto fail_init;
250 
251 	if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
252 			     0, gfp))
253 		goto fail_init;
254 
255 	/* Assume that peer would support both address types unless we are
256 	 * told otherwise.
257 	 */
258 	asoc->peer.ipv4_address = 1;
259 	if (asoc->base.sk->sk_family == PF_INET6)
260 		asoc->peer.ipv6_address = 1;
261 	INIT_LIST_HEAD(&asoc->asocs);
262 
263 	asoc->default_stream = sp->default_stream;
264 	asoc->default_ppid = sp->default_ppid;
265 	asoc->default_flags = sp->default_flags;
266 	asoc->default_context = sp->default_context;
267 	asoc->default_timetolive = sp->default_timetolive;
268 	asoc->default_rcv_context = sp->default_rcv_context;
269 
270 	/* AUTH related initializations */
271 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
272 	if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
273 		goto stream_free;
274 
275 	asoc->active_key_id = ep->active_key_id;
276 	asoc->prsctp_enable = ep->prsctp_enable;
277 	asoc->reconf_enable = ep->reconf_enable;
278 	asoc->strreset_enable = ep->strreset_enable;
279 
280 	/* Save the hmacs and chunks list into this association */
281 	if (ep->auth_hmacs_list)
282 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
283 			ntohs(ep->auth_hmacs_list->param_hdr.length));
284 	if (ep->auth_chunk_list)
285 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
286 			ntohs(ep->auth_chunk_list->param_hdr.length));
287 
288 	/* Get the AUTH random number for this association */
289 	p = (struct sctp_paramhdr *)asoc->c.auth_random;
290 	p->type = SCTP_PARAM_RANDOM;
291 	p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
292 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
293 
294 	return asoc;
295 
296 stream_free:
297 	sctp_stream_free(&asoc->stream);
298 fail_init:
299 	sock_put(asoc->base.sk);
300 	sctp_endpoint_put(asoc->ep);
301 	return NULL;
302 }
303 
304 /* Allocate and initialize a new association */
305 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
306 					      const struct sock *sk,
307 					      enum sctp_scope scope, gfp_t gfp)
308 {
309 	struct sctp_association *asoc;
310 
311 	asoc = kzalloc(sizeof(*asoc), gfp);
312 	if (!asoc)
313 		goto fail;
314 
315 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
316 		goto fail_init;
317 
318 	SCTP_DBG_OBJCNT_INC(assoc);
319 
320 	pr_debug("Created asoc %p\n", asoc);
321 
322 	return asoc;
323 
324 fail_init:
325 	kfree(asoc);
326 fail:
327 	return NULL;
328 }
329 
330 /* Free this association if possible.  There may still be users, so
331  * the actual deallocation may be delayed.
332  */
333 void sctp_association_free(struct sctp_association *asoc)
334 {
335 	struct sock *sk = asoc->base.sk;
336 	struct sctp_transport *transport;
337 	struct list_head *pos, *temp;
338 	int i;
339 
340 	/* Only real associations count against the endpoint, so
341 	 * don't bother for if this is a temporary association.
342 	 */
343 	if (!list_empty(&asoc->asocs)) {
344 		list_del(&asoc->asocs);
345 
346 		/* Decrement the backlog value for a TCP-style listening
347 		 * socket.
348 		 */
349 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
350 			sk->sk_ack_backlog--;
351 	}
352 
353 	/* Mark as dead, so other users can know this structure is
354 	 * going away.
355 	 */
356 	asoc->base.dead = true;
357 
358 	/* Dispose of any data lying around in the outqueue. */
359 	sctp_outq_free(&asoc->outqueue);
360 
361 	/* Dispose of any pending messages for the upper layer. */
362 	sctp_ulpq_free(&asoc->ulpq);
363 
364 	/* Dispose of any pending chunks on the inqueue. */
365 	sctp_inq_free(&asoc->base.inqueue);
366 
367 	sctp_tsnmap_free(&asoc->peer.tsn_map);
368 
369 	/* Free stream information. */
370 	sctp_stream_free(&asoc->stream);
371 
372 	if (asoc->strreset_chunk)
373 		sctp_chunk_free(asoc->strreset_chunk);
374 
375 	/* Clean up the bound address list. */
376 	sctp_bind_addr_free(&asoc->base.bind_addr);
377 
378 	/* Do we need to go through all of our timers and
379 	 * delete them?   To be safe we will try to delete all, but we
380 	 * should be able to go through and make a guess based
381 	 * on our state.
382 	 */
383 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
384 		if (del_timer(&asoc->timers[i]))
385 			sctp_association_put(asoc);
386 	}
387 
388 	/* Free peer's cached cookie. */
389 	kfree(asoc->peer.cookie);
390 	kfree(asoc->peer.peer_random);
391 	kfree(asoc->peer.peer_chunks);
392 	kfree(asoc->peer.peer_hmacs);
393 
394 	/* Release the transport structures. */
395 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
396 		transport = list_entry(pos, struct sctp_transport, transports);
397 		list_del_rcu(pos);
398 		sctp_unhash_transport(transport);
399 		sctp_transport_free(transport);
400 	}
401 
402 	asoc->peer.transport_count = 0;
403 
404 	sctp_asconf_queue_teardown(asoc);
405 
406 	/* Free pending address space being deleted */
407 	kfree(asoc->asconf_addr_del_pending);
408 
409 	/* AUTH - Free the endpoint shared keys */
410 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
411 
412 	/* AUTH - Free the association shared key */
413 	sctp_auth_key_put(asoc->asoc_shared_key);
414 
415 	sctp_association_put(asoc);
416 }
417 
418 /* Cleanup and free up an association. */
419 static void sctp_association_destroy(struct sctp_association *asoc)
420 {
421 	if (unlikely(!asoc->base.dead)) {
422 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
423 		return;
424 	}
425 
426 	sctp_endpoint_put(asoc->ep);
427 	sock_put(asoc->base.sk);
428 
429 	if (asoc->assoc_id != 0) {
430 		spin_lock_bh(&sctp_assocs_id_lock);
431 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
432 		spin_unlock_bh(&sctp_assocs_id_lock);
433 	}
434 
435 	WARN_ON(atomic_read(&asoc->rmem_alloc));
436 
437 	kfree(asoc);
438 	SCTP_DBG_OBJCNT_DEC(assoc);
439 }
440 
441 /* Change the primary destination address for the peer. */
442 void sctp_assoc_set_primary(struct sctp_association *asoc,
443 			    struct sctp_transport *transport)
444 {
445 	int changeover = 0;
446 
447 	/* it's a changeover only if we already have a primary path
448 	 * that we are changing
449 	 */
450 	if (asoc->peer.primary_path != NULL &&
451 	    asoc->peer.primary_path != transport)
452 		changeover = 1 ;
453 
454 	asoc->peer.primary_path = transport;
455 
456 	/* Set a default msg_name for events. */
457 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
458 	       sizeof(union sctp_addr));
459 
460 	/* If the primary path is changing, assume that the
461 	 * user wants to use this new path.
