1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel reference Implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * The SCTP reference implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * The SCTP reference implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/poll.h> 54 #include <linux/init.h> 55 56 #include <linux/slab.h> 57 #include <linux/in.h> 58 #include <net/ipv6.h> 59 #include <net/sctp/sctp.h> 60 #include <net/sctp/sm.h> 61 62 /* Forward declarations for internal functions. */ 63 static void sctp_assoc_bh_rcv(struct work_struct *work); 64 65 66 /* 1st Level Abstractions. */ 67 68 /* Initialize a new association from provided memory. */ 69 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 70 const struct sctp_endpoint *ep, 71 const struct sock *sk, 72 sctp_scope_t scope, 73 gfp_t gfp) 74 { 75 struct sctp_sock *sp; 76 int i; 77 78 /* Retrieve the SCTP per socket area. */ 79 sp = sctp_sk((struct sock *)sk); 80 81 /* Init all variables to a known value. */ 82 memset(asoc, 0, sizeof(struct sctp_association)); 83 84 /* Discarding const is appropriate here. */ 85 asoc->ep = (struct sctp_endpoint *)ep; 86 sctp_endpoint_hold(asoc->ep); 87 88 /* Hold the sock. */ 89 asoc->base.sk = (struct sock *)sk; 90 sock_hold(asoc->base.sk); 91 92 /* Initialize the common base substructure. */ 93 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 94 95 /* Initialize the object handling fields. */ 96 atomic_set(&asoc->base.refcnt, 1); 97 asoc->base.dead = 0; 98 asoc->base.malloced = 0; 99 100 /* Initialize the bind addr area. */ 101 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 102 rwlock_init(&asoc->base.addr_lock); 103 104 asoc->state = SCTP_STATE_CLOSED; 105 106 /* Set these values from the socket values, a conversion between 107 * millsecons to seconds/microseconds must also be done. 108 */ 109 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 110 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 111 * 1000; 112 asoc->frag_point = 0; 113 114 /* Set the association max_retrans and RTO values from the 115 * socket values. 116 */ 117 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 118 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 119 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 120 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 121 122 asoc->overall_error_count = 0; 123 124 /* Initialize the association's heartbeat interval based on the 125 * sock configured value. 126 */ 127 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 128 129 /* Initialize path max retrans value. */ 130 asoc->pathmaxrxt = sp->pathmaxrxt; 131 132 /* Initialize default path MTU. */ 133 asoc->pathmtu = sp->pathmtu; 134 135 /* Set association default SACK delay */ 136 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 137 138 /* Set the association default flags controlling 139 * Heartbeat, SACK delay, and Path MTU Discovery. 140 */ 141 asoc->param_flags = sp->param_flags; 142 143 /* Initialize the maximum mumber of new data packets that can be sent 144 * in a burst. 145 */ 146 asoc->max_burst = sctp_max_burst; 147 148 /* initialize association timers */ 149 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 150 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 151 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 152 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 153 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 154 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 155 156 /* sctpimpguide Section 2.12.2 157 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 158 * recommended value of 5 times 'RTO.Max'. 159 */ 160 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 161 = 5 * asoc->rto_max; 162 163 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 164 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 165 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 166 sp->autoclose * HZ; 167 168 /* Initilizes the timers */ 169 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 170 init_timer(&asoc->timers[i]); 171 asoc->timers[i].function = sctp_timer_events[i]; 172 asoc->timers[i].data = (unsigned long) asoc; 173 } 174 175 /* Pull default initialization values from the sock options. 176 * Note: This assumes that the values have already been 177 * validated in the sock. 178 */ 179 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 180 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 181 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 182 183 asoc->max_init_timeo = 184 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 185 186 /* Allocate storage for the ssnmap after the inbound and outbound 187 * streams have been negotiated during Init. 188 */ 189 asoc->ssnmap = NULL; 190 191 /* Set the local window size for receive. 192 * This is also the rcvbuf space per association. 193 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 194 * 1500 bytes in one SCTP packet. 