xref: /linux/net/sctp/associola.c (revision c79c3c34f75d72a066e292b10aa50fc758c97c89)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001 Intel Corp.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * This module provides the abstraction for an SCTP association.
12  *
13  * Please send any bug reports or fixes you make to the
14  * email address(es):
15  *    lksctp developers <linux-sctp@vger.kernel.org>
16  *
17  * Written or modified by:
18  *    La Monte H.P. Yarroll <piggy@acm.org>
19  *    Karl Knutson          <karl@athena.chicago.il.us>
20  *    Jon Grimm             <jgrimm@us.ibm.com>
21  *    Xingang Guo           <xingang.guo@intel.com>
22  *    Hui Huang             <hui.huang@nokia.com>
23  *    Sridhar Samudrala	    <sri@us.ibm.com>
24  *    Daisy Chang	    <daisyc@us.ibm.com>
25  *    Ryan Layer	    <rmlayer@us.ibm.com>
26  *    Kevin Gao             <kevin.gao@intel.com>
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/poll.h>
34 #include <linux/init.h>
35 
36 #include <linux/slab.h>
37 #include <linux/in.h>
38 #include <net/ipv6.h>
39 #include <net/sctp/sctp.h>
40 #include <net/sctp/sm.h>
41 
42 /* Forward declarations for internal functions. */
43 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
44 static void sctp_assoc_bh_rcv(struct work_struct *work);
45 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
46 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
47 
48 /* 1st Level Abstractions. */
49 
50 /* Initialize a new association from provided memory. */
51 static struct sctp_association *sctp_association_init(
52 					struct sctp_association *asoc,
53 					const struct sctp_endpoint *ep,
54 					const struct sock *sk,
55 					enum sctp_scope scope, gfp_t gfp)
56 {
57 	struct sctp_sock *sp;
58 	struct sctp_paramhdr *p;
59 	int i;
60 
61 	/* Retrieve the SCTP per socket area.  */
62 	sp = sctp_sk((struct sock *)sk);
63 
64 	/* Discarding const is appropriate here.  */
65 	asoc->ep = (struct sctp_endpoint *)ep;
66 	asoc->base.sk = (struct sock *)sk;
67 	asoc->base.net = sock_net(sk);
68 
69 	sctp_endpoint_hold(asoc->ep);
70 	sock_hold(asoc->base.sk);
71 
72 	/* Initialize the common base substructure.  */
73 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
74 
75 	/* Initialize the object handling fields.  */
76 	refcount_set(&asoc->base.refcnt, 1);
77 
78 	/* Initialize the bind addr area.  */
79 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
80 
81 	asoc->state = SCTP_STATE_CLOSED;
82 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
83 	asoc->user_frag = sp->user_frag;
84 
85 	/* Set the association max_retrans and RTO values from the
86 	 * socket values.
87 	 */
88 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
89 	asoc->pf_retrans  = sp->pf_retrans;
90 	asoc->ps_retrans  = sp->ps_retrans;
91 	asoc->pf_expose   = sp->pf_expose;
92 
93 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
94 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
95 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
96 
97 	/* Initialize the association's heartbeat interval based on the
98 	 * sock configured value.
99 	 */
100 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
101 
102 	asoc->encap_port = sp->encap_port;
103 
104 	/* Initialize path max retrans value. */
105 	asoc->pathmaxrxt = sp->pathmaxrxt;
106 
107 	asoc->flowlabel = sp->flowlabel;
108 	asoc->dscp = sp->dscp;
109 
110 	/* Set association default SACK delay */
111 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
112 	asoc->sackfreq = sp->sackfreq;
113 
114 	/* Set the association default flags controlling
115 	 * Heartbeat, SACK delay, and Path MTU Discovery.
116 	 */
117 	asoc->param_flags = sp->param_flags;
118 
119 	/* Initialize the maximum number of new data packets that can be sent
120 	 * in a burst.
121 	 */
122 	asoc->max_burst = sp->max_burst;
123 
124 	asoc->subscribe = sp->subscribe;
125 
126 	/* initialize association timers */
127 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
128 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
129 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
130 
131 	/* sctpimpguide Section 2.12.2
132 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
133 	 * recommended value of 5 times 'RTO.Max'.
134 	 */
135 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
136 		= 5 * asoc->rto_max;
137 
138 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
139 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
140 
141 	/* Initializes the timers */
142 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
143 		timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
144 
145 	/* Pull default initialization values from the sock options.
146 	 * Note: This assumes that the values have already been
147 	 * validated in the sock.
148 	 */
149 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
150 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
151 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
152 
153 	asoc->max_init_timeo =
154 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
155 
156 	/* Set the local window size for receive.
157 	 * This is also the rcvbuf space per association.
158 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
159 	 * 1500 bytes in one SCTP packet.
160 	 */
161 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
162 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
163 	else
164 		asoc->rwnd = sk->sk_rcvbuf/2;
165 
166 	asoc->a_rwnd = asoc->rwnd;
167 
168 	/* Use my own max window until I learn something better.  */
169 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
170 
171 	/* Initialize the receive memory counter */
172 	atomic_set(&asoc->rmem_alloc, 0);
173 
174 	init_waitqueue_head(&asoc->wait);
175 
176 	asoc->c.my_vtag = sctp_generate_tag(ep);
177 	asoc->c.my_port = ep->base.bind_addr.port;
178 
179 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
180 
181 	asoc->next_tsn = asoc->c.initial_tsn;
182 
183 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
184 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
185 	asoc->highest_sacked = asoc->ctsn_ack_point;
186 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
187 
188 	/* ADDIP Section 4.1 Asconf Chunk Procedures
189 	 *
190 	 * When an endpoint has an ASCONF signaled change to be sent to the
191 	 * remote endpoint it should do the following:
192 	 * ...
193 	 * A2) a serial number should be assigned to the chunk. The serial
194 	 * number SHOULD be a monotonically increasing number. The serial
195 	 * numbers SHOULD be initialized at the start of the
196 	 * association to the same value as the initial TSN.
197 	 */
198 	asoc->addip_serial = asoc->c.initial_tsn;
199 	asoc->strreset_outseq = asoc->c.initial_tsn;
200 
201 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
202 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
203 
204 	/* Make an empty list of remote transport addresses.  */
205 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
206 
207 	/* RFC 2960 5.1 Normal Establishment of an Association
208 	 *
209 	 * After the reception of the first data chunk in an
210 	 * association the endpoint must immediately respond with a
211 	 * sack to acknowledge the data chunk.  Subsequent
212 	 * acknowledgements should be done as described in Section
213 	 * 6.2.
214 	 *
215 	 * [We implement this by telling a new association that it
216 	 * already received one packet.]
