1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 52 53 #include <linux/types.h> 54 #include <linux/fcntl.h> 55 #include <linux/poll.h> 56 #include <linux/init.h> 57 58 #include <linux/slab.h> 59 #include <linux/in.h> 60 #include <net/ipv6.h> 61 #include <net/sctp/sctp.h> 62 #include <net/sctp/sm.h> 63 64 /* Forward declarations for internal functions. */ 65 static void sctp_assoc_bh_rcv(struct work_struct *work); 66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 67 68 /* Keep track of the new idr low so that we don't re-use association id 69 * numbers too fast. It is protected by they idr spin lock is in the 70 * range of 1 - INT_MAX. 71 */ 72 static u32 idr_low = 1; 73 74 75 /* 1st Level Abstractions. */ 76 77 /* Initialize a new association from provided memory. */ 78 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 79 const struct sctp_endpoint *ep, 80 const struct sock *sk, 81 sctp_scope_t scope, 82 gfp_t gfp) 83 { 84 struct sctp_sock *sp; 85 int i; 86 sctp_paramhdr_t *p; 87 int err; 88 89 /* Retrieve the SCTP per socket area. */ 90 sp = sctp_sk((struct sock *)sk); 91 92 /* Discarding const is appropriate here. */ 93 asoc->ep = (struct sctp_endpoint *)ep; 94 sctp_endpoint_hold(asoc->ep); 95 96 /* Hold the sock. */ 97 asoc->base.sk = (struct sock *)sk; 98 sock_hold(asoc->base.sk); 99 100 /* Initialize the common base substructure. */ 101 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 102 103 /* Initialize the object handling fields. */ 104 atomic_set(&asoc->base.refcnt, 1); 105 asoc->base.dead = 0; 106 asoc->base.malloced = 0; 107 108 /* Initialize the bind addr area. */ 109 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 110 111 asoc->state = SCTP_STATE_CLOSED; 112 113 /* Set these values from the socket values, a conversion between 114 * millsecons to seconds/microseconds must also be done. 115 */ 116 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 117 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 118 * 1000; 119 asoc->frag_point = 0; 120 asoc->user_frag = sp->user_frag; 121 122 /* Set the association max_retrans and RTO values from the 123 * socket values. 124 */ 125 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 126 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 127 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 128 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 129 130 asoc->overall_error_count = 0; 131 132 /* Initialize the association's heartbeat interval based on the 133 * sock configured value. 134 */ 135 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 136 137 /* Initialize path max retrans value. */ 138 asoc->pathmaxrxt = sp->pathmaxrxt; 139 140 /* Initialize default path MTU. */ 141 asoc->pathmtu = sp->pathmtu; 142 143 /* Set association default SACK delay */ 144 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 145 asoc->sackfreq = sp->sackfreq; 146 147 /* Set the association default flags controlling 148 * Heartbeat, SACK delay, and Path MTU Discovery. 149 */ 150 asoc->param_flags = sp->param_flags; 151 152 /* Initialize the maximum mumber of new data packets that can be sent 153 * in a burst. 154 */ 155 asoc->max_burst = sp->max_burst; 156 157 /* initialize association timers */ 158 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 159 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 160 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 162 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 164 165 /* sctpimpguide Section 2.12.2 166 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 167 * recommended value of 5 times 'RTO.Max'. 168 */ 169 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 170 = 5 * asoc->rto_max; 171 172 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 173 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 174 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 175 (unsigned long)sp->autoclose * HZ; 176 177 /* Initializes the timers */ 178 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 179 setup_timer(&asoc->timers[i], sctp_timer_events[i], 180 (unsigned long)asoc); 181 182 /* Pull default initialization values from the sock options. 183 * Note: This assumes that the values have already been 184 * validated in the sock. 185 */ 186 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 187 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 188 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 189 190 asoc->max_init_timeo = 191 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 192 193 /* Allocate storage for the ssnmap after the inbound and outbound 194 * streams have been negotiated during Init. 195 */ 196 asoc->ssnmap = NULL; 197 198 /* Set the local window size for receive. 199 * This is also the rcvbuf space per association. 200 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 201 * 1500 bytes in one SCTP packet. 202 */ 203 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 204 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 205 else 206 asoc->rwnd = sk->sk_rcvbuf/2; 207 208 asoc->a_rwnd = asoc->rwnd; 209 210 asoc->rwnd_over = 0; 211 asoc->rwnd_press = 0; 212 213 /* Use my own max window until I learn something better. */ 214 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 215 216 /* Set the sndbuf size for transmit. */ 217 asoc->sndbuf_used = 0; 218 219 /* Initialize the receive memory counter */ 220 atomic_set(&asoc->rmem_alloc, 0); 221 222 init_waitqueue_head(&asoc->wait); 223 224 asoc->c.my_vtag = sctp_generate_tag(ep); 225 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 226 asoc->c.peer_vtag = 0; 227 asoc->c.my_ttag = 0; 228 asoc->c.peer_ttag = 0; 229 asoc->c.my_port = ep->base.bind_addr.port; 230 231 asoc->c.initial_tsn = sctp_generate_tsn(ep); 232 233 asoc->next_tsn = asoc->c.initial_tsn; 234 235 asoc->ctsn_ack_point = asoc->next_tsn - 1; 236 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 237 asoc->highest_sacked = asoc->ctsn_ack_point; 238 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 239 asoc->unack_data = 0; 240 241 /* ADDIP Section 4.1 Asconf Chunk Procedures 242 * 243 * When an endpoint has an ASCONF signaled change to be sent to the 244 * remote endpoint it should do the following: 245 * ... 