195 */ 196 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 197 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 198 else 199 asoc->rwnd = sk->sk_rcvbuf/2; 200 201 asoc->a_rwnd = asoc->rwnd; 202 203 asoc->rwnd_over = 0; 204 205 /* Use my own max window until I learn something better. */ 206 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 207 208 /* Set the sndbuf size for transmit. */ 209 asoc->sndbuf_used = 0; 210 211 /* Initialize the receive memory counter */ 212 atomic_set(&asoc->rmem_alloc, 0); 213 214 init_waitqueue_head(&asoc->wait); 215 216 asoc->c.my_vtag = sctp_generate_tag(ep); 217 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 218 asoc->c.peer_vtag = 0; 219 asoc->c.my_ttag = 0; 220 asoc->c.peer_ttag = 0; 221 asoc->c.my_port = ep->base.bind_addr.port; 222 223 asoc->c.initial_tsn = sctp_generate_tsn(ep); 224 225 asoc->next_tsn = asoc->c.initial_tsn; 226 227 asoc->ctsn_ack_point = asoc->next_tsn - 1; 228 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 229 asoc->highest_sacked = asoc->ctsn_ack_point; 230 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 231 asoc->unack_data = 0; 232 233 /* ADDIP Section 4.1 Asconf Chunk Procedures 234 * 235 * When an endpoint has an ASCONF signaled change to be sent to the 236 * remote endpoint it should do the following: 237 * ... 238 * A2) a serial number should be assigned to the chunk. The serial 239 * number SHOULD be a monotonically increasing number. The serial 240 * numbers SHOULD be initialized at the start of the 241 * association to the same value as the initial TSN. 242 */ 243 asoc->addip_serial = asoc->c.initial_tsn; 244 245 INIT_LIST_HEAD(&asoc->addip_chunk_list); 246 247 /* Make an empty list of remote transport addresses. */ 248 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 249 asoc->peer.transport_count = 0; 250 251 /* RFC 2960 5.1 Normal Establishment of an Association 252 * 253 * After the reception of the first data chunk in an 254 * association the endpoint must immediately respond with a 255 * sack to acknowledge the data chunk. Subsequent 256 * acknowledgements should be done as described in Section 257 * 6.2. 258 * 259 * [We implement this by telling a new association that it 260 * already received one packet.] 261 */ 262 asoc->peer.sack_needed = 1; 263 264 /* Assume that the peer recongizes ASCONF until reported otherwise 265 * via an ERROR chunk. 266 */ 267 asoc->peer.asconf_capable = 1; 268 269 /* Create an input queue. */ 270 sctp_inq_init(&asoc->base.inqueue); 271 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 272 273 /* Create an output queue. */ 274 sctp_outq_init(asoc, &asoc->outqueue); 275 276 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 277 goto fail_init; 278 279 /* Set up the tsn tracking. */ 280 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0); 281 282 asoc->need_ecne = 0; 283 284 asoc->assoc_id = 0; 285 286 /* Assume that peer would support both address types unless we are 287 * told otherwise. 288 */ 289 asoc->peer.ipv4_address = 1; 290 asoc->peer.ipv6_address = 1; 291 INIT_LIST_HEAD(&asoc->asocs); 292 293 asoc->autoclose = sp->autoclose; 294 295 asoc->default_stream = sp->default_stream; 296 asoc->default_ppid = sp->default_ppid; 297 asoc->default_flags = sp->default_flags; 298 asoc->default_context = sp->default_context; 299 asoc->default_timetolive = sp->default_timetolive; 300 asoc->default_rcv_context = sp->default_rcv_context; 301 302 return asoc; 303 304 fail_init: 305 sctp_endpoint_put(asoc->ep); 306 sock_put(asoc->base.sk); 307 return NULL; 308 } 309 310 /* Allocate and initialize a new association */ 311 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 312 const struct sock *sk, 313 sctp_scope_t scope, 314 gfp_t gfp) 315 { 316 struct sctp_association *asoc; 317 318 asoc = t_new(struct sctp_association, gfp); 319 if (!asoc) 320 goto fail; 321 322 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 323 goto fail_init; 324 325 asoc->base.malloced = 1; 326 SCTP_DBG_OBJCNT_INC(assoc); 327 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 328 329 return asoc; 330 331 fail_init: 332 kfree(asoc); 333 fail: 334 return NULL; 335 } 336 337 /* Free this association if possible. There may still be users, so 338 * the actual deallocation may be delayed. 339 */ 340 void sctp_association_free(struct sctp_association *asoc) 341 { 342 struct sock *sk = asoc->base.sk; 343 struct sctp_transport *transport; 344 struct list_head *pos, *temp; 345 int i; 346 347 /* Only real associations count against the endpoint, so 348 * don't bother for if this is a temporary association. 349 */ 350 if (!asoc->temp) { 351 list_del(&asoc->asocs); 352 353 /* Decrement the backlog value for a TCP-style listening 354 * socket. 