1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/poll.h> 54 #include <linux/init.h> 55 56 #include <linux/slab.h> 57 #include <linux/in.h> 58 #include <net/ipv6.h> 59 #include <net/sctp/sctp.h> 60 #include <net/sctp/sm.h> 61 62 /* Forward declarations for internal functions. */ 63 static void sctp_assoc_bh_rcv(struct work_struct *work); 64 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 65 66 /* Keep track of the new idr low so that we don't re-use association id 67 * numbers too fast. It is protected by they idr spin lock is in the 68 * range of 1 - INT_MAX. 69 */ 70 static u32 idr_low = 1; 71 72 73 /* 1st Level Abstractions. */ 74 75 /* Initialize a new association from provided memory. */ 76 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 77 const struct sctp_endpoint *ep, 78 const struct sock *sk, 79 sctp_scope_t scope, 80 gfp_t gfp) 81 { 82 struct sctp_sock *sp; 83 int i; 84 sctp_paramhdr_t *p; 85 int err; 86 87 /* Retrieve the SCTP per socket area. */ 88 sp = sctp_sk((struct sock *)sk); 89 90 /* Discarding const is appropriate here. */ 91 asoc->ep = (struct sctp_endpoint *)ep; 92 sctp_endpoint_hold(asoc->ep); 93 94 /* Hold the sock. */ 95 asoc->base.sk = (struct sock *)sk; 96 sock_hold(asoc->base.sk); 97 98 /* Initialize the common base substructure. */ 99 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 100 101 /* Initialize the object handling fields. */ 102 atomic_set(&asoc->base.refcnt, 1); 103 asoc->base.dead = 0; 104 asoc->base.malloced = 0; 105 106 /* Initialize the bind addr area. */ 107 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 108 109 asoc->state = SCTP_STATE_CLOSED; 110 111 /* Set these values from the socket values, a conversion between 112 * millsecons to seconds/microseconds must also be done. 113 */ 114 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 115 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 116 * 1000; 117 asoc->frag_point = 0; 118 asoc->user_frag = sp->user_frag; 119 120 /* Set the association max_retrans and RTO values from the 121 * socket values. 122 */ 123 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 124 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 125 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 126 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 127 128 asoc->overall_error_count = 0; 129 130 /* Initialize the association's heartbeat interval based on the 131 * sock configured value. 132 */ 133 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 134 135 /* Initialize path max retrans value. */ 136 asoc->pathmaxrxt = sp->pathmaxrxt; 137 138 /* Initialize default path MTU. */ 139 asoc->pathmtu = sp->pathmtu; 140 141 /* Set association default SACK delay */ 142 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 143 asoc->sackfreq = sp->sackfreq; 144 145 /* Set the association default flags controlling 146 * Heartbeat, SACK delay, and Path MTU Discovery. 147 */ 148 asoc->param_flags = sp->param_flags; 149 150 /* Initialize the maximum mumber of new data packets that can be sent 151 * in a burst. 152 */ 153 asoc->max_burst = sp->max_burst; 154 155 /* initialize association timers */ 156 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 157 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 158 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 159 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 160 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 162 163 /* sctpimpguide Section 2.12.2 164 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 165 * recommended value of 5 times 'RTO.Max'. 166 */ 167 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 168 = 5 * asoc->rto_max; 169 170 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 171 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 172 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 173 (unsigned long)sp->autoclose * HZ; 174 175 /* Initializes the timers */ 176 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 177 setup_timer(&asoc->timers[i], sctp_timer_events[i], 178 (unsigned long)asoc); 179 180 /* Pull default initialization values from the sock options. 181 * Note: This assumes that the values have already been 182 * validated in the sock. 183 */ 184 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 185 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 186 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 187 188 asoc->max_init_timeo = 189 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 190 191 /* Allocate storage for the ssnmap after the inbound and outbound 192 * streams have been negotiated during Init. 193 */ 194 asoc->ssnmap = NULL; 195 196 /* Set the local window size for receive. 197 * This is also the rcvbuf space per association. 198 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 199 * 1500 bytes in one SCTP packet. 200 */ 201 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 202 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 203 else 204 asoc->rwnd = sk->sk_rcvbuf/2; 205 206 asoc->a_rwnd = asoc->rwnd; 207 208 asoc->rwnd_over = 0; 209 asoc->rwnd_press = 0; 210 211 /* Use my own max window until I learn something better. */ 212 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 213 214 /* Set the sndbuf size for transmit. */ 215 asoc->sndbuf_used = 0; 216 217 /* Initialize the receive memory counter */ 218 atomic_set(&asoc->rmem_alloc, 0); 219 220 init_waitqueue_head(&asoc->wait); 221 222 asoc->c.my_vtag = sctp_generate_tag(ep); 223 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 224 asoc->c.peer_vtag = 0; 225 asoc->c.my_ttag = 0; 226 asoc->c.peer_ttag = 0; 227 asoc->c.my_port = ep->base.bind_addr.port; 228 229 asoc->c.initial_tsn = sctp_generate_tsn(ep); 230 231 asoc->next_tsn = asoc->c.initial_tsn; 232 233 asoc->ctsn_ack_point = asoc->next_tsn - 1; 234 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 235 asoc->highest_sacked = asoc->ctsn_ack_point; 236 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 237 asoc->unack_data = 0; 238 239 /* ADDIP Section 4.1 Asconf Chunk Procedures 240 * 241 * When an endpoint has an ASCONF signaled change to be sent to the 242 * remote endpoint it should do the following: 243 * ... 