462 	 */
463 	if ((transport->state == SCTP_ACTIVE) ||
464 	    (transport->state == SCTP_UNKNOWN))
465 		asoc->peer.active_path = transport;
466 
467 	/*
468 	 * SFR-CACC algorithm:
469 	 * Upon the receipt of a request to change the primary
470 	 * destination address, on the data structure for the new
471 	 * primary destination, the sender MUST do the following:
472 	 *
473 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
474 	 * to this destination address earlier. The sender MUST set
475 	 * CYCLING_CHANGEOVER to indicate that this switch is a
476 	 * double switch to the same destination address.
477 	 *
478 	 * Really, only bother is we have data queued or outstanding on
479 	 * the association.
480 	 */
481 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
482 		return;
483 
484 	if (transport->cacc.changeover_active)
485 		transport->cacc.cycling_changeover = changeover;
486 
487 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
488 	 * a changeover has occurred.
489 	 */
490 	transport->cacc.changeover_active = changeover;
491 
492 	/* 3) The sender MUST store the next TSN to be sent in
493 	 * next_tsn_at_change.
494 	 */
495 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
496 }
497 
498 /* Remove a transport from an association.  */
499 void sctp_assoc_rm_peer(struct sctp_association *asoc,
500 			struct sctp_transport *peer)
501 {
502 	struct list_head	*pos;
503 	struct sctp_transport	*transport;
504 
505 	pr_debug("%s: association:%p addr:%pISpc\n",
506 		 __func__, asoc, &peer->ipaddr.sa);
507 
508 	/* If we are to remove the current retran_path, update it
509 	 * to the next peer before removing this peer from the list.
510 	 */
511 	if (asoc->peer.retran_path == peer)
512 		sctp_assoc_update_retran_path(asoc);
513 
514 	/* Remove this peer from the list. */
515 	list_del_rcu(&peer->transports);
516 	/* Remove this peer from the transport hashtable */
517 	sctp_unhash_transport(peer);
518 
519 	/* Get the first transport of asoc. */
520 	pos = asoc->peer.transport_addr_list.next;
521 	transport = list_entry(pos, struct sctp_transport, transports);
522 
523 	/* Update any entries that match the peer to be deleted. */
524 	if (asoc->peer.primary_path == peer)
525 		sctp_assoc_set_primary(asoc, transport);
526 	if (asoc->peer.active_path == peer)
527 		asoc->peer.active_path = transport;
528 	if (asoc->peer.retran_path == peer)
529 		asoc->peer.retran_path = transport;
530 	if (asoc->peer.last_data_from == peer)
531 		asoc->peer.last_data_from = transport;
532 
533 	if (asoc->strreset_chunk &&
534 	    asoc->strreset_chunk->transport == peer) {
535 		asoc->strreset_chunk->transport = transport;
536 		sctp_transport_reset_reconf_timer(transport);
537 	}
538 
539 	/* If we remove the transport an INIT was last sent to, set it to
540 	 * NULL. Combined with the update of the retran path above, this
541 	 * will cause the next INIT to be sent to the next available
542 	 * transport, maintaining the cycle.
543 	 */
544 	if (asoc->init_last_sent_to == peer)
545 		asoc->init_last_sent_to = NULL;
546 
547 	/* If we remove the transport an SHUTDOWN was last sent to, set it
548 	 * to NULL. Combined with the update of the retran path above, this
549 	 * will cause the next SHUTDOWN to be sent to the next available
550 	 * transport, maintaining the cycle.
551 	 */
552 	if (asoc->shutdown_last_sent_to == peer)
553 		asoc->shutdown_last_sent_to = NULL;
554 
555 	/* If we remove the transport an ASCONF was last sent to, set it to
556 	 * NULL.
557 	 */
558 	if (asoc->addip_last_asconf &&
559 	    asoc->addip_last_asconf->transport == peer)
560 		asoc->addip_last_asconf->transport = NULL;
561 
562 	/* If we have something on the transmitted list, we have to
563 	 * save it off.  The best place is the active path.
564 	 */
565 	if (!list_empty(&peer->transmitted)) {
566 		struct sctp_transport *active = asoc->peer.active_path;
567 		struct sctp_chunk *ch;
568 
569 		/* Reset the transport of each chunk on this list */
570 		list_for_each_entry(ch, &peer->transmitted,
571 					transmitted_list) {
572 			ch->transport = NULL;
573 			ch->rtt_in_progress = 0;
574 		}
575 
576 		list_splice_tail_init(&peer->transmitted,
577 					&active->transmitted);
578 
579 		/* Start a T3 timer here in case it wasn't running so
580 		 * that these migrated packets have a chance to get
581 		 * retransmitted.