355 */ 356 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 357 sk->sk_ack_backlog--; 358 } 359 360 /* Mark as dead, so other users can know this structure is 361 * going away. 362 */ 363 asoc->base.dead = 1; 364 365 /* Dispose of any data lying around in the outqueue. */ 366 sctp_outq_free(&asoc->outqueue); 367 368 /* Dispose of any pending messages for the upper layer. */ 369 sctp_ulpq_free(&asoc->ulpq); 370 371 /* Dispose of any pending chunks on the inqueue. */ 372 sctp_inq_free(&asoc->base.inqueue); 373 374 /* Free ssnmap storage. */ 375 sctp_ssnmap_free(asoc->ssnmap); 376 377 /* Clean up the bound address list. */ 378 sctp_bind_addr_free(&asoc->base.bind_addr); 379 380 /* Do we need to go through all of our timers and 381 * delete them? To be safe we will try to delete all, but we 382 * should be able to go through and make a guess based 383 * on our state. 384 */ 385 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 386 if (timer_pending(&asoc->timers[i]) && 387 del_timer(&asoc->timers[i])) 388 sctp_association_put(asoc); 389 } 390 391 /* Free peer's cached cookie. */ 392 kfree(asoc->peer.cookie); 393 394 /* Release the transport structures. */ 395 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 396 transport = list_entry(pos, struct sctp_transport, transports); 397 list_del(pos); 398 sctp_transport_free(transport); 399 } 400 401 asoc->peer.transport_count = 0; 402 403 /* Free any cached ASCONF_ACK chunk. */ 404 if (asoc->addip_last_asconf_ack) 405 sctp_chunk_free(asoc->addip_last_asconf_ack); 406 407 /* Free any cached ASCONF chunk. */ 408 if (asoc->addip_last_asconf) 409 sctp_chunk_free(asoc->addip_last_asconf); 410 411 sctp_association_put(asoc); 412 } 413 414 /* Cleanup and free up an association. */ 415 static void sctp_association_destroy(struct sctp_association *asoc) 416 { 417 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 418 419 sctp_endpoint_put(asoc->ep); 420 sock_put(asoc->base.sk); 421 422 if (asoc->assoc_id != 0) { 423 spin_lock_bh(&sctp_assocs_id_lock); 424 idr_remove(&sctp_assocs_id, asoc->assoc_id); 425 spin_unlock_bh(&sctp_assocs_id_lock); 426 } 427 428 BUG_TRAP(!atomic_read(&asoc->rmem_alloc)); 429 430 if (asoc->base.malloced) { 431 kfree(asoc); 432 SCTP_DBG_OBJCNT_DEC(assoc); 433 } 434 } 435 436 /* Change the primary destination address for the peer. */ 437 void sctp_assoc_set_primary(struct sctp_association *asoc, 438 struct sctp_transport *transport) 439 { 440 asoc->peer.primary_path = transport; 441 442 /* Set a default msg_name for events. */ 443 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 444 sizeof(union sctp_addr)); 445 446 /* If the primary path is changing, assume that the 447 * user wants to use this new path. 448 */ 449 if ((transport->state == SCTP_ACTIVE) || 450 (transport->state == SCTP_UNKNOWN)) 451 asoc->peer.active_path = transport; 452 453 /* 454 * SFR-CACC algorithm: 455 * Upon the receipt of a request to change the primary 456 * destination address, on the data structure for the new 457 * primary destination, the sender MUST do the following: 458 * 459 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 460 * to this destination address earlier. The sender MUST set 461 * CYCLING_CHANGEOVER to indicate that this switch is a 462 * double switch to the same destination address. 463 */ 464 if (transport->cacc.changeover_active) 465 transport->cacc.cycling_changeover = 1; 466 467 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 468 * a changeover has occurred. 469 */ 470 transport->cacc.changeover_active = 1; 471 472 /* 3) The sender MUST store the next TSN to be sent in 473 * next_tsn_at_change. 474 */ 475 transport->cacc.next_tsn_at_change = asoc->next_tsn; 476 } 477 478 /* Remove a transport from an association. */ 479 void sctp_assoc_rm_peer(struct sctp_association *asoc, 480 struct sctp_transport *peer) 481 { 482 struct list_head *pos; 483 struct sctp_transport *transport; 484 485 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 486 " port: %d\n", 487 asoc, 488 (&peer->ipaddr), 489 ntohs(peer->ipaddr.v4.sin_port)); 490 491 /* If we are to remove the current retran_path, update it 492 * to the next peer before removing this peer from the list. 493 */ 494 if (asoc->peer.retran_path == peer) 495 sctp_assoc_update_retran_path(asoc); 496 497 /* Remove this peer from the list. */ 498 list_del(&peer->transports); 499 500 /* Get the first transport of asoc. */ 501 pos = asoc->peer.transport_addr_list.next; 502 transport = list_entry(pos, struct sctp_transport, transports); 503 504 /* Update any entries that match the peer to be deleted. */ 505 if (asoc->peer.primary_path == peer) 506 sctp_assoc_set_primary(asoc, transport); 507 if (asoc->peer.active_path == peer) 508 asoc->peer.active_path = transport; 509 if (asoc->peer.last_data_from == peer) 510 asoc->peer.last_data_from = transport; 511 512 /* If we remove the transport an INIT was last sent to, set it to 513 * NULL. Combined with the update of the retran path above, this 514 * will cause the next INIT to be sent to the next available 515 * transport, maintaining the cycle. 