246 * A2) a serial number should be assigned to the chunk. The serial 247 * number SHOULD be a monotonically increasing number. The serial 248 * numbers SHOULD be initialized at the start of the 249 * association to the same value as the initial TSN. 250 */ 251 asoc->addip_serial = asoc->c.initial_tsn; 252 253 INIT_LIST_HEAD(&asoc->addip_chunk_list); 254 INIT_LIST_HEAD(&asoc->asconf_ack_list); 255 256 /* Make an empty list of remote transport addresses. */ 257 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 258 asoc->peer.transport_count = 0; 259 260 /* RFC 2960 5.1 Normal Establishment of an Association 261 * 262 * After the reception of the first data chunk in an 263 * association the endpoint must immediately respond with a 264 * sack to acknowledge the data chunk. Subsequent 265 * acknowledgements should be done as described in Section 266 * 6.2. 267 * 268 * [We implement this by telling a new association that it 269 * already received one packet.] 270 */ 271 asoc->peer.sack_needed = 1; 272 asoc->peer.sack_cnt = 0; 273 274 /* Assume that the peer will tell us if he recognizes ASCONF 275 * as part of INIT exchange. 276 * The sctp_addip_noauth option is there for backward compatibilty 277 * and will revert old behavior. 278 */ 279 asoc->peer.asconf_capable = 0; 280 if (sctp_addip_noauth) 281 asoc->peer.asconf_capable = 1; 282 283 /* Create an input queue. */ 284 sctp_inq_init(&asoc->base.inqueue); 285 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 286 287 /* Create an output queue. */ 288 sctp_outq_init(asoc, &asoc->outqueue); 289 290 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 291 goto fail_init; 292 293 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 294 295 asoc->need_ecne = 0; 296 297 asoc->assoc_id = 0; 298 299 /* Assume that peer would support both address types unless we are 300 * told otherwise. 301 */ 302 asoc->peer.ipv4_address = 1; 303 if (asoc->base.sk->sk_family == PF_INET6) 304 asoc->peer.ipv6_address = 1; 305 INIT_LIST_HEAD(&asoc->asocs); 306 307 asoc->autoclose = sp->autoclose; 308 309 asoc->default_stream = sp->default_stream; 310 asoc->default_ppid = sp->default_ppid; 311 asoc->default_flags = sp->default_flags; 312 asoc->default_context = sp->default_context; 313 asoc->default_timetolive = sp->default_timetolive; 314 asoc->default_rcv_context = sp->default_rcv_context; 315 316 /* AUTH related initializations */ 317 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 318 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 319 if (err) 320 goto fail_init; 321 322 asoc->active_key_id = ep->active_key_id; 323 asoc->asoc_shared_key = NULL; 324 325 asoc->default_hmac_id = 0; 326 /* Save the hmacs and chunks list into this association */ 327 if (ep->auth_hmacs_list) 328 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 329 ntohs(ep->auth_hmacs_list->param_hdr.length)); 330 if (ep->auth_chunk_list) 331 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 332 ntohs(ep->auth_chunk_list->param_hdr.length)); 333 334 /* Get the AUTH random number for this association */ 335 p = (sctp_paramhdr_t *)asoc->c.auth_random; 336 p->type = SCTP_PARAM_RANDOM; 337 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 338 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 339 340 return asoc; 341 342 fail_init: 343 sctp_endpoint_put(asoc->ep); 344 sock_put(asoc->base.sk); 345 return NULL; 346 } 347 348 /* Allocate and initialize a new association */ 349 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 350 const struct sock *sk, 351 sctp_scope_t scope, 352 gfp_t gfp) 353 { 354 struct sctp_association *asoc; 355 356 asoc = t_new(struct sctp_association, gfp); 357 if (!asoc) 358 goto fail; 359 360 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 361 goto fail_init; 362 363 asoc->base.malloced = 1; 364 SCTP_DBG_OBJCNT_INC(assoc); 365 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 366 367 return asoc; 368 369 fail_init: 370 kfree(asoc); 371 fail: 372 return NULL; 373 } 374 375 /* Free this association if possible. There may still be users, so 376 * the actual deallocation may be delayed. 377 */ 378 void sctp_association_free(struct sctp_association *asoc) 379 { 380 struct sock *sk = asoc->base.sk; 381 struct sctp_transport *transport; 382 struct list_head *pos, *temp; 383 int i; 384 385 /* Only real associations count against the endpoint, so 386 * don't bother for if this is a temporary association. 387 */ 388 if (!asoc->temp) { 389 list_del(&asoc->asocs); 390 391 /* Decrement the backlog value for a TCP-style listening 392 * socket. 393 */ 394 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 395 sk->sk_ack_backlog--; 396 } 397 398 /* Mark as dead, so other users can know this structure is 399 * going away. 400 */ 401 asoc->base.dead = 1; 402 403 /* Dispose of any data lying around in the outqueue. */ 404 sctp_outq_free(&asoc->outqueue); 405 406 /* Dispose of any pending messages for the upper layer. */ 407 sctp_ulpq_free(&asoc->ulpq); 408 409 /* Dispose of any pending chunks on the inqueue. */ 410 sctp_inq_free(&asoc->base.inqueue); 411 412 sctp_tsnmap_free(&asoc->peer.tsn_map); 413 414 /* Free ssnmap storage. */ 415 sctp_ssnmap_free(asoc->ssnmap); 416 417 /* Clean up the bound address list. */ 418 sctp_bind_addr_free(&asoc->base.bind_addr); 419 420 /* Do we need to go through all of our timers and 421 * delete them? To be safe we will try to delete all, but we 422 * should be able to go through and make a guess based 423 * on our state. 