1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 52 53 #include <linux/types.h> 54 #include <linux/fcntl.h> 55 #include <linux/poll.h> 56 #include <linux/init.h> 57 58 #include <linux/slab.h> 59 #include <linux/in.h> 60 #include <net/ipv6.h> 61 #include <net/sctp/sctp.h> 62 #include <net/sctp/sm.h> 63 64 /* Forward declarations for internal functions. */ 65 static void sctp_assoc_bh_rcv(struct work_struct *work); 66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 68 69 /* Keep track of the new idr low so that we don't re-use association id 70 * numbers too fast. It is protected by they idr spin lock is in the 71 * range of 1 - INT_MAX. 72 */ 73 static u32 idr_low = 1; 74 75 76 /* 1st Level Abstractions. */ 77 78 /* Initialize a new association from provided memory. */ 79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 80 const struct sctp_endpoint *ep, 81 const struct sock *sk, 82 sctp_scope_t scope, 83 gfp_t gfp) 84 { 85 struct sctp_sock *sp; 86 int i; 87 sctp_paramhdr_t *p; 88 int err; 89 90 /* Retrieve the SCTP per socket area. */ 91 sp = sctp_sk((struct sock *)sk); 92 93 /* Discarding const is appropriate here. */ 94 asoc->ep = (struct sctp_endpoint *)ep; 95 sctp_endpoint_hold(asoc->ep); 96 97 /* Hold the sock. */ 98 asoc->base.sk = (struct sock *)sk; 99 sock_hold(asoc->base.sk); 100 101 /* Initialize the common base substructure. */ 102 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 103 104 /* Initialize the object handling fields. */ 105 atomic_set(&asoc->base.refcnt, 1); 106 asoc->base.dead = 0; 107 asoc->base.malloced = 0; 108 109 /* Initialize the bind addr area. */ 110 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 111 112 asoc->state = SCTP_STATE_CLOSED; 113 114 /* Set these values from the socket values, a conversion between 115 * millsecons to seconds/microseconds must also be done. 116 */ 117 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 118 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 119 * 1000; 120 asoc->frag_point = 0; 121 asoc->user_frag = sp->user_frag; 122 123 /* Set the association max_retrans and RTO values from the 124 * socket values. 125 */ 126 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 127 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 128 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 129 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 130 131 asoc->overall_error_count = 0; 132 133 /* Initialize the association's heartbeat interval based on the 134 * sock configured value. 135 */ 136 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 137 138 /* Initialize path max retrans value. */ 139 asoc->pathmaxrxt = sp->pathmaxrxt; 140 141 /* Initialize default path MTU. */ 142 asoc->pathmtu = sp->pathmtu; 143 144 /* Set association default SACK delay */ 145 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 146 asoc->sackfreq = sp->sackfreq; 147 148 /* Set the association default flags controlling 149 * Heartbeat, SACK delay, and Path MTU Discovery. 150 */ 151 asoc->param_flags = sp->param_flags; 152 153 /* Initialize the maximum mumber of new data packets that can be sent 154 * in a burst. 155 */ 156 asoc->max_burst = sp->max_burst; 157 158 /* initialize association timers */ 159 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 160 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 162 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 164 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 165 166 /* sctpimpguide Section 2.12.2 167 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 168 * recommended value of 5 times 'RTO.Max'. 169 */ 170 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 171 = 5 * asoc->rto_max; 172 173 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 174 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 175 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 176 min_t(unsigned long, sp->autoclose, sctp_max_autoclose) * HZ; 177 178 /* Initializes the timers */ 179 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 180 setup_timer(&asoc->timers[i], sctp_timer_events[i], 181 (unsigned long)asoc); 182 183 /* Pull default initialization values from the sock options. 184 * Note: This assumes that the values have already been 185 * validated in the sock. 186 */ 187 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 188 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 189 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 190 191 asoc->max_init_timeo = 192 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 193 194 /* Allocate storage for the ssnmap after the inbound and outbound 195 * streams have been negotiated during Init. 196 */ 197 asoc->ssnmap = NULL; 198 199 /* Set the local window size for receive. 200 * This is also the rcvbuf space per association. 201 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 202 * 1500 bytes in one SCTP packet. 