516 */ 517 if (asoc->init_last_sent_to == peer) 518 asoc->init_last_sent_to = NULL; 519 520 asoc->peer.transport_count--; 521 522 sctp_transport_free(peer); 523 } 524 525 /* Add a transport address to an association. */ 526 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 527 const union sctp_addr *addr, 528 const gfp_t gfp, 529 const int peer_state) 530 { 531 struct sctp_transport *peer; 532 struct sctp_sock *sp; 533 unsigned short port; 534 535 sp = sctp_sk(asoc->base.sk); 536 537 /* AF_INET and AF_INET6 share common port field. */ 538 port = ntohs(addr->v4.sin_port); 539 540 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 541 " port: %d state:%d\n", 542 asoc, 543 addr, 544 port, 545 peer_state); 546 547 /* Set the port if it has not been set yet. */ 548 if (0 == asoc->peer.port) 549 asoc->peer.port = port; 550 551 /* Check to see if this is a duplicate. */ 552 peer = sctp_assoc_lookup_paddr(asoc, addr); 553 if (peer) { 554 if (peer->state == SCTP_UNKNOWN) { 555 if (peer_state == SCTP_ACTIVE) 556 peer->state = SCTP_ACTIVE; 557 if (peer_state == SCTP_UNCONFIRMED) 558 peer->state = SCTP_UNCONFIRMED; 559 } 560 return peer; 561 } 562 563 peer = sctp_transport_new(addr, gfp); 564 if (!peer) 565 return NULL; 566 567 sctp_transport_set_owner(peer, asoc); 568 569 /* Initialize the peer's heartbeat interval based on the 570 * association configured value. 571 */ 572 peer->hbinterval = asoc->hbinterval; 573 574 /* Set the path max_retrans. */ 575 peer->pathmaxrxt = asoc->pathmaxrxt; 576 577 /* Initialize the peer's SACK delay timeout based on the 578 * association configured value. 579 */ 580 peer->sackdelay = asoc->sackdelay; 581 582 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 583 * based on association setting. 584 */ 585 peer->param_flags = asoc->param_flags; 586 587 /* Initialize the pmtu of the transport. */ 588 if (peer->param_flags & SPP_PMTUD_ENABLE) 589 sctp_transport_pmtu(peer); 590 else if (asoc->pathmtu) 591 peer->pathmtu = asoc->pathmtu; 592 else 593 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 594 595 /* If this is the first transport addr on this association, 596 * initialize the association PMTU to the peer's PMTU. 597 * If not and the current association PMTU is higher than the new 598 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 599 */ 600 if (asoc->pathmtu) 601 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 602 else 603 asoc->pathmtu = peer->pathmtu; 604 605 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 606 "%d\n", asoc, asoc->pathmtu); 607 608 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 609 610 /* The asoc->peer.port might not be meaningful yet, but 611 * initialize the packet structure anyway. 612 */ 613 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 614 asoc->peer.port); 615 616 /* 7.2.1 Slow-Start 617 * 618 * o The initial cwnd before DATA transmission or after a sufficiently 619 * long idle period MUST be set to 620 * min(4*MTU, max(2*MTU, 4380 bytes)) 621 * 622 * o The initial value of ssthresh MAY be arbitrarily high 623 * (for example, implementations MAY use the size of the 624 * receiver advertised window). 625 */ 626 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 627 628 /* At this point, we may not have the receiver's advertised window, 629 * so initialize ssthresh to the default value and it will be set 630 * later when we process the INIT. 631 */ 632 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 633 634 peer->partial_bytes_acked = 0; 635 peer->flight_size = 0; 636 637 /* Set the transport's RTO.initial value */ 638 peer->rto = asoc->rto_initial; 639 640 /* Set the peer's active state. */ 641 peer->state = peer_state; 642 643 /* Attach the remote transport to our asoc. */ 644 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 645 asoc->peer.transport_count++; 646 647 /* If we do not yet have a primary path, set one. */ 648 if (!asoc->peer.primary_path) { 649 sctp_assoc_set_primary(asoc, peer); 650 asoc->peer.retran_path = peer; 651 } 652 653 if (asoc->peer.active_path == asoc->peer.retran_path) { 654 asoc->peer.retran_path = peer; 655 } 656 657 return peer; 658 } 659 660 /* Delete a transport address from an association. */ 661 void sctp_assoc_del_peer(struct sctp_association *asoc, 662 const union sctp_addr *addr) 663 { 664 struct list_head *pos; 665 struct list_head *temp; 666 struct sctp_transport *transport; 667 668 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 669 transport = list_entry(pos, struct sctp_transport, transports); 670 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 671 /* Do book keeping for removing the peer and free it. */ 672 sctp_assoc_rm_peer(asoc, transport); 673 break; 674 } 675 } 676 } 677 678 /* Lookup a transport by address. */ 679 struct sctp_transport *sctp_assoc_lookup_paddr( 680 const struct sctp_association *asoc, 681 const union sctp_addr *address) 682 { 683 struct sctp_transport *t; 684 struct list_head *pos; 685 686 /* Cycle through all transports searching for a peer address. */ 687 688 list_for_each(pos, &asoc->peer.transport_addr_list) { 689 t = list_entry(pos, struct sctp_transport, transports); 690 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 691 return t; 692 } 693 694 return NULL; 695 } 696 697 /* Engage in transport control operations. 