244 * A2) a serial number should be assigned to the chunk. The serial 245 * number SHOULD be a monotonically increasing number. The serial 246 * numbers SHOULD be initialized at the start of the 247 * association to the same value as the initial TSN. 248 */ 249 asoc->addip_serial = asoc->c.initial_tsn; 250 251 INIT_LIST_HEAD(&asoc->addip_chunk_list); 252 INIT_LIST_HEAD(&asoc->asconf_ack_list); 253 254 /* Make an empty list of remote transport addresses. */ 255 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 256 asoc->peer.transport_count = 0; 257 258 /* RFC 2960 5.1 Normal Establishment of an Association 259 * 260 * After the reception of the first data chunk in an 261 * association the endpoint must immediately respond with a 262 * sack to acknowledge the data chunk. Subsequent 263 * acknowledgements should be done as described in Section 264 * 6.2. 265 * 266 * [We implement this by telling a new association that it 267 * already received one packet.] 268 */ 269 asoc->peer.sack_needed = 1; 270 asoc->peer.sack_cnt = 0; 271 272 /* Assume that the peer will tell us if he recognizes ASCONF 273 * as part of INIT exchange. 274 * The sctp_addip_noauth option is there for backward compatibilty 275 * and will revert old behavior. 276 */ 277 asoc->peer.asconf_capable = 0; 278 if (sctp_addip_noauth) 279 asoc->peer.asconf_capable = 1; 280 281 /* Create an input queue. */ 282 sctp_inq_init(&asoc->base.inqueue); 283 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 284 285 /* Create an output queue. */ 286 sctp_outq_init(asoc, &asoc->outqueue); 287 288 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 289 goto fail_init; 290 291 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 292 293 asoc->need_ecne = 0; 294 295 asoc->assoc_id = 0; 296 297 /* Assume that peer would support both address types unless we are 298 * told otherwise. 299 */ 300 asoc->peer.ipv4_address = 1; 301 if (asoc->base.sk->sk_family == PF_INET6) 302 asoc->peer.ipv6_address = 1; 303 INIT_LIST_HEAD(&asoc->asocs); 304 305 asoc->autoclose = sp->autoclose; 306 307 asoc->default_stream = sp->default_stream; 308 asoc->default_ppid = sp->default_ppid; 309 asoc->default_flags = sp->default_flags; 310 asoc->default_context = sp->default_context; 311 asoc->default_timetolive = sp->default_timetolive; 312 asoc->default_rcv_context = sp->default_rcv_context; 313 314 /* AUTH related initializations */ 315 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 316 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 317 if (err) 318 goto fail_init; 319 320 asoc->active_key_id = ep->active_key_id; 321 asoc->asoc_shared_key = NULL; 322 323 asoc->default_hmac_id = 0; 324 /* Save the hmacs and chunks list into this association */ 325 if (ep->auth_hmacs_list) 326 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 327 ntohs(ep->auth_hmacs_list->param_hdr.length)); 328 if (ep->auth_chunk_list) 329 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 330 ntohs(ep->auth_chunk_list->param_hdr.length)); 331 332 /* Get the AUTH random number for this association */ 333 p = (sctp_paramhdr_t *)asoc->c.auth_random; 334 p->type = SCTP_PARAM_RANDOM; 335 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 336 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 337 338 return asoc; 339 340 fail_init: 341 sctp_endpoint_put(asoc->ep); 342 sock_put(asoc->base.sk); 343 return NULL; 344 } 345 346 /* Allocate and initialize a new association */ 347 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 348 const struct sock *sk, 349 sctp_scope_t scope, 350 gfp_t gfp) 351 { 352 struct sctp_association *asoc; 353 354 asoc = t_new(struct sctp_association, gfp); 355 if (!asoc) 356 goto fail; 357 358 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 359 goto fail_init; 360 361 asoc->base.malloced = 1; 362 SCTP_DBG_OBJCNT_INC(assoc); 363 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 364 365 return asoc; 366 367 fail_init: 368 kfree(asoc); 369 fail: 370 return NULL; 371 } 372 373 /* Free this association if possible. There may still be users, so 374 * the actual deallocation may be delayed. 375 */ 376 void sctp_association_free(struct sctp_association *asoc) 377 { 378 struct sock *sk = asoc->base.sk; 379 struct sctp_transport *transport; 380 struct list_head *pos, *temp; 381 int i; 382 383 /* Only real associations count against the endpoint, so 384 * don't bother for if this is a temporary association. 385 */ 386 if (!asoc->temp) { 387 list_del(&asoc->asocs); 388 389 /* Decrement the backlog value for a TCP-style listening 390 * socket. 391 */ 392 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 393 sk->sk_ack_backlog--; 394 } 395 396 /* Mark as dead, so other users can know this structure is 397 * going away. 398 */ 399 asoc->base.dead = 1; 400 401 /* Dispose of any data lying around in the outqueue. */ 402 sctp_outq_free(&asoc->outqueue); 403 404 /* Dispose of any pending messages for the upper layer. */ 405 sctp_ulpq_free(&asoc->ulpq); 406 407 /* Dispose of any pending chunks on the inqueue. */ 408 sctp_inq_free(&asoc->base.inqueue); 409 410 sctp_tsnmap_free(&asoc->peer.tsn_map); 411 412 /* Free ssnmap storage. */ 413 sctp_ssnmap_free(asoc->ssnmap); 414 415 /* Clean up the bound address list. */ 416 sctp_bind_addr_free(&asoc->base.bind_addr); 417 418 /* Do we need to go through all of our timers and 419 * delete them? To be safe we will try to delete all, but we 420 * should be able to go through and make a guess based 421 * on our state. 