424 */ 425 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 426 if (timer_pending(&asoc->timers[i]) && 427 del_timer(&asoc->timers[i])) 428 sctp_association_put(asoc); 429 } 430 431 /* Free peer's cached cookie. */ 432 kfree(asoc->peer.cookie); 433 kfree(asoc->peer.peer_random); 434 kfree(asoc->peer.peer_chunks); 435 kfree(asoc->peer.peer_hmacs); 436 437 /* Release the transport structures. */ 438 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 439 transport = list_entry(pos, struct sctp_transport, transports); 440 list_del(pos); 441 sctp_transport_free(transport); 442 } 443 444 asoc->peer.transport_count = 0; 445 446 /* Free any cached ASCONF_ACK chunk. */ 447 sctp_assoc_free_asconf_acks(asoc); 448 449 /* Free any cached ASCONF chunk. */ 450 if (asoc->addip_last_asconf) 451 sctp_chunk_free(asoc->addip_last_asconf); 452 453 /* AUTH - Free the endpoint shared keys */ 454 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 455 456 /* AUTH - Free the association shared key */ 457 sctp_auth_key_put(asoc->asoc_shared_key); 458 459 sctp_association_put(asoc); 460 } 461 462 /* Cleanup and free up an association. */ 463 static void sctp_association_destroy(struct sctp_association *asoc) 464 { 465 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 466 467 sctp_endpoint_put(asoc->ep); 468 sock_put(asoc->base.sk); 469 470 if (asoc->assoc_id != 0) { 471 spin_lock_bh(&sctp_assocs_id_lock); 472 idr_remove(&sctp_assocs_id, asoc->assoc_id); 473 spin_unlock_bh(&sctp_assocs_id_lock); 474 } 475 476 WARN_ON(atomic_read(&asoc->rmem_alloc)); 477 478 if (asoc->base.malloced) { 479 kfree(asoc); 480 SCTP_DBG_OBJCNT_DEC(assoc); 481 } 482 } 483 484 /* Change the primary destination address for the peer. */ 485 void sctp_assoc_set_primary(struct sctp_association *asoc, 486 struct sctp_transport *transport) 487 { 488 int changeover = 0; 489 490 /* it's a changeover only if we already have a primary path 491 * that we are changing 492 */ 493 if (asoc->peer.primary_path != NULL && 494 asoc->peer.primary_path != transport) 495 changeover = 1 ; 496 497 asoc->peer.primary_path = transport; 498 499 /* Set a default msg_name for events. */ 500 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 501 sizeof(union sctp_addr)); 502 503 /* If the primary path is changing, assume that the 504 * user wants to use this new path. 505 */ 506 if ((transport->state == SCTP_ACTIVE) || 507 (transport->state == SCTP_UNKNOWN)) 508 asoc->peer.active_path = transport; 509 510 /* 511 * SFR-CACC algorithm: 512 * Upon the receipt of a request to change the primary 513 * destination address, on the data structure for the new 514 * primary destination, the sender MUST do the following: 515 * 516 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 517 * to this destination address earlier. The sender MUST set 518 * CYCLING_CHANGEOVER to indicate that this switch is a 519 * double switch to the same destination address. 520 * 521 * Really, only bother is we have data queued or outstanding on 522 * the association. 523 */ 524 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 525 return; 526 527 if (transport->cacc.changeover_active) 528 transport->cacc.cycling_changeover = changeover; 529 530 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 531 * a changeover has occurred. 532 */ 533 transport->cacc.changeover_active = changeover; 534 535 /* 3) The sender MUST store the next TSN to be sent in 536 * next_tsn_at_change. 537 */ 538 transport->cacc.next_tsn_at_change = asoc->next_tsn; 539 } 540 541 /* Remove a transport from an association. */ 542 void sctp_assoc_rm_peer(struct sctp_association *asoc, 543 struct sctp_transport *peer) 544 { 545 struct list_head *pos; 546 struct sctp_transport *transport; 547 548 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 549 " port: %d\n", 550 asoc, 551 (&peer->ipaddr), 552 ntohs(peer->ipaddr.v4.sin_port)); 553 554 /* If we are to remove the current retran_path, update it 555 * to the next peer before removing this peer from the list. 556 */ 557 if (asoc->peer.retran_path == peer) 558 sctp_assoc_update_retran_path(asoc); 559 560 /* Remove this peer from the list. */ 561 list_del(&peer->transports); 562 563 /* Get the first transport of asoc. */ 564 pos = asoc->peer.transport_addr_list.next; 565 transport = list_entry(pos, struct sctp_transport, transports); 566 567 /* Update any entries that match the peer to be deleted. */ 568 if (asoc->peer.primary_path == peer) 569 sctp_assoc_set_primary(asoc, transport); 570 if (asoc->peer.active_path == peer) 571 asoc->peer.active_path = transport; 572 if (asoc->peer.last_data_from == peer) 573 asoc->peer.last_data_from = transport; 574 575 /* If we remove the transport an INIT was last sent to, set it to 576 * NULL. Combined with the update of the retran path above, this 577 * will cause the next INIT to be sent to the next available 578 * transport, maintaining the cycle. 579 */ 580 if (asoc->init_last_sent_to == peer) 581 asoc->init_last_sent_to = NULL; 582 583 /* If we remove the transport an SHUTDOWN was last sent to, set it 584 * to NULL. Combined with the update of the retran path above, this 585 * will cause the next SHUTDOWN to be sent to the next available 586 * transport, maintaining the cycle. 587 */ 588 if (asoc->shutdown_last_sent_to == peer) 589 asoc->shutdown_last_sent_to = NULL; 590 591 /* If we remove the transport an ASCONF was last sent to, set it to 592 * NULL. 593 */ 594 if (asoc->addip_last_asconf && 595 asoc->addip_last_asconf->transport == peer) 596 asoc->addip_last_asconf->transport = NULL; 597 598 /* If we have something on the transmitted list, we have to 599 * save it off. The best place is the active path. 600 */ 601 if (!list_empty(&peer->transmitted)) { 602 struct sctp_transport *active = asoc->peer.active_path; 603 struct sctp_chunk *ch; 604 605 /* Reset the transport of each chunk on this list */ 606 list_for_each_entry(ch, &peer->transmitted, 607 transmitted_list) { 608 ch->transport = NULL; 609 ch->rtt_in_progress = 0; 610 } 611 612 list_splice_tail_init(&peer->transmitted, 613 &active->transmitted); 614 615 /* Start a T3 timer here in case it wasn't running so 616 * that these migrated packets have a chance to get 617 * retrnasmitted. 