698 * Mark the transport up or down and send a notification to the user. 699 * Select and update the new active and retran paths. 700 */ 701 void sctp_assoc_control_transport(struct sctp_association *asoc, 702 struct sctp_transport *transport, 703 sctp_transport_cmd_t command, 704 sctp_sn_error_t error) 705 { 706 struct sctp_transport *t = NULL; 707 struct sctp_transport *first; 708 struct sctp_transport *second; 709 struct sctp_ulpevent *event; 710 struct sockaddr_storage addr; 711 struct list_head *pos; 712 int spc_state = 0; 713 714 /* Record the transition on the transport. */ 715 switch (command) { 716 case SCTP_TRANSPORT_UP: 717 transport->state = SCTP_ACTIVE; 718 spc_state = SCTP_ADDR_AVAILABLE; 719 break; 720 721 case SCTP_TRANSPORT_DOWN: 722 transport->state = SCTP_INACTIVE; 723 spc_state = SCTP_ADDR_UNREACHABLE; 724 break; 725 726 default: 727 return; 728 }; 729 730 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 731 * user. 732 */ 733 memset(&addr, 0, sizeof(struct sockaddr_storage)); 734 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len); 735 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 736 0, spc_state, error, GFP_ATOMIC); 737 if (event) 738 sctp_ulpq_tail_event(&asoc->ulpq, event); 739 740 /* Select new active and retran paths. */ 741 742 /* Look for the two most recently used active transports. 743 * 744 * This code produces the wrong ordering whenever jiffies 745 * rolls over, but we still get usable transports, so we don't 746 * worry about it. 747 */ 748 first = NULL; second = NULL; 749 750 list_for_each(pos, &asoc->peer.transport_addr_list) { 751 t = list_entry(pos, struct sctp_transport, transports); 752 753 if ((t->state == SCTP_INACTIVE) || 754 (t->state == SCTP_UNCONFIRMED)) 755 continue; 756 if (!first || t->last_time_heard > first->last_time_heard) { 757 second = first; 758 first = t; 759 } 760 if (!second || t->last_time_heard > second->last_time_heard) 761 second = t; 762 } 763 764 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 765 * 766 * By default, an endpoint should always transmit to the 767 * primary path, unless the SCTP user explicitly specifies the 768 * destination transport address (and possibly source 769 * transport address) to use. 770 * 771 * [If the primary is active but not most recent, bump the most 772 * recently used transport.] 773 */ 774 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 775 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 776 first != asoc->peer.primary_path) { 777 second = first; 778 first = asoc->peer.primary_path; 779 } 780 781 /* If we failed to find a usable transport, just camp on the 782 * primary, even if it is inactive. 783 */ 784 if (!first) { 785 first = asoc->peer.primary_path; 786 second = asoc->peer.primary_path; 787 } 788 789 /* Set the active and retran transports. */ 790 asoc->peer.active_path = first; 791 asoc->peer.retran_path = second; 792 } 793 794 /* Hold a reference to an association. */ 795 void sctp_association_hold(struct sctp_association *asoc) 796 { 797 atomic_inc(&asoc->base.refcnt); 798 } 799 800 /* Release a reference to an association and cleanup 801 * if there are no more references. 802 */ 803 void sctp_association_put(struct sctp_association *asoc) 804 { 805 if (atomic_dec_and_test(&asoc->base.refcnt)) 806 sctp_association_destroy(asoc); 807 } 808 809 /* Allocate the next TSN, Transmission Sequence Number, for the given 810 * association. 811 */ 812 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 813 { 814 /* From Section 1.6 Serial Number Arithmetic: 815 * Transmission Sequence Numbers wrap around when they reach 816 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 817 * after transmitting TSN = 2*32 - 1 is TSN = 0. 818 */ 819 __u32 retval = asoc->next_tsn; 820 asoc->next_tsn++; 821 asoc->unack_data++; 822 823 return retval; 824 } 825 826 /* Compare two addresses to see if they match. Wildcard addresses 827 * only match themselves. 828 */ 829 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 830 const union sctp_addr *ss2) 831 { 832 struct sctp_af *af; 833 834 af = sctp_get_af_specific(ss1->sa.sa_family); 835 if (unlikely(!af)) 836 return 0; 837 838 return af->cmp_addr(ss1, ss2); 839 } 840 841 /* Return an ecne chunk to get prepended to a packet. 842 * Note: We are sly and return a shared, prealloced chunk. FIXME: 843 * No we don't, but we could/should. 844 */ 845 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 846 { 847 struct sctp_chunk *chunk; 848 849 /* Send ECNE if needed. 850 * Not being able to allocate a chunk here is not deadly. 