422 */ 423 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 424 if (timer_pending(&asoc->timers[i]) && 425 del_timer(&asoc->timers[i])) 426 sctp_association_put(asoc); 427 } 428 429 /* Free peer's cached cookie. */ 430 kfree(asoc->peer.cookie); 431 kfree(asoc->peer.peer_random); 432 kfree(asoc->peer.peer_chunks); 433 kfree(asoc->peer.peer_hmacs); 434 435 /* Release the transport structures. */ 436 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 437 transport = list_entry(pos, struct sctp_transport, transports); 438 list_del(pos); 439 sctp_transport_free(transport); 440 } 441 442 asoc->peer.transport_count = 0; 443 444 /* Free any cached ASCONF_ACK chunk. */ 445 sctp_assoc_free_asconf_acks(asoc); 446 447 /* Free any cached ASCONF chunk. */ 448 if (asoc->addip_last_asconf) 449 sctp_chunk_free(asoc->addip_last_asconf); 450 451 /* AUTH - Free the endpoint shared keys */ 452 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 453 454 /* AUTH - Free the association shared key */ 455 sctp_auth_key_put(asoc->asoc_shared_key); 456 457 sctp_association_put(asoc); 458 } 459 460 /* Cleanup and free up an association. */ 461 static void sctp_association_destroy(struct sctp_association *asoc) 462 { 463 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 464 465 sctp_endpoint_put(asoc->ep); 466 sock_put(asoc->base.sk); 467 468 if (asoc->assoc_id != 0) { 469 spin_lock_bh(&sctp_assocs_id_lock); 470 idr_remove(&sctp_assocs_id, asoc->assoc_id); 471 spin_unlock_bh(&sctp_assocs_id_lock); 472 } 473 474 WARN_ON(atomic_read(&asoc->rmem_alloc)); 475 476 if (asoc->base.malloced) { 477 kfree(asoc); 478 SCTP_DBG_OBJCNT_DEC(assoc); 479 } 480 } 481 482 /* Change the primary destination address for the peer. */ 483 void sctp_assoc_set_primary(struct sctp_association *asoc, 484 struct sctp_transport *transport) 485 { 486 int changeover = 0; 487 488 /* it's a changeover only if we already have a primary path 489 * that we are changing 490 */ 491 if (asoc->peer.primary_path != NULL && 492 asoc->peer.primary_path != transport) 493 changeover = 1 ; 494 495 asoc->peer.primary_path = transport; 496 497 /* Set a default msg_name for events. */ 498 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 499 sizeof(union sctp_addr)); 500 501 /* If the primary path is changing, assume that the 502 * user wants to use this new path. 503 */ 504 if ((transport->state == SCTP_ACTIVE) || 505 (transport->state == SCTP_UNKNOWN)) 506 asoc->peer.active_path = transport; 507 508 /* 509 * SFR-CACC algorithm: 510 * Upon the receipt of a request to change the primary 511 * destination address, on the data structure for the new 512 * primary destination, the sender MUST do the following: 513 * 514 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 515 * to this destination address earlier. The sender MUST set 516 * CYCLING_CHANGEOVER to indicate that this switch is a 517 * double switch to the same destination address. 518 * 519 * Really, only bother is we have data queued or outstanding on 520 * the association. 521 */ 522 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 523 return; 524 525 if (transport->cacc.changeover_active) 526 transport->cacc.cycling_changeover = changeover; 527 528 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 529 * a changeover has occurred. 530 */ 531 transport->cacc.changeover_active = changeover; 532 533 /* 3) The sender MUST store the next TSN to be sent in 534 * next_tsn_at_change. 535 */ 536 transport->cacc.next_tsn_at_change = asoc->next_tsn; 537 } 538 539 /* Remove a transport from an association. */ 540 void sctp_assoc_rm_peer(struct sctp_association *asoc, 541 struct sctp_transport *peer) 542 { 543 struct list_head *pos; 544 struct sctp_transport *transport; 545 546 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 547 " port: %d\n", 548 asoc, 549 (&peer->ipaddr), 550 ntohs(peer->ipaddr.v4.sin_port)); 551 552 /* If we are to remove the current retran_path, update it 553 * to the next peer before removing this peer from the list. 554 */ 555 if (asoc->peer.retran_path == peer) 556 sctp_assoc_update_retran_path(asoc); 557 558 /* Remove this peer from the list. */ 559 list_del(&peer->transports); 560 561 /* Get the first transport of asoc. */ 562 pos = asoc->peer.transport_addr_list.next; 563 transport = list_entry(pos, struct sctp_transport, transports); 564 565 /* Update any entries that match the peer to be deleted. */ 566 if (asoc->peer.primary_path == peer) 567 sctp_assoc_set_primary(asoc, transport); 568 if (asoc->peer.active_path == peer) 569 asoc->peer.active_path = transport; 570 if (asoc->peer.last_data_from == peer) 571 asoc->peer.last_data_from = transport; 572 573 /* If we remove the transport an INIT was last sent to, set it to 574 * NULL. Combined with the update of the retran path above, this 575 * will cause the next INIT to be sent to the next available 576 * transport, maintaining the cycle. 577 */ 578 if (asoc->init_last_sent_to == peer) 579 asoc->init_last_sent_to = NULL; 580 581 /* If we remove the transport an SHUTDOWN was last sent to, set it 582 * to NULL. Combined with the update of the retran path above, this 583 * will cause the next SHUTDOWN to be sent to the next available 584 * transport, maintaining the cycle. 585 */ 586 if (asoc->shutdown_last_sent_to == peer) 587 asoc->shutdown_last_sent_to = NULL; 588 589 /* If we remove the transport an ASCONF was last sent to, set it to 590 * NULL. 591 */ 592 if (asoc->addip_last_asconf && 593 asoc->addip_last_asconf->transport == peer) 594 asoc->addip_last_asconf->transport = NULL; 595 596 /* If we have something on the transmitted list, we have to 597 * save it off. The best place is the active path. 598 */ 599 if (!list_empty(&peer->transmitted)) { 600 struct sctp_transport *active = asoc->peer.active_path; 601 struct sctp_chunk *ch; 602 603 /* Reset the transport of each chunk on this list */ 604 list_for_each_entry(ch, &peer->transmitted, 605 transmitted_list) { 606 ch->transport = NULL; 607 ch->rtt_in_progress = 0; 608 } 609 610 list_splice_tail_init(&peer->transmitted, 611 &active->transmitted); 612 613 /* Start a T3 timer here in case it wasn't running so 614 * that these migrated packets have a chance to get 615 * retrnasmitted. 