618 */ 619 if (!timer_pending(&active->T3_rtx_timer)) 620 if (!mod_timer(&active->T3_rtx_timer, 621 jiffies + active->rto)) 622 sctp_transport_hold(active); 623 } 624 625 asoc->peer.transport_count--; 626 627 sctp_transport_free(peer); 628 } 629 630 /* Add a transport address to an association. */ 631 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 632 const union sctp_addr *addr, 633 const gfp_t gfp, 634 const int peer_state) 635 { 636 struct sctp_transport *peer; 637 struct sctp_sock *sp; 638 unsigned short port; 639 640 sp = sctp_sk(asoc->base.sk); 641 642 /* AF_INET and AF_INET6 share common port field. */ 643 port = ntohs(addr->v4.sin_port); 644 645 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 646 " port: %d state:%d\n", 647 asoc, 648 addr, 649 port, 650 peer_state); 651 652 /* Set the port if it has not been set yet. */ 653 if (0 == asoc->peer.port) 654 asoc->peer.port = port; 655 656 /* Check to see if this is a duplicate. */ 657 peer = sctp_assoc_lookup_paddr(asoc, addr); 658 if (peer) { 659 /* An UNKNOWN state is only set on transports added by 660 * user in sctp_connectx() call. Such transports should be 661 * considered CONFIRMED per RFC 4960, Section 5.4. 662 */ 663 if (peer->state == SCTP_UNKNOWN) { 664 peer->state = SCTP_ACTIVE; 665 } 666 return peer; 667 } 668 669 peer = sctp_transport_new(addr, gfp); 670 if (!peer) 671 return NULL; 672 673 sctp_transport_set_owner(peer, asoc); 674 675 /* Initialize the peer's heartbeat interval based on the 676 * association configured value. 677 */ 678 peer->hbinterval = asoc->hbinterval; 679 680 /* Set the path max_retrans. */ 681 peer->pathmaxrxt = asoc->pathmaxrxt; 682 683 /* Initialize the peer's SACK delay timeout based on the 684 * association configured value. 685 */ 686 peer->sackdelay = asoc->sackdelay; 687 peer->sackfreq = asoc->sackfreq; 688 689 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 690 * based on association setting. 691 */ 692 peer->param_flags = asoc->param_flags; 693 694 sctp_transport_route(peer, NULL, sp); 695 696 /* Initialize the pmtu of the transport. */ 697 if (peer->param_flags & SPP_PMTUD_DISABLE) { 698 if (asoc->pathmtu) 699 peer->pathmtu = asoc->pathmtu; 700 else 701 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 702 } 703 704 /* If this is the first transport addr on this association, 705 * initialize the association PMTU to the peer's PMTU. 706 * If not and the current association PMTU is higher than the new 707 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 708 */ 709 if (asoc->pathmtu) 710 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 711 else 712 asoc->pathmtu = peer->pathmtu; 713 714 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 715 "%d\n", asoc, asoc->pathmtu); 716 peer->pmtu_pending = 0; 717 718 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 719 720 /* The asoc->peer.port might not be meaningful yet, but 721 * initialize the packet structure anyway. 722 */ 723 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 724 asoc->peer.port); 725 726 /* 7.2.1 Slow-Start 727 * 728 * o The initial cwnd before DATA transmission or after a sufficiently 729 * long idle period MUST be set to 730 * min(4*MTU, max(2*MTU, 4380 bytes)) 731 * 732 * o The initial value of ssthresh MAY be arbitrarily high 733 * (for example, implementations MAY use the size of the 734 * receiver advertised window). 735 */ 736 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 737 738 /* At this point, we may not have the receiver's advertised window, 739 * so initialize ssthresh to the default value and it will be set 740 * later when we process the INIT. 741 */ 742 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 743 744 peer->partial_bytes_acked = 0; 745 peer->flight_size = 0; 746 peer->burst_limited = 0; 747 748 /* Set the transport's RTO.initial value */ 749 peer->rto = asoc->rto_initial; 750 751 /* Set the peer's active state. */ 752 peer->state = peer_state; 753 754 /* Attach the remote transport to our asoc. */ 755 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 756 asoc->peer.transport_count++; 757 758 /* If we do not yet have a primary path, set one. */ 759 if (!asoc->peer.primary_path) { 760 sctp_assoc_set_primary(asoc, peer); 761 asoc->peer.retran_path = peer; 762 } 763 764 if (asoc->peer.active_path == asoc->peer.retran_path && 765 peer->state != SCTP_UNCONFIRMED) { 766 asoc->peer.retran_path = peer; 767 } 768 769 return peer; 770 } 771 772 /* Delete a transport address from an association. */ 773 void sctp_assoc_del_peer(struct sctp_association *asoc, 774 const union sctp_addr *addr) 775 { 776 struct list_head *pos; 777 struct list_head *temp; 778 struct sctp_transport *transport; 779 780 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 781 transport = list_entry(pos, struct sctp_transport, transports); 782 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 783 /* Do book keeping for removing the peer and free it. */ 784 sctp_assoc_rm_peer(asoc, transport); 785 break; 786 } 787 } 788 } 789 790 /* Lookup a transport by address. */ 791 struct sctp_transport *sctp_assoc_lookup_paddr( 792 const struct sctp_association *asoc, 793 const union sctp_addr *address) 794 { 795 struct sctp_transport *t; 796 797 /* Cycle through all transports searching for a peer address. */ 798 799 list_for_each_entry(t, &asoc->peer.transport_addr_list, 800 transports) { 801 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 802 return t; 803 } 804 805 return NULL; 806 } 807 808 /* Remove all transports except a give one */ 809 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 810 struct sctp_transport *primary) 811 { 812 struct sctp_transport *temp; 813 struct sctp_transport *t; 814 815 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 816 transports) { 817 /* if the current transport is not the primary one, delete it */ 818 if (t != primary) 819 sctp_assoc_rm_peer(asoc, t); 820 } 821 } 822 823 /* Engage in transport control operations. 