xref: /linux/net/sctp/associola.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel reference Implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * The SCTP reference implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * The SCTP reference implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang             <hui.huang@nokia.com>
42  *    Sridhar Samudrala	    <sri@us.ibm.com>
43  *    Daisy Chang	    <daisyc@us.ibm.com>
44  *    Ryan Layer	    <rmlayer@us.ibm.com>
45  *    Kevin Gao             <kevin.gao@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/poll.h>
54 #include <linux/init.h>
55 
56 #include <linux/slab.h>
57 #include <linux/in.h>
58 #include <net/ipv6.h>
59 #include <net/sctp/sctp.h>
60 #include <net/sctp/sm.h>
61 
62 /* Forward declarations for internal functions. */
63 static void sctp_assoc_bh_rcv(struct work_struct *work);
64 
65 
66 /* 1st Level Abstractions. */
67 
68 /* Initialize a new association from provided memory. */
69 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
70 					  const struct sctp_endpoint *ep,
71 					  const struct sock *sk,
72 					  sctp_scope_t scope,
73 					  gfp_t gfp)
74 {
75 	struct sctp_sock *sp;
76 	int i;
77 
78 	/* Retrieve the SCTP per socket area.  */
79 	sp = sctp_sk((struct sock *)sk);
80 
81 	/* Init all variables to a known value.  */
82 	memset(asoc, 0, sizeof(struct sctp_association));
83 
84 	/* Discarding const is appropriate here.  */
85 	asoc->ep = (struct sctp_endpoint *)ep;
86 	sctp_endpoint_hold(asoc->ep);
87 
88 	/* Hold the sock.  */
89 	asoc->base.sk = (struct sock *)sk;
90 	sock_hold(asoc->base.sk);
91 
92 	/* Initialize the common base substructure.  */
93 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
94 
95 	/* Initialize the object handling fields.  */
96 	atomic_set(&asoc->base.refcnt, 1);
97 	asoc->base.dead = 0;
98 	asoc->base.malloced = 0;
99 
100 	/* Initialize the bind addr area.  */
101 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
102 	rwlock_init(&asoc->base.addr_lock);
103 
104 	asoc->state = SCTP_STATE_CLOSED;
105 
106 	/* Set these values from the socket values, a conversion between
107 	 * millsecons to seconds/microseconds must also be done.
108 	 */
109 	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
110 	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
111 					* 1000;
112 	asoc->frag_point = 0;
113 
114 	/* Set the association max_retrans and RTO values from the
115 	 * socket values.
116 	 */
117 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
118 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
119 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
120 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
121 
122 	asoc->overall_error_count = 0;
123 
124 	/* Initialize the association's heartbeat interval based on the
125 	 * sock configured value.
126 	 */
127 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
128 
129 	/* Initialize path max retrans value. */
130 	asoc->pathmaxrxt = sp->pathmaxrxt;
131 
132 	/* Initialize default path MTU. */
133 	asoc->pathmtu = sp->pathmtu;
134 
135 	/* Set association default SACK delay */
136 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
137 
138 	/* Set the association default flags controlling
139 	 * Heartbeat, SACK delay, and Path MTU Discovery.
140 	 */
141 	asoc->param_flags = sp->param_flags;
142 
143 	/* Initialize the maximum mumber of new data packets that can be sent
144 	 * in a burst.
145 	 */
146 	asoc->max_burst = sctp_max_burst;
147 
148 	/* initialize association timers */
149 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
150 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
151 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
152 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
153 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
154 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
155 
156 	/* sctpimpguide Section 2.12.2
157 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
158 	 * recommended value of 5 times 'RTO.Max'.
159 	 */
160 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
161 		= 5 * asoc->rto_max;
162 
163 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
164 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
165 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
166 		sp->autoclose * HZ;
167 
168 	/* Initilizes the timers */
169 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
170 		init_timer(&asoc->timers[i]);
171 		asoc->timers[i].function = sctp_timer_events[i];
172 		asoc->timers[i].data = (unsigned long) asoc;
173 	}
174 
175 	/* Pull default initialization values from the sock options.
176 	 * Note: This assumes that the values have already been
177 	 * validated in the sock.
178 	 */
179 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
180 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
181 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
182 
183 	asoc->max_init_timeo =
184 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
185 
186 	/* Allocate storage for the ssnmap after the inbound and outbound
187 	 * streams have been negotiated during Init.
188 	 */
189 	asoc->ssnmap = NULL;
190 
191 	/* Set the local window size for receive.
192 	 * This is also the rcvbuf space per association.
193 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
194 	 * 1500 bytes in one SCTP packet.
195 	 */
196 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
197 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
198 	else
199 		asoc->rwnd = sk->sk_rcvbuf/2;
200 
201 	asoc->a_rwnd = asoc->rwnd;
202 
203 	asoc->rwnd_over = 0;
204 
205 	/* Use my own max window until I learn something better.  */
206 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
207 
208 	/* Set the sndbuf size for transmit.  */
209 	asoc->sndbuf_used = 0;
210 
211 	/* Initialize the receive memory counter */
212 	atomic_set(&asoc->rmem_alloc, 0);
213 
214 	init_waitqueue_head(&asoc->wait);
215 
216 	asoc->c.my_vtag = sctp_generate_tag(ep);
217 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
218 	asoc->c.peer_vtag = 0;
219 	asoc->c.my_ttag   = 0;
220 	asoc->c.peer_ttag = 0;
221 	asoc->c.my_port = ep->base.bind_addr.port;
222 
223 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
224 
225 	asoc->next_tsn = asoc->c.initial_tsn;
226 
227 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
228 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
229 	asoc->highest_sacked = asoc->ctsn_ack_point;
230 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
231 	asoc->unack_data = 0;
232 
233 	/* ADDIP Section 4.1 Asconf Chunk Procedures
234 	 *
235 	 * When an endpoint has an ASCONF signaled change to be sent to the
236 	 * remote endpoint it should do the following:
237 	 * ...