203 */ 204 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 205 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 206 else 207 asoc->rwnd = sk->sk_rcvbuf/2; 208 209 asoc->a_rwnd = asoc->rwnd; 210 211 asoc->rwnd_over = 0; 212 asoc->rwnd_press = 0; 213 214 /* Use my own max window until I learn something better. */ 215 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 216 217 /* Set the sndbuf size for transmit. */ 218 asoc->sndbuf_used = 0; 219 220 /* Initialize the receive memory counter */ 221 atomic_set(&asoc->rmem_alloc, 0); 222 223 init_waitqueue_head(&asoc->wait); 224 225 asoc->c.my_vtag = sctp_generate_tag(ep); 226 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 227 asoc->c.peer_vtag = 0; 228 asoc->c.my_ttag = 0; 229 asoc->c.peer_ttag = 0; 230 asoc->c.my_port = ep->base.bind_addr.port; 231 232 asoc->c.initial_tsn = sctp_generate_tsn(ep); 233 234 asoc->next_tsn = asoc->c.initial_tsn; 235 236 asoc->ctsn_ack_point = asoc->next_tsn - 1; 237 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 238 asoc->highest_sacked = asoc->ctsn_ack_point; 239 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 240 asoc->unack_data = 0; 241 242 /* ADDIP Section 4.1 Asconf Chunk Procedures 243 * 244 * When an endpoint has an ASCONF signaled change to be sent to the 245 * remote endpoint it should do the following: 246 * ... 247 * A2) a serial number should be assigned to the chunk. The serial 248 * number SHOULD be a monotonically increasing number. The serial 249 * numbers SHOULD be initialized at the start of the 250 * association to the same value as the initial TSN. 251 */ 252 asoc->addip_serial = asoc->c.initial_tsn; 253 254 INIT_LIST_HEAD(&asoc->addip_chunk_list); 255 INIT_LIST_HEAD(&asoc->asconf_ack_list); 256 257 /* Make an empty list of remote transport addresses. */ 258 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 259 asoc->peer.transport_count = 0; 260 261 /* RFC 2960 5.1 Normal Establishment of an Association 262 * 263 * After the reception of the first data chunk in an 264 * association the endpoint must immediately respond with a 265 * sack to acknowledge the data chunk. Subsequent 266 * acknowledgements should be done as described in Section 267 * 6.2. 268 * 269 * [We implement this by telling a new association that it 270 * already received one packet.] 271 */ 272 asoc->peer.sack_needed = 1; 273 asoc->peer.sack_cnt = 0; 274 275 /* Assume that the peer will tell us if he recognizes ASCONF 276 * as part of INIT exchange. 277 * The sctp_addip_noauth option is there for backward compatibilty 278 * and will revert old behavior. 279 */ 280 asoc->peer.asconf_capable = 0; 281 if (sctp_addip_noauth) 282 asoc->peer.asconf_capable = 1; 283 asoc->asconf_addr_del_pending = NULL; 284 asoc->src_out_of_asoc_ok = 0; 285 asoc->new_transport = NULL; 286 287 /* Create an input queue. */ 288 sctp_inq_init(&asoc->base.inqueue); 289 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 290 291 /* Create an output queue. */ 292 sctp_outq_init(asoc, &asoc->outqueue); 293 294 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 295 goto fail_init; 296 297 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 298 299 asoc->need_ecne = 0; 300 301 asoc->assoc_id = 0; 302 303 /* Assume that peer would support both address types unless we are 304 * told otherwise. 305 */ 306 asoc->peer.ipv4_address = 1; 307 if (asoc->base.sk->sk_family == PF_INET6) 308 asoc->peer.ipv6_address = 1; 309 INIT_LIST_HEAD(&asoc->asocs); 310 311 asoc->autoclose = sp->autoclose; 312 313 asoc->default_stream = sp->default_stream; 314 asoc->default_ppid = sp->default_ppid; 315 asoc->default_flags = sp->default_flags; 316 asoc->default_context = sp->default_context; 317 asoc->default_timetolive = sp->default_timetolive; 318 asoc->default_rcv_context = sp->default_rcv_context; 319 320 /* AUTH related initializations */ 321 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 322 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 323 if (err) 324 goto fail_init; 325 326 asoc->active_key_id = ep->active_key_id; 327 asoc->asoc_shared_key = NULL; 328 329 asoc->default_hmac_id = 0; 330 /* Save the hmacs and chunks list into this association */ 331 if (ep->auth_hmacs_list) 332 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 333 ntohs(ep->auth_hmacs_list->param_hdr.length)); 334 if (ep->auth_chunk_list) 335 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 336 ntohs(ep->auth_chunk_list->param_hdr.length)); 337 338 /* Get the AUTH random number for this association */ 339 p = (sctp_paramhdr_t *)asoc->c.auth_random; 340 p->type = SCTP_PARAM_RANDOM; 341 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 342 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 343 344 return asoc; 345 346 fail_init: 347 sctp_endpoint_put(asoc->ep); 348 sock_put(asoc->base.sk); 349 return NULL; 350 } 351 352 /* Allocate and initialize a new association */ 353 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 354 const struct sock *sk, 355 sctp_scope_t scope, 356 gfp_t gfp) 357 { 358 struct sctp_association *asoc; 359 360 asoc = t_new(struct sctp_association, gfp); 361 if (!asoc) 362 goto fail; 363 364 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 365 goto fail_init; 366 367 asoc->base.malloced = 1; 368 SCTP_DBG_OBJCNT_INC(assoc); 369 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 370 371 return asoc; 372 373 fail_init: 374 kfree(asoc); 375 fail: 376 return NULL; 377 } 378 379 /* Free this association if possible. There may still be users, so 380 * the actual deallocation may be delayed. 381 */ 382 void sctp_association_free(struct sctp_association *asoc) 383 { 384 struct sock *sk = asoc->base.sk; 385 struct sctp_transport *transport; 386 struct list_head *pos, *temp; 387 int i; 388 389 /* Only real associations count against the endpoint, so 390 * don't bother for if this is a temporary association. 