824 * Mark the transport up or down and send a notification to the user. 825 * Select and update the new active and retran paths. 826 */ 827 void sctp_assoc_control_transport(struct sctp_association *asoc, 828 struct sctp_transport *transport, 829 sctp_transport_cmd_t command, 830 sctp_sn_error_t error) 831 { 832 struct sctp_transport *t = NULL; 833 struct sctp_transport *first; 834 struct sctp_transport *second; 835 struct sctp_ulpevent *event; 836 struct sockaddr_storage addr; 837 int spc_state = 0; 838 839 /* Record the transition on the transport. */ 840 switch (command) { 841 case SCTP_TRANSPORT_UP: 842 /* If we are moving from UNCONFIRMED state due 843 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 844 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 845 */ 846 if (SCTP_UNCONFIRMED == transport->state && 847 SCTP_HEARTBEAT_SUCCESS == error) 848 spc_state = SCTP_ADDR_CONFIRMED; 849 else 850 spc_state = SCTP_ADDR_AVAILABLE; 851 transport->state = SCTP_ACTIVE; 852 break; 853 854 case SCTP_TRANSPORT_DOWN: 855 /* If the transport was never confirmed, do not transition it 856 * to inactive state. Also, release the cached route since 857 * there may be a better route next time. 858 */ 859 if (transport->state != SCTP_UNCONFIRMED) 860 transport->state = SCTP_INACTIVE; 861 else { 862 dst_release(transport->dst); 863 transport->dst = NULL; 864 } 865 866 spc_state = SCTP_ADDR_UNREACHABLE; 867 break; 868 869 default: 870 return; 871 } 872 873 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 874 * user. 875 */ 876 memset(&addr, 0, sizeof(struct sockaddr_storage)); 877 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len); 878 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 879 0, spc_state, error, GFP_ATOMIC); 880 if (event) 881 sctp_ulpq_tail_event(&asoc->ulpq, event); 882 883 /* Select new active and retran paths. */ 884 885 /* Look for the two most recently used active transports. 886 * 887 * This code produces the wrong ordering whenever jiffies 888 * rolls over, but we still get usable transports, so we don't 889 * worry about it. 890 */ 891 first = NULL; second = NULL; 892 893 list_for_each_entry(t, &asoc->peer.transport_addr_list, 894 transports) { 895 896 if ((t->state == SCTP_INACTIVE) || 897 (t->state == SCTP_UNCONFIRMED)) 898 continue; 899 if (!first || t->last_time_heard > first->last_time_heard) { 900 second = first; 901 first = t; 902 } 903 if (!second || t->last_time_heard > second->last_time_heard) 904 second = t; 905 } 906 907 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 908 * 909 * By default, an endpoint should always transmit to the 910 * primary path, unless the SCTP user explicitly specifies the 911 * destination transport address (and possibly source 912 * transport address) to use. 913 * 914 * [If the primary is active but not most recent, bump the most 915 * recently used transport.] 916 */ 917 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 918 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 919 first != asoc->peer.primary_path) { 920 second = first; 921 first = asoc->peer.primary_path; 922 } 923 924 /* If we failed to find a usable transport, just camp on the 925 * primary, even if it is inactive. 926 */ 927 if (!first) { 928 first = asoc->peer.primary_path; 929 second = asoc->peer.primary_path; 930 } 931 932 /* Set the active and retran transports. */ 933 asoc->peer.active_path = first; 934 asoc->peer.retran_path = second; 935 } 936 937 /* Hold a reference to an association. */ 938 void sctp_association_hold(struct sctp_association *asoc) 939 { 940 atomic_inc(&asoc->base.refcnt); 941 } 942 943 /* Release a reference to an association and cleanup 944 * if there are no more references. 945 */ 946 void sctp_association_put(struct sctp_association *asoc) 947 { 948 if (atomic_dec_and_test(&asoc->base.refcnt)) 949 sctp_association_destroy(asoc); 950 } 951 952 /* Allocate the next TSN, Transmission Sequence Number, for the given 953 * association. 954 */ 955 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 956 { 957 /* From Section 1.6 Serial Number Arithmetic: 958 * Transmission Sequence Numbers wrap around when they reach 959 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 960 * after transmitting TSN = 2*32 - 1 is TSN = 0. 961 */ 962 __u32 retval = asoc->next_tsn; 963 asoc->next_tsn++; 964 asoc->unack_data++; 965 966 return retval; 967 } 968 969 /* Compare two addresses to see if they match. Wildcard addresses 970 * only match themselves. 971 */ 972 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 973 const union sctp_addr *ss2) 974 { 975 struct sctp_af *af; 976 977 af = sctp_get_af_specific(ss1->sa.sa_family); 978 if (unlikely(!af)) 979 return 0; 980 981 return af->cmp_addr(ss1, ss2); 982 } 983 984 /* Return an ecne chunk to get prepended to a packet. 985 * Note: We are sly and return a shared, prealloced chunk. FIXME: 986 * No we don't, but we could/should. 987 */ 988 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 989 { 990 struct sctp_chunk *chunk; 991 992 /* Send ECNE if needed. 993 * Not being able to allocate a chunk here is not deadly. 994 */ 995 if (asoc->need_ecne) 996 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 997 else 998 chunk = NULL; 999 1000 return chunk; 1001 } 1002 1003 /* 1004 * Find which transport this TSN was sent on. 1005 */ 1006 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 1007 __u32 tsn) 1008 { 1009 struct sctp_transport *active; 1010 struct sctp_transport *match; 1011 struct sctp_transport *transport; 1012 struct sctp_chunk *chunk; 1013 __be32 key = htonl(tsn); 1014 1015 match = NULL; 1016 1017 /* 1018 * FIXME: In general, find a more efficient data structure for 1019 * searching. 1020 */ 1021 1022 /* 1023 * The general strategy is to search each transport's transmitted 1024 * list. Return which transport this TSN lives on. 1025 * 1026 * Let's be hopeful and check the active_path first. 