582 		 */
583 		if (!timer_pending(&active->T3_rtx_timer))
584 			if (!mod_timer(&active->T3_rtx_timer,
585 					jiffies + active->rto))
586 				sctp_transport_hold(active);
587 	}
588 
589 	asoc->peer.transport_count--;
590 
591 	sctp_transport_free(peer);
592 }
593 
594 /* Add a transport address to an association.  */
595 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
596 					   const union sctp_addr *addr,
597 					   const gfp_t gfp,
598 					   const int peer_state)
599 {
600 	struct net *net = sock_net(asoc->base.sk);
601 	struct sctp_transport *peer;
602 	struct sctp_sock *sp;
603 	unsigned short port;
604 
605 	sp = sctp_sk(asoc->base.sk);
606 
607 	/* AF_INET and AF_INET6 share common port field. */
608 	port = ntohs(addr->v4.sin_port);
609 
610 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
611 		 asoc, &addr->sa, peer_state);
612 
613 	/* Set the port if it has not been set yet.  */
614 	if (0 == asoc->peer.port)
615 		asoc->peer.port = port;
616 
617 	/* Check to see if this is a duplicate. */
618 	peer = sctp_assoc_lookup_paddr(asoc, addr);
619 	if (peer) {
620 		/* An UNKNOWN state is only set on transports added by
621 		 * user in sctp_connectx() call.  Such transports should be
622 		 * considered CONFIRMED per RFC 4960, Section 5.4.
623 		 */
624 		if (peer->state == SCTP_UNKNOWN) {
625 			peer->state = SCTP_ACTIVE;
626 		}
627 		return peer;
628 	}
629 
630 	peer = sctp_transport_new(net, addr, gfp);
631 	if (!peer)
632 		return NULL;
633 
634 	sctp_transport_set_owner(peer, asoc);
635 
636 	/* Initialize the peer's heartbeat interval based on the
637 	 * association configured value.
638 	 */
639 	peer->hbinterval = asoc->hbinterval;
640 
641 	/* Set the path max_retrans.  */
642 	peer->pathmaxrxt = asoc->pathmaxrxt;
643 
644 	/* And the partial failure retrans threshold */
645 	peer->pf_retrans = asoc->pf_retrans;
646 
647 	/* Initialize the peer's SACK delay timeout based on the
648 	 * association configured value.
649 	 */
650 	peer->sackdelay = asoc->sackdelay;
651 	peer->sackfreq = asoc->sackfreq;
652 
653 	if (addr->sa.sa_family == AF_INET6) {
654 		__be32 info = addr->v6.sin6_flowinfo;
655 
656 		if (info) {
657 			peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
658 			peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
659 		} else {
660 			peer->flowlabel = asoc->flowlabel;
661 		}
662 	}
663 	peer->dscp = asoc->dscp;
664 
665 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
666 	 * based on association setting.
667 	 */
668 	peer->param_flags = asoc->param_flags;
669 
670 	/* Initialize the pmtu of the transport. */
671 	sctp_transport_route(peer, NULL, sp);
672 
673 	/* If this is the first transport addr on this association,
674 	 * initialize the association PMTU to the peer's PMTU.
675 	 * If not and the current association PMTU is higher than the new
676 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
677 	 */
678 	sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
679 				  min_t(int, peer->pathmtu, asoc->pathmtu) :
680 				  peer->pathmtu);
681 
682 	peer->pmtu_pending = 0;
683 
684 	/* The asoc->peer.port might not be meaningful yet, but
685 	 * initialize the packet structure anyway.
686 	 */
687 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
688 			 asoc->peer.port);
689 
690 	/* 7.2.1 Slow-Start
691 	 *
692 	 * o The initial cwnd before DATA transmission or after a sufficiently
693 	 *   long idle period MUST be set to
694 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
695 	 *
696 	 * o The initial value of ssthresh MAY be arbitrarily high
697 	 *   (for example, implementations MAY use the size of the
698 	 *   receiver advertised window).
699 	 */
700 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
701 
702 	/* At this point, we may not have the receiver's advertised window,
703 	 * so initialize ssthresh to the default value and it will be set
704 	 * later when we process the INIT.
705 	 */
706 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
707 
708 	peer->partial_bytes_acked = 0;
709 	peer->flight_size = 0;
710 	peer->burst_limited = 0;
711 
712 	/* Set the transport's RTO.initial value */
713 	peer->rto = asoc->rto_initial;
714 	sctp_max_rto(asoc, peer);
715 
716 	/* Set the peer's active state. */
717 	peer->state = peer_state;
718 
719 	/* Add this peer into the transport hashtable */
720 	if (sctp_hash_transport(peer)) {
721 		sctp_transport_free(peer);
722 		return NULL;
723 	}
724 
725 	/* Attach the remote transport to our asoc.  */
726 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
727 	asoc->peer.transport_count++;
728 
729 	/* If we do not yet have a primary path, set one.  */
730 	if (!asoc->peer.primary_path) {
731 		sctp_assoc_set_primary(asoc, peer);
732 		asoc->peer.retran_path = peer;
733 	}
734 
735 	if (asoc->peer.active_path == asoc->peer.retran_path &&
736 	    peer->state != SCTP_UNCONFIRMED) {
737 		asoc->peer.retran_path = peer;
738 	}
739 
740 	return peer;
741 }
742 
743 /* Delete a transport address from an association.  */
744 void sctp_assoc_del_peer(struct sctp_association *asoc,
745 			 const union sctp_addr *addr)
746 {
747 	struct list_head	*pos;
748 	struct list_head	*temp;
749 	struct sctp_transport	*transport;
750 
751 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
752 		transport = list_entry(pos, struct sctp_transport, transports);
753 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
754 			/* Do book keeping for removing the peer and free it. */
755 			sctp_assoc_rm_peer(asoc, transport);
756 			break;
757 		}
758 	}
759 }
760 
761 /* Lookup a transport by address. */
762 struct sctp_transport *sctp_assoc_lookup_paddr(
763 					const struct sctp_association *asoc,
764 					const union sctp_addr *address)
765 {
766 	struct sctp_transport *t;
767 
768 	/* Cycle through all transports searching for a peer address. */
769 
770 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
771 			transports) {
772 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
773 			return t;
774 	}
775 
776 	return NULL;
777 }
778 
779 /* Remove all transports except a give one */
780 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
781 				     struct sctp_transport *primary)
782 {
783 	struct sctp_transport	*temp;
784 	struct sctp_transport	*t;
785 
786 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
787 				 transports) {
788 		/* if the current transport is not the primary one, delete it */
789 		if (t != primary)
790 			sctp_assoc_rm_peer(asoc, t);
791 	}
792 }
793 
794 /* Engage in transport control operations.