238 	 * A2) a serial number should be assigned to the chunk. The serial
239 	 * number SHOULD be a monotonically increasing number. The serial
240 	 * numbers SHOULD be initialized at the start of the
241 	 * association to the same value as the initial TSN.
242 	 */
243 	asoc->addip_serial = asoc->c.initial_tsn;
244 
245 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
246 
247 	/* Make an empty list of remote transport addresses.  */
248 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
249 	asoc->peer.transport_count = 0;
250 
251 	/* RFC 2960 5.1 Normal Establishment of an Association
252 	 *
253 	 * After the reception of the first data chunk in an
254 	 * association the endpoint must immediately respond with a
255 	 * sack to acknowledge the data chunk.  Subsequent
256 	 * acknowledgements should be done as described in Section
257 	 * 6.2.
258 	 *
259 	 * [We implement this by telling a new association that it
260 	 * already received one packet.]
261 	 */
262 	asoc->peer.sack_needed = 1;
263 
264 	/* Assume that the peer recongizes ASCONF until reported otherwise
265 	 * via an ERROR chunk.
266 	 */
267 	asoc->peer.asconf_capable = 1;
268 
269 	/* Create an input queue.  */
270 	sctp_inq_init(&asoc->base.inqueue);
271 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
272 
273 	/* Create an output queue.  */
274 	sctp_outq_init(asoc, &asoc->outqueue);
275 
276 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
277 		goto fail_init;
278 
279 	/* Set up the tsn tracking. */
280 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0);
281 
282 	asoc->need_ecne = 0;
283 
284 	asoc->assoc_id = 0;
285 
286 	/* Assume that peer would support both address types unless we are
287 	 * told otherwise.
288 	 */
289 	asoc->peer.ipv4_address = 1;
290 	asoc->peer.ipv6_address = 1;
291 	INIT_LIST_HEAD(&asoc->asocs);
292 
293 	asoc->autoclose = sp->autoclose;
294 
295 	asoc->default_stream = sp->default_stream;
296 	asoc->default_ppid = sp->default_ppid;
297 	asoc->default_flags = sp->default_flags;
298 	asoc->default_context = sp->default_context;
299 	asoc->default_timetolive = sp->default_timetolive;
300 	asoc->default_rcv_context = sp->default_rcv_context;
301 
302 	return asoc;
303 
304 fail_init:
305 	sctp_endpoint_put(asoc->ep);
306 	sock_put(asoc->base.sk);
307 	return NULL;
308 }
309 
310 /* Allocate and initialize a new association */
311 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
312 					 const struct sock *sk,
313 					 sctp_scope_t scope,
314 					 gfp_t gfp)
315 {
316 	struct sctp_association *asoc;
317 
318 	asoc = t_new(struct sctp_association, gfp);
319 	if (!asoc)
320 		goto fail;
321 
322 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
323 		goto fail_init;
324 
325 	asoc->base.malloced = 1;
326 	SCTP_DBG_OBJCNT_INC(assoc);
327 	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
328 
329 	return asoc;
330 
331 fail_init:
332 	kfree(asoc);
333 fail:
334 	return NULL;
335 }
336 
337 /* Free this association if possible.  There may still be users, so
338  * the actual deallocation may be delayed.
339  */
340 void sctp_association_free(struct sctp_association *asoc)
341 {
342 	struct sock *sk = asoc->base.sk;
343 	struct sctp_transport *transport;
344 	struct list_head *pos, *temp;
345 	int i;
346 
347 	/* Only real associations count against the endpoint, so
348 	 * don't bother for if this is a temporary association.
349 	 */
350 	if (!asoc->temp) {
351 		list_del(&asoc->asocs);
352 
353 		/* Decrement the backlog value for a TCP-style listening
354 		 * socket.
355 		 */
356 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
357 			sk->sk_ack_backlog--;
358 	}
359 
360 	/* Mark as dead, so other users can know this structure is
361 	 * going away.
362 	 */
363 	asoc->base.dead = 1;
364 
365 	/* Dispose of any data lying around in the outqueue. */
366 	sctp_outq_free(&asoc->outqueue);
367 
368 	/* Dispose of any pending messages for the upper layer. */
369 	sctp_ulpq_free(&asoc->ulpq);
370 
371 	/* Dispose of any pending chunks on the inqueue. */
372 	sctp_inq_free(&asoc->base.inqueue);
373 
374 	/* Free ssnmap storage. */
375 	sctp_ssnmap_free(asoc->ssnmap);
376 
377 	/* Clean up the bound address list. */
378 	sctp_bind_addr_free(&asoc->base.bind_addr);
379 
380 	/* Do we need to go through all of our timers and
381 	 * delete them?   To be safe we will try to delete all, but we
382 	 * should be able to go through and make a guess based
383 	 * on our state.