616 */ 617 if (!timer_pending(&active->T3_rtx_timer)) 618 if (!mod_timer(&active->T3_rtx_timer, 619 jiffies + active->rto)) 620 sctp_transport_hold(active); 621 } 622 623 asoc->peer.transport_count--; 624 625 sctp_transport_free(peer); 626 } 627 628 /* Add a transport address to an association. */ 629 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 630 const union sctp_addr *addr, 631 const gfp_t gfp, 632 const int peer_state) 633 { 634 struct sctp_transport *peer; 635 struct sctp_sock *sp; 636 unsigned short port; 637 638 sp = sctp_sk(asoc->base.sk); 639 640 /* AF_INET and AF_INET6 share common port field. */ 641 port = ntohs(addr->v4.sin_port); 642 643 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 644 " port: %d state:%d\n", 645 asoc, 646 addr, 647 port, 648 peer_state); 649 650 /* Set the port if it has not been set yet. */ 651 if (0 == asoc->peer.port) 652 asoc->peer.port = port; 653 654 /* Check to see if this is a duplicate. */ 655 peer = sctp_assoc_lookup_paddr(asoc, addr); 656 if (peer) { 657 /* An UNKNOWN state is only set on transports added by 658 * user in sctp_connectx() call. Such transports should be 659 * considered CONFIRMED per RFC 4960, Section 5.4. 660 */ 661 if (peer->state == SCTP_UNKNOWN) { 662 peer->state = SCTP_ACTIVE; 663 } 664 return peer; 665 } 666 667 peer = sctp_transport_new(addr, gfp); 668 if (!peer) 669 return NULL; 670 671 sctp_transport_set_owner(peer, asoc); 672 673 /* Initialize the peer's heartbeat interval based on the 674 * association configured value. 675 */ 676 peer->hbinterval = asoc->hbinterval; 677 678 /* Set the path max_retrans. */ 679 peer->pathmaxrxt = asoc->pathmaxrxt; 680 681 /* Initialize the peer's SACK delay timeout based on the 682 * association configured value. 683 */ 684 peer->sackdelay = asoc->sackdelay; 685 peer->sackfreq = asoc->sackfreq; 686 687 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 688 * based on association setting. 689 */ 690 peer->param_flags = asoc->param_flags; 691 692 sctp_transport_route(peer, NULL, sp); 693 694 /* Initialize the pmtu of the transport. */ 695 if (peer->param_flags & SPP_PMTUD_DISABLE) { 696 if (asoc->pathmtu) 697 peer->pathmtu = asoc->pathmtu; 698 else 699 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 700 } 701 702 /* If this is the first transport addr on this association, 703 * initialize the association PMTU to the peer's PMTU. 704 * If not and the current association PMTU is higher than the new 705 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 706 */ 707 if (asoc->pathmtu) 708 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 709 else 710 asoc->pathmtu = peer->pathmtu; 711 712 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 713 "%d\n", asoc, asoc->pathmtu); 714 peer->pmtu_pending = 0; 715 716 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 717 718 /* The asoc->peer.port might not be meaningful yet, but 719 * initialize the packet structure anyway. 720 */ 721 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 722 asoc->peer.port); 723 724 /* 7.2.1 Slow-Start 725 * 726 * o The initial cwnd before DATA transmission or after a sufficiently 727 * long idle period MUST be set to 728 * min(4*MTU, max(2*MTU, 4380 bytes)) 729 * 730 * o The initial value of ssthresh MAY be arbitrarily high 731 * (for example, implementations MAY use the size of the 732 * receiver advertised window). 733 */ 734 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 735 736 /* At this point, we may not have the receiver's advertised window, 737 * so initialize ssthresh to the default value and it will be set 738 * later when we process the INIT. 739 */ 740 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 741 742 peer->partial_bytes_acked = 0; 743 peer->flight_size = 0; 744 peer->burst_limited = 0; 745 746 /* Set the transport's RTO.initial value */ 747 peer->rto = asoc->rto_initial; 748 749 /* Set the peer's active state. */ 750 peer->state = peer_state; 751 752 /* Attach the remote transport to our asoc. */ 753 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 754 asoc->peer.transport_count++; 755 756 /* If we do not yet have a primary path, set one. */ 757 if (!asoc->peer.primary_path) { 758 sctp_assoc_set_primary(asoc, peer); 759 asoc->peer.retran_path = peer; 760 } 761 762 if (asoc->peer.active_path == asoc->peer.retran_path && 763 peer->state != SCTP_UNCONFIRMED) { 764 asoc->peer.retran_path = peer; 765 } 766 767 return peer; 768 } 769 770 /* Delete a transport address from an association. */ 771 void sctp_assoc_del_peer(struct sctp_association *asoc, 772 const union sctp_addr *addr) 773 { 774 struct list_head *pos; 775 struct list_head *temp; 776 struct sctp_transport *transport; 777 778 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 779 transport = list_entry(pos, struct sctp_transport, transports); 780 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 781 /* Do book keeping for removing the peer and free it. */ 782 sctp_assoc_rm_peer(asoc, transport); 783 break; 784 } 785 } 786 } 787 788 /* Lookup a transport by address. */ 789 struct sctp_transport *sctp_assoc_lookup_paddr( 790 const struct sctp_association *asoc, 791 const union sctp_addr *address) 792 { 793 struct sctp_transport *t; 794 795 /* Cycle through all transports searching for a peer address. */ 796 797 list_for_each_entry(t, &asoc->peer.transport_addr_list, 798 transports) { 799 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 800 return t; 801 } 802 803 return NULL; 804 } 805 806 /* Remove all transports except a give one */ 807 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 808 struct sctp_transport *primary) 809 { 810 struct sctp_transport *temp; 811 struct sctp_transport *t; 812 813 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 814 transports) { 815 /* if the current transport is not the primary one, delete it */ 816 if (t != primary) 817 sctp_assoc_rm_peer(asoc, t); 818 } 819 } 820 821 /* Engage in transport control operations. 