795  * Mark the transport up or down and send a notification to the user.
796  * Select and update the new active and retran paths.
797  */
798 void sctp_assoc_control_transport(struct sctp_association *asoc,
799 				  struct sctp_transport *transport,
800 				  enum sctp_transport_cmd command,
801 				  sctp_sn_error_t error)
802 {
803 	struct sctp_ulpevent *event;
804 	struct sockaddr_storage addr;
805 	int spc_state = 0;
806 	bool ulp_notify = true;
807 
808 	/* Record the transition on the transport.  */
809 	switch (command) {
810 	case SCTP_TRANSPORT_UP:
811 		/* If we are moving from UNCONFIRMED state due
812 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
813 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
814 		 */
815 		if (SCTP_UNCONFIRMED == transport->state &&
816 		    SCTP_HEARTBEAT_SUCCESS == error)
817 			spc_state = SCTP_ADDR_CONFIRMED;
818 		else
819 			spc_state = SCTP_ADDR_AVAILABLE;
820 		/* Don't inform ULP about transition from PF to
821 		 * active state and set cwnd to 1 MTU, see SCTP
822 		 * Quick failover draft section 5.1, point 5
823 		 */
824 		if (transport->state == SCTP_PF) {
825 			ulp_notify = false;
826 			transport->cwnd = asoc->pathmtu;
827 		}
828 		transport->state = SCTP_ACTIVE;
829 		break;
830 
831 	case SCTP_TRANSPORT_DOWN:
832 		/* If the transport was never confirmed, do not transition it
833 		 * to inactive state.  Also, release the cached route since
834 		 * there may be a better route next time.
835 		 */
836 		if (transport->state != SCTP_UNCONFIRMED)
837 			transport->state = SCTP_INACTIVE;
838 		else {
839 			sctp_transport_dst_release(transport);
840 			ulp_notify = false;
841 		}
842 
843 		spc_state = SCTP_ADDR_UNREACHABLE;
844 		break;
845 
846 	case SCTP_TRANSPORT_PF:
847 		transport->state = SCTP_PF;
848 		ulp_notify = false;
849 		break;
850 
851 	default:
852 		return;
853 	}
854 
855 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
856 	 * to the user.
857 	 */
858 	if (ulp_notify) {
859 		memset(&addr, 0, sizeof(struct sockaddr_storage));
860 		memcpy(&addr, &transport->ipaddr,
861 		       transport->af_specific->sockaddr_len);
862 
863 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
864 					0, spc_state, error, GFP_ATOMIC);
865 		if (event)
866 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
867 	}
868 
869 	/* Select new active and retran paths. */
870 	sctp_select_active_and_retran_path(asoc);
871 }
872 
873 /* Hold a reference to an association. */
874 void sctp_association_hold(struct sctp_association *asoc)
875 {
876 	refcount_inc(&asoc->base.refcnt);
877 }
878 
879 /* Release a reference to an association and cleanup
880  * if there are no more references.
881  */
882 void sctp_association_put(struct sctp_association *asoc)
883 {
884 	if (refcount_dec_and_test(&asoc->base.refcnt))
885 		sctp_association_destroy(asoc);
886 }
887 
888 /* Allocate the next TSN, Transmission Sequence Number, for the given
889  * association.
890  */
891 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
892 {
893 	/* From Section 1.6 Serial Number Arithmetic:
894 	 * Transmission Sequence Numbers wrap around when they reach
895 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
896 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
897 	 */
898 	__u32 retval = asoc->next_tsn;
899 	asoc->next_tsn++;
900 	asoc->unack_data++;
901 
902 	return retval;
903 }
904 
905 /* Compare two addresses to see if they match.  Wildcard addresses
906  * only match themselves.
907  */
908 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
909 			const union sctp_addr *ss2)
910 {
911 	struct sctp_af *af;
912 
913 	af = sctp_get_af_specific(ss1->sa.sa_family);
914 	if (unlikely(!af))
915 		return 0;
916 
917 	return af->cmp_addr(ss1, ss2);
918 }
919 
920 /* Return an ecne chunk to get prepended to a packet.
921  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
922  * No we don't, but we could/should.
923  */
924 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
925 {
926 	if (!asoc->need_ecne)
927 		return NULL;
928 
929 	/* Send ECNE if needed.
930 	 * Not being able to allocate a chunk here is not deadly.
931 	 */
932 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
933 }
934 
935 /*
936  * Find which transport this TSN was sent on.
937  */
938 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
939 					     __u32 tsn)
940 {
941 	struct sctp_transport *active;
942 	struct sctp_transport *match;
943 	struct sctp_transport *transport;
944 	struct sctp_chunk *chunk;
945 	__be32 key = htonl(tsn);
946 
947 	match = NULL;
948 
949 	/*
950 	 * FIXME: In general, find a more efficient data structure for
951 	 * searching.
952 	 */
953 
954 	/*
955 	 * The general strategy is to search each transport's transmitted
956 	 * list.   Return which transport this TSN lives on.
957 	 *
958 	 * Let's be hopeful and check the active_path first.
959 	 * Another optimization would be to know if there is only one
960 	 * outbound path and not have to look for the TSN at all.