217 	 */
218 	asoc->peer.sack_needed = 1;
219 	asoc->peer.sack_generation = 1;
220 
221 	/* Create an input queue.  */
222 	sctp_inq_init(&asoc->base.inqueue);
223 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
224 
225 	/* Create an output queue.  */
226 	sctp_outq_init(asoc, &asoc->outqueue);
227 
228 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
229 		goto fail_init;
230 
231 	if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
232 			     0, gfp))
233 		goto fail_init;
234 
235 	/* Initialize default path MTU. */
236 	asoc->pathmtu = sp->pathmtu;
237 	sctp_assoc_update_frag_point(asoc);
238 
239 	/* Assume that peer would support both address types unless we are
240 	 * told otherwise.
241 	 */
242 	asoc->peer.ipv4_address = 1;
243 	if (asoc->base.sk->sk_family == PF_INET6)
244 		asoc->peer.ipv6_address = 1;
245 	INIT_LIST_HEAD(&asoc->asocs);
246 
247 	asoc->default_stream = sp->default_stream;
248 	asoc->default_ppid = sp->default_ppid;
249 	asoc->default_flags = sp->default_flags;
250 	asoc->default_context = sp->default_context;
251 	asoc->default_timetolive = sp->default_timetolive;
252 	asoc->default_rcv_context = sp->default_rcv_context;
253 
254 	/* AUTH related initializations */
255 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
256 	if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
257 		goto stream_free;
258 
259 	asoc->active_key_id = ep->active_key_id;
260 	asoc->strreset_enable = ep->strreset_enable;
261 
262 	/* Save the hmacs and chunks list into this association */
263 	if (ep->auth_hmacs_list)
264 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
265 			ntohs(ep->auth_hmacs_list->param_hdr.length));
266 	if (ep->auth_chunk_list)
267 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
268 			ntohs(ep->auth_chunk_list->param_hdr.length));
269 
270 	/* Get the AUTH random number for this association */
271 	p = (struct sctp_paramhdr *)asoc->c.auth_random;
272 	p->type = SCTP_PARAM_RANDOM;
273 	p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
274 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
275 
276 	return asoc;
277 
278 stream_free:
279 	sctp_stream_free(&asoc->stream);
280 fail_init:
281 	sock_put(asoc->base.sk);
282 	sctp_endpoint_put(asoc->ep);
283 	return NULL;
284 }
285 
286 /* Allocate and initialize a new association */
287 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
288 					      const struct sock *sk,
289 					      enum sctp_scope scope, gfp_t gfp)
290 {
291 	struct sctp_association *asoc;
292 
293 	asoc = kzalloc(sizeof(*asoc), gfp);
294 	if (!asoc)
295 		goto fail;
296 
297 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
298 		goto fail_init;
299 
300 	SCTP_DBG_OBJCNT_INC(assoc);
301 
302 	pr_debug("Created asoc %p\n", asoc);
303 
304 	return asoc;
305 
306 fail_init:
307 	kfree(asoc);
308 fail:
309 	return NULL;
310 }
311 
312 /* Free this association if possible.  There may still be users, so
313  * the actual deallocation may be delayed.
314  */
315 void sctp_association_free(struct sctp_association *asoc)
316 {
317 	struct sock *sk = asoc->base.sk;
318 	struct sctp_transport *transport;
319 	struct list_head *pos, *temp;
320 	int i;
321 
322 	/* Only real associations count against the endpoint, so
323 	 * don't bother for if this is a temporary association.
324 	 */
325 	if (!list_empty(&asoc->asocs)) {
326 		list_del(&asoc->asocs);
327 
328 		/* Decrement the backlog value for a TCP-style listening
329 		 * socket.
330 		 */
331 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
332 			sk_acceptq_removed(sk);
333 	}
334 
335 	/* Mark as dead, so other users can know this structure is
336 	 * going away.
337 	 */
338 	asoc->base.dead = true;
339 
340 	/* Dispose of any data lying around in the outqueue. */
341 	sctp_outq_free(&asoc->outqueue);
342 
343 	/* Dispose of any pending messages for the upper layer. */
344 	sctp_ulpq_free(&asoc->ulpq);
345 
346 	/* Dispose of any pending chunks on the inqueue. */
347 	sctp_inq_free(&asoc->base.inqueue);
348 
349 	sctp_tsnmap_free(&asoc->peer.tsn_map);
350 
351 	/* Free stream information. */
352 	sctp_stream_free(&asoc->stream);
353 
354 	if (asoc->strreset_chunk)
355 		sctp_chunk_free(asoc->strreset_chunk);
356 
357 	/* Clean up the bound address list. */
358 	sctp_bind_addr_free(&asoc->base.bind_addr);
359 
360 	/* Do we need to go through all of our timers and
361 	 * delete them?   To be safe we will try to delete all, but we
362 	 * should be able to go through and make a guess based
363 	 * on our state.
364 	 */
365 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
366 		if (del_timer(&asoc->timers[i]))
367 			sctp_association_put(asoc);
368 	}
369 
370 	/* Free peer's cached cookie. */
371 	kfree(asoc->peer.cookie);
372 	kfree(asoc->peer.peer_random);
373 	kfree(asoc->peer.peer_chunks);
374 	kfree(asoc->peer.peer_hmacs);
375 
376 	/* Release the transport structures. */
377 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
378 		transport = list_entry(pos, struct sctp_transport, transports);
379 		list_del_rcu(pos);
380 		sctp_unhash_transport(transport);
381 		sctp_transport_free(transport);
382 	}
383 
384 	asoc->peer.transport_count = 0;
385 
386 	sctp_asconf_queue_teardown(asoc);
387 
388 	/* Free pending address space being deleted */
389 	kfree(asoc->asconf_addr_del_pending);
390 
391 	/* AUTH - Free the endpoint shared keys */
392 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
393 
394 	/* AUTH - Free the association shared key */
395 	sctp_auth_key_put(asoc->asoc_shared_key);
396 
397 	sctp_association_put(asoc);
398 }
399 
400 /* Cleanup and free up an association. */
401 static void sctp_association_destroy(struct sctp_association *asoc)
402 {
403 	if (unlikely(!asoc->base.dead)) {
404 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
405 		return;
406 	}
407 
408 	sctp_endpoint_put(asoc->ep);
409 	sock_put(asoc->base.sk);
410 
411 	if (asoc->assoc_id != 0) {
412 		spin_lock_bh(&sctp_assocs_id_lock);
413 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
414 		spin_unlock_bh(&sctp_assocs_id_lock);
415 	}
416 
417 	WARN_ON(atomic_read(&asoc->rmem_alloc));
418 
419 	kfree_rcu(asoc, rcu);
420 	SCTP_DBG_OBJCNT_DEC(assoc);
421 }
422 
423 /* Change the primary destination address for the peer. */
424 void sctp_assoc_set_primary(struct sctp_association *asoc,
425 			    struct sctp_transport *transport)
426 {
427 	int changeover = 0;
428 
429 	/* it's a changeover only if we already have a primary path
430 	 * that we are changing
431 	 */
432 	if (asoc->peer.primary_path != NULL &&
433 	    asoc->peer.primary_path != transport)
434 		changeover = 1 ;
435 
436 	asoc->peer.primary_path = transport;
437 	sctp_ulpevent_notify_peer_addr_change(transport,
438 					      SCTP_ADDR_MADE_PRIM, 0);
439 
440 	/* Set a default msg_name for events. */
441 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
442 	       sizeof(union sctp_addr));
443 
444 	/* If the primary path is changing, assume that the
445 	 * user wants to use this new path.