384 	 */
385 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
386 		if (timer_pending(&asoc->timers[i]) &&
387 		    del_timer(&asoc->timers[i]))
388 			sctp_association_put(asoc);
389 	}
390 
391 	/* Free peer's cached cookie. */
392 	kfree(asoc->peer.cookie);
393 
394 	/* Release the transport structures. */
395 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
396 		transport = list_entry(pos, struct sctp_transport, transports);
397 		list_del(pos);
398 		sctp_transport_free(transport);
399 	}
400 
401 	asoc->peer.transport_count = 0;
402 
403 	/* Free any cached ASCONF_ACK chunk. */
404 	if (asoc->addip_last_asconf_ack)
405 		sctp_chunk_free(asoc->addip_last_asconf_ack);
406 
407 	/* Free any cached ASCONF chunk. */
408 	if (asoc->addip_last_asconf)
409 		sctp_chunk_free(asoc->addip_last_asconf);
410 
411 	sctp_association_put(asoc);
412 }
413 
414 /* Cleanup and free up an association. */
415 static void sctp_association_destroy(struct sctp_association *asoc)
416 {
417 	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
418 
419 	sctp_endpoint_put(asoc->ep);
420 	sock_put(asoc->base.sk);
421 
422 	if (asoc->assoc_id != 0) {
423 		spin_lock_bh(&sctp_assocs_id_lock);
424 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
425 		spin_unlock_bh(&sctp_assocs_id_lock);
426 	}
427 
428 	BUG_TRAP(!atomic_read(&asoc->rmem_alloc));
429 
430 	if (asoc->base.malloced) {
431 		kfree(asoc);
432 		SCTP_DBG_OBJCNT_DEC(assoc);
433 	}
434 }
435 
436 /* Change the primary destination address for the peer. */
437 void sctp_assoc_set_primary(struct sctp_association *asoc,
438 			    struct sctp_transport *transport)
439 {
440 	asoc->peer.primary_path = transport;
441 
442 	/* Set a default msg_name for events. */
443 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
444 	       sizeof(union sctp_addr));
445 
446 	/* If the primary path is changing, assume that the
447 	 * user wants to use this new path.
448 	 */
449 	if ((transport->state == SCTP_ACTIVE) ||
450 	    (transport->state == SCTP_UNKNOWN))
451 		asoc->peer.active_path = transport;
452 
453 	/*
454 	 * SFR-CACC algorithm:
455 	 * Upon the receipt of a request to change the primary
456 	 * destination address, on the data structure for the new
457 	 * primary destination, the sender MUST do the following:
458 	 *
459 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
460 	 * to this destination address earlier. The sender MUST set
461 	 * CYCLING_CHANGEOVER to indicate that this switch is a
462 	 * double switch to the same destination address.
463 	 */
464 	if (transport->cacc.changeover_active)
465 		transport->cacc.cycling_changeover = 1;
466 
467 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
468 	 * a changeover has occurred.
469 	 */
470 	transport->cacc.changeover_active = 1;
471 
472 	/* 3) The sender MUST store the next TSN to be sent in
473 	 * next_tsn_at_change.
474 	 */
475 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
476 }
477 
478 /* Remove a transport from an association.  */
479 void sctp_assoc_rm_peer(struct sctp_association *asoc,
480 			struct sctp_transport *peer)
481 {
482 	struct list_head	*pos;
483 	struct sctp_transport	*transport;
484 
485 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
486 				 " port: %d\n",
487 				 asoc,
488 				 (&peer->ipaddr),
489 				 ntohs(peer->ipaddr.v4.sin_port));
490 
491 	/* If we are to remove the current retran_path, update it
492 	 * to the next peer before removing this peer from the list.
493 	 */
494 	if (asoc->peer.retran_path == peer)
495 		sctp_assoc_update_retran_path(asoc);
496 
497 	/* Remove this peer from the list. */
498 	list_del(&peer->transports);
499 
500 	/* Get the first transport of asoc. */
501 	pos = asoc->peer.transport_addr_list.next;
502 	transport = list_entry(pos, struct sctp_transport, transports);
503 
504 	/* Update any entries that match the peer to be deleted. */
505 	if (asoc->peer.primary_path == peer)
506 		sctp_assoc_set_primary(asoc, transport);
507 	if (asoc->peer.active_path == peer)
508 		asoc->peer.active_path = transport;
509 	if (asoc->peer.last_data_from == peer)
510 		asoc->peer.last_data_from = transport;
511 
512 	/* If we remove the transport an INIT was last sent to, set it to
513 	 * NULL. Combined with the update of the retran path above, this
514 	 * will cause the next INIT to be sent to the next available
515 	 * transport, maintaining the cycle.