961 	 *
962 	 */
963 
964 	active = asoc->peer.active_path;
965 
966 	list_for_each_entry(chunk, &active->transmitted,
967 			transmitted_list) {
968 
969 		if (key == chunk->subh.data_hdr->tsn) {
970 			match = active;
971 			goto out;
972 		}
973 	}
974 
975 	/* If not found, go search all the other transports. */
976 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
977 			transports) {
978 
979 		if (transport == active)
980 			continue;
981 		list_for_each_entry(chunk, &transport->transmitted,
982 				transmitted_list) {
983 			if (key == chunk->subh.data_hdr->tsn) {
984 				match = transport;
985 				goto out;
986 			}
987 		}
988 	}
989 out:
990 	return match;
991 }
992 
993 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
994 static void sctp_assoc_bh_rcv(struct work_struct *work)
995 {
996 	struct sctp_association *asoc =
997 		container_of(work, struct sctp_association,
998 			     base.inqueue.immediate);
999 	struct net *net = sock_net(asoc->base.sk);
1000 	union sctp_subtype subtype;
1001 	struct sctp_endpoint *ep;
1002 	struct sctp_chunk *chunk;
1003 	struct sctp_inq *inqueue;
1004 	int first_time = 1;	/* is this the first time through the loop */
1005 	int error = 0;
1006 	int state;
1007 
1008 	/* The association should be held so we should be safe. */
1009 	ep = asoc->ep;
1010 
1011 	inqueue = &asoc->base.inqueue;
1012 	sctp_association_hold(asoc);
1013 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1014 		state = asoc->state;
1015 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1016 
1017 		/* If the first chunk in the packet is AUTH, do special
1018 		 * processing specified in Section 6.3 of SCTP-AUTH spec
1019 		 */
1020 		if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1021 			struct sctp_chunkhdr *next_hdr;
1022 
1023 			next_hdr = sctp_inq_peek(inqueue);
1024 			if (!next_hdr)
1025 				goto normal;
1026 
1027 			/* If the next chunk is COOKIE-ECHO, skip the AUTH
1028 			 * chunk while saving a pointer to it so we can do
1029 			 * Authentication later (during cookie-echo
1030 			 * processing).
1031 			 */
1032 			if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1033 				chunk->auth_chunk = skb_clone(chunk->skb,
1034 							      GFP_ATOMIC);
1035 				chunk->auth = 1;
1036 				continue;
1037 			}
1038 		}
1039 
1040 normal:
1041 		/* SCTP-AUTH, Section 6.3:
1042 		 *    The receiver has a list of chunk types which it expects
1043 		 *    to be received only after an AUTH-chunk.  This list has
1044 		 *    been sent to the peer during the association setup.  It
1045 		 *    MUST silently discard these chunks if they are not placed
1046 		 *    after an AUTH chunk in the packet.
1047 		 */
1048 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1049 			continue;
1050 
1051 		/* Remember where the last DATA chunk came from so we
1052 		 * know where to send the SACK.
1053 		 */
1054 		if (sctp_chunk_is_data(chunk))
1055 			asoc->peer.last_data_from = chunk->transport;
1056 		else {
1057 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1058 			asoc->stats.ictrlchunks++;
1059 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1060 				asoc->stats.isacks++;
1061 		}
1062 
1063 		if (chunk->transport)
1064 			chunk->transport->last_time_heard = ktime_get();
1065 
1066 		/* Run through the state machine. */
1067 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1068 				   state, ep, asoc, chunk, GFP_ATOMIC);
1069 
1070 		/* Check to see if the association is freed in response to
1071 		 * the incoming chunk.  If so, get out of the while loop.
1072 		 */
1073 		if (asoc->base.dead)
1074 			break;
1075 
1076 		/* If there is an error on chunk, discard this packet. */
1077 		if (error && chunk)
1078 			chunk->pdiscard = 1;
1079 
1080 		if (first_time)
1081 			first_time = 0;
1082 	}
1083 	sctp_association_put(asoc);
1084 }
1085 
1086 /* This routine moves an association from its old sk to a new sk.  */
1087 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1088 {
1089 	struct sctp_sock *newsp = sctp_sk(newsk);
1090 	struct sock *oldsk = assoc->base.sk;
1091 
1092 	/* Delete the association from the old endpoint's list of
1093 	 * associations.
1094 	 */
1095 	list_del_init(&assoc->asocs);
1096 
1097 	/* Decrement the backlog value for a TCP-style socket. */
1098 	if (sctp_style(oldsk, TCP))
1099 		oldsk->sk_ack_backlog--;
1100 
1101 	/* Release references to the old endpoint and the sock.  */
1102 	sctp_endpoint_put(assoc->ep);
1103 	sock_put(assoc->base.sk);
1104 
1105 	/* Get a reference to the new endpoint.  */
1106 	assoc->ep = newsp->ep;
1107 	sctp_endpoint_hold(assoc->ep);
1108 
1109 	/* Get a reference to the new sock.  */
1110 	assoc->base.sk = newsk;
1111 	sock_hold(assoc->base.sk);
1112 
1113 	/* Add the association to the new endpoint's list of associations.  */
1114 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1115 }
1116 
1117 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1118 int sctp_assoc_update(struct sctp_association *asoc,
1119 		      struct sctp_association *new)
1120 {
1121 	struct sctp_transport *trans;
1122 	struct list_head *pos, *temp;
1123 
1124 	/* Copy in new parameters of peer. */
1125 	asoc->c = new->c;
1126 	asoc->peer.rwnd = new->peer.rwnd;
1127 	asoc->peer.sack_needed = new->peer.sack_needed;
1128 	asoc->peer.auth_capable = new->peer.auth_capable;
1129 	asoc->peer.i = new->peer.i;
1130 
1131 	if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1132 			      asoc->peer.i.initial_tsn, GFP_ATOMIC))
1133 		return -ENOMEM;
1134 
1135 	/* Remove any peer addresses not present in the new association. */
1136 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1137 		trans = list_entry(pos, struct sctp_transport, transports);
1138 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1139 			sctp_assoc_rm_peer(asoc, trans);
1140 			continue;
1141 		}
1142 
1143 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1144 			sctp_transport_reset(trans);
1145 	}
1146 
1147 	/* If the case is A (association restart), use
1148 	 * initial_tsn as next_tsn. If the case is B, use
1149 	 * current next_tsn in case data sent to peer
1150 	 * has been discarded and needs retransmission.
1151 	 */
1152 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1153 		asoc->next_tsn = new->next_tsn;
1154 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1155 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1156 
1157 		/* Reinitialize SSN for both local streams
1158 		 * and peer's streams.
1159 		 */
1160 		sctp_stream_clear(&asoc->stream);
1161 
1162 		/* Flush the ULP reassembly and ordered queue.
1163 		 * Any data there will now be stale and will
1164 		 * cause problems.
1165 		 */
1166 		sctp_ulpq_flush(&asoc->ulpq);
1167 
1168 		/* reset the overall association error count so
1169 		 * that the restarted association doesn't get torn
1170 		 * down on the next retransmission timer.