391 */ 392 if (!asoc->temp) { 393 list_del(&asoc->asocs); 394 395 /* Decrement the backlog value for a TCP-style listening 396 * socket. 397 */ 398 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 399 sk->sk_ack_backlog--; 400 } 401 402 /* Mark as dead, so other users can know this structure is 403 * going away. 404 */ 405 asoc->base.dead = 1; 406 407 /* Dispose of any data lying around in the outqueue. */ 408 sctp_outq_free(&asoc->outqueue); 409 410 /* Dispose of any pending messages for the upper layer. */ 411 sctp_ulpq_free(&asoc->ulpq); 412 413 /* Dispose of any pending chunks on the inqueue. */ 414 sctp_inq_free(&asoc->base.inqueue); 415 416 sctp_tsnmap_free(&asoc->peer.tsn_map); 417 418 /* Free ssnmap storage. */ 419 sctp_ssnmap_free(asoc->ssnmap); 420 421 /* Clean up the bound address list. */ 422 sctp_bind_addr_free(&asoc->base.bind_addr); 423 424 /* Do we need to go through all of our timers and 425 * delete them? To be safe we will try to delete all, but we 426 * should be able to go through and make a guess based 427 * on our state. 428 */ 429 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 430 if (timer_pending(&asoc->timers[i]) && 431 del_timer(&asoc->timers[i])) 432 sctp_association_put(asoc); 433 } 434 435 /* Free peer's cached cookie. */ 436 kfree(asoc->peer.cookie); 437 kfree(asoc->peer.peer_random); 438 kfree(asoc->peer.peer_chunks); 439 kfree(asoc->peer.peer_hmacs); 440 441 /* Release the transport structures. */ 442 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 443 transport = list_entry(pos, struct sctp_transport, transports); 444 list_del(pos); 445 sctp_transport_free(transport); 446 } 447 448 asoc->peer.transport_count = 0; 449 450 sctp_asconf_queue_teardown(asoc); 451 452 /* Free pending address space being deleted */ 453 if (asoc->asconf_addr_del_pending != NULL) 454 kfree(asoc->asconf_addr_del_pending); 455 456 /* AUTH - Free the endpoint shared keys */ 457 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 458 459 /* AUTH - Free the association shared key */ 460 sctp_auth_key_put(asoc->asoc_shared_key); 461 462 sctp_association_put(asoc); 463 } 464 465 /* Cleanup and free up an association. */ 466 static void sctp_association_destroy(struct sctp_association *asoc) 467 { 468 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 469 470 sctp_endpoint_put(asoc->ep); 471 sock_put(asoc->base.sk); 472 473 if (asoc->assoc_id != 0) { 474 spin_lock_bh(&sctp_assocs_id_lock); 475 idr_remove(&sctp_assocs_id, asoc->assoc_id); 476 spin_unlock_bh(&sctp_assocs_id_lock); 477 } 478 479 WARN_ON(atomic_read(&asoc->rmem_alloc)); 480 481 if (asoc->base.malloced) { 482 kfree(asoc); 483 SCTP_DBG_OBJCNT_DEC(assoc); 484 } 485 } 486 487 /* Change the primary destination address for the peer. */ 488 void sctp_assoc_set_primary(struct sctp_association *asoc, 489 struct sctp_transport *transport) 490 { 491 int changeover = 0; 492 493 /* it's a changeover only if we already have a primary path 494 * that we are changing 495 */ 496 if (asoc->peer.primary_path != NULL && 497 asoc->peer.primary_path != transport) 498 changeover = 1 ; 499 500 asoc->peer.primary_path = transport; 501 502 /* Set a default msg_name for events. */ 503 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 504 sizeof(union sctp_addr)); 505 506 /* If the primary path is changing, assume that the 507 * user wants to use this new path. 508 */ 509 if ((transport->state == SCTP_ACTIVE) || 510 (transport->state == SCTP_UNKNOWN)) 511 asoc->peer.active_path = transport; 512 513 /* 514 * SFR-CACC algorithm: 515 * Upon the receipt of a request to change the primary 516 * destination address, on the data structure for the new 517 * primary destination, the sender MUST do the following: 518 * 519 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 520 * to this destination address earlier. The sender MUST set 521 * CYCLING_CHANGEOVER to indicate that this switch is a 522 * double switch to the same destination address. 523 * 524 * Really, only bother is we have data queued or outstanding on 525 * the association. 526 */ 527 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 528 return; 529 530 if (transport->cacc.changeover_active) 531 transport->cacc.cycling_changeover = changeover; 532 533 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 534 * a changeover has occurred. 535 */ 536 transport->cacc.changeover_active = changeover; 537 538 /* 3) The sender MUST store the next TSN to be sent in 539 * next_tsn_at_change. 540 */ 541 transport->cacc.next_tsn_at_change = asoc->next_tsn; 542 } 543 544 /* Remove a transport from an association. */ 545 void sctp_assoc_rm_peer(struct sctp_association *asoc, 546 struct sctp_transport *peer) 547 { 548 struct list_head *pos; 549 struct sctp_transport *transport; 550 551 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 552 " port: %d\n", 553 asoc, 554 (&peer->ipaddr), 555 ntohs(peer->ipaddr.v4.sin_port)); 556 557 /* If we are to remove the current retran_path, update it 558 * to the next peer before removing this peer from the list. 559 */ 560 if (asoc->peer.retran_path == peer) 561 sctp_assoc_update_retran_path(asoc); 562 563 /* Remove this peer from the list. */ 564 list_del(&peer->transports); 565 566 /* Get the first transport of asoc. */ 567 pos = asoc->peer.transport_addr_list.next; 568 transport = list_entry(pos, struct sctp_transport, transports); 569 570 /* Update any entries that match the peer to be deleted. */ 571 if (asoc->peer.primary_path == peer) 572 sctp_assoc_set_primary(asoc, transport); 573 if (asoc->peer.active_path == peer) 574 asoc->peer.active_path = transport; 575 if (asoc->peer.retran_path == peer) 576 asoc->peer.retran_path = transport; 577 if (asoc->peer.last_data_from == peer) 578 asoc->peer.last_data_from = transport; 579 580 /* If we remove the transport an INIT was last sent to, set it to 581 * NULL. Combined with the update of the retran path above, this 582 * will cause the next INIT to be sent to the next available 583 * transport, maintaining the cycle. 