516 	 */
517 	if (asoc->init_last_sent_to == peer)
518 		asoc->init_last_sent_to = NULL;
519 
520 	asoc->peer.transport_count--;
521 
522 	sctp_transport_free(peer);
523 }
524 
525 /* Add a transport address to an association.  */
526 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
527 					   const union sctp_addr *addr,
528 					   const gfp_t gfp,
529 					   const int peer_state)
530 {
531 	struct sctp_transport *peer;
532 	struct sctp_sock *sp;
533 	unsigned short port;
534 
535 	sp = sctp_sk(asoc->base.sk);
536 
537 	/* AF_INET and AF_INET6 share common port field. */
538 	port = ntohs(addr->v4.sin_port);
539 
540 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
541 				 " port: %d state:%d\n",
542 				 asoc,
543 				 addr,
544 				 port,
545 				 peer_state);
546 
547 	/* Set the port if it has not been set yet.  */
548 	if (0 == asoc->peer.port)
549 		asoc->peer.port = port;
550 
551 	/* Check to see if this is a duplicate. */
552 	peer = sctp_assoc_lookup_paddr(asoc, addr);
553 	if (peer) {
554 		if (peer->state == SCTP_UNKNOWN) {
555 			if (peer_state == SCTP_ACTIVE)
556 				peer->state = SCTP_ACTIVE;
557 			if (peer_state == SCTP_UNCONFIRMED)
558 				peer->state = SCTP_UNCONFIRMED;
559 		}
560 		return peer;
561 	}
562 
563 	peer = sctp_transport_new(addr, gfp);
564 	if (!peer)
565 		return NULL;
566 
567 	sctp_transport_set_owner(peer, asoc);
568 
569 	/* Initialize the peer's heartbeat interval based on the
570 	 * association configured value.
571 	 */
572 	peer->hbinterval = asoc->hbinterval;
573 
574 	/* Set the path max_retrans.  */
575 	peer->pathmaxrxt = asoc->pathmaxrxt;
576 
577 	/* Initialize the peer's SACK delay timeout based on the
578 	 * association configured value.
579 	 */
580 	peer->sackdelay = asoc->sackdelay;
581 
582 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
583 	 * based on association setting.
584 	 */
585 	peer->param_flags = asoc->param_flags;
586 
587 	/* Initialize the pmtu of the transport. */
588 	if (peer->param_flags & SPP_PMTUD_ENABLE)
589 		sctp_transport_pmtu(peer);
590 	else if (asoc->pathmtu)
591 		peer->pathmtu = asoc->pathmtu;
592 	else
593 		peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
594 
595 	/* If this is the first transport addr on this association,
596 	 * initialize the association PMTU to the peer's PMTU.
597 	 * If not and the current association PMTU is higher than the new
598 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
599 	 */
600 	if (asoc->pathmtu)
601 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
602 	else
603 		asoc->pathmtu = peer->pathmtu;
604 
605 	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
606 			  "%d\n", asoc, asoc->pathmtu);
607 
608 	asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
609 
610 	/* The asoc->peer.port might not be meaningful yet, but
611 	 * initialize the packet structure anyway.
612 	 */
613 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
614 			 asoc->peer.port);
615 
616 	/* 7.2.1 Slow-Start
617 	 *
618 	 * o The initial cwnd before DATA transmission or after a sufficiently
619 	 *   long idle period MUST be set to
620 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
621 	 *
622 	 * o The initial value of ssthresh MAY be arbitrarily high
623 	 *   (for example, implementations MAY use the size of the
624 	 *   receiver advertised window).
625 	 */
626 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
627 
628 	/* At this point, we may not have the receiver's advertised window,
629 	 * so initialize ssthresh to the default value and it will be set
630 	 * later when we process the INIT.
631 	 */
632 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
633 
634 	peer->partial_bytes_acked = 0;
635 	peer->flight_size = 0;
636 
637 	/* Set the transport's RTO.initial value */
638 	peer->rto = asoc->rto_initial;
639 
640 	/* Set the peer's active state. */
641 	peer->state = peer_state;
642 
643 	/* Attach the remote transport to our asoc.  */
644 	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
645 	asoc->peer.transport_count++;
646 
647 	/* If we do not yet have a primary path, set one.  */
648 	if (!asoc->peer.primary_path) {
649 		sctp_assoc_set_primary(asoc, peer);
650 		asoc->peer.retran_path = peer;
651 	}
652 
653 	if (asoc->peer.active_path == asoc->peer.retran_path) {
654 		asoc->peer.retran_path = peer;
655 	}
656 
657 	return peer;
658 }
659 
660 /* Delete a transport address from an association.  */
661 void sctp_assoc_del_peer(struct sctp_association *asoc,
662 			 const union sctp_addr *addr)
663 {
664 	struct list_head	*pos;
665 	struct list_head	*temp;
666 	struct sctp_transport	*transport;
667 
668 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
669 		transport = list_entry(pos, struct sctp_transport, transports);
670 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
671 			/* Do book keeping for removing the peer and free it. */
672 			sctp_assoc_rm_peer(asoc, transport);
673 			break;
674 		}
675 	}
676 }
677 
678 /* Lookup a transport by address. */
679 struct sctp_transport *sctp_assoc_lookup_paddr(
680 					const struct sctp_association *asoc,
681 					const union sctp_addr *address)
682 {
683 	struct sctp_transport *t;
684 	struct list_head *pos;
685 
686 	/* Cycle through all transports searching for a peer address. */
687 
688 	list_for_each(pos, &asoc->peer.transport_addr_list) {
689 		t = list_entry(pos, struct sctp_transport, transports);
690 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
691 			return t;
692 	}
693 
694 	return NULL;
695 }
696 
697 /* Engage in transport control operations.
698  * Mark the transport up or down and send a notification to the user.
699  * Select and update the new active and retran paths.