1171 		 */
1172 		asoc->overall_error_count = 0;
1173 
1174 	} else {
1175 		/* Add any peer addresses from the new association. */
1176 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1177 				    transports)
1178 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1179 			    !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1180 						 GFP_ATOMIC, trans->state))
1181 				return -ENOMEM;
1182 
1183 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1184 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1185 
1186 		if (sctp_state(asoc, COOKIE_WAIT))
1187 			sctp_stream_update(&asoc->stream, &new->stream);
1188 
1189 		/* get a new assoc id if we don't have one yet. */
1190 		if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1191 			return -ENOMEM;
1192 	}
1193 
1194 	/* SCTP-AUTH: Save the peer parameters from the new associations
1195 	 * and also move the association shared keys over
1196 	 */
1197 	kfree(asoc->peer.peer_random);
1198 	asoc->peer.peer_random = new->peer.peer_random;
1199 	new->peer.peer_random = NULL;
1200 
1201 	kfree(asoc->peer.peer_chunks);
1202 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1203 	new->peer.peer_chunks = NULL;
1204 
1205 	kfree(asoc->peer.peer_hmacs);
1206 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1207 	new->peer.peer_hmacs = NULL;
1208 
1209 	return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1210 }
1211 
1212 /* Update the retran path for sending a retransmitted packet.
1213  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1214  *
1215  *   When there is outbound data to send and the primary path
1216  *   becomes inactive (e.g., due to failures), or where the
1217  *   SCTP user explicitly requests to send data to an
1218  *   inactive destination transport address, before reporting
1219  *   an error to its ULP, the SCTP endpoint should try to send
1220  *   the data to an alternate active destination transport
1221  *   address if one exists.
1222  *
1223  *   When retransmitting data that timed out, if the endpoint
1224  *   is multihomed, it should consider each source-destination
1225  *   address pair in its retransmission selection policy.
1226  *   When retransmitting timed-out data, the endpoint should
1227  *   attempt to pick the most divergent source-destination
1228  *   pair from the original source-destination pair to which
1229  *   the packet was transmitted.
1230  *
1231  *   Note: Rules for picking the most divergent source-destination
1232  *   pair are an implementation decision and are not specified
1233  *   within this document.
1234  *
1235  * Our basic strategy is to round-robin transports in priorities
1236  * according to sctp_trans_score() e.g., if no such
1237  * transport with state SCTP_ACTIVE exists, round-robin through
1238  * SCTP_UNKNOWN, etc. You get the picture.
1239  */
1240 static u8 sctp_trans_score(const struct sctp_transport *trans)
1241 {
1242 	switch (trans->state) {
1243 	case SCTP_ACTIVE:
1244 		return 3;	/* best case */
1245 	case SCTP_UNKNOWN:
1246 		return 2;
1247 	case SCTP_PF:
1248 		return 1;
1249 	default: /* case SCTP_INACTIVE */
1250 		return 0;	/* worst case */
1251 	}
1252 }
1253 
1254 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1255 						   struct sctp_transport *trans2)
1256 {
1257 	if (trans1->error_count > trans2->error_count) {
1258 		return trans2;
1259 	} else if (trans1->error_count == trans2->error_count &&
1260 		   ktime_after(trans2->last_time_heard,
1261 			       trans1->last_time_heard)) {
1262 		return trans2;
1263 	} else {
1264 		return trans1;
1265 	}
1266 }
1267 
1268 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1269 						    struct sctp_transport *best)
1270 {
1271 	u8 score_curr, score_best;
1272 
1273 	if (best == NULL || curr == best)
1274 		return curr;
1275 
1276 	score_curr = sctp_trans_score(curr);
1277 	score_best = sctp_trans_score(best);
1278 
1279 	/* First, try a score-based selection if both transport states
1280 	 * differ. If we're in a tie, lets try to make a more clever
1281 	 * decision here based on error counts and last time heard.
1282 	 */
1283 	if (score_curr > score_best)
1284 		return curr;
1285 	else if (score_curr == score_best)
1286 		return sctp_trans_elect_tie(best, curr);
1287 	else
1288 		return best;
1289 }
1290 
1291 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1292 {
1293 	struct sctp_transport *trans = asoc->peer.retran_path;
1294 	struct sctp_transport *trans_next = NULL;
1295 
1296 	/* We're done as we only have the one and only path. */
1297 	if (asoc->peer.transport_count == 1)
1298 		return;
1299 	/* If active_path and retran_path are the same and active,
1300 	 * then this is the only active path. Use it.
1301 	 */
1302 	if (asoc->peer.active_path == asoc->peer.retran_path &&
1303 	    asoc->peer.active_path->state == SCTP_ACTIVE)
1304 		return;
1305 
1306 	/* Iterate from retran_path's successor back to retran_path. */
1307 	for (trans = list_next_entry(trans, transports); 1;
1308 	     trans = list_next_entry(trans, transports)) {
1309 		/* Manually skip the head element. */
1310 		if (&trans->transports == &asoc->peer.transport_addr_list)
1311 			continue;
1312 		if (trans->state == SCTP_UNCONFIRMED)
1313 			continue;
1314 		trans_next = sctp_trans_elect_best(trans, trans_next);
1315 		/* Active is good enough for immediate return. */
1316 		if (trans_next->state == SCTP_ACTIVE)
1317 			break;
1318 		/* We've reached the end, time to update path. */
1319 		if (trans == asoc->peer.retran_path)
1320 			break;
1321 	}
1322 
1323 	asoc->peer.retran_path = trans_next;
1324 
1325 	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1326 		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1327 }
1328 
1329 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1330 {
1331 	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1332 	struct sctp_transport *trans_pf = NULL;
1333 
1334 	/* Look for the two most recently used active transports. */
1335 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1336 			    transports) {
1337 		/* Skip uninteresting transports. */
1338 		if (trans->state == SCTP_INACTIVE ||
1339 		    trans->state == SCTP_UNCONFIRMED)
1340 			continue;
1341 		/* Keep track of the best PF transport from our
1342 		 * list in case we don't find an active one.