851 */ 852 if (asoc->need_ecne) 853 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 854 else 855 chunk = NULL; 856 857 return chunk; 858 } 859 860 /* 861 * Find which transport this TSN was sent on. 862 */ 863 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 864 __u32 tsn) 865 { 866 struct sctp_transport *active; 867 struct sctp_transport *match; 868 struct list_head *entry, *pos; 869 struct sctp_transport *transport; 870 struct sctp_chunk *chunk; 871 __be32 key = htonl(tsn); 872 873 match = NULL; 874 875 /* 876 * FIXME: In general, find a more efficient data structure for 877 * searching. 878 */ 879 880 /* 881 * The general strategy is to search each transport's transmitted 882 * list. Return which transport this TSN lives on. 883 * 884 * Let's be hopeful and check the active_path first. 885 * Another optimization would be to know if there is only one 886 * outbound path and not have to look for the TSN at all. 887 * 888 */ 889 890 active = asoc->peer.active_path; 891 892 list_for_each(entry, &active->transmitted) { 893 chunk = list_entry(entry, struct sctp_chunk, transmitted_list); 894 895 if (key == chunk->subh.data_hdr->tsn) { 896 match = active; 897 goto out; 898 } 899 } 900 901 /* If not found, go search all the other transports. */ 902 list_for_each(pos, &asoc->peer.transport_addr_list) { 903 transport = list_entry(pos, struct sctp_transport, transports); 904 905 if (transport == active) 906 break; 907 list_for_each(entry, &transport->transmitted) { 908 chunk = list_entry(entry, struct sctp_chunk, 909 transmitted_list); 910 if (key == chunk->subh.data_hdr->tsn) { 911 match = transport; 912 goto out; 913 } 914 } 915 } 916 out: 917 return match; 918 } 919 920 /* Is this the association we are looking for? */ 921 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 922 const union sctp_addr *laddr, 923 const union sctp_addr *paddr) 924 { 925 struct sctp_transport *transport; 926 927 sctp_read_lock(&asoc->base.addr_lock); 928 929 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 930 (htons(asoc->peer.port) == paddr->v4.sin_port)) { 931 transport = sctp_assoc_lookup_paddr(asoc, paddr); 932 if (!transport) 933 goto out; 934 935 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 936 sctp_sk(asoc->base.sk))) 937 goto out; 938 } 939 transport = NULL; 940 941 out: 942 sctp_read_unlock(&asoc->base.addr_lock); 943 return transport; 944 } 945 946 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 947 static void sctp_assoc_bh_rcv(struct work_struct *work) 948 { 949 struct sctp_association *asoc = 950 container_of(work, struct sctp_association, 951 base.inqueue.immediate); 952 struct sctp_endpoint *ep; 953 struct sctp_chunk *chunk; 954 struct sock *sk; 955 struct sctp_inq *inqueue; 956 int state; 957 sctp_subtype_t subtype; 958 int error = 0; 959 960 /* The association should be held so we should be safe. */ 961 ep = asoc->ep; 962 sk = asoc->base.sk; 963 964 inqueue = &asoc->base.inqueue; 965 sctp_association_hold(asoc); 966 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 967 state = asoc->state; 968 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 969 970 /* Remember where the last DATA chunk came from so we 971 * know where to send the SACK. 972 */ 973 if (sctp_chunk_is_data(chunk)) 974 asoc->peer.last_data_from = chunk->transport; 975 else 976 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 977 978 if (chunk->transport) 979 chunk->transport->last_time_heard = jiffies; 980 981 /* Run through the state machine. */ 982 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 983 state, ep, asoc, chunk, GFP_ATOMIC); 984 985 /* Check to see if the association is freed in response to 986 * the incoming chunk. If so, get out of the while loop. 987 */ 988 if (asoc->base.dead) 989 break; 990 991 /* If there is an error on chunk, discard this packet. */ 992 if (error && chunk) 993 chunk->pdiscard = 1; 994 } 995 sctp_association_put(asoc); 996 } 997 998 /* This routine moves an association from its old sk to a new sk. */ 999 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1000 { 1001 struct sctp_sock *newsp = sctp_sk(newsk); 1002 struct sock *oldsk = assoc->base.sk; 1003 1004 /* Delete the association from the old endpoint's list of 1005 * associations. 