700  */
701 void sctp_assoc_control_transport(struct sctp_association *asoc,
702 				  struct sctp_transport *transport,
703 				  sctp_transport_cmd_t command,
704 				  sctp_sn_error_t error)
705 {
706 	struct sctp_transport *t = NULL;
707 	struct sctp_transport *first;
708 	struct sctp_transport *second;
709 	struct sctp_ulpevent *event;
710 	struct sockaddr_storage addr;
711 	struct list_head *pos;
712 	int spc_state = 0;
713 
714 	/* Record the transition on the transport.  */
715 	switch (command) {
716 	case SCTP_TRANSPORT_UP:
717 		transport->state = SCTP_ACTIVE;
718 		spc_state = SCTP_ADDR_AVAILABLE;
719 		break;
720 
721 	case SCTP_TRANSPORT_DOWN:
722 		transport->state = SCTP_INACTIVE;
723 		spc_state = SCTP_ADDR_UNREACHABLE;
724 		break;
725 
726 	default:
727 		return;
728 	};
729 
730 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
731 	 * user.
732 	 */
733 	memset(&addr, 0, sizeof(struct sockaddr_storage));
734 	memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
735 	event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
736 				0, spc_state, error, GFP_ATOMIC);
737 	if (event)
738 		sctp_ulpq_tail_event(&asoc->ulpq, event);
739 
740 	/* Select new active and retran paths. */
741 
742 	/* Look for the two most recently used active transports.
743 	 *
744 	 * This code produces the wrong ordering whenever jiffies
745 	 * rolls over, but we still get usable transports, so we don't
746 	 * worry about it.
747 	 */
748 	first = NULL; second = NULL;
749 
750 	list_for_each(pos, &asoc->peer.transport_addr_list) {
751 		t = list_entry(pos, struct sctp_transport, transports);
752 
753 		if ((t->state == SCTP_INACTIVE) ||
754 		    (t->state == SCTP_UNCONFIRMED))
755 			continue;
756 		if (!first || t->last_time_heard > first->last_time_heard) {
757 			second = first;
758 			first = t;
759 		}
760 		if (!second || t->last_time_heard > second->last_time_heard)
761 			second = t;
762 	}
763 
764 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
765 	 *
766 	 * By default, an endpoint should always transmit to the
767 	 * primary path, unless the SCTP user explicitly specifies the
768 	 * destination transport address (and possibly source
769 	 * transport address) to use.
770 	 *
771 	 * [If the primary is active but not most recent, bump the most
772 	 * recently used transport.]
773 	 */
774 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
775 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
776 	    first != asoc->peer.primary_path) {
777 		second = first;
778 		first = asoc->peer.primary_path;
779 	}
780 
781 	/* If we failed to find a usable transport, just camp on the
782 	 * primary, even if it is inactive.
783 	 */
784 	if (!first) {
785 		first = asoc->peer.primary_path;
786 		second = asoc->peer.primary_path;
787 	}
788 
789 	/* Set the active and retran transports.  */
790 	asoc->peer.active_path = first;
791 	asoc->peer.retran_path = second;
792 }
793 
794 /* Hold a reference to an association. */
795 void sctp_association_hold(struct sctp_association *asoc)
796 {
797 	atomic_inc(&asoc->base.refcnt);
798 }
799 
800 /* Release a reference to an association and cleanup
801  * if there are no more references.
802  */
803 void sctp_association_put(struct sctp_association *asoc)
804 {
805 	if (atomic_dec_and_test(&asoc->base.refcnt))
806 		sctp_association_destroy(asoc);
807 }
808 
809 /* Allocate the next TSN, Transmission Sequence Number, for the given
810  * association.
811  */
812 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
813 {
814 	/* From Section 1.6 Serial Number Arithmetic:
815 	 * Transmission Sequence Numbers wrap around when they reach
816 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
817 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
818 	 */
819 	__u32 retval = asoc->next_tsn;
820 	asoc->next_tsn++;
821 	asoc->unack_data++;
822 
823 	return retval;
824 }
825 
826 /* Compare two addresses to see if they match.  Wildcard addresses
827  * only match themselves.
828  */
829 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
830 			const union sctp_addr *ss2)
831 {
832 	struct sctp_af *af;
833 
834 	af = sctp_get_af_specific(ss1->sa.sa_family);
835 	if (unlikely(!af))
836 		return 0;
837 
838 	return af->cmp_addr(ss1, ss2);
839 }
840 
841 /* Return an ecne chunk to get prepended to a packet.
842  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
843  * No we don't, but we could/should.
844  */
845 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
846 {
847 	struct sctp_chunk *chunk;
848 
849 	/* Send ECNE if needed.
850 	 * Not being able to allocate a chunk here is not deadly.
851 	 */
852 	if (asoc->need_ecne)
853 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
854 	else
855 		chunk = NULL;
856 
857 	return chunk;
858 }
859 
860 /*
861  * Find which transport this TSN was sent on.
862  */
863 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
864 					     __u32 tsn)
865 {
866 	struct sctp_transport *active;
867 	struct sctp_transport *match;
868 	struct list_head *entry, *pos;
869 	struct sctp_transport *transport;
870 	struct sctp_chunk *chunk;
871 	__be32 key = htonl(tsn);
872 
873 	match = NULL;
874 
875 	/*
876 	 * FIXME: In general, find a more efficient data structure for
877 	 * searching.