446 	 */
447 	if ((transport->state == SCTP_ACTIVE) ||
448 	    (transport->state == SCTP_UNKNOWN))
449 		asoc->peer.active_path = transport;
450 
451 	/*
452 	 * SFR-CACC algorithm:
453 	 * Upon the receipt of a request to change the primary
454 	 * destination address, on the data structure for the new
455 	 * primary destination, the sender MUST do the following:
456 	 *
457 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
458 	 * to this destination address earlier. The sender MUST set
459 	 * CYCLING_CHANGEOVER to indicate that this switch is a
460 	 * double switch to the same destination address.
461 	 *
462 	 * Really, only bother is we have data queued or outstanding on
463 	 * the association.
464 	 */
465 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
466 		return;
467 
468 	if (transport->cacc.changeover_active)
469 		transport->cacc.cycling_changeover = changeover;
470 
471 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
472 	 * a changeover has occurred.
473 	 */
474 	transport->cacc.changeover_active = changeover;
475 
476 	/* 3) The sender MUST store the next TSN to be sent in
477 	 * next_tsn_at_change.
478 	 */
479 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
480 }
481 
482 /* Remove a transport from an association.  */
483 void sctp_assoc_rm_peer(struct sctp_association *asoc,
484 			struct sctp_transport *peer)
485 {
486 	struct sctp_transport *transport;
487 	struct list_head *pos;
488 	struct sctp_chunk *ch;
489 
490 	pr_debug("%s: association:%p addr:%pISpc\n",
491 		 __func__, asoc, &peer->ipaddr.sa);
492 
493 	/* If we are to remove the current retran_path, update it
494 	 * to the next peer before removing this peer from the list.
495 	 */
496 	if (asoc->peer.retran_path == peer)
497 		sctp_assoc_update_retran_path(asoc);
498 
499 	/* Remove this peer from the list. */
500 	list_del_rcu(&peer->transports);
501 	/* Remove this peer from the transport hashtable */
502 	sctp_unhash_transport(peer);
503 
504 	/* Get the first transport of asoc. */
505 	pos = asoc->peer.transport_addr_list.next;
506 	transport = list_entry(pos, struct sctp_transport, transports);
507 
508 	/* Update any entries that match the peer to be deleted. */
509 	if (asoc->peer.primary_path == peer)
510 		sctp_assoc_set_primary(asoc, transport);
511 	if (asoc->peer.active_path == peer)
512 		asoc->peer.active_path = transport;
513 	if (asoc->peer.retran_path == peer)
514 		asoc->peer.retran_path = transport;
515 	if (asoc->peer.last_data_from == peer)
516 		asoc->peer.last_data_from = transport;
517 
518 	if (asoc->strreset_chunk &&
519 	    asoc->strreset_chunk->transport == peer) {
520 		asoc->strreset_chunk->transport = transport;
521 		sctp_transport_reset_reconf_timer(transport);
522 	}
523 
524 	/* If we remove the transport an INIT was last sent to, set it to
525 	 * NULL. Combined with the update of the retran path above, this
526 	 * will cause the next INIT to be sent to the next available
527 	 * transport, maintaining the cycle.
528 	 */
529 	if (asoc->init_last_sent_to == peer)
530 		asoc->init_last_sent_to = NULL;
531 
532 	/* If we remove the transport an SHUTDOWN was last sent to, set it
533 	 * to NULL. Combined with the update of the retran path above, this
534 	 * will cause the next SHUTDOWN to be sent to the next available
535 	 * transport, maintaining the cycle.
536 	 */
537 	if (asoc->shutdown_last_sent_to == peer)
538 		asoc->shutdown_last_sent_to = NULL;
539 
540 	/* If we remove the transport an ASCONF was last sent to, set it to
541 	 * NULL.
542 	 */
543 	if (asoc->addip_last_asconf &&
544 	    asoc->addip_last_asconf->transport == peer)
545 		asoc->addip_last_asconf->transport = NULL;
546 
547 	/* If we have something on the transmitted list, we have to
548 	 * save it off.  The best place is the active path.
549 	 */
550 	if (!list_empty(&peer->transmitted)) {
551 		struct sctp_transport *active = asoc->peer.active_path;
552 
553 		/* Reset the transport of each chunk on this list */
554 		list_for_each_entry(ch, &peer->transmitted,
555 					transmitted_list) {
556 			ch->transport = NULL;
557 			ch->rtt_in_progress = 0;
558 		}
559 
560 		list_splice_tail_init(&peer->transmitted,
561 					&active->transmitted);
562 
563 		/* Start a T3 timer here in case it wasn't running so
564 		 * that these migrated packets have a chance to get
565 		 * retransmitted.
566 		 */
567 		if (!timer_pending(&active->T3_rtx_timer))
568 			if (!mod_timer(&active->T3_rtx_timer,
569 					jiffies + active->rto))
570 				sctp_transport_hold(active);
571 	}
572 
573 	list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
574 		if (ch->transport == peer)
575 			ch->transport = NULL;
576 
577 	asoc->peer.transport_count--;
578 
579 	sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_REMOVED, 0);
580 	sctp_transport_free(peer);
581 }
582 
583 /* Add a transport address to an association.  */
584 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
585 					   const union sctp_addr *addr,
586 					   const gfp_t gfp,
587 					   const int peer_state)
588 {
589 	struct sctp_transport *peer;
590 	struct sctp_sock *sp;
591 	unsigned short port;
592 
593 	sp = sctp_sk(asoc->base.sk);
594 
595 	/* AF_INET and AF_INET6 share common port field. */
596 	port = ntohs(addr->v4.sin_port);
597 
598 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
599 		 asoc, &addr->sa, peer_state);
600 
601 	/* Set the port if it has not been set yet.  */
602 	if (0 == asoc->peer.port)
603 		asoc->peer.port = port;
604 
605 	/* Check to see if this is a duplicate. */
606 	peer = sctp_assoc_lookup_paddr(asoc, addr);
607 	if (peer) {
608 		/* An UNKNOWN state is only set on transports added by
609 		 * user in sctp_connectx() call.  Such transports should be
610 		 * considered CONFIRMED per RFC 4960, Section 5.4.
611 		 */
612 		if (peer->state == SCTP_UNKNOWN) {
613 			peer->state = SCTP_ACTIVE;
614 		}
615 		return peer;
616 	}
617 
618 	peer = sctp_transport_new(asoc->base.net, addr, gfp);
619 	if (!peer)
620 		return NULL;
621 
622 	sctp_transport_set_owner(peer, asoc);
623 
624 	/* Initialize the peer's heartbeat interval based on the
625 	 * association configured value.