584 */ 585 if (asoc->init_last_sent_to == peer) 586 asoc->init_last_sent_to = NULL; 587 588 /* If we remove the transport an SHUTDOWN was last sent to, set it 589 * to NULL. Combined with the update of the retran path above, this 590 * will cause the next SHUTDOWN to be sent to the next available 591 * transport, maintaining the cycle. 592 */ 593 if (asoc->shutdown_last_sent_to == peer) 594 asoc->shutdown_last_sent_to = NULL; 595 596 /* If we remove the transport an ASCONF was last sent to, set it to 597 * NULL. 598 */ 599 if (asoc->addip_last_asconf && 600 asoc->addip_last_asconf->transport == peer) 601 asoc->addip_last_asconf->transport = NULL; 602 603 /* If we have something on the transmitted list, we have to 604 * save it off. The best place is the active path. 605 */ 606 if (!list_empty(&peer->transmitted)) { 607 struct sctp_transport *active = asoc->peer.active_path; 608 struct sctp_chunk *ch; 609 610 /* Reset the transport of each chunk on this list */ 611 list_for_each_entry(ch, &peer->transmitted, 612 transmitted_list) { 613 ch->transport = NULL; 614 ch->rtt_in_progress = 0; 615 } 616 617 list_splice_tail_init(&peer->transmitted, 618 &active->transmitted); 619 620 /* Start a T3 timer here in case it wasn't running so 621 * that these migrated packets have a chance to get 622 * retrnasmitted. 623 */ 624 if (!timer_pending(&active->T3_rtx_timer)) 625 if (!mod_timer(&active->T3_rtx_timer, 626 jiffies + active->rto)) 627 sctp_transport_hold(active); 628 } 629 630 asoc->peer.transport_count--; 631 632 sctp_transport_free(peer); 633 } 634 635 /* Add a transport address to an association. */ 636 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 637 const union sctp_addr *addr, 638 const gfp_t gfp, 639 const int peer_state) 640 { 641 struct sctp_transport *peer; 642 struct sctp_sock *sp; 643 unsigned short port; 644 645 sp = sctp_sk(asoc->base.sk); 646 647 /* AF_INET and AF_INET6 share common port field. */ 648 port = ntohs(addr->v4.sin_port); 649 650 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 651 " port: %d state:%d\n", 652 asoc, 653 addr, 654 port, 655 peer_state); 656 657 /* Set the port if it has not been set yet. */ 658 if (0 == asoc->peer.port) 659 asoc->peer.port = port; 660 661 /* Check to see if this is a duplicate. */ 662 peer = sctp_assoc_lookup_paddr(asoc, addr); 663 if (peer) { 664 /* An UNKNOWN state is only set on transports added by 665 * user in sctp_connectx() call. Such transports should be 666 * considered CONFIRMED per RFC 4960, Section 5.4. 667 */ 668 if (peer->state == SCTP_UNKNOWN) { 669 peer->state = SCTP_ACTIVE; 670 } 671 return peer; 672 } 673 674 peer = sctp_transport_new(addr, gfp); 675 if (!peer) 676 return NULL; 677 678 sctp_transport_set_owner(peer, asoc); 679 680 /* Initialize the peer's heartbeat interval based on the 681 * association configured value. 682 */ 683 peer->hbinterval = asoc->hbinterval; 684 685 /* Set the path max_retrans. */ 686 peer->pathmaxrxt = asoc->pathmaxrxt; 687 688 /* Initialize the peer's SACK delay timeout based on the 689 * association configured value. 690 */ 691 peer->sackdelay = asoc->sackdelay; 692 peer->sackfreq = asoc->sackfreq; 693 694 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 695 * based on association setting. 696 */ 697 peer->param_flags = asoc->param_flags; 698 699 sctp_transport_route(peer, NULL, sp); 700 701 /* Initialize the pmtu of the transport. */ 702 if (peer->param_flags & SPP_PMTUD_DISABLE) { 703 if (asoc->pathmtu) 704 peer->pathmtu = asoc->pathmtu; 705 else 706 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 707 } 708 709 /* If this is the first transport addr on this association, 710 * initialize the association PMTU to the peer's PMTU. 711 * If not and the current association PMTU is higher than the new 712 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 713 */ 714 if (asoc->pathmtu) 715 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 716 else 717 asoc->pathmtu = peer->pathmtu; 718 719 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 720 "%d\n", asoc, asoc->pathmtu); 721 peer->pmtu_pending = 0; 722 723 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 724 725 /* The asoc->peer.port might not be meaningful yet, but 726 * initialize the packet structure anyway. 727 */ 728 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 729 asoc->peer.port); 730 731 /* 7.2.1 Slow-Start 732 * 733 * o The initial cwnd before DATA transmission or after a sufficiently 734 * long idle period MUST be set to 735 * min(4*MTU, max(2*MTU, 4380 bytes)) 736 * 737 * o The initial value of ssthresh MAY be arbitrarily high 738 * (for example, implementations MAY use the size of the 739 * receiver advertised window). 