1006 */ 1007 list_del_init(&assoc->asocs); 1008 1009 /* Decrement the backlog value for a TCP-style socket. */ 1010 if (sctp_style(oldsk, TCP)) 1011 oldsk->sk_ack_backlog--; 1012 1013 /* Release references to the old endpoint and the sock. */ 1014 sctp_endpoint_put(assoc->ep); 1015 sock_put(assoc->base.sk); 1016 1017 /* Get a reference to the new endpoint. */ 1018 assoc->ep = newsp->ep; 1019 sctp_endpoint_hold(assoc->ep); 1020 1021 /* Get a reference to the new sock. */ 1022 assoc->base.sk = newsk; 1023 sock_hold(assoc->base.sk); 1024 1025 /* Add the association to the new endpoint's list of associations. */ 1026 sctp_endpoint_add_asoc(newsp->ep, assoc); 1027 } 1028 1029 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1030 void sctp_assoc_update(struct sctp_association *asoc, 1031 struct sctp_association *new) 1032 { 1033 struct sctp_transport *trans; 1034 struct list_head *pos, *temp; 1035 1036 /* Copy in new parameters of peer. */ 1037 asoc->c = new->c; 1038 asoc->peer.rwnd = new->peer.rwnd; 1039 asoc->peer.sack_needed = new->peer.sack_needed; 1040 asoc->peer.i = new->peer.i; 1041 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 1042 asoc->peer.i.initial_tsn); 1043 1044 /* Remove any peer addresses not present in the new association. */ 1045 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1046 trans = list_entry(pos, struct sctp_transport, transports); 1047 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) 1048 sctp_assoc_del_peer(asoc, &trans->ipaddr); 1049 } 1050 1051 /* If the case is A (association restart), use 1052 * initial_tsn as next_tsn. If the case is B, use 1053 * current next_tsn in case data sent to peer 1054 * has been discarded and needs retransmission. 1055 */ 1056 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1057 asoc->next_tsn = new->next_tsn; 1058 asoc->ctsn_ack_point = new->ctsn_ack_point; 1059 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1060 1061 /* Reinitialize SSN for both local streams 1062 * and peer's streams. 1063 */ 1064 sctp_ssnmap_clear(asoc->ssnmap); 1065 1066 } else { 1067 /* Add any peer addresses from the new association. */ 1068 list_for_each(pos, &new->peer.transport_addr_list) { 1069 trans = list_entry(pos, struct sctp_transport, 1070 transports); 1071 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1072 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1073 GFP_ATOMIC, trans->state); 1074 } 1075 1076 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1077 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1078 if (!asoc->ssnmap) { 1079 /* Move the ssnmap. */ 1080 asoc->ssnmap = new->ssnmap; 1081 new->ssnmap = NULL; 1082 } 1083 } 1084 } 1085 1086 /* Update the retran path for sending a retransmitted packet. 1087 * Round-robin through the active transports, else round-robin 1088 * through the inactive transports as this is the next best thing 1089 * we can try. 1090 */ 1091 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1092 { 1093 struct sctp_transport *t, *next; 1094 struct list_head *head = &asoc->peer.transport_addr_list; 1095 struct list_head *pos; 1096 1097 /* Find the next transport in a round-robin fashion. */ 1098 t = asoc->peer.retran_path; 1099 pos = &t->transports; 1100 next = NULL; 1101 1102 while (1) { 1103 /* Skip the head. */ 1104 if (pos->next == head) 1105 pos = head->next; 1106 else 1107 pos = pos->next; 1108 1109 t = list_entry(pos, struct sctp_transport, transports); 1110 1111 /* Try to find an active transport. */ 1112 1113 if ((t->state == SCTP_ACTIVE) || 1114 (t->state == SCTP_UNKNOWN)) { 1115 break; 1116 } else { 1117 /* Keep track of the next transport in case 1118 * we don't find any active transport. 1119 */ 1120 if (!next) 1121 next = t; 1122 } 1123 1124 /* We have exhausted the list, but didn't find any 1125 * other active transports. If so, use the next 1126 * transport. 1127 */ 1128 if (t == asoc->peer.retran_path) { 1129 t = next; 1130 break; 1131 } 1132 } 1133 1134 asoc->peer.retran_path = t; 1135 1136 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1137 " %p addr: ", 1138 " port: %d\n", 1139 asoc, 1140 (&t->ipaddr), 1141 ntohs(t->ipaddr.v4.sin_port)); 1142 } 1143 1144 /* Choose the transport for sending a INIT packet. */ 1145 struct sctp_transport *sctp_assoc_choose_init_transport( 1146 struct sctp_association *asoc) 1147 { 1148 struct sctp_transport *t; 1149 1150 /* Use the retran path. If the last INIT was sent over the 1151 * retran path, update the retran path and use it. 1152 */ 1153 if (!asoc->init_last_sent_to) { 1154 t = asoc->peer.active_path; 1155 } else { 1156 if (asoc->init_last_sent_to == asoc->peer.retran_path) 1157 sctp_assoc_update_retran_path(asoc); 1158 t = asoc->peer.retran_path; 1159 } 1160 1161 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1162 " %p addr: ", 1163 " port: %d\n", 1164 asoc, 1165 (&t->ipaddr), 1166 ntohs(t->ipaddr.v4.sin_port)); 1167 1168 return t; 1169 } 1170 1171 /* Choose the transport for sending a SHUTDOWN packet. */ 1172 struct sctp_transport *sctp_assoc_choose_shutdown_transport( 1173 struct sctp_association *asoc) 1174 { 1175 /* If this is the first time SHUTDOWN is sent, use the active path, 1176 * else use the retran path. If the last SHUTDOWN was sent over the 1177 * retran path, update the retran path and use it. 1178 */ 1179 if (!asoc->shutdown_last_sent_to) 1180 return asoc->peer.active_path; 1181 else { 1182 if (asoc->shutdown_last_sent_to == asoc->peer.retran_path) 1183 sctp_assoc_update_retran_path(asoc); 1184 return asoc->peer.retran_path; 1185 } 1186 1187 } 1188 1189 /* Update the association's pmtu and frag_point by going through all the 1190 * transports. This routine is called when a transport's PMTU has changed. 