878 	 */
879 
880 	/*
881 	 * The general strategy is to search each transport's transmitted
882 	 * list.   Return which transport this TSN lives on.
883 	 *
884 	 * Let's be hopeful and check the active_path first.
885 	 * Another optimization would be to know if there is only one
886 	 * outbound path and not have to look for the TSN at all.
887 	 *
888 	 */
889 
890 	active = asoc->peer.active_path;
891 
892 	list_for_each(entry, &active->transmitted) {
893 		chunk = list_entry(entry, struct sctp_chunk, transmitted_list);
894 
895 		if (key == chunk->subh.data_hdr->tsn) {
896 			match = active;
897 			goto out;
898 		}
899 	}
900 
901 	/* If not found, go search all the other transports. */
902 	list_for_each(pos, &asoc->peer.transport_addr_list) {
903 		transport = list_entry(pos, struct sctp_transport, transports);
904 
905 		if (transport == active)
906 			break;
907 		list_for_each(entry, &transport->transmitted) {
908 			chunk = list_entry(entry, struct sctp_chunk,
909 					   transmitted_list);
910 			if (key == chunk->subh.data_hdr->tsn) {
911 				match = transport;
912 				goto out;
913 			}
914 		}
915 	}
916 out:
917 	return match;
918 }
919 
920 /* Is this the association we are looking for? */
921 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
922 					   const union sctp_addr *laddr,
923 					   const union sctp_addr *paddr)
924 {
925 	struct sctp_transport *transport;
926 
927 	sctp_read_lock(&asoc->base.addr_lock);
928 
929 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
930 	    (htons(asoc->peer.port) == paddr->v4.sin_port)) {
931 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
932 		if (!transport)
933 			goto out;
934 
935 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
936 					 sctp_sk(asoc->base.sk)))
937 			goto out;
938 	}
939 	transport = NULL;
940 
941 out:
942 	sctp_read_unlock(&asoc->base.addr_lock);
943 	return transport;
944 }
945 
946 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
947 static void sctp_assoc_bh_rcv(struct work_struct *work)
948 {
949 	struct sctp_association *asoc =
950 		container_of(work, struct sctp_association,
951 			     base.inqueue.immediate);
952 	struct sctp_endpoint *ep;
953 	struct sctp_chunk *chunk;
954 	struct sock *sk;
955 	struct sctp_inq *inqueue;
956 	int state;
957 	sctp_subtype_t subtype;
958 	int error = 0;
959 
960 	/* The association should be held so we should be safe. */
961 	ep = asoc->ep;
962 	sk = asoc->base.sk;
963 
964 	inqueue = &asoc->base.inqueue;
965 	sctp_association_hold(asoc);
966 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
967 		state = asoc->state;
968 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
969 
970 		/* Remember where the last DATA chunk came from so we
971 		 * know where to send the SACK.
972 		 */
973 		if (sctp_chunk_is_data(chunk))
974 			asoc->peer.last_data_from = chunk->transport;
975 		else
976 			SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
977 
978 		if (chunk->transport)
979 			chunk->transport->last_time_heard = jiffies;
980 
981 		/* Run through the state machine. */
982 		error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
983 				   state, ep, asoc, chunk, GFP_ATOMIC);
984 
985 		/* Check to see if the association is freed in response to
986 		 * the incoming chunk.  If so, get out of the while loop.
987 		 */
988 		if (asoc->base.dead)
989 			break;
990 
991 		/* If there is an error on chunk, discard this packet. */
992 		if (error && chunk)
993 			chunk->pdiscard = 1;
994 	}
995 	sctp_association_put(asoc);
996 }
997 
998 /* This routine moves an association from its old sk to a new sk.  */
999 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1000 {
1001 	struct sctp_sock *newsp = sctp_sk(newsk);
1002 	struct sock *oldsk = assoc->base.sk;
1003 
1004 	/* Delete the association from the old endpoint's list of
1005 	 * associations.
1006 	 */
1007 	list_del_init(&assoc->asocs);
1008 
1009 	/* Decrement the backlog value for a TCP-style socket. */
1010 	if (sctp_style(oldsk, TCP))
1011 		oldsk->sk_ack_backlog--;
1012 
1013 	/* Release references to the old endpoint and the sock.  */
1014 	sctp_endpoint_put(assoc->ep);
1015 	sock_put(assoc->base.sk);
1016 
1017 	/* Get a reference to the new endpoint.  */
1018 	assoc->ep = newsp->ep;
1019 	sctp_endpoint_hold(assoc->ep);
1020 
1021 	/* Get a reference to the new sock.  */
1022 	assoc->base.sk = newsk;
1023 	sock_hold(assoc->base.sk);
1024 
1025 	/* Add the association to the new endpoint's list of associations.  */
1026 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1027 }
1028 
1029 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1030 void sctp_assoc_update(struct sctp_association *asoc,
1031 		       struct sctp_association *new)
1032 {
1033 	struct sctp_transport *trans;
1034 	struct list_head *pos, *temp;
1035 
1036 	/* Copy in new parameters of peer. */
1037 	asoc->c = new->c;
1038 	asoc->peer.rwnd = new->peer.rwnd;
1039 	asoc->peer.sack_needed = new->peer.sack_needed;
1040 	asoc->peer.i = new->peer.i;
1041 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE,
1042 			 asoc->peer.i.initial_tsn);
1043 
1044 	/* Remove any peer addresses not present in the new association. */
1045 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1046 		trans = list_entry(pos, struct sctp_transport, transports);
1047 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr))
1048 			sctp_assoc_del_peer(asoc, &trans->ipaddr);
1049 	}
1050 
1051 	/* If the case is A (association restart), use
1052 	 * initial_tsn as next_tsn. If the case is B, use
1053 	 * current next_tsn in case data sent to peer
1054 	 * has been discarded and needs retransmission.