626 	 */
627 	peer->hbinterval = asoc->hbinterval;
628 
629 	peer->encap_port = asoc->encap_port;
630 
631 	/* Set the path max_retrans.  */
632 	peer->pathmaxrxt = asoc->pathmaxrxt;
633 
634 	/* And the partial failure retrans threshold */
635 	peer->pf_retrans = asoc->pf_retrans;
636 	/* And the primary path switchover retrans threshold */
637 	peer->ps_retrans = asoc->ps_retrans;
638 
639 	/* Initialize the peer's SACK delay timeout based on the
640 	 * association configured value.
641 	 */
642 	peer->sackdelay = asoc->sackdelay;
643 	peer->sackfreq = asoc->sackfreq;
644 
645 	if (addr->sa.sa_family == AF_INET6) {
646 		__be32 info = addr->v6.sin6_flowinfo;
647 
648 		if (info) {
649 			peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
650 			peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
651 		} else {
652 			peer->flowlabel = asoc->flowlabel;
653 		}
654 	}
655 	peer->dscp = asoc->dscp;
656 
657 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
658 	 * based on association setting.
659 	 */
660 	peer->param_flags = asoc->param_flags;
661 
662 	/* Initialize the pmtu of the transport. */
663 	sctp_transport_route(peer, NULL, sp);
664 
665 	/* If this is the first transport addr on this association,
666 	 * initialize the association PMTU to the peer's PMTU.
667 	 * If not and the current association PMTU is higher than the new
668 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
669 	 */
670 	sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
671 				  min_t(int, peer->pathmtu, asoc->pathmtu) :
672 				  peer->pathmtu);
673 
674 	peer->pmtu_pending = 0;
675 
676 	/* The asoc->peer.port might not be meaningful yet, but
677 	 * initialize the packet structure anyway.
678 	 */
679 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
680 			 asoc->peer.port);
681 
682 	/* 7.2.1 Slow-Start
683 	 *
684 	 * o The initial cwnd before DATA transmission or after a sufficiently
685 	 *   long idle period MUST be set to
686 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
687 	 *
688 	 * o The initial value of ssthresh MAY be arbitrarily high
689 	 *   (for example, implementations MAY use the size of the
690 	 *   receiver advertised window).
691 	 */
692 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
693 
694 	/* At this point, we may not have the receiver's advertised window,
695 	 * so initialize ssthresh to the default value and it will be set
696 	 * later when we process the INIT.
697 	 */
698 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
699 
700 	peer->partial_bytes_acked = 0;
701 	peer->flight_size = 0;
702 	peer->burst_limited = 0;
703 
704 	/* Set the transport's RTO.initial value */
705 	peer->rto = asoc->rto_initial;
706 	sctp_max_rto(asoc, peer);
707 
708 	/* Set the peer's active state. */
709 	peer->state = peer_state;
710 
711 	/* Add this peer into the transport hashtable */
712 	if (sctp_hash_transport(peer)) {
713 		sctp_transport_free(peer);
714 		return NULL;
715 	}
716 
717 	/* Attach the remote transport to our asoc.  */
718 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
719 	asoc->peer.transport_count++;
720 
721 	sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_ADDED, 0);
722 
723 	/* If we do not yet have a primary path, set one.  */
724 	if (!asoc->peer.primary_path) {
725 		sctp_assoc_set_primary(asoc, peer);
726 		asoc->peer.retran_path = peer;
727 	}
728 
729 	if (asoc->peer.active_path == asoc->peer.retran_path &&
730 	    peer->state != SCTP_UNCONFIRMED) {
731 		asoc->peer.retran_path = peer;
732 	}
733 
734 	return peer;
735 }
736 
737 /* Delete a transport address from an association.  */
738 void sctp_assoc_del_peer(struct sctp_association *asoc,
739 			 const union sctp_addr *addr)
740 {
741 	struct list_head	*pos;
742 	struct list_head	*temp;
743 	struct sctp_transport	*transport;
744 
745 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
746 		transport = list_entry(pos, struct sctp_transport, transports);
747 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
748 			/* Do book keeping for removing the peer and free it. */
749 			sctp_assoc_rm_peer(asoc, transport);
750 			break;
751 		}
752 	}
753 }
754 
755 /* Lookup a transport by address. */
756 struct sctp_transport *sctp_assoc_lookup_paddr(
757 					const struct sctp_association *asoc,
758 					const union sctp_addr *address)
759 {
760 	struct sctp_transport *t;
761 
762 	/* Cycle through all transports searching for a peer address. */
763 
764 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
765 			transports) {
766 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
767 			return t;
768 	}
769 
770 	return NULL;
771 }
772 
773 /* Remove all transports except a give one */
774 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
775 				     struct sctp_transport *primary)
776 {
777 	struct sctp_transport	*temp;
778 	struct sctp_transport	*t;
779 
780 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
781 				 transports) {
782 		/* if the current transport is not the primary one, delete it */
783 		if (t != primary)
784 			sctp_assoc_rm_peer(asoc, t);
785 	}
786 }
787 
788 /* Engage in transport control operations.
789  * Mark the transport up or down and send a notification to the user.
790  * Select and update the new active and retran paths.
791  */
792 void sctp_assoc_control_transport(struct sctp_association *asoc,
793 				  struct sctp_transport *transport,
794 				  enum sctp_transport_cmd command,
795 				  sctp_sn_error_t error)
796 {
797 	int spc_state = SCTP_ADDR_AVAILABLE;
798 	bool ulp_notify = true;
799 
800 	/* Record the transition on the transport.  */
801 	switch (command) {
802 	case SCTP_TRANSPORT_UP:
803 		/* If we are moving from UNCONFIRMED state due
804 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
805 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
806 		 */
807 		if (transport->state == SCTP_PF &&
808 		    asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
809 			ulp_notify = false;
810 		else if (transport->state == SCTP_UNCONFIRMED &&
811 			 error == SCTP_HEARTBEAT_SUCCESS)
812 			spc_state = SCTP_ADDR_CONFIRMED;
813 
814 		transport->state = SCTP_ACTIVE;
815 		break;
816 
817 	case SCTP_TRANSPORT_DOWN:
818 		/* If the transport was never confirmed, do not transition it
819 		 * to inactive state.  Also, release the cached route since
820 		 * there may be a better route next time.
821 		 */
822 		if (transport->state != SCTP_UNCONFIRMED) {
823 			transport->state = SCTP_INACTIVE;
824 			spc_state = SCTP_ADDR_UNREACHABLE;
825 		} else {
826 			sctp_transport_dst_release(transport);
827 			ulp_notify = false;
828 		}
829 		break;
830 
831 	case SCTP_TRANSPORT_PF:
832 		transport->state = SCTP_PF;
833 		if (asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
834 			ulp_notify = false;
835 		else
836 			spc_state = SCTP_ADDR_POTENTIALLY_FAILED;
837 		break;
838 
839 	default:
840 		return;
841 	}
842 
843 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
844 	 * to the user.
845 	 */
846 	if (ulp_notify)
847 		sctp_ulpevent_notify_peer_addr_change(transport,
848 						      spc_state, error);
849 
850 	/* Select new active and retran paths. */
851 	sctp_select_active_and_retran_path(asoc);
852 }
853 
854 /* Hold a reference to an association. */
855 void sctp_association_hold(struct sctp_association *asoc)
856 {
857 	refcount_inc(&asoc->base.refcnt);
858 }
859 
860 /* Release a reference to an association and cleanup
861  * if there are no more references.