1027 * Another optimization would be to know if there is only one 1028 * outbound path and not have to look for the TSN at all. 1029 * 1030 */ 1031 1032 active = asoc->peer.active_path; 1033 1034 list_for_each_entry(chunk, &active->transmitted, 1035 transmitted_list) { 1036 1037 if (key == chunk->subh.data_hdr->tsn) { 1038 match = active; 1039 goto out; 1040 } 1041 } 1042 1043 /* If not found, go search all the other transports. */ 1044 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1045 transports) { 1046 1047 if (transport == active) 1048 break; 1049 list_for_each_entry(chunk, &transport->transmitted, 1050 transmitted_list) { 1051 if (key == chunk->subh.data_hdr->tsn) { 1052 match = transport; 1053 goto out; 1054 } 1055 } 1056 } 1057 out: 1058 return match; 1059 } 1060 1061 /* Is this the association we are looking for? */ 1062 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1063 const union sctp_addr *laddr, 1064 const union sctp_addr *paddr) 1065 { 1066 struct sctp_transport *transport; 1067 1068 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1069 (htons(asoc->peer.port) == paddr->v4.sin_port)) { 1070 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1071 if (!transport) 1072 goto out; 1073 1074 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1075 sctp_sk(asoc->base.sk))) 1076 goto out; 1077 } 1078 transport = NULL; 1079 1080 out: 1081 return transport; 1082 } 1083 1084 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1085 static void sctp_assoc_bh_rcv(struct work_struct *work) 1086 { 1087 struct sctp_association *asoc = 1088 container_of(work, struct sctp_association, 1089 base.inqueue.immediate); 1090 struct sctp_endpoint *ep; 1091 struct sctp_chunk *chunk; 1092 struct sock *sk; 1093 struct sctp_inq *inqueue; 1094 int state; 1095 sctp_subtype_t subtype; 1096 int error = 0; 1097 1098 /* The association should be held so we should be safe. */ 1099 ep = asoc->ep; 1100 sk = asoc->base.sk; 1101 1102 inqueue = &asoc->base.inqueue; 1103 sctp_association_hold(asoc); 1104 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1105 state = asoc->state; 1106 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1107 1108 /* SCTP-AUTH, Section 6.3: 1109 * The receiver has a list of chunk types which it expects 1110 * to be received only after an AUTH-chunk. This list has 1111 * been sent to the peer during the association setup. It 1112 * MUST silently discard these chunks if they are not placed 1113 * after an AUTH chunk in the packet. 1114 */ 1115 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1116 continue; 1117 1118 /* Remember where the last DATA chunk came from so we 1119 * know where to send the SACK. 1120 */ 1121 if (sctp_chunk_is_data(chunk)) 1122 asoc->peer.last_data_from = chunk->transport; 1123 else 1124 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 1125 1126 if (chunk->transport) 1127 chunk->transport->last_time_heard = jiffies; 1128 1129 /* Run through the state machine. */ 1130 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 1131 state, ep, asoc, chunk, GFP_ATOMIC); 1132 1133 /* Check to see if the association is freed in response to 1134 * the incoming chunk. If so, get out of the while loop. 1135 */ 1136 if (asoc->base.dead) 1137 break; 1138 1139 /* If there is an error on chunk, discard this packet. */ 1140 if (error && chunk) 1141 chunk->pdiscard = 1; 1142 } 1143 sctp_association_put(asoc); 1144 } 1145 1146 /* This routine moves an association from its old sk to a new sk. */ 1147 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1148 { 1149 struct sctp_sock *newsp = sctp_sk(newsk); 1150 struct sock *oldsk = assoc->base.sk; 1151 1152 /* Delete the association from the old endpoint's list of 1153 * associations. 1154 */ 1155 list_del_init(&assoc->asocs); 1156 1157 /* Decrement the backlog value for a TCP-style socket. */ 1158 if (sctp_style(oldsk, TCP)) 1159 oldsk->sk_ack_backlog--; 1160 1161 /* Release references to the old endpoint and the sock. */ 1162 sctp_endpoint_put(assoc->ep); 1163 sock_put(assoc->base.sk); 1164 1165 /* Get a reference to the new endpoint. */ 1166 assoc->ep = newsp->ep; 1167 sctp_endpoint_hold(assoc->ep); 1168 1169 /* Get a reference to the new sock. */ 1170 assoc->base.sk = newsk; 1171 sock_hold(assoc->base.sk); 1172 1173 /* Add the association to the new endpoint's list of associations. */ 1174 sctp_endpoint_add_asoc(newsp->ep, assoc); 1175 } 1176 1177 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1178 void sctp_assoc_update(struct sctp_association *asoc, 1179 struct sctp_association *new) 1180 { 1181 struct sctp_transport *trans; 1182 struct list_head *pos, *temp; 1183 1184 /* Copy in new parameters of peer. */ 1185 asoc->c = new->c; 1186 asoc->peer.rwnd = new->peer.rwnd; 1187 asoc->peer.sack_needed = new->peer.sack_needed; 1188 asoc->peer.i = new->peer.i; 1189 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1190 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1191 1192 /* Remove any peer addresses not present in the new association. */ 1193 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1194 trans = list_entry(pos, struct sctp_transport, transports); 1195 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1196 sctp_assoc_rm_peer(asoc, trans); 1197 continue; 1198 } 1199 1200 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1201 sctp_transport_reset(trans); 1202 } 1203 1204 /* If the case is A (association restart), use 1205 * initial_tsn as next_tsn. If the case is B, use 1206 * current next_tsn in case data sent to peer 1207 * has been discarded and needs retransmission. 1208 */ 1209 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1210 asoc->next_tsn = new->next_tsn; 1211 asoc->ctsn_ack_point = new->ctsn_ack_point; 1212 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1213 1214 /* Reinitialize SSN for both local streams 1215 * and peer's streams. 1216 */ 1217 sctp_ssnmap_clear(asoc->ssnmap); 1218 1219 /* Flush the ULP reassembly and ordered queue. 1220 * Any data there will now be stale and will 1221 * cause problems. 