822 * Mark the transport up or down and send a notification to the user. 823 * Select and update the new active and retran paths. 824 */ 825 void sctp_assoc_control_transport(struct sctp_association *asoc, 826 struct sctp_transport *transport, 827 sctp_transport_cmd_t command, 828 sctp_sn_error_t error) 829 { 830 struct sctp_transport *t = NULL; 831 struct sctp_transport *first; 832 struct sctp_transport *second; 833 struct sctp_ulpevent *event; 834 struct sockaddr_storage addr; 835 int spc_state = 0; 836 837 /* Record the transition on the transport. */ 838 switch (command) { 839 case SCTP_TRANSPORT_UP: 840 /* If we are moving from UNCONFIRMED state due 841 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 842 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 843 */ 844 if (SCTP_UNCONFIRMED == transport->state && 845 SCTP_HEARTBEAT_SUCCESS == error) 846 spc_state = SCTP_ADDR_CONFIRMED; 847 else 848 spc_state = SCTP_ADDR_AVAILABLE; 849 transport->state = SCTP_ACTIVE; 850 break; 851 852 case SCTP_TRANSPORT_DOWN: 853 /* If the transport was never confirmed, do not transition it 854 * to inactive state. Also, release the cached route since 855 * there may be a better route next time. 856 */ 857 if (transport->state != SCTP_UNCONFIRMED) 858 transport->state = SCTP_INACTIVE; 859 else { 860 dst_release(transport->dst); 861 transport->dst = NULL; 862 } 863 864 spc_state = SCTP_ADDR_UNREACHABLE; 865 break; 866 867 default: 868 return; 869 } 870 871 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 872 * user. 873 */ 874 memset(&addr, 0, sizeof(struct sockaddr_storage)); 875 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len); 876 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 877 0, spc_state, error, GFP_ATOMIC); 878 if (event) 879 sctp_ulpq_tail_event(&asoc->ulpq, event); 880 881 /* Select new active and retran paths. */ 882 883 /* Look for the two most recently used active transports. 884 * 885 * This code produces the wrong ordering whenever jiffies 886 * rolls over, but we still get usable transports, so we don't 887 * worry about it. 888 */ 889 first = NULL; second = NULL; 890 891 list_for_each_entry(t, &asoc->peer.transport_addr_list, 892 transports) { 893 894 if ((t->state == SCTP_INACTIVE) || 895 (t->state == SCTP_UNCONFIRMED)) 896 continue; 897 if (!first || t->last_time_heard > first->last_time_heard) { 898 second = first; 899 first = t; 900 } 901 if (!second || t->last_time_heard > second->last_time_heard) 902 second = t; 903 } 904 905 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 906 * 907 * By default, an endpoint should always transmit to the 908 * primary path, unless the SCTP user explicitly specifies the 909 * destination transport address (and possibly source 910 * transport address) to use. 911 * 912 * [If the primary is active but not most recent, bump the most 913 * recently used transport.] 914 */ 915 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 916 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 917 first != asoc->peer.primary_path) { 918 second = first; 919 first = asoc->peer.primary_path; 920 } 921 922 /* If we failed to find a usable transport, just camp on the 923 * primary, even if it is inactive. 924 */ 925 if (!first) { 926 first = asoc->peer.primary_path; 927 second = asoc->peer.primary_path; 928 } 929 930 /* Set the active and retran transports. */ 931 asoc->peer.active_path = first; 932 asoc->peer.retran_path = second; 933 } 934 935 /* Hold a reference to an association. */ 936 void sctp_association_hold(struct sctp_association *asoc) 937 { 938 atomic_inc(&asoc->base.refcnt); 939 } 940 941 /* Release a reference to an association and cleanup 942 * if there are no more references. 943 */ 944 void sctp_association_put(struct sctp_association *asoc) 945 { 946 if (atomic_dec_and_test(&asoc->base.refcnt)) 947 sctp_association_destroy(asoc); 948 } 949 950 /* Allocate the next TSN, Transmission Sequence Number, for the given 951 * association. 952 */ 953 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 954 { 955 /* From Section 1.6 Serial Number Arithmetic: 956 * Transmission Sequence Numbers wrap around when they reach 957 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 958 * after transmitting TSN = 2*32 - 1 is TSN = 0. 959 */ 960 __u32 retval = asoc->next_tsn; 961 asoc->next_tsn++; 962 asoc->unack_data++; 963 964 return retval; 965 } 966 967 /* Compare two addresses to see if they match. Wildcard addresses 968 * only match themselves. 969 */ 970 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 971 const union sctp_addr *ss2) 972 { 973 struct sctp_af *af; 974 975 af = sctp_get_af_specific(ss1->sa.sa_family); 976 if (unlikely(!af)) 977 return 0; 978 979 return af->cmp_addr(ss1, ss2); 980 } 981 982 /* Return an ecne chunk to get prepended to a packet. 983 * Note: We are sly and return a shared, prealloced chunk. FIXME: 984 * No we don't, but we could/should. 985 */ 986 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 987 { 988 struct sctp_chunk *chunk; 989 990 /* Send ECNE if needed. 991 * Not being able to allocate a chunk here is not deadly. 992 */ 993 if (asoc->need_ecne) 994 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 995 else 996 chunk = NULL; 997 998 return chunk; 999 } 1000 1001 /* 1002 * Find which transport this TSN was sent on. 1003 */ 1004 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 1005 __u32 tsn) 1006 { 1007 struct sctp_transport *active; 1008 struct sctp_transport *match; 1009 struct sctp_transport *transport; 1010 struct sctp_chunk *chunk; 1011 __be32 key = htonl(tsn); 1012 1013 match = NULL; 1014 1015 /* 1016 * FIXME: In general, find a more efficient data structure for 1017 * searching. 1018 */ 1019 1020 /* 1021 * The general strategy is to search each transport's transmitted 1022 * list. Return which transport this TSN lives on. 1023 * 1024 * Let's be hopeful and check the active_path first. 