862  */
863 void sctp_association_put(struct sctp_association *asoc)
864 {
865 	if (refcount_dec_and_test(&asoc->base.refcnt))
866 		sctp_association_destroy(asoc);
867 }
868 
869 /* Allocate the next TSN, Transmission Sequence Number, for the given
870  * association.
871  */
872 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
873 {
874 	/* From Section 1.6 Serial Number Arithmetic:
875 	 * Transmission Sequence Numbers wrap around when they reach
876 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
877 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
878 	 */
879 	__u32 retval = asoc->next_tsn;
880 	asoc->next_tsn++;
881 	asoc->unack_data++;
882 
883 	return retval;
884 }
885 
886 /* Compare two addresses to see if they match.  Wildcard addresses
887  * only match themselves.
888  */
889 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
890 			const union sctp_addr *ss2)
891 {
892 	struct sctp_af *af;
893 
894 	af = sctp_get_af_specific(ss1->sa.sa_family);
895 	if (unlikely(!af))
896 		return 0;
897 
898 	return af->cmp_addr(ss1, ss2);
899 }
900 
901 /* Return an ecne chunk to get prepended to a packet.
902  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
903  * No we don't, but we could/should.
904  */
905 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
906 {
907 	if (!asoc->need_ecne)
908 		return NULL;
909 
910 	/* Send ECNE if needed.
911 	 * Not being able to allocate a chunk here is not deadly.
912 	 */
913 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
914 }
915 
916 /*
917  * Find which transport this TSN was sent on.
918  */
919 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
920 					     __u32 tsn)
921 {
922 	struct sctp_transport *active;
923 	struct sctp_transport *match;
924 	struct sctp_transport *transport;
925 	struct sctp_chunk *chunk;
926 	__be32 key = htonl(tsn);
927 
928 	match = NULL;
929 
930 	/*
931 	 * FIXME: In general, find a more efficient data structure for
932 	 * searching.
933 	 */
934 
935 	/*
936 	 * The general strategy is to search each transport's transmitted
937 	 * list.   Return which transport this TSN lives on.
938 	 *
939 	 * Let's be hopeful and check the active_path first.
940 	 * Another optimization would be to know if there is only one
941 	 * outbound path and not have to look for the TSN at all.
942 	 *
943 	 */
944 
945 	active = asoc->peer.active_path;
946 
947 	list_for_each_entry(chunk, &active->transmitted,
948 			transmitted_list) {
949 
950 		if (key == chunk->subh.data_hdr->tsn) {
951 			match = active;
952 			goto out;
953 		}
954 	}
955 
956 	/* If not found, go search all the other transports. */
957 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
958 			transports) {
959 
960 		if (transport == active)
961 			continue;
962 		list_for_each_entry(chunk, &transport->transmitted,
963 				transmitted_list) {
964 			if (key == chunk->subh.data_hdr->tsn) {
965 				match = transport;
966 				goto out;
967 			}
968 		}
969 	}
970 out:
971 	return match;
972 }
973 
974 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
975 static void sctp_assoc_bh_rcv(struct work_struct *work)
976 {
977 	struct sctp_association *asoc =
978 		container_of(work, struct sctp_association,
979 			     base.inqueue.immediate);
980 	struct net *net = asoc->base.net;
981 	union sctp_subtype subtype;
982 	struct sctp_endpoint *ep;
983 	struct sctp_chunk *chunk;
984 	struct sctp_inq *inqueue;
985 	int first_time = 1;	/* is this the first time through the loop */
986 	int error = 0;
987 	int state;
988 
989 	/* The association should be held so we should be safe. */
990 	ep = asoc->ep;
991 
992 	inqueue = &asoc->base.inqueue;
993 	sctp_association_hold(asoc);
994 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
995 		state = asoc->state;
996 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
997 
998 		/* If the first chunk in the packet is AUTH, do special
999 		 * processing specified in Section 6.3 of SCTP-AUTH spec
1000 		 */
1001 		if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1002 			struct sctp_chunkhdr *next_hdr;
1003 
1004 			next_hdr = sctp_inq_peek(inqueue);
1005 			if (!next_hdr)
1006 				goto normal;
1007 
1008 			/* If the next chunk is COOKIE-ECHO, skip the AUTH
1009 			 * chunk while saving a pointer to it so we can do
1010 			 * Authentication later (during cookie-echo
1011 			 * processing).
1012 			 */
1013 			if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1014 				chunk->auth_chunk = skb_clone(chunk->skb,
1015 							      GFP_ATOMIC);
1016 				chunk->auth = 1;
1017 				continue;
1018 			}
1019 		}
1020 
1021 normal:
1022 		/* SCTP-AUTH, Section 6.3:
1023 		 *    The receiver has a list of chunk types which it expects
1024 		 *    to be received only after an AUTH-chunk.  This list has
1025 		 *    been sent to the peer during the association setup.  It
1026 		 *    MUST silently discard these chunks if they are not placed
1027 		 *    after an AUTH chunk in the packet.
1028 		 */
1029 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1030 			continue;
1031 
1032 		/* Remember where the last DATA chunk came from so we
1033 		 * know where to send the SACK.
1034 		 */
1035 		if (sctp_chunk_is_data(chunk))
1036 			asoc->peer.last_data_from = chunk->transport;
1037 		else {
1038 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1039 			asoc->stats.ictrlchunks++;
1040 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1041 				asoc->stats.isacks++;
1042 		}
1043 
1044 		if (chunk->transport)
1045 			chunk->transport->last_time_heard = ktime_get();
1046 
1047 		/* Run through the state machine. */
1048 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1049 				   state, ep, asoc, chunk, GFP_ATOMIC);
1050 
1051 		/* Check to see if the association is freed in response to
1052 		 * the incoming chunk.  If so, get out of the while loop.
1053 		 */
1054 		if (asoc->base.dead)
1055 			break;
1056 
1057 		/* If there is an error on chunk, discard this packet. */
1058 		if (error && chunk)
1059 			chunk->pdiscard = 1;
1060 
1061 		if (first_time)
1062 			first_time = 0;
1063 	}
1064 	sctp_association_put(asoc);
1065 }
1066 
1067 /* This routine moves an association from its old sk to a new sk.  */
1068 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1069 {
1070 	struct sctp_sock *newsp = sctp_sk(newsk);
1071 	struct sock *oldsk = assoc->base.sk;
1072 
1073 	/* Delete the association from the old endpoint's list of
1074 	 * associations.