1222 */ 1223 sctp_ulpq_flush(&asoc->ulpq); 1224 1225 /* reset the overall association error count so 1226 * that the restarted association doesn't get torn 1227 * down on the next retransmission timer. 1228 */ 1229 asoc->overall_error_count = 0; 1230 1231 } else { 1232 /* Add any peer addresses from the new association. */ 1233 list_for_each_entry(trans, &new->peer.transport_addr_list, 1234 transports) { 1235 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1236 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1237 GFP_ATOMIC, trans->state); 1238 } 1239 1240 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1241 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1242 if (!asoc->ssnmap) { 1243 /* Move the ssnmap. */ 1244 asoc->ssnmap = new->ssnmap; 1245 new->ssnmap = NULL; 1246 } 1247 1248 if (!asoc->assoc_id) { 1249 /* get a new association id since we don't have one 1250 * yet. 1251 */ 1252 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1253 } 1254 } 1255 1256 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1257 * and also move the association shared keys over 1258 */ 1259 kfree(asoc->peer.peer_random); 1260 asoc->peer.peer_random = new->peer.peer_random; 1261 new->peer.peer_random = NULL; 1262 1263 kfree(asoc->peer.peer_chunks); 1264 asoc->peer.peer_chunks = new->peer.peer_chunks; 1265 new->peer.peer_chunks = NULL; 1266 1267 kfree(asoc->peer.peer_hmacs); 1268 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1269 new->peer.peer_hmacs = NULL; 1270 1271 sctp_auth_key_put(asoc->asoc_shared_key); 1272 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1273 } 1274 1275 /* Update the retran path for sending a retransmitted packet. 1276 * Round-robin through the active transports, else round-robin 1277 * through the inactive transports as this is the next best thing 1278 * we can try. 1279 */ 1280 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1281 { 1282 struct sctp_transport *t, *next; 1283 struct list_head *head = &asoc->peer.transport_addr_list; 1284 struct list_head *pos; 1285 1286 if (asoc->peer.transport_count == 1) 1287 return; 1288 1289 /* Find the next transport in a round-robin fashion. */ 1290 t = asoc->peer.retran_path; 1291 pos = &t->transports; 1292 next = NULL; 1293 1294 while (1) { 1295 /* Skip the head. */ 1296 if (pos->next == head) 1297 pos = head->next; 1298 else 1299 pos = pos->next; 1300 1301 t = list_entry(pos, struct sctp_transport, transports); 1302 1303 /* We have exhausted the list, but didn't find any 1304 * other active transports. If so, use the next 1305 * transport. 1306 */ 1307 if (t == asoc->peer.retran_path) { 1308 t = next; 1309 break; 1310 } 1311 1312 /* Try to find an active transport. */ 1313 1314 if ((t->state == SCTP_ACTIVE) || 1315 (t->state == SCTP_UNKNOWN)) { 1316 break; 1317 } else { 1318 /* Keep track of the next transport in case 1319 * we don't find any active transport. 1320 */ 1321 if (t->state != SCTP_UNCONFIRMED && !next) 1322 next = t; 1323 } 1324 } 1325 1326 if (t) 1327 asoc->peer.retran_path = t; 1328 1329 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1330 " %p addr: ", 1331 " port: %d\n", 1332 asoc, 1333 (&t->ipaddr), 1334 ntohs(t->ipaddr.v4.sin_port)); 1335 } 1336 1337 /* Choose the transport for sending retransmit packet. */ 1338 struct sctp_transport *sctp_assoc_choose_alter_transport( 1339 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1340 { 1341 /* If this is the first time packet is sent, use the active path, 1342 * else use the retran path. If the last packet was sent over the 1343 * retran path, update the retran path and use it. 1344 */ 1345 if (!last_sent_to) 1346 return asoc->peer.active_path; 1347 else { 1348 if (last_sent_to == asoc->peer.retran_path) 1349 sctp_assoc_update_retran_path(asoc); 1350 return asoc->peer.retran_path; 1351 } 1352 } 1353 1354 /* Update the association's pmtu and frag_point by going through all the 1355 * transports. This routine is called when a transport's PMTU has changed. 1356 */ 1357 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1358 { 1359 struct sctp_transport *t; 1360 __u32 pmtu = 0; 1361 1362 if (!asoc) 1363 return; 1364 1365 /* Get the lowest pmtu of all the transports. */ 1366 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1367 transports) { 1368 if (t->pmtu_pending && t->dst) { 1369 sctp_transport_update_pmtu(t, dst_mtu(t->dst)); 1370 t->pmtu_pending = 0; 1371 } 1372 if (!pmtu || (t->pathmtu < pmtu)) 1373 pmtu = t->pathmtu; 1374 } 1375 1376 if (pmtu) { 1377 asoc->pathmtu = pmtu; 1378 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1379 } 1380 1381 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1382 __func__, asoc, asoc->pathmtu, asoc->frag_point); 1383 } 1384 1385 /* Should we send a SACK to update our peer? */ 1386 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1387 { 1388 switch (asoc->state) { 1389 case SCTP_STATE_ESTABLISHED: 1390 case SCTP_STATE_SHUTDOWN_PENDING: 1391 case SCTP_STATE_SHUTDOWN_RECEIVED: 1392 case SCTP_STATE_SHUTDOWN_SENT: 1393 if ((asoc->rwnd > asoc->a_rwnd) && 1394 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1395 (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift), 1396 asoc->pathmtu))) 1397 return 1; 1398 break; 1399 default: 1400 break; 1401 } 1402 return 0; 1403 } 1404 1405 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1406 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) 1407 { 1408 struct sctp_chunk *sack; 1409 struct timer_list *timer; 1410 1411 if (asoc->rwnd_over) { 1412 if (asoc->rwnd_over >= len) { 1413 asoc->rwnd_over -= len; 1414 } else { 1415 asoc->rwnd += (len - asoc->rwnd_over); 1416 asoc->rwnd_over = 0; 1417 } 1418 } else { 1419 asoc->rwnd += len; 1420 } 1421 1422 /* If we had window pressure, start recovering it 1423 * once our rwnd had reached the accumulated pressure 1424 * threshold. The idea is to recover slowly, but up 1425 * to the initial advertised window. 