740 */ 741 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 742 743 /* At this point, we may not have the receiver's advertised window, 744 * so initialize ssthresh to the default value and it will be set 745 * later when we process the INIT. 746 */ 747 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 748 749 peer->partial_bytes_acked = 0; 750 peer->flight_size = 0; 751 peer->burst_limited = 0; 752 753 /* Set the transport's RTO.initial value */ 754 peer->rto = asoc->rto_initial; 755 756 /* Set the peer's active state. */ 757 peer->state = peer_state; 758 759 /* Attach the remote transport to our asoc. */ 760 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 761 asoc->peer.transport_count++; 762 763 /* If we do not yet have a primary path, set one. */ 764 if (!asoc->peer.primary_path) { 765 sctp_assoc_set_primary(asoc, peer); 766 asoc->peer.retran_path = peer; 767 } 768 769 if (asoc->peer.active_path == asoc->peer.retran_path && 770 peer->state != SCTP_UNCONFIRMED) { 771 asoc->peer.retran_path = peer; 772 } 773 774 return peer; 775 } 776 777 /* Delete a transport address from an association. */ 778 void sctp_assoc_del_peer(struct sctp_association *asoc, 779 const union sctp_addr *addr) 780 { 781 struct list_head *pos; 782 struct list_head *temp; 783 struct sctp_transport *transport; 784 785 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 786 transport = list_entry(pos, struct sctp_transport, transports); 787 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 788 /* Do book keeping for removing the peer and free it. */ 789 sctp_assoc_rm_peer(asoc, transport); 790 break; 791 } 792 } 793 } 794 795 /* Lookup a transport by address. */ 796 struct sctp_transport *sctp_assoc_lookup_paddr( 797 const struct sctp_association *asoc, 798 const union sctp_addr *address) 799 { 800 struct sctp_transport *t; 801 802 /* Cycle through all transports searching for a peer address. */ 803 804 list_for_each_entry(t, &asoc->peer.transport_addr_list, 805 transports) { 806 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 807 return t; 808 } 809 810 return NULL; 811 } 812 813 /* Remove all transports except a give one */ 814 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 815 struct sctp_transport *primary) 816 { 817 struct sctp_transport *temp; 818 struct sctp_transport *t; 819 820 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 821 transports) { 822 /* if the current transport is not the primary one, delete it */ 823 if (t != primary) 824 sctp_assoc_rm_peer(asoc, t); 825 } 826 } 827 828 /* Engage in transport control operations. 829 * Mark the transport up or down and send a notification to the user. 830 * Select and update the new active and retran paths. 831 */ 832 void sctp_assoc_control_transport(struct sctp_association *asoc, 833 struct sctp_transport *transport, 834 sctp_transport_cmd_t command, 835 sctp_sn_error_t error) 836 { 837 struct sctp_transport *t = NULL; 838 struct sctp_transport *first; 839 struct sctp_transport *second; 840 struct sctp_ulpevent *event; 841 struct sockaddr_storage addr; 842 int spc_state = 0; 843 844 /* Record the transition on the transport. */ 845 switch (command) { 846 case SCTP_TRANSPORT_UP: 847 /* If we are moving from UNCONFIRMED state due 848 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 849 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 850 */ 851 if (SCTP_UNCONFIRMED == transport->state && 852 SCTP_HEARTBEAT_SUCCESS == error) 853 spc_state = SCTP_ADDR_CONFIRMED; 854 else 855 spc_state = SCTP_ADDR_AVAILABLE; 856 transport->state = SCTP_ACTIVE; 857 break; 858 859 case SCTP_TRANSPORT_DOWN: 860 /* If the transport was never confirmed, do not transition it 861 * to inactive state. Also, release the cached route since 862 * there may be a better route next time. 863 */ 864 if (transport->state != SCTP_UNCONFIRMED) 865 transport->state = SCTP_INACTIVE; 866 else { 867 dst_release(transport->dst); 868 transport->dst = NULL; 869 } 870 871 spc_state = SCTP_ADDR_UNREACHABLE; 872 break; 873 874 default: 875 return; 876 } 877 878 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 879 * user. 880 */ 881 memset(&addr, 0, sizeof(struct sockaddr_storage)); 882 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len); 883 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 884 0, spc_state, error, GFP_ATOMIC); 885 if (event) 886 sctp_ulpq_tail_event(&asoc->ulpq, event); 887 888 /* Select new active and retran paths. */ 889 890 /* Look for the two most recently used active transports. 891 * 892 * This code produces the wrong ordering whenever jiffies 893 * rolls over, but we still get usable transports, so we don't 894 * worry about it. 895 */ 896 first = NULL; second = NULL; 897 898 list_for_each_entry(t, &asoc->peer.transport_addr_list, 899 transports) { 900 901 if ((t->state == SCTP_INACTIVE) || 902 (t->state == SCTP_UNCONFIRMED)) 903 continue; 904 if (!first || t->last_time_heard > first->last_time_heard) { 905 second = first; 906 first = t; 907 } 908 if (!second || t->last_time_heard > second->last_time_heard) 909 second = t; 910 } 911 912 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 913 * 914 * By default, an endpoint should always transmit to the 915 * primary path, unless the SCTP user explicitly specifies the 916 * destination transport address (and possibly source 917 * transport address) to use. 918 * 919 * [If the primary is active but not most recent, bump the most 920 * recently used transport.] 