1191 */ 1192 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1193 { 1194 struct sctp_transport *t; 1195 struct list_head *pos; 1196 __u32 pmtu = 0; 1197 1198 if (!asoc) 1199 return; 1200 1201 /* Get the lowest pmtu of all the transports. */ 1202 list_for_each(pos, &asoc->peer.transport_addr_list) { 1203 t = list_entry(pos, struct sctp_transport, transports); 1204 if (!pmtu || (t->pathmtu < pmtu)) 1205 pmtu = t->pathmtu; 1206 } 1207 1208 if (pmtu) { 1209 struct sctp_sock *sp = sctp_sk(asoc->base.sk); 1210 asoc->pathmtu = pmtu; 1211 asoc->frag_point = sctp_frag_point(sp, pmtu); 1212 } 1213 1214 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1215 __FUNCTION__, asoc, asoc->pathmtu, asoc->frag_point); 1216 } 1217 1218 /* Should we send a SACK to update our peer? */ 1219 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1220 { 1221 switch (asoc->state) { 1222 case SCTP_STATE_ESTABLISHED: 1223 case SCTP_STATE_SHUTDOWN_PENDING: 1224 case SCTP_STATE_SHUTDOWN_RECEIVED: 1225 case SCTP_STATE_SHUTDOWN_SENT: 1226 if ((asoc->rwnd > asoc->a_rwnd) && 1227 ((asoc->rwnd - asoc->a_rwnd) >= 1228 min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu))) 1229 return 1; 1230 break; 1231 default: 1232 break; 1233 } 1234 return 0; 1235 } 1236 1237 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1238 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) 1239 { 1240 struct sctp_chunk *sack; 1241 struct timer_list *timer; 1242 1243 if (asoc->rwnd_over) { 1244 if (asoc->rwnd_over >= len) { 1245 asoc->rwnd_over -= len; 1246 } else { 1247 asoc->rwnd += (len - asoc->rwnd_over); 1248 asoc->rwnd_over = 0; 1249 } 1250 } else { 1251 asoc->rwnd += len; 1252 } 1253 1254 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1255 "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd, 1256 asoc->rwnd_over, asoc->a_rwnd); 1257 1258 /* Send a window update SACK if the rwnd has increased by at least the 1259 * minimum of the association's PMTU and half of the receive buffer. 1260 * The algorithm used is similar to the one described in 1261 * Section 4.2.3.3 of RFC 1122. 1262 */ 1263 if (sctp_peer_needs_update(asoc)) { 1264 asoc->a_rwnd = asoc->rwnd; 1265 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1266 "rwnd: %u a_rwnd: %u\n", __FUNCTION__, 1267 asoc, asoc->rwnd, asoc->a_rwnd); 1268 sack = sctp_make_sack(asoc); 1269 if (!sack) 1270 return; 1271 1272 asoc->peer.sack_needed = 0; 1273 1274 sctp_outq_tail(&asoc->outqueue, sack); 1275 1276 /* Stop the SACK timer. */ 1277 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1278 if (timer_pending(timer) && del_timer(timer)) 1279 sctp_association_put(asoc); 1280 } 1281 } 1282 1283 /* Decrease asoc's rwnd by len. */ 1284 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) 1285 { 1286 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1287 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1288 if (asoc->rwnd >= len) { 1289 asoc->rwnd -= len; 1290 } else { 1291 asoc->rwnd_over = len - asoc->rwnd; 1292 asoc->rwnd = 0; 1293 } 1294 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n", 1295 __FUNCTION__, asoc, len, asoc->rwnd, 1296 asoc->rwnd_over); 1297 } 1298 1299 /* Build the bind address list for the association based on info from the 1300 * local endpoint and the remote peer. 1301 */ 1302 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1303 gfp_t gfp) 1304 { 1305 sctp_scope_t scope; 1306 int flags; 1307 1308 /* Use scoping rules to determine the subset of addresses from 1309 * the endpoint. 1310 */ 1311 scope = sctp_scope(&asoc->peer.active_path->ipaddr); 1312 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1313 if (asoc->peer.ipv4_address) 1314 flags |= SCTP_ADDR4_PEERSUPP; 1315 if (asoc->peer.ipv6_address) 1316 flags |= SCTP_ADDR6_PEERSUPP; 1317 1318 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1319 &asoc->ep->base.bind_addr, 1320 scope, gfp, flags); 1321 } 1322 1323 /* Build the association's bind address list from the cookie. */ 1324 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1325 struct sctp_cookie *cookie, 1326 gfp_t gfp) 1327 { 1328 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1329 int var_size3 = cookie->raw_addr_list_len; 1330 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1331 1332 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1333 asoc->ep->base.bind_addr.port, gfp); 1334 } 1335 1336 /* Lookup laddr in the bind address list of an association. */ 1337 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1338 const union sctp_addr *laddr) 1339 { 1340 int found; 1341 1342 sctp_read_lock(&asoc->base.addr_lock); 1343 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1344 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1345 sctp_sk(asoc->base.sk))) { 1346 found = 1; 1347 goto out; 1348 } 1349 1350 found = 0; 1351 out: 1352 sctp_read_unlock(&asoc->base.addr_lock); 1353 return found; 1354 } 1355