1426 */ 1427 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1428 int change = min(asoc->pathmtu, asoc->rwnd_press); 1429 asoc->rwnd += change; 1430 asoc->rwnd_press -= change; 1431 } 1432 1433 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1434 "- %u\n", __func__, asoc, len, asoc->rwnd, 1435 asoc->rwnd_over, asoc->a_rwnd); 1436 1437 /* Send a window update SACK if the rwnd has increased by at least the 1438 * minimum of the association's PMTU and half of the receive buffer. 1439 * The algorithm used is similar to the one described in 1440 * Section 4.2.3.3 of RFC 1122. 1441 */ 1442 if (sctp_peer_needs_update(asoc)) { 1443 asoc->a_rwnd = asoc->rwnd; 1444 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1445 "rwnd: %u a_rwnd: %u\n", __func__, 1446 asoc, asoc->rwnd, asoc->a_rwnd); 1447 sack = sctp_make_sack(asoc); 1448 if (!sack) 1449 return; 1450 1451 asoc->peer.sack_needed = 0; 1452 1453 sctp_outq_tail(&asoc->outqueue, sack); 1454 1455 /* Stop the SACK timer. */ 1456 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1457 if (timer_pending(timer) && del_timer(timer)) 1458 sctp_association_put(asoc); 1459 } 1460 } 1461 1462 /* Decrease asoc's rwnd by len. */ 1463 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) 1464 { 1465 int rx_count; 1466 int over = 0; 1467 1468 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1469 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1470 1471 if (asoc->ep->rcvbuf_policy) 1472 rx_count = atomic_read(&asoc->rmem_alloc); 1473 else 1474 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1475 1476 /* If we've reached or overflowed our receive buffer, announce 1477 * a 0 rwnd if rwnd would still be positive. Store the 1478 * the pottential pressure overflow so that the window can be restored 1479 * back to original value. 1480 */ 1481 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1482 over = 1; 1483 1484 if (asoc->rwnd >= len) { 1485 asoc->rwnd -= len; 1486 if (over) { 1487 asoc->rwnd_press += asoc->rwnd; 1488 asoc->rwnd = 0; 1489 } 1490 } else { 1491 asoc->rwnd_over = len - asoc->rwnd; 1492 asoc->rwnd = 0; 1493 } 1494 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n", 1495 __func__, asoc, len, asoc->rwnd, 1496 asoc->rwnd_over, asoc->rwnd_press); 1497 } 1498 1499 /* Build the bind address list for the association based on info from the 1500 * local endpoint and the remote peer. 1501 */ 1502 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1503 sctp_scope_t scope, gfp_t gfp) 1504 { 1505 int flags; 1506 1507 /* Use scoping rules to determine the subset of addresses from 1508 * the endpoint. 1509 */ 1510 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1511 if (asoc->peer.ipv4_address) 1512 flags |= SCTP_ADDR4_PEERSUPP; 1513 if (asoc->peer.ipv6_address) 1514 flags |= SCTP_ADDR6_PEERSUPP; 1515 1516 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1517 &asoc->ep->base.bind_addr, 1518 scope, gfp, flags); 1519 } 1520 1521 /* Build the association's bind address list from the cookie. */ 1522 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1523 struct sctp_cookie *cookie, 1524 gfp_t gfp) 1525 { 1526 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1527 int var_size3 = cookie->raw_addr_list_len; 1528 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1529 1530 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1531 asoc->ep->base.bind_addr.port, gfp); 1532 } 1533 1534 /* Lookup laddr in the bind address list of an association. */ 1535 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1536 const union sctp_addr *laddr) 1537 { 1538 int found = 0; 1539 1540 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1541 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1542 sctp_sk(asoc->base.sk))) 1543 found = 1; 1544 1545 return found; 1546 } 1547 1548 /* Set an association id for a given association */ 1549 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1550 { 1551 int assoc_id; 1552 int error = 0; 1553 1554 /* If the id is already assigned, keep it. */ 1555 if (asoc->assoc_id) 1556 return error; 1557 retry: 1558 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp))) 1559 return -ENOMEM; 1560 1561 spin_lock_bh(&sctp_assocs_id_lock); 1562 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc, 1563 idr_low, &assoc_id); 1564 if (!error) { 1565 idr_low = assoc_id + 1; 1566 if (idr_low == INT_MAX) 1567 idr_low = 1; 1568 } 1569 spin_unlock_bh(&sctp_assocs_id_lock); 1570 if (error == -EAGAIN) 1571 goto retry; 1572 else if (error) 1573 return error; 1574 1575 asoc->assoc_id = (sctp_assoc_t) assoc_id; 1576 return error; 1577 } 1578 1579 /* Free asconf_ack cache */ 1580 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1581 { 1582 struct sctp_chunk *ack; 1583 struct sctp_chunk *tmp; 1584 1585 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1586 transmitted_list) { 1587 list_del_init(&ack->transmitted_list); 1588 sctp_chunk_free(ack); 1589 } 1590 } 1591 1592 /* Clean up the ASCONF_ACK queue */ 1593 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1594 { 1595 struct sctp_chunk *ack; 1596 struct sctp_chunk *tmp; 1597 1598 /* We can remove all the entries from the queue upto 1599 * the "Peer-Sequence-Number". 1600 */ 1601 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1602 transmitted_list) { 1603 if (ack->subh.addip_hdr->serial == 1604 htonl(asoc->peer.addip_serial)) 1605 break; 1606 1607 list_del_init(&ack->transmitted_list); 1608 sctp_chunk_free(ack); 1609 } 1610 } 1611 1612 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1613 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1614 const struct sctp_association *asoc, 1615 __be32 serial) 1616 { 1617 struct sctp_chunk *ack; 1618 1619 /* Walk through the list of cached ASCONF-ACKs and find the 1620 * ack chunk whose serial number matches that of the request. 1621 */ 1622 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1623 if (ack->subh.addip_hdr->serial == serial) { 1624 sctp_chunk_hold(ack); 1625 return ack; 1626 } 1627 } 1628 1629 return NULL; 1630 } 1631