1343 		 */
1344 		if (trans->state == SCTP_PF) {
1345 			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1346 			continue;
1347 		}
1348 		/* For active transports, pick the most recent ones. */
1349 		if (trans_pri == NULL ||
1350 		    ktime_after(trans->last_time_heard,
1351 				trans_pri->last_time_heard)) {
1352 			trans_sec = trans_pri;
1353 			trans_pri = trans;
1354 		} else if (trans_sec == NULL ||
1355 			   ktime_after(trans->last_time_heard,
1356 				       trans_sec->last_time_heard)) {
1357 			trans_sec = trans;
1358 		}
1359 	}
1360 
1361 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1362 	 *
1363 	 * By default, an endpoint should always transmit to the primary
1364 	 * path, unless the SCTP user explicitly specifies the
1365 	 * destination transport address (and possibly source transport
1366 	 * address) to use. [If the primary is active but not most recent,
1367 	 * bump the most recently used transport.]
1368 	 */
1369 	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1370 	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1371 	     asoc->peer.primary_path != trans_pri) {
1372 		trans_sec = trans_pri;
1373 		trans_pri = asoc->peer.primary_path;
1374 	}
1375 
1376 	/* We did not find anything useful for a possible retransmission
1377 	 * path; either primary path that we found is the the same as
1378 	 * the current one, or we didn't generally find an active one.
1379 	 */
1380 	if (trans_sec == NULL)
1381 		trans_sec = trans_pri;
1382 
1383 	/* If we failed to find a usable transport, just camp on the
1384 	 * active or pick a PF iff it's the better choice.
1385 	 */
1386 	if (trans_pri == NULL) {
1387 		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1388 		trans_sec = trans_pri;
1389 	}
1390 
1391 	/* Set the active and retran transports. */
1392 	asoc->peer.active_path = trans_pri;
1393 	asoc->peer.retran_path = trans_sec;
1394 }
1395 
1396 struct sctp_transport *
1397 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1398 				  struct sctp_transport *last_sent_to)
1399 {
1400 	/* If this is the first time packet is sent, use the active path,
1401 	 * else use the retran path. If the last packet was sent over the
1402 	 * retran path, update the retran path and use it.
1403 	 */
1404 	if (last_sent_to == NULL) {
1405 		return asoc->peer.active_path;
1406 	} else {
1407 		if (last_sent_to == asoc->peer.retran_path)
1408 			sctp_assoc_update_retran_path(asoc);
1409 
1410 		return asoc->peer.retran_path;
1411 	}
1412 }
1413 
1414 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1415 {
1416 	int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1417 				    sctp_datachk_len(&asoc->stream));
1418 
1419 	if (asoc->user_frag)
1420 		frag = min_t(int, frag, asoc->user_frag);
1421 
1422 	frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1423 				sctp_datachk_len(&asoc->stream));
1424 
1425 	asoc->frag_point = SCTP_TRUNC4(frag);
1426 }
1427 
1428 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1429 {
1430 	if (asoc->pathmtu != pmtu) {
1431 		asoc->pathmtu = pmtu;
1432 		sctp_assoc_update_frag_point(asoc);
1433 	}
1434 
1435 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1436 		 asoc->pathmtu, asoc->frag_point);
1437 }
1438 
1439 /* Update the association's pmtu and frag_point by going through all the
1440  * transports. This routine is called when a transport's PMTU has changed.
1441  */
1442 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1443 {
1444 	struct sctp_transport *t;
1445 	__u32 pmtu = 0;
1446 
1447 	if (!asoc)
1448 		return;
1449 
1450 	/* Get the lowest pmtu of all the transports. */
1451 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1452 		if (t->pmtu_pending && t->dst) {
1453 			sctp_transport_update_pmtu(t, sctp_dst_mtu(t->dst));
1454 			t->pmtu_pending = 0;
1455 		}
1456 		if (!pmtu || (t->pathmtu < pmtu))
1457 			pmtu = t->pathmtu;
1458 	}
1459 
1460 	sctp_assoc_set_pmtu(asoc, pmtu);
1461 }
1462 
1463 /* Should we send a SACK to update our peer? */
1464 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1465 {
1466 	struct net *net = sock_net(asoc->base.sk);
1467 	switch (asoc->state) {
1468 	case SCTP_STATE_ESTABLISHED:
1469 	case SCTP_STATE_SHUTDOWN_PENDING:
1470 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1471 	case SCTP_STATE_SHUTDOWN_SENT:
1472 		if ((asoc->rwnd > asoc->a_rwnd) &&
1473 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1474 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1475 			   asoc->pathmtu)))
1476 			return true;
1477 		break;
1478 	default:
1479 		break;
1480 	}
1481 	return false;
1482 }
1483 
1484 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1485 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1486 {
1487 	struct sctp_chunk *sack;
1488 	struct timer_list *timer;
1489 
1490 	if (asoc->rwnd_over) {
1491 		if (asoc->rwnd_over >= len) {
1492 			asoc->rwnd_over -= len;
1493 		} else {
1494 			asoc->rwnd += (len - asoc->rwnd_over);
1495 			asoc->rwnd_over = 0;
1496 		}
1497 	} else {
1498 		asoc->rwnd += len;
1499 	}
1500 
1501 	/* If we had window pressure, start recovering it
1502 	 * once our rwnd had reached the accumulated pressure
1503 	 * threshold.  The idea is to recover slowly, but up
1504 	 * to the initial advertised window.
1505 	 */
1506 	if (asoc->rwnd_press) {
1507 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1508 		asoc->rwnd += change;
1509 		asoc->rwnd_press -= change;
1510 	}
1511 
1512 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1513 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1514 		 asoc->a_rwnd);
1515 
1516 	/* Send a window update SACK if the rwnd has increased by at least the
1517 	 * minimum of the association's PMTU and half of the receive buffer.
1518 	 * The algorithm used is similar to the one described in
1519 	 * Section 4.2.3.3 of RFC 1122.