1025 * Another optimization would be to know if there is only one 1026 * outbound path and not have to look for the TSN at all. 1027 * 1028 */ 1029 1030 active = asoc->peer.active_path; 1031 1032 list_for_each_entry(chunk, &active->transmitted, 1033 transmitted_list) { 1034 1035 if (key == chunk->subh.data_hdr->tsn) { 1036 match = active; 1037 goto out; 1038 } 1039 } 1040 1041 /* If not found, go search all the other transports. */ 1042 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1043 transports) { 1044 1045 if (transport == active) 1046 break; 1047 list_for_each_entry(chunk, &transport->transmitted, 1048 transmitted_list) { 1049 if (key == chunk->subh.data_hdr->tsn) { 1050 match = transport; 1051 goto out; 1052 } 1053 } 1054 } 1055 out: 1056 return match; 1057 } 1058 1059 /* Is this the association we are looking for? */ 1060 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1061 const union sctp_addr *laddr, 1062 const union sctp_addr *paddr) 1063 { 1064 struct sctp_transport *transport; 1065 1066 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1067 (htons(asoc->peer.port) == paddr->v4.sin_port)) { 1068 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1069 if (!transport) 1070 goto out; 1071 1072 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1073 sctp_sk(asoc->base.sk))) 1074 goto out; 1075 } 1076 transport = NULL; 1077 1078 out: 1079 return transport; 1080 } 1081 1082 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1083 static void sctp_assoc_bh_rcv(struct work_struct *work) 1084 { 1085 struct sctp_association *asoc = 1086 container_of(work, struct sctp_association, 1087 base.inqueue.immediate); 1088 struct sctp_endpoint *ep; 1089 struct sctp_chunk *chunk; 1090 struct sock *sk; 1091 struct sctp_inq *inqueue; 1092 int state; 1093 sctp_subtype_t subtype; 1094 int error = 0; 1095 1096 /* The association should be held so we should be safe. */ 1097 ep = asoc->ep; 1098 sk = asoc->base.sk; 1099 1100 inqueue = &asoc->base.inqueue; 1101 sctp_association_hold(asoc); 1102 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1103 state = asoc->state; 1104 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1105 1106 /* SCTP-AUTH, Section 6.3: 1107 * The receiver has a list of chunk types which it expects 1108 * to be received only after an AUTH-chunk. This list has 1109 * been sent to the peer during the association setup. It 1110 * MUST silently discard these chunks if they are not placed 1111 * after an AUTH chunk in the packet. 1112 */ 1113 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1114 continue; 1115 1116 /* Remember where the last DATA chunk came from so we 1117 * know where to send the SACK. 1118 */ 1119 if (sctp_chunk_is_data(chunk)) 1120 asoc->peer.last_data_from = chunk->transport; 1121 else 1122 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 1123 1124 if (chunk->transport) 1125 chunk->transport->last_time_heard = jiffies; 1126 1127 /* Run through the state machine. */ 1128 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 1129 state, ep, asoc, chunk, GFP_ATOMIC); 1130 1131 /* Check to see if the association is freed in response to 1132 * the incoming chunk. If so, get out of the while loop. 1133 */ 1134 if (asoc->base.dead) 1135 break; 1136 1137 /* If there is an error on chunk, discard this packet. */ 1138 if (error && chunk) 1139 chunk->pdiscard = 1; 1140 } 1141 sctp_association_put(asoc); 1142 } 1143 1144 /* This routine moves an association from its old sk to a new sk. */ 1145 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1146 { 1147 struct sctp_sock *newsp = sctp_sk(newsk); 1148 struct sock *oldsk = assoc->base.sk; 1149 1150 /* Delete the association from the old endpoint's list of 1151 * associations. 1152 */ 1153 list_del_init(&assoc->asocs); 1154 1155 /* Decrement the backlog value for a TCP-style socket. */ 1156 if (sctp_style(oldsk, TCP)) 1157 oldsk->sk_ack_backlog--; 1158 1159 /* Release references to the old endpoint and the sock. */ 1160 sctp_endpoint_put(assoc->ep); 1161 sock_put(assoc->base.sk); 1162 1163 /* Get a reference to the new endpoint. */ 1164 assoc->ep = newsp->ep; 1165 sctp_endpoint_hold(assoc->ep); 1166 1167 /* Get a reference to the new sock. */ 1168 assoc->base.sk = newsk; 1169 sock_hold(assoc->base.sk); 1170 1171 /* Add the association to the new endpoint's list of associations. */ 1172 sctp_endpoint_add_asoc(newsp->ep, assoc); 1173 } 1174 1175 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1176 void sctp_assoc_update(struct sctp_association *asoc, 1177 struct sctp_association *new) 1178 { 1179 struct sctp_transport *trans; 1180 struct list_head *pos, *temp; 1181 1182 /* Copy in new parameters of peer. */ 1183 asoc->c = new->c; 1184 asoc->peer.rwnd = new->peer.rwnd; 1185 asoc->peer.sack_needed = new->peer.sack_needed; 1186 asoc->peer.i = new->peer.i; 1187 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1188 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1189 1190 /* Remove any peer addresses not present in the new association. */ 1191 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1192 trans = list_entry(pos, struct sctp_transport, transports); 1193 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1194 sctp_assoc_rm_peer(asoc, trans); 1195 continue; 1196 } 1197 1198 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1199 sctp_transport_reset(trans); 1200 } 1201 1202 /* If the case is A (association restart), use 1203 * initial_tsn as next_tsn. If the case is B, use 1204 * current next_tsn in case data sent to peer 1205 * has been discarded and needs retransmission. 1206 */ 1207 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1208 asoc->next_tsn = new->next_tsn; 1209 asoc->ctsn_ack_point = new->ctsn_ack_point; 1210 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1211 1212 /* Reinitialize SSN for both local streams 1213 * and peer's streams. 1214 */ 1215 sctp_ssnmap_clear(asoc->ssnmap); 1216 1217 /* Flush the ULP reassembly and ordered queue. 1218 * Any data there will now be stale and will 1219 * cause problems. 