1075 	 */
1076 	list_del_init(&assoc->asocs);
1077 
1078 	/* Decrement the backlog value for a TCP-style socket. */
1079 	if (sctp_style(oldsk, TCP))
1080 		sk_acceptq_removed(oldsk);
1081 
1082 	/* Release references to the old endpoint and the sock.  */
1083 	sctp_endpoint_put(assoc->ep);
1084 	sock_put(assoc->base.sk);
1085 
1086 	/* Get a reference to the new endpoint.  */
1087 	assoc->ep = newsp->ep;
1088 	sctp_endpoint_hold(assoc->ep);
1089 
1090 	/* Get a reference to the new sock.  */
1091 	assoc->base.sk = newsk;
1092 	sock_hold(assoc->base.sk);
1093 
1094 	/* Add the association to the new endpoint's list of associations.  */
1095 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1096 }
1097 
1098 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1099 int sctp_assoc_update(struct sctp_association *asoc,
1100 		      struct sctp_association *new)
1101 {
1102 	struct sctp_transport *trans;
1103 	struct list_head *pos, *temp;
1104 
1105 	/* Copy in new parameters of peer. */
1106 	asoc->c = new->c;
1107 	asoc->peer.rwnd = new->peer.rwnd;
1108 	asoc->peer.sack_needed = new->peer.sack_needed;
1109 	asoc->peer.auth_capable = new->peer.auth_capable;
1110 	asoc->peer.i = new->peer.i;
1111 
1112 	if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1113 			      asoc->peer.i.initial_tsn, GFP_ATOMIC))
1114 		return -ENOMEM;
1115 
1116 	/* Remove any peer addresses not present in the new association. */
1117 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1118 		trans = list_entry(pos, struct sctp_transport, transports);
1119 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1120 			sctp_assoc_rm_peer(asoc, trans);
1121 			continue;
1122 		}
1123 
1124 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1125 			sctp_transport_reset(trans);
1126 	}
1127 
1128 	/* If the case is A (association restart), use
1129 	 * initial_tsn as next_tsn. If the case is B, use
1130 	 * current next_tsn in case data sent to peer
1131 	 * has been discarded and needs retransmission.
1132 	 */
1133 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1134 		asoc->next_tsn = new->next_tsn;
1135 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1136 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1137 
1138 		/* Reinitialize SSN for both local streams
1139 		 * and peer's streams.
1140 		 */
1141 		sctp_stream_clear(&asoc->stream);
1142 
1143 		/* Flush the ULP reassembly and ordered queue.
1144 		 * Any data there will now be stale and will
1145 		 * cause problems.
1146 		 */
1147 		sctp_ulpq_flush(&asoc->ulpq);
1148 
1149 		/* reset the overall association error count so
1150 		 * that the restarted association doesn't get torn
1151 		 * down on the next retransmission timer.
1152 		 */
1153 		asoc->overall_error_count = 0;
1154 
1155 	} else {
1156 		/* Add any peer addresses from the new association. */
1157 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1158 				    transports)
1159 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1160 			    !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1161 						 GFP_ATOMIC, trans->state))
1162 				return -ENOMEM;
1163 
1164 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1165 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1166 
1167 		if (sctp_state(asoc, COOKIE_WAIT))
1168 			sctp_stream_update(&asoc->stream, &new->stream);
1169 
1170 		/* get a new assoc id if we don't have one yet. */
1171 		if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1172 			return -ENOMEM;
1173 	}
1174 
1175 	/* SCTP-AUTH: Save the peer parameters from the new associations
1176 	 * and also move the association shared keys over
1177 	 */
1178 	kfree(asoc->peer.peer_random);
1179 	asoc->peer.peer_random = new->peer.peer_random;
1180 	new->peer.peer_random = NULL;
1181 
1182 	kfree(asoc->peer.peer_chunks);
1183 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1184 	new->peer.peer_chunks = NULL;
1185 
1186 	kfree(asoc->peer.peer_hmacs);
1187 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1188 	new->peer.peer_hmacs = NULL;
1189 
1190 	return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1191 }
1192 
1193 /* Update the retran path for sending a retransmitted packet.
1194  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1195  *
1196  *   When there is outbound data to send and the primary path
1197  *   becomes inactive (e.g., due to failures), or where the
1198  *   SCTP user explicitly requests to send data to an
1199  *   inactive destination transport address, before reporting
1200  *   an error to its ULP, the SCTP endpoint should try to send
1201  *   the data to an alternate active destination transport
1202  *   address if one exists.
1203  *
1204  *   When retransmitting data that timed out, if the endpoint
1205  *   is multihomed, it should consider each source-destination
1206  *   address pair in its retransmission selection policy.
1207  *   When retransmitting timed-out data, the endpoint should
1208  *   attempt to pick the most divergent source-destination
1209  *   pair from the original source-destination pair to which
1210  *   the packet was transmitted.
1211  *
1212  *   Note: Rules for picking the most divergent source-destination
1213  *   pair are an implementation decision and are not specified
1214  *   within this document.
1215  *
1216  * Our basic strategy is to round-robin transports in priorities
1217  * according to sctp_trans_score() e.g., if no such
1218  * transport with state SCTP_ACTIVE exists, round-robin through
1219  * SCTP_UNKNOWN, etc. You get the picture.
1220  */
1221 static u8 sctp_trans_score(const struct sctp_transport *trans)
1222 {
1223 	switch (trans->state) {
1224 	case SCTP_ACTIVE:
1225 		return 3;	/* best case */
1226 	case SCTP_UNKNOWN:
1227 		return 2;
1228 	case SCTP_PF:
1229 		return 1;
1230 	default: /* case SCTP_INACTIVE */
1231 		return 0;	/* worst case */
1232 	}
1233 }
1234 
1235 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1236 						   struct sctp_transport *trans2)
1237 {
1238 	if (trans1->error_count > trans2->error_count) {
1239 		return trans2;
1240 	} else if (trans1->error_count == trans2->error_count &&
1241 		   ktime_after(trans2->last_time_heard,
1242 			       trans1->last_time_heard)) {
1243 		return trans2;
1244 	} else {
1245 		return trans1;
1246 	}
1247 }
1248 
1249 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1250 						    struct sctp_transport *best)
1251 {
1252 	u8 score_curr, score_best;
1253 
1254 	if (best == NULL || curr == best)
1255 		return curr;
1256 
1257 	score_curr = sctp_trans_score(curr);
1258 	score_best = sctp_trans_score(best);
1259 
1260 	/* First, try a score-based selection if both transport states
1261 	 * differ. If we're in a tie, lets try to make a more clever
1262 	 * decision here based on error counts and last time heard.
1263 	 */
1264 	if (score_curr > score_best)
1265 		return curr;
1266 	else if (score_curr == score_best)
1267 		return sctp_trans_elect_tie(best, curr);
1268 	else
1269 		return best;
1270 }
1271 
1272 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1273 {
1274 	struct sctp_transport *trans = asoc->peer.retran_path;
1275 	struct sctp_transport *trans_next = NULL;
1276 
1277 	/* We're done as we only have the one and only path. */
1278 	if (asoc->peer.transport_count == 1)
1279 		return;
1280 	/* If active_path and retran_path are the same and active,
1281 	 * then this is the only active path. Use it.