1520 	 */
1521 	if (sctp_peer_needs_update(asoc)) {
1522 		asoc->a_rwnd = asoc->rwnd;
1523 
1524 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1525 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1526 			 asoc->a_rwnd);
1527 
1528 		sack = sctp_make_sack(asoc);
1529 		if (!sack)
1530 			return;
1531 
1532 		asoc->peer.sack_needed = 0;
1533 
1534 		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1535 
1536 		/* Stop the SACK timer.  */
1537 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1538 		if (del_timer(timer))
1539 			sctp_association_put(asoc);
1540 	}
1541 }
1542 
1543 /* Decrease asoc's rwnd by len. */
1544 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1545 {
1546 	int rx_count;
1547 	int over = 0;
1548 
1549 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1550 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1551 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1552 			 asoc->rwnd, asoc->rwnd_over);
1553 
1554 	if (asoc->ep->rcvbuf_policy)
1555 		rx_count = atomic_read(&asoc->rmem_alloc);
1556 	else
1557 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1558 
1559 	/* If we've reached or overflowed our receive buffer, announce
1560 	 * a 0 rwnd if rwnd would still be positive.  Store the
1561 	 * the potential pressure overflow so that the window can be restored
1562 	 * back to original value.
1563 	 */
1564 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1565 		over = 1;
1566 
1567 	if (asoc->rwnd >= len) {
1568 		asoc->rwnd -= len;
1569 		if (over) {
1570 			asoc->rwnd_press += asoc->rwnd;
1571 			asoc->rwnd = 0;
1572 		}
1573 	} else {
1574 		asoc->rwnd_over += len - asoc->rwnd;
1575 		asoc->rwnd = 0;
1576 	}
1577 
1578 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1579 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1580 		 asoc->rwnd_press);
1581 }
1582 
1583 /* Build the bind address list for the association based on info from the
1584  * local endpoint and the remote peer.
1585  */
1586 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1587 				     enum sctp_scope scope, gfp_t gfp)
1588 {
1589 	int flags;
1590 
1591 	/* Use scoping rules to determine the subset of addresses from
1592 	 * the endpoint.
1593 	 */
1594 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1595 	if (asoc->peer.ipv4_address)
1596 		flags |= SCTP_ADDR4_PEERSUPP;
1597 	if (asoc->peer.ipv6_address)
1598 		flags |= SCTP_ADDR6_PEERSUPP;
1599 
1600 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1601 				   &asoc->base.bind_addr,
1602 				   &asoc->ep->base.bind_addr,
1603 				   scope, gfp, flags);
1604 }
1605 
1606 /* Build the association's bind address list from the cookie.  */
1607 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1608 					 struct sctp_cookie *cookie,
1609 					 gfp_t gfp)
1610 {
1611 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1612 	int var_size3 = cookie->raw_addr_list_len;
1613 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1614 
1615 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1616 				      asoc->ep->base.bind_addr.port, gfp);
1617 }
1618 
1619 /* Lookup laddr in the bind address list of an association. */
1620 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1621 			    const union sctp_addr *laddr)
1622 {
1623 	int found = 0;
1624 
1625 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1626 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1627 				 sctp_sk(asoc->base.sk)))
1628 		found = 1;
1629 
1630 	return found;
1631 }
1632 
1633 /* Set an association id for a given association */
1634 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1635 {
1636 	bool preload = gfpflags_allow_blocking(gfp);
1637 	int ret;
1638 
1639 	/* If the id is already assigned, keep it. */
1640 	if (asoc->assoc_id)
1641 		return 0;
1642 
1643 	if (preload)
1644 		idr_preload(gfp);
1645 	spin_lock_bh(&sctp_assocs_id_lock);
1646 	/* 0 is not a valid assoc_id, must be >= 1 */
1647 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1648 	spin_unlock_bh(&sctp_assocs_id_lock);
1649 	if (preload)
1650 		idr_preload_end();
1651 	if (ret < 0)
1652 		return ret;
1653 
1654 	asoc->assoc_id = (sctp_assoc_t)ret;
1655 	return 0;
1656 }
1657 
1658 /* Free the ASCONF queue */
1659 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1660 {
1661 	struct sctp_chunk *asconf;
1662 	struct sctp_chunk *tmp;
1663 
1664 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1665 		list_del_init(&asconf->list);
1666 		sctp_chunk_free(asconf);
1667 	}
1668 }
1669 
1670 /* Free asconf_ack cache */
1671 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1672 {
1673 	struct sctp_chunk *ack;
1674 	struct sctp_chunk *tmp;
1675 
1676 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1677 				transmitted_list) {
1678 		list_del_init(&ack->transmitted_list);
1679 		sctp_chunk_free(ack);
1680 	}
1681 }
1682 
1683 /* Clean up the ASCONF_ACK queue */
1684 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1685 {
1686 	struct sctp_chunk *ack;
1687 	struct sctp_chunk *tmp;
1688 
1689 	/* We can remove all the entries from the queue up to
1690 	 * the "Peer-Sequence-Number".
1691 	 */
1692 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1693 				transmitted_list) {
1694 		if (ack->subh.addip_hdr->serial ==
1695 				htonl(asoc->peer.addip_serial))
1696 			break;
1697 
1698 		list_del_init(&ack->transmitted_list);
1699 		sctp_chunk_free(ack);
1700 	}
1701 }
1702 
1703 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1704 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1705 					const struct sctp_association *asoc,
1706 					__be32 serial)
1707 {
1708 	struct sctp_chunk *ack;
1709 
1710 	/* Walk through the list of cached ASCONF-ACKs and find the
1711 	 * ack chunk whose serial number matches that of the request.
1712 	 */
1713 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1714 		if (sctp_chunk_pending(ack))
1715 			continue;
1716 		if (ack->subh.addip_hdr->serial == serial) {
1717 			sctp_chunk_hold(ack);
1718 			return ack;
1719 		}
1720 	}
1721 
1722 	return NULL;
1723 }
1724 
1725 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1726 {
1727 	/* Free any cached ASCONF_ACK chunk. */
1728 	sctp_assoc_free_asconf_acks(asoc);
1729 
1730 	/* Free the ASCONF queue. */
1731 	sctp_assoc_free_asconf_queue(asoc);
1732 
1733 	/* Free any cached ASCONF chunk. */
1734 	if (asoc->addip_last_asconf)
1735 		sctp_chunk_free(asoc->addip_last_asconf);
1736 }
1737