1055 	 */
1056 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1057 		asoc->next_tsn = new->next_tsn;
1058 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1059 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1060 
1061 		/* Reinitialize SSN for both local streams
1062 		 * and peer's streams.
1063 		 */
1064 		sctp_ssnmap_clear(asoc->ssnmap);
1065 
1066 	} else {
1067 		/* Add any peer addresses from the new association. */
1068 		list_for_each(pos, &new->peer.transport_addr_list) {
1069 			trans = list_entry(pos, struct sctp_transport,
1070 					   transports);
1071 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1072 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1073 						    GFP_ATOMIC, trans->state);
1074 		}
1075 
1076 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1077 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1078 		if (!asoc->ssnmap) {
1079 			/* Move the ssnmap. */
1080 			asoc->ssnmap = new->ssnmap;
1081 			new->ssnmap = NULL;
1082 		}
1083 	}
1084 }
1085 
1086 /* Update the retran path for sending a retransmitted packet.
1087  * Round-robin through the active transports, else round-robin
1088  * through the inactive transports as this is the next best thing
1089  * we can try.
1090  */
1091 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1092 {
1093 	struct sctp_transport *t, *next;
1094 	struct list_head *head = &asoc->peer.transport_addr_list;
1095 	struct list_head *pos;
1096 
1097 	/* Find the next transport in a round-robin fashion. */
1098 	t = asoc->peer.retran_path;
1099 	pos = &t->transports;
1100 	next = NULL;
1101 
1102 	while (1) {
1103 		/* Skip the head. */
1104 		if (pos->next == head)
1105 			pos = head->next;
1106 		else
1107 			pos = pos->next;
1108 
1109 		t = list_entry(pos, struct sctp_transport, transports);
1110 
1111 		/* Try to find an active transport. */
1112 
1113 		if ((t->state == SCTP_ACTIVE) ||
1114 		    (t->state == SCTP_UNKNOWN)) {
1115 			break;
1116 		} else {
1117 			/* Keep track of the next transport in case
1118 			 * we don't find any active transport.
1119 			 */
1120 			if (!next)
1121 				next = t;
1122 		}
1123 
1124 		/* We have exhausted the list, but didn't find any
1125 		 * other active transports.  If so, use the next
1126 		 * transport.
1127 		 */
1128 		if (t == asoc->peer.retran_path) {
1129 			t = next;
1130 			break;
1131 		}
1132 	}
1133 
1134 	asoc->peer.retran_path = t;
1135 
1136 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1137 				 " %p addr: ",
1138 				 " port: %d\n",
1139 				 asoc,
1140 				 (&t->ipaddr),
1141 				 ntohs(t->ipaddr.v4.sin_port));
1142 }
1143 
1144 /* Choose the transport for sending a INIT packet.  */
1145 struct sctp_transport *sctp_assoc_choose_init_transport(
1146 	struct sctp_association *asoc)
1147 {
1148 	struct sctp_transport *t;
1149 
1150 	/* Use the retran path. If the last INIT was sent over the
1151 	 * retran path, update the retran path and use it.
1152 	 */
1153 	if (!asoc->init_last_sent_to) {
1154 		t = asoc->peer.active_path;
1155 	} else {
1156 		if (asoc->init_last_sent_to == asoc->peer.retran_path)
1157 			sctp_assoc_update_retran_path(asoc);
1158 		t = asoc->peer.retran_path;
1159 	}
1160 
1161 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1162 				 " %p addr: ",
1163 				 " port: %d\n",
1164 				 asoc,
1165 				 (&t->ipaddr),
1166 				 ntohs(t->ipaddr.v4.sin_port));
1167 
1168 	return t;
1169 }
1170 
1171 /* Choose the transport for sending a SHUTDOWN packet.  */
1172 struct sctp_transport *sctp_assoc_choose_shutdown_transport(
1173 	struct sctp_association *asoc)
1174 {
1175 	/* If this is the first time SHUTDOWN is sent, use the active path,
1176 	 * else use the retran path. If the last SHUTDOWN was sent over the
1177 	 * retran path, update the retran path and use it.
1178 	 */
1179 	if (!asoc->shutdown_last_sent_to)
1180 		return asoc->peer.active_path;
1181 	else {
1182 		if (asoc->shutdown_last_sent_to == asoc->peer.retran_path)
1183 			sctp_assoc_update_retran_path(asoc);
1184 		return asoc->peer.retran_path;
1185 	}
1186 
1187 }
1188 
1189 /* Update the association's pmtu and frag_point by going through all the
1190  * transports. This routine is called when a transport's PMTU has changed.