921 */ 922 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 923 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 924 first != asoc->peer.primary_path) { 925 second = first; 926 first = asoc->peer.primary_path; 927 } 928 929 /* If we failed to find a usable transport, just camp on the 930 * primary, even if it is inactive. 931 */ 932 if (!first) { 933 first = asoc->peer.primary_path; 934 second = asoc->peer.primary_path; 935 } 936 937 /* Set the active and retran transports. */ 938 asoc->peer.active_path = first; 939 asoc->peer.retran_path = second; 940 } 941 942 /* Hold a reference to an association. */ 943 void sctp_association_hold(struct sctp_association *asoc) 944 { 945 atomic_inc(&asoc->base.refcnt); 946 } 947 948 /* Release a reference to an association and cleanup 949 * if there are no more references. 950 */ 951 void sctp_association_put(struct sctp_association *asoc) 952 { 953 if (atomic_dec_and_test(&asoc->base.refcnt)) 954 sctp_association_destroy(asoc); 955 } 956 957 /* Allocate the next TSN, Transmission Sequence Number, for the given 958 * association. 959 */ 960 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 961 { 962 /* From Section 1.6 Serial Number Arithmetic: 963 * Transmission Sequence Numbers wrap around when they reach 964 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 965 * after transmitting TSN = 2*32 - 1 is TSN = 0. 966 */ 967 __u32 retval = asoc->next_tsn; 968 asoc->next_tsn++; 969 asoc->unack_data++; 970 971 return retval; 972 } 973 974 /* Compare two addresses to see if they match. Wildcard addresses 975 * only match themselves. 976 */ 977 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 978 const union sctp_addr *ss2) 979 { 980 struct sctp_af *af; 981 982 af = sctp_get_af_specific(ss1->sa.sa_family); 983 if (unlikely(!af)) 984 return 0; 985 986 return af->cmp_addr(ss1, ss2); 987 } 988 989 /* Return an ecne chunk to get prepended to a packet. 990 * Note: We are sly and return a shared, prealloced chunk. FIXME: 991 * No we don't, but we could/should. 992 */ 993 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 994 { 995 struct sctp_chunk *chunk; 996 997 /* Send ECNE if needed. 998 * Not being able to allocate a chunk here is not deadly. 999 */ 1000 if (asoc->need_ecne) 1001 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 1002 else 1003 chunk = NULL; 1004 1005 return chunk; 1006 } 1007 1008 /* 1009 * Find which transport this TSN was sent on. 1010 */ 1011 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 1012 __u32 tsn) 1013 { 1014 struct sctp_transport *active; 1015 struct sctp_transport *match; 1016 struct sctp_transport *transport; 1017 struct sctp_chunk *chunk; 1018 __be32 key = htonl(tsn); 1019 1020 match = NULL; 1021 1022 /* 1023 * FIXME: In general, find a more efficient data structure for 1024 * searching. 1025 */ 1026 1027 /* 1028 * The general strategy is to search each transport's transmitted 1029 * list. Return which transport this TSN lives on. 1030 * 1031 * Let's be hopeful and check the active_path first. 1032 * Another optimization would be to know if there is only one 1033 * outbound path and not have to look for the TSN at all. 1034 * 1035 */ 1036 1037 active = asoc->peer.active_path; 1038 1039 list_for_each_entry(chunk, &active->transmitted, 1040 transmitted_list) { 1041 1042 if (key == chunk->subh.data_hdr->tsn) { 1043 match = active; 1044 goto out; 1045 } 1046 } 1047 1048 /* If not found, go search all the other transports. */ 1049 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1050 transports) { 1051 1052 if (transport == active) 1053 break; 1054 list_for_each_entry(chunk, &transport->transmitted, 1055 transmitted_list) { 1056 if (key == chunk->subh.data_hdr->tsn) { 1057 match = transport; 1058 goto out; 1059 } 1060 } 1061 } 1062 out: 1063 return match; 1064 } 1065 1066 /* Is this the association we are looking for? */ 1067 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1068 const union sctp_addr *laddr, 1069 const union sctp_addr *paddr) 1070 { 1071 struct sctp_transport *transport; 1072 1073 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1074 (htons(asoc->peer.port) == paddr->v4.sin_port)) { 1075 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1076 if (!transport) 1077 goto out; 1078 1079 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1080 sctp_sk(asoc->base.sk))) 1081 goto out; 1082 } 1083 transport = NULL; 1084 1085 out: 1086 return transport; 1087 } 1088 1089 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1090 static void sctp_assoc_bh_rcv(struct work_struct *work) 1091 { 1092 struct sctp_association *asoc = 1093 container_of(work, struct sctp_association, 1094 base.inqueue.immediate); 1095 struct sctp_endpoint *ep; 1096 struct sctp_chunk *chunk; 1097 struct sctp_inq *inqueue; 1098 int state; 1099 sctp_subtype_t subtype; 1100 int error = 0; 1101 1102 /* The association should be held so we should be safe. */ 1103 ep = asoc->ep; 1104 1105 inqueue = &asoc->base.inqueue; 1106 sctp_association_hold(asoc); 1107 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1108 state = asoc->state; 1109 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1110 1111 /* SCTP-AUTH, Section 6.3: 1112 * The receiver has a list of chunk types which it expects 1113 * to be received only after an AUTH-chunk. This list has 1114 * been sent to the peer during the association setup. It 1115 * MUST silently discard these chunks if they are not placed 1116 * after an AUTH chunk in the packet. 