1220 */ 1221 sctp_ulpq_flush(&asoc->ulpq); 1222 1223 /* reset the overall association error count so 1224 * that the restarted association doesn't get torn 1225 * down on the next retransmission timer. 1226 */ 1227 asoc->overall_error_count = 0; 1228 1229 } else { 1230 /* Add any peer addresses from the new association. */ 1231 list_for_each_entry(trans, &new->peer.transport_addr_list, 1232 transports) { 1233 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1234 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1235 GFP_ATOMIC, trans->state); 1236 } 1237 1238 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1239 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1240 if (!asoc->ssnmap) { 1241 /* Move the ssnmap. */ 1242 asoc->ssnmap = new->ssnmap; 1243 new->ssnmap = NULL; 1244 } 1245 1246 if (!asoc->assoc_id) { 1247 /* get a new association id since we don't have one 1248 * yet. 1249 */ 1250 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1251 } 1252 } 1253 1254 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1255 * and also move the association shared keys over 1256 */ 1257 kfree(asoc->peer.peer_random); 1258 asoc->peer.peer_random = new->peer.peer_random; 1259 new->peer.peer_random = NULL; 1260 1261 kfree(asoc->peer.peer_chunks); 1262 asoc->peer.peer_chunks = new->peer.peer_chunks; 1263 new->peer.peer_chunks = NULL; 1264 1265 kfree(asoc->peer.peer_hmacs); 1266 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1267 new->peer.peer_hmacs = NULL; 1268 1269 sctp_auth_key_put(asoc->asoc_shared_key); 1270 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1271 } 1272 1273 /* Update the retran path for sending a retransmitted packet. 1274 * Round-robin through the active transports, else round-robin 1275 * through the inactive transports as this is the next best thing 1276 * we can try. 1277 */ 1278 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1279 { 1280 struct sctp_transport *t, *next; 1281 struct list_head *head = &asoc->peer.transport_addr_list; 1282 struct list_head *pos; 1283 1284 if (asoc->peer.transport_count == 1) 1285 return; 1286 1287 /* Find the next transport in a round-robin fashion. */ 1288 t = asoc->peer.retran_path; 1289 pos = &t->transports; 1290 next = NULL; 1291 1292 while (1) { 1293 /* Skip the head. */ 1294 if (pos->next == head) 1295 pos = head->next; 1296 else 1297 pos = pos->next; 1298 1299 t = list_entry(pos, struct sctp_transport, transports); 1300 1301 /* We have exhausted the list, but didn't find any 1302 * other active transports. If so, use the next 1303 * transport. 1304 */ 1305 if (t == asoc->peer.retran_path) { 1306 t = next; 1307 break; 1308 } 1309 1310 /* Try to find an active transport. */ 1311 1312 if ((t->state == SCTP_ACTIVE) || 1313 (t->state == SCTP_UNKNOWN)) { 1314 break; 1315 } else { 1316 /* Keep track of the next transport in case 1317 * we don't find any active transport. 1318 */ 1319 if (t->state != SCTP_UNCONFIRMED && !next) 1320 next = t; 1321 } 1322 } 1323 1324 if (t) 1325 asoc->peer.retran_path = t; 1326 1327 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1328 " %p addr: ", 1329 " port: %d\n", 1330 asoc, 1331 (&t->ipaddr), 1332 ntohs(t->ipaddr.v4.sin_port)); 1333 } 1334 1335 /* Choose the transport for sending retransmit packet. */ 1336 struct sctp_transport *sctp_assoc_choose_alter_transport( 1337 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1338 { 1339 /* If this is the first time packet is sent, use the active path, 1340 * else use the retran path. If the last packet was sent over the 1341 * retran path, update the retran path and use it. 1342 */ 1343 if (!last_sent_to) 1344 return asoc->peer.active_path; 1345 else { 1346 if (last_sent_to == asoc->peer.retran_path) 1347 sctp_assoc_update_retran_path(asoc); 1348 return asoc->peer.retran_path; 1349 } 1350 } 1351 1352 /* Update the association's pmtu and frag_point by going through all the 1353 * transports. This routine is called when a transport's PMTU has changed. 1354 */ 1355 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1356 { 1357 struct sctp_transport *t; 1358 __u32 pmtu = 0; 1359 1360 if (!asoc) 1361 return; 1362 1363 /* Get the lowest pmtu of all the transports. */ 1364 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1365 transports) { 1366 if (t->pmtu_pending && t->dst) { 1367 sctp_transport_update_pmtu(t, dst_mtu(t->dst)); 1368 t->pmtu_pending = 0; 1369 } 1370 if (!pmtu || (t->pathmtu < pmtu)) 1371 pmtu = t->pathmtu; 1372 } 1373 1374 if (pmtu) { 1375 asoc->pathmtu = pmtu; 1376 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1377 } 1378 1379 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1380 __func__, asoc, asoc->pathmtu, asoc->frag_point); 1381 } 1382 1383 /* Should we send a SACK to update our peer? */ 1384 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1385 { 1386 switch (asoc->state) { 1387 case SCTP_STATE_ESTABLISHED: 1388 case SCTP_STATE_SHUTDOWN_PENDING: 1389 case SCTP_STATE_SHUTDOWN_RECEIVED: 1390 case SCTP_STATE_SHUTDOWN_SENT: 1391 if ((asoc->rwnd > asoc->a_rwnd) && 1392 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1393 (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift), 1394 asoc->pathmtu))) 1395 return 1; 1396 break; 1397 default: 1398 break; 1399 } 1400 return 0; 1401 } 1402 1403 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1404 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) 1405 { 1406 struct sctp_chunk *sack; 1407 struct timer_list *timer; 1408 1409 if (asoc->rwnd_over) { 1410 if (asoc->rwnd_over >= len) { 1411 asoc->rwnd_over -= len; 1412 } else { 1413 asoc->rwnd += (len - asoc->rwnd_over); 1414 asoc->rwnd_over = 0; 1415 } 1416 } else { 1417 asoc->rwnd += len; 1418 } 1419 1420 /* If we had window pressure, start recovering it 1421 * once our rwnd had reached the accumulated pressure 1422 * threshold. The idea is to recover slowly, but up 1423 * to the initial advertised window. 