1191  */
1192 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1193 {
1194 	struct sctp_transport *t;
1195 	struct list_head *pos;
1196 	__u32 pmtu = 0;
1197 
1198 	if (!asoc)
1199 		return;
1200 
1201 	/* Get the lowest pmtu of all the transports. */
1202 	list_for_each(pos, &asoc->peer.transport_addr_list) {
1203 		t = list_entry(pos, struct sctp_transport, transports);
1204 		if (!pmtu || (t->pathmtu < pmtu))
1205 			pmtu = t->pathmtu;
1206 	}
1207 
1208 	if (pmtu) {
1209 		struct sctp_sock *sp = sctp_sk(asoc->base.sk);
1210 		asoc->pathmtu = pmtu;
1211 		asoc->frag_point = sctp_frag_point(sp, pmtu);
1212 	}
1213 
1214 	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1215 			  __FUNCTION__, asoc, asoc->pathmtu, asoc->frag_point);
1216 }
1217 
1218 /* Should we send a SACK to update our peer? */
1219 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1220 {
1221 	switch (asoc->state) {
1222 	case SCTP_STATE_ESTABLISHED:
1223 	case SCTP_STATE_SHUTDOWN_PENDING:
1224 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1225 	case SCTP_STATE_SHUTDOWN_SENT:
1226 		if ((asoc->rwnd > asoc->a_rwnd) &&
1227 		    ((asoc->rwnd - asoc->a_rwnd) >=
1228 		     min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu)))
1229 			return 1;
1230 		break;
1231 	default:
1232 		break;
1233 	}
1234 	return 0;
1235 }
1236 
1237 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1238 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1239 {
1240 	struct sctp_chunk *sack;
1241 	struct timer_list *timer;
1242 
1243 	if (asoc->rwnd_over) {
1244 		if (asoc->rwnd_over >= len) {
1245 			asoc->rwnd_over -= len;
1246 		} else {
1247 			asoc->rwnd += (len - asoc->rwnd_over);
1248 			asoc->rwnd_over = 0;
1249 		}
1250 	} else {
1251 		asoc->rwnd += len;
1252 	}
1253 
1254 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1255 			  "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd,
1256 			  asoc->rwnd_over, asoc->a_rwnd);
1257 
1258 	/* Send a window update SACK if the rwnd has increased by at least the
1259 	 * minimum of the association's PMTU and half of the receive buffer.
1260 	 * The algorithm used is similar to the one described in
1261 	 * Section 4.2.3.3 of RFC 1122.
1262 	 */
1263 	if (sctp_peer_needs_update(asoc)) {
1264 		asoc->a_rwnd = asoc->rwnd;
1265 		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1266 				  "rwnd: %u a_rwnd: %u\n", __FUNCTION__,
1267 				  asoc, asoc->rwnd, asoc->a_rwnd);
1268 		sack = sctp_make_sack(asoc);
1269 		if (!sack)
1270 			return;
1271 
1272 		asoc->peer.sack_needed = 0;
1273 
1274 		sctp_outq_tail(&asoc->outqueue, sack);
1275 
1276 		/* Stop the SACK timer.  */
1277 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1278 		if (timer_pending(timer) && del_timer(timer))
1279 			sctp_association_put(asoc);
1280 	}
1281 }
1282 
1283 /* Decrease asoc's rwnd by len. */
1284 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1285 {
1286 	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1287 	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1288 	if (asoc->rwnd >= len) {
1289 		asoc->rwnd -= len;
1290 	} else {
1291 		asoc->rwnd_over = len - asoc->rwnd;
1292 		asoc->rwnd = 0;
1293 	}
1294 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
1295 			  __FUNCTION__, asoc, len, asoc->rwnd,
1296 			  asoc->rwnd_over);
1297 }
1298 
1299 /* Build the bind address list for the association based on info from the
1300  * local endpoint and the remote peer.
1301  */
1302 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1303 				     gfp_t gfp)
1304 {
1305 	sctp_scope_t scope;
1306 	int flags;
1307 
1308 	/* Use scoping rules to determine the subset of addresses from
1309 	 * the endpoint.
1310 	 */
1311 	scope = sctp_scope(&asoc->peer.active_path->ipaddr);
1312 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1313 	if (asoc->peer.ipv4_address)
1314 		flags |= SCTP_ADDR4_PEERSUPP;
1315 	if (asoc->peer.ipv6_address)
1316 		flags |= SCTP_ADDR6_PEERSUPP;
1317 
1318 	return sctp_bind_addr_copy(&asoc->base.bind_addr,
1319 				   &asoc->ep->base.bind_addr,
1320 				   scope, gfp, flags);
1321 }
1322 
1323 /* Build the association's bind address list from the cookie.  */
1324 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1325 					 struct sctp_cookie *cookie,
1326 					 gfp_t gfp)
1327 {
1328 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1329 	int var_size3 = cookie->raw_addr_list_len;
1330 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1331 
1332 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1333 				      asoc->ep->base.bind_addr.port, gfp);
1334 }
1335 
1336 /* Lookup laddr in the bind address list of an association. */
1337 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1338 			    const union sctp_addr *laddr)
1339 {
1340 	int found;
1341 
1342 	sctp_read_lock(&asoc->base.addr_lock);
1343 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1344 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1345 				 sctp_sk(asoc->base.sk))) {
1346 		found = 1;
1347 		goto out;
1348 	}
1349 
1350 	found = 0;
1351 out:
1352 	sctp_read_unlock(&asoc->base.addr_lock);
1353 	return found;
1354 }
1355