1282 	 */
1283 	if (asoc->peer.active_path == asoc->peer.retran_path &&
1284 	    asoc->peer.active_path->state == SCTP_ACTIVE)
1285 		return;
1286 
1287 	/* Iterate from retran_path's successor back to retran_path. */
1288 	for (trans = list_next_entry(trans, transports); 1;
1289 	     trans = list_next_entry(trans, transports)) {
1290 		/* Manually skip the head element. */
1291 		if (&trans->transports == &asoc->peer.transport_addr_list)
1292 			continue;
1293 		if (trans->state == SCTP_UNCONFIRMED)
1294 			continue;
1295 		trans_next = sctp_trans_elect_best(trans, trans_next);
1296 		/* Active is good enough for immediate return. */
1297 		if (trans_next->state == SCTP_ACTIVE)
1298 			break;
1299 		/* We've reached the end, time to update path. */
1300 		if (trans == asoc->peer.retran_path)
1301 			break;
1302 	}
1303 
1304 	asoc->peer.retran_path = trans_next;
1305 
1306 	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1307 		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1308 }
1309 
1310 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1311 {
1312 	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1313 	struct sctp_transport *trans_pf = NULL;
1314 
1315 	/* Look for the two most recently used active transports. */
1316 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1317 			    transports) {
1318 		/* Skip uninteresting transports. */
1319 		if (trans->state == SCTP_INACTIVE ||
1320 		    trans->state == SCTP_UNCONFIRMED)
1321 			continue;
1322 		/* Keep track of the best PF transport from our
1323 		 * list in case we don't find an active one.
1324 		 */
1325 		if (trans->state == SCTP_PF) {
1326 			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1327 			continue;
1328 		}
1329 		/* For active transports, pick the most recent ones. */
1330 		if (trans_pri == NULL ||
1331 		    ktime_after(trans->last_time_heard,
1332 				trans_pri->last_time_heard)) {
1333 			trans_sec = trans_pri;
1334 			trans_pri = trans;
1335 		} else if (trans_sec == NULL ||
1336 			   ktime_after(trans->last_time_heard,
1337 				       trans_sec->last_time_heard)) {
1338 			trans_sec = trans;
1339 		}
1340 	}
1341 
1342 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1343 	 *
1344 	 * By default, an endpoint should always transmit to the primary
1345 	 * path, unless the SCTP user explicitly specifies the
1346 	 * destination transport address (and possibly source transport
1347 	 * address) to use. [If the primary is active but not most recent,
1348 	 * bump the most recently used transport.]
1349 	 */
1350 	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1351 	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1352 	     asoc->peer.primary_path != trans_pri) {
1353 		trans_sec = trans_pri;
1354 		trans_pri = asoc->peer.primary_path;
1355 	}
1356 
1357 	/* We did not find anything useful for a possible retransmission
1358 	 * path; either primary path that we found is the same as
1359 	 * the current one, or we didn't generally find an active one.
1360 	 */
1361 	if (trans_sec == NULL)
1362 		trans_sec = trans_pri;
1363 
1364 	/* If we failed to find a usable transport, just camp on the
1365 	 * active or pick a PF iff it's the better choice.
1366 	 */
1367 	if (trans_pri == NULL) {
1368 		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1369 		trans_sec = trans_pri;
1370 	}
1371 
1372 	/* Set the active and retran transports. */
1373 	asoc->peer.active_path = trans_pri;
1374 	asoc->peer.retran_path = trans_sec;
1375 }
1376 
1377 struct sctp_transport *
1378 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1379 				  struct sctp_transport *last_sent_to)
1380 {
1381 	/* If this is the first time packet is sent, use the active path,
1382 	 * else use the retran path. If the last packet was sent over the
1383 	 * retran path, update the retran path and use it.
1384 	 */
1385 	if (last_sent_to == NULL) {
1386 		return asoc->peer.active_path;
1387 	} else {
1388 		if (last_sent_to == asoc->peer.retran_path)
1389 			sctp_assoc_update_retran_path(asoc);
1390 
1391 		return asoc->peer.retran_path;
1392 	}
1393 }
1394 
1395 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1396 {
1397 	int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1398 				    sctp_datachk_len(&asoc->stream));
1399 
1400 	if (asoc->user_frag)
1401 		frag = min_t(int, frag, asoc->user_frag);
1402 
1403 	frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1404 				sctp_datachk_len(&asoc->stream));
1405 
1406 	asoc->frag_point = SCTP_TRUNC4(frag);
1407 }
1408 
1409 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1410 {
1411 	if (asoc->pathmtu != pmtu) {
1412 		asoc->pathmtu = pmtu;
1413 		sctp_assoc_update_frag_point(asoc);
1414 	}
1415 
1416 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1417 		 asoc->pathmtu, asoc->frag_point);
1418 }
1419 
1420 /* Update the association's pmtu and frag_point by going through all the
1421  * transports. This routine is called when a transport's PMTU has changed.
1422  */
1423 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1424 {
1425 	struct sctp_transport *t;
1426 	__u32 pmtu = 0;
1427 
1428 	if (!asoc)
1429 		return;
1430 
1431 	/* Get the lowest pmtu of all the transports. */
1432 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1433 		if (t->pmtu_pending && t->dst) {
1434 			sctp_transport_update_pmtu(t,
1435 						   atomic_read(&t->mtu_info));
1436 			t->pmtu_pending = 0;
1437 		}
1438 		if (!pmtu || (t->pathmtu < pmtu))
1439 			pmtu = t->pathmtu;
1440 	}
1441 
1442 	sctp_assoc_set_pmtu(asoc, pmtu);
1443 }
1444 
1445 /* Should we send a SACK to update our peer? */
1446 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1447 {
1448 	struct net *net = asoc->base.net;
1449 
1450 	switch (asoc->state) {
1451 	case SCTP_STATE_ESTABLISHED:
1452 	case SCTP_STATE_SHUTDOWN_PENDING:
1453 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1454 	case SCTP_STATE_SHUTDOWN_SENT:
1455 		if ((asoc->rwnd > asoc->a_rwnd) &&
1456 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1457 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1458 			   asoc->pathmtu)))
1459 			return true;
1460 		break;
1461 	default:
1462 		break;
1463 	}
1464 	return false;
1465 }
1466 
1467 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1468 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1469 {
1470 	struct sctp_chunk *sack;
1471 	struct timer_list *timer;
1472 
1473 	if (asoc->rwnd_over) {
1474 		if (asoc->rwnd_over >= len) {
1475 			asoc->rwnd_over -= len;
1476 		} else {
1477 			asoc->rwnd += (len - asoc->rwnd_over);
1478 			asoc->rwnd_over = 0;
1479 		}
1480 	} else {
1481 		asoc->rwnd += len;
1482 	}
1483 
1484 	/* If we had window pressure, start recovering it
1485 	 * once our rwnd had reached the accumulated pressure
1486 	 * threshold.  The idea is to recover slowly, but up
1487 	 * to the initial advertised window.