1424 */ 1425 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1426 int change = min(asoc->pathmtu, asoc->rwnd_press); 1427 asoc->rwnd += change; 1428 asoc->rwnd_press -= change; 1429 } 1430 1431 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1432 "- %u\n", __func__, asoc, len, asoc->rwnd, 1433 asoc->rwnd_over, asoc->a_rwnd); 1434 1435 /* Send a window update SACK if the rwnd has increased by at least the 1436 * minimum of the association's PMTU and half of the receive buffer. 1437 * The algorithm used is similar to the one described in 1438 * Section 4.2.3.3 of RFC 1122. 1439 */ 1440 if (sctp_peer_needs_update(asoc)) { 1441 asoc->a_rwnd = asoc->rwnd; 1442 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1443 "rwnd: %u a_rwnd: %u\n", __func__, 1444 asoc, asoc->rwnd, asoc->a_rwnd); 1445 sack = sctp_make_sack(asoc); 1446 if (!sack) 1447 return; 1448 1449 asoc->peer.sack_needed = 0; 1450 1451 sctp_outq_tail(&asoc->outqueue, sack); 1452 1453 /* Stop the SACK timer. */ 1454 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1455 if (timer_pending(timer) && del_timer(timer)) 1456 sctp_association_put(asoc); 1457 } 1458 } 1459 1460 /* Decrease asoc's rwnd by len. */ 1461 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) 1462 { 1463 int rx_count; 1464 int over = 0; 1465 1466 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1467 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1468 1469 if (asoc->ep->rcvbuf_policy) 1470 rx_count = atomic_read(&asoc->rmem_alloc); 1471 else 1472 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1473 1474 /* If we've reached or overflowed our receive buffer, announce 1475 * a 0 rwnd if rwnd would still be positive. Store the 1476 * the pottential pressure overflow so that the window can be restored 1477 * back to original value. 1478 */ 1479 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1480 over = 1; 1481 1482 if (asoc->rwnd >= len) { 1483 asoc->rwnd -= len; 1484 if (over) { 1485 asoc->rwnd_press += asoc->rwnd; 1486 asoc->rwnd = 0; 1487 } 1488 } else { 1489 asoc->rwnd_over = len - asoc->rwnd; 1490 asoc->rwnd = 0; 1491 } 1492 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n", 1493 __func__, asoc, len, asoc->rwnd, 1494 asoc->rwnd_over, asoc->rwnd_press); 1495 } 1496 1497 /* Build the bind address list for the association based on info from the 1498 * local endpoint and the remote peer. 1499 */ 1500 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1501 sctp_scope_t scope, gfp_t gfp) 1502 { 1503 int flags; 1504 1505 /* Use scoping rules to determine the subset of addresses from 1506 * the endpoint. 1507 */ 1508 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1509 if (asoc->peer.ipv4_address) 1510 flags |= SCTP_ADDR4_PEERSUPP; 1511 if (asoc->peer.ipv6_address) 1512 flags |= SCTP_ADDR6_PEERSUPP; 1513 1514 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1515 &asoc->ep->base.bind_addr, 1516 scope, gfp, flags); 1517 } 1518 1519 /* Build the association's bind address list from the cookie. */ 1520 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1521 struct sctp_cookie *cookie, 1522 gfp_t gfp) 1523 { 1524 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1525 int var_size3 = cookie->raw_addr_list_len; 1526 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1527 1528 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1529 asoc->ep->base.bind_addr.port, gfp); 1530 } 1531 1532 /* Lookup laddr in the bind address list of an association. */ 1533 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1534 const union sctp_addr *laddr) 1535 { 1536 int found = 0; 1537 1538 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1539 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1540 sctp_sk(asoc->base.sk))) 1541 found = 1; 1542 1543 return found; 1544 } 1545 1546 /* Set an association id for a given association */ 1547 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1548 { 1549 int assoc_id; 1550 int error = 0; 1551 1552 /* If the id is already assigned, keep it. */ 1553 if (asoc->assoc_id) 1554 return error; 1555 retry: 1556 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp))) 1557 return -ENOMEM; 1558 1559 spin_lock_bh(&sctp_assocs_id_lock); 1560 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc, 1561 idr_low, &assoc_id); 1562 if (!error) { 1563 idr_low = assoc_id + 1; 1564 if (idr_low == INT_MAX) 1565 idr_low = 1; 1566 } 1567 spin_unlock_bh(&sctp_assocs_id_lock); 1568 if (error == -EAGAIN) 1569 goto retry; 1570 else if (error) 1571 return error; 1572 1573 asoc->assoc_id = (sctp_assoc_t) assoc_id; 1574 return error; 1575 } 1576 1577 /* Free asconf_ack cache */ 1578 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1579 { 1580 struct sctp_chunk *ack; 1581 struct sctp_chunk *tmp; 1582 1583 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1584 transmitted_list) { 1585 list_del_init(&ack->transmitted_list); 1586 sctp_chunk_free(ack); 1587 } 1588 } 1589 1590 /* Clean up the ASCONF_ACK queue */ 1591 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1592 { 1593 struct sctp_chunk *ack; 1594 struct sctp_chunk *tmp; 1595 1596 /* We can remove all the entries from the queue upto 1597 * the "Peer-Sequence-Number". 1598 */ 1599 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1600 transmitted_list) { 1601 if (ack->subh.addip_hdr->serial == 1602 htonl(asoc->peer.addip_serial)) 1603 break; 1604 1605 list_del_init(&ack->transmitted_list); 1606 sctp_chunk_free(ack); 1607 } 1608 } 1609 1610 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1611 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1612 const struct sctp_association *asoc, 1613 __be32 serial) 1614 { 1615 struct sctp_chunk *ack; 1616 1617 /* Walk through the list of cached ASCONF-ACKs and find the 1618 * ack chunk whose serial number matches that of the request. 1619 */ 1620 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1621 if (ack->subh.addip_hdr->serial == serial) { 1622 sctp_chunk_hold(ack); 1623 return ack; 1624 } 1625 } 1626 1627 return NULL; 1628 } 1629