1117 */ 1118 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1119 continue; 1120 1121 /* Remember where the last DATA chunk came from so we 1122 * know where to send the SACK. 1123 */ 1124 if (sctp_chunk_is_data(chunk)) 1125 asoc->peer.last_data_from = chunk->transport; 1126 else 1127 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 1128 1129 if (chunk->transport) 1130 chunk->transport->last_time_heard = jiffies; 1131 1132 /* Run through the state machine. */ 1133 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 1134 state, ep, asoc, chunk, GFP_ATOMIC); 1135 1136 /* Check to see if the association is freed in response to 1137 * the incoming chunk. If so, get out of the while loop. 1138 */ 1139 if (asoc->base.dead) 1140 break; 1141 1142 /* If there is an error on chunk, discard this packet. */ 1143 if (error && chunk) 1144 chunk->pdiscard = 1; 1145 } 1146 sctp_association_put(asoc); 1147 } 1148 1149 /* This routine moves an association from its old sk to a new sk. */ 1150 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1151 { 1152 struct sctp_sock *newsp = sctp_sk(newsk); 1153 struct sock *oldsk = assoc->base.sk; 1154 1155 /* Delete the association from the old endpoint's list of 1156 * associations. 1157 */ 1158 list_del_init(&assoc->asocs); 1159 1160 /* Decrement the backlog value for a TCP-style socket. */ 1161 if (sctp_style(oldsk, TCP)) 1162 oldsk->sk_ack_backlog--; 1163 1164 /* Release references to the old endpoint and the sock. */ 1165 sctp_endpoint_put(assoc->ep); 1166 sock_put(assoc->base.sk); 1167 1168 /* Get a reference to the new endpoint. */ 1169 assoc->ep = newsp->ep; 1170 sctp_endpoint_hold(assoc->ep); 1171 1172 /* Get a reference to the new sock. */ 1173 assoc->base.sk = newsk; 1174 sock_hold(assoc->base.sk); 1175 1176 /* Add the association to the new endpoint's list of associations. */ 1177 sctp_endpoint_add_asoc(newsp->ep, assoc); 1178 } 1179 1180 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1181 void sctp_assoc_update(struct sctp_association *asoc, 1182 struct sctp_association *new) 1183 { 1184 struct sctp_transport *trans; 1185 struct list_head *pos, *temp; 1186 1187 /* Copy in new parameters of peer. */ 1188 asoc->c = new->c; 1189 asoc->peer.rwnd = new->peer.rwnd; 1190 asoc->peer.sack_needed = new->peer.sack_needed; 1191 asoc->peer.i = new->peer.i; 1192 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1193 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1194 1195 /* Remove any peer addresses not present in the new association. */ 1196 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1197 trans = list_entry(pos, struct sctp_transport, transports); 1198 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1199 sctp_assoc_rm_peer(asoc, trans); 1200 continue; 1201 } 1202 1203 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1204 sctp_transport_reset(trans); 1205 } 1206 1207 /* If the case is A (association restart), use 1208 * initial_tsn as next_tsn. If the case is B, use 1209 * current next_tsn in case data sent to peer 1210 * has been discarded and needs retransmission. 1211 */ 1212 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1213 asoc->next_tsn = new->next_tsn; 1214 asoc->ctsn_ack_point = new->ctsn_ack_point; 1215 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1216 1217 /* Reinitialize SSN for both local streams 1218 * and peer's streams. 1219 */ 1220 sctp_ssnmap_clear(asoc->ssnmap); 1221 1222 /* Flush the ULP reassembly and ordered queue. 1223 * Any data there will now be stale and will 1224 * cause problems. 1225 */ 1226 sctp_ulpq_flush(&asoc->ulpq); 1227 1228 /* reset the overall association error count so 1229 * that the restarted association doesn't get torn 1230 * down on the next retransmission timer. 1231 */ 1232 asoc->overall_error_count = 0; 1233 1234 } else { 1235 /* Add any peer addresses from the new association. */ 1236 list_for_each_entry(trans, &new->peer.transport_addr_list, 1237 transports) { 1238 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1239 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1240 GFP_ATOMIC, trans->state); 1241 } 1242 1243 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1244 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1245 if (!asoc->ssnmap) { 1246 /* Move the ssnmap. */ 1247 asoc->ssnmap = new->ssnmap; 1248 new->ssnmap = NULL; 1249 } 1250 1251 if (!asoc->assoc_id) { 1252 /* get a new association id since we don't have one 1253 * yet. 1254 */ 1255 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1256 } 1257 } 1258 1259 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1260 * and also move the association shared keys over 1261 */ 1262 kfree(asoc->peer.peer_random); 1263 asoc->peer.peer_random = new->peer.peer_random; 1264 new->peer.peer_random = NULL; 1265 1266 kfree(asoc->peer.peer_chunks); 1267 asoc->peer.peer_chunks = new->peer.peer_chunks; 1268 new->peer.peer_chunks = NULL; 1269 1270 kfree(asoc->peer.peer_hmacs); 1271 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1272 new->peer.peer_hmacs = NULL; 1273 1274 sctp_auth_key_put(asoc->asoc_shared_key); 1275 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1276 } 1277 1278 /* Update the retran path for sending a retransmitted packet. 