1488 	 */
1489 	if (asoc->rwnd_press) {
1490 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1491 		asoc->rwnd += change;
1492 		asoc->rwnd_press -= change;
1493 	}
1494 
1495 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1496 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1497 		 asoc->a_rwnd);
1498 
1499 	/* Send a window update SACK if the rwnd has increased by at least the
1500 	 * minimum of the association's PMTU and half of the receive buffer.
1501 	 * The algorithm used is similar to the one described in
1502 	 * Section 4.2.3.3 of RFC 1122.
1503 	 */
1504 	if (sctp_peer_needs_update(asoc)) {
1505 		asoc->a_rwnd = asoc->rwnd;
1506 
1507 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1508 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1509 			 asoc->a_rwnd);
1510 
1511 		sack = sctp_make_sack(asoc);
1512 		if (!sack)
1513 			return;
1514 
1515 		asoc->peer.sack_needed = 0;
1516 
1517 		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1518 
1519 		/* Stop the SACK timer.  */
1520 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1521 		if (del_timer(timer))
1522 			sctp_association_put(asoc);
1523 	}
1524 }
1525 
1526 /* Decrease asoc's rwnd by len. */
1527 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1528 {
1529 	int rx_count;
1530 	int over = 0;
1531 
1532 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1533 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1534 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1535 			 asoc->rwnd, asoc->rwnd_over);
1536 
1537 	if (asoc->ep->rcvbuf_policy)
1538 		rx_count = atomic_read(&asoc->rmem_alloc);
1539 	else
1540 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1541 
1542 	/* If we've reached or overflowed our receive buffer, announce
1543 	 * a 0 rwnd if rwnd would still be positive.  Store the
1544 	 * potential pressure overflow so that the window can be restored
1545 	 * back to original value.
1546 	 */
1547 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1548 		over = 1;
1549 
1550 	if (asoc->rwnd >= len) {
1551 		asoc->rwnd -= len;
1552 		if (over) {
1553 			asoc->rwnd_press += asoc->rwnd;
1554 			asoc->rwnd = 0;
1555 		}
1556 	} else {
1557 		asoc->rwnd_over += len - asoc->rwnd;
1558 		asoc->rwnd = 0;
1559 	}
1560 
1561 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1562 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1563 		 asoc->rwnd_press);
1564 }
1565 
1566 /* Build the bind address list for the association based on info from the
1567  * local endpoint and the remote peer.
1568  */
1569 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1570 				     enum sctp_scope scope, gfp_t gfp)
1571 {
1572 	struct sock *sk = asoc->base.sk;
1573 	int flags;
1574 
1575 	/* Use scoping rules to determine the subset of addresses from
1576 	 * the endpoint.
1577 	 */
1578 	flags = (PF_INET6 == sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1579 	if (!inet_v6_ipv6only(sk))
1580 		flags |= SCTP_ADDR4_ALLOWED;
1581 	if (asoc->peer.ipv4_address)
1582 		flags |= SCTP_ADDR4_PEERSUPP;
1583 	if (asoc->peer.ipv6_address)
1584 		flags |= SCTP_ADDR6_PEERSUPP;
1585 
1586 	return sctp_bind_addr_copy(asoc->base.net,
1587 				   &asoc->base.bind_addr,
1588 				   &asoc->ep->base.bind_addr,
1589 				   scope, gfp, flags);
1590 }
1591 
1592 /* Build the association's bind address list from the cookie.  */
1593 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1594 					 struct sctp_cookie *cookie,
1595 					 gfp_t gfp)
1596 {
1597 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1598 	int var_size3 = cookie->raw_addr_list_len;
1599 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1600 
1601 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1602 				      asoc->ep->base.bind_addr.port, gfp);
1603 }
1604 
1605 /* Lookup laddr in the bind address list of an association. */
1606 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1607 			    const union sctp_addr *laddr)
1608 {
1609 	int found = 0;
1610 
1611 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1612 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1613 				 sctp_sk(asoc->base.sk)))
1614 		found = 1;
1615 
1616 	return found;
1617 }
1618 
1619 /* Set an association id for a given association */
1620 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1621 {
1622 	bool preload = gfpflags_allow_blocking(gfp);
1623 	int ret;
1624 
1625 	/* If the id is already assigned, keep it. */
1626 	if (asoc->assoc_id)
1627 		return 0;
1628 
1629 	if (preload)
1630 		idr_preload(gfp);
1631 	spin_lock_bh(&sctp_assocs_id_lock);
1632 	/* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1633 	 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1634 	 */
1635 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1636 			       GFP_NOWAIT);
1637 	spin_unlock_bh(&sctp_assocs_id_lock);
1638 	if (preload)
1639 		idr_preload_end();
1640 	if (ret < 0)
1641 		return ret;
1642 
1643 	asoc->assoc_id = (sctp_assoc_t)ret;
1644 	return 0;
1645 }
1646 
1647 /* Free the ASCONF queue */
1648 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1649 {
1650 	struct sctp_chunk *asconf;
1651 	struct sctp_chunk *tmp;
1652 
1653 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1654 		list_del_init(&asconf->list);
1655 		sctp_chunk_free(asconf);
1656 	}
1657 }
1658 
1659 /* Free asconf_ack cache */
1660 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1661 {
1662 	struct sctp_chunk *ack;
1663 	struct sctp_chunk *tmp;
1664 
1665 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1666 				transmitted_list) {
1667 		list_del_init(&ack->transmitted_list);
1668 		sctp_chunk_free(ack);
1669 	}
1670 }
1671 
1672 /* Clean up the ASCONF_ACK queue */
1673 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1674 {
1675 	struct sctp_chunk *ack;
1676 	struct sctp_chunk *tmp;
1677 
1678 	/* We can remove all the entries from the queue up to
1679 	 * the "Peer-Sequence-Number".
1680 	 */
1681 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1682 				transmitted_list) {
1683 		if (ack->subh.addip_hdr->serial ==
1684 				htonl(asoc->peer.addip_serial))
1685 			break;
1686 
1687 		list_del_init(&ack->transmitted_list);
1688 		sctp_chunk_free(ack);
1689 	}
1690 }
1691 
1692 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1693 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1694 					const struct sctp_association *asoc,
1695 					__be32 serial)
1696 {
1697 	struct sctp_chunk *ack;
1698 
1699 	/* Walk through the list of cached ASCONF-ACKs and find the
1700 	 * ack chunk whose serial number matches that of the request.
1701 	 */
1702 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1703 		if (sctp_chunk_pending(ack))
1704 			continue;
1705 		if (ack->subh.addip_hdr->serial == serial) {
1706 			sctp_chunk_hold(ack);
1707 			return ack;
1708 		}
1709 	}
1710 
1711 	return NULL;
1712 }
1713 
1714 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1715 {
1716 	/* Free any cached ASCONF_ACK chunk. */
1717 	sctp_assoc_free_asconf_acks(asoc);
1718 
1719 	/* Free the ASCONF queue. */
1720 	sctp_assoc_free_asconf_queue(asoc);
1721 
1722 	/* Free any cached ASCONF chunk. */
1723 	if (asoc->addip_last_asconf)
1724 		sctp_chunk_free(asoc->addip_last_asconf);
1725 }
1726