1279 * Round-robin through the active transports, else round-robin 1280 * through the inactive transports as this is the next best thing 1281 * we can try. 1282 */ 1283 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1284 { 1285 struct sctp_transport *t, *next; 1286 struct list_head *head = &asoc->peer.transport_addr_list; 1287 struct list_head *pos; 1288 1289 if (asoc->peer.transport_count == 1) 1290 return; 1291 1292 /* Find the next transport in a round-robin fashion. */ 1293 t = asoc->peer.retran_path; 1294 pos = &t->transports; 1295 next = NULL; 1296 1297 while (1) { 1298 /* Skip the head. */ 1299 if (pos->next == head) 1300 pos = head->next; 1301 else 1302 pos = pos->next; 1303 1304 t = list_entry(pos, struct sctp_transport, transports); 1305 1306 /* We have exhausted the list, but didn't find any 1307 * other active transports. If so, use the next 1308 * transport. 1309 */ 1310 if (t == asoc->peer.retran_path) { 1311 t = next; 1312 break; 1313 } 1314 1315 /* Try to find an active transport. */ 1316 1317 if ((t->state == SCTP_ACTIVE) || 1318 (t->state == SCTP_UNKNOWN)) { 1319 break; 1320 } else { 1321 /* Keep track of the next transport in case 1322 * we don't find any active transport. 1323 */ 1324 if (t->state != SCTP_UNCONFIRMED && !next) 1325 next = t; 1326 } 1327 } 1328 1329 if (t) 1330 asoc->peer.retran_path = t; 1331 else 1332 t = asoc->peer.retran_path; 1333 1334 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1335 " %p addr: ", 1336 " port: %d\n", 1337 asoc, 1338 (&t->ipaddr), 1339 ntohs(t->ipaddr.v4.sin_port)); 1340 } 1341 1342 /* Choose the transport for sending retransmit packet. */ 1343 struct sctp_transport *sctp_assoc_choose_alter_transport( 1344 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1345 { 1346 /* If this is the first time packet is sent, use the active path, 1347 * else use the retran path. If the last packet was sent over the 1348 * retran path, update the retran path and use it. 1349 */ 1350 if (!last_sent_to) 1351 return asoc->peer.active_path; 1352 else { 1353 if (last_sent_to == asoc->peer.retran_path) 1354 sctp_assoc_update_retran_path(asoc); 1355 return asoc->peer.retran_path; 1356 } 1357 } 1358 1359 /* Update the association's pmtu and frag_point by going through all the 1360 * transports. This routine is called when a transport's PMTU has changed. 1361 */ 1362 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1363 { 1364 struct sctp_transport *t; 1365 __u32 pmtu = 0; 1366 1367 if (!asoc) 1368 return; 1369 1370 /* Get the lowest pmtu of all the transports. */ 1371 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1372 transports) { 1373 if (t->pmtu_pending && t->dst) { 1374 sctp_transport_update_pmtu(t, dst_mtu(t->dst)); 1375 t->pmtu_pending = 0; 1376 } 1377 if (!pmtu || (t->pathmtu < pmtu)) 1378 pmtu = t->pathmtu; 1379 } 1380 1381 if (pmtu) { 1382 asoc->pathmtu = pmtu; 1383 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1384 } 1385 1386 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1387 __func__, asoc, asoc->pathmtu, asoc->frag_point); 1388 } 1389 1390 /* Should we send a SACK to update our peer? */ 1391 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1392 { 1393 switch (asoc->state) { 1394 case SCTP_STATE_ESTABLISHED: 1395 case SCTP_STATE_SHUTDOWN_PENDING: 1396 case SCTP_STATE_SHUTDOWN_RECEIVED: 1397 case SCTP_STATE_SHUTDOWN_SENT: 1398 if ((asoc->rwnd > asoc->a_rwnd) && 1399 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1400 (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift), 1401 asoc->pathmtu))) 1402 return 1; 1403 break; 1404 default: 1405 break; 1406 } 1407 return 0; 1408 } 1409 1410 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1411 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) 1412 { 1413 struct sctp_chunk *sack; 1414 struct timer_list *timer; 1415 1416 if (asoc->rwnd_over) { 1417 if (asoc->rwnd_over >= len) { 1418 asoc->rwnd_over -= len; 1419 } else { 1420 asoc->rwnd += (len - asoc->rwnd_over); 1421 asoc->rwnd_over = 0; 1422 } 1423 } else { 1424 asoc->rwnd += len; 1425 } 1426 1427 /* If we had window pressure, start recovering it 1428 * once our rwnd had reached the accumulated pressure 1429 * threshold. The idea is to recover slowly, but up 1430 * to the initial advertised window. 1431 */ 1432 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1433 int change = min(asoc->pathmtu, asoc->rwnd_press); 1434 asoc->rwnd += change; 1435 asoc->rwnd_press -= change; 1436 } 1437 1438 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1439 "- %u\n", __func__, asoc, len, asoc->rwnd, 1440 asoc->rwnd_over, asoc->a_rwnd); 1441 1442 /* Send a window update SACK if the rwnd has increased by at least the 1443 * minimum of the association's PMTU and half of the receive buffer. 1444 * The algorithm used is similar to the one described in 1445 * Section 4.2.3.3 of RFC 1122. 1446 */ 1447 if (sctp_peer_needs_update(asoc)) { 1448 asoc->a_rwnd = asoc->rwnd; 1449 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1450 "rwnd: %u a_rwnd: %u\n", __func__, 1451 asoc, asoc->rwnd, asoc->a_rwnd); 1452 sack = sctp_make_sack(asoc); 1453 if (!sack) 1454 return; 1455 1456 asoc->peer.sack_needed = 0; 1457 1458 sctp_outq_tail(&asoc->outqueue, sack); 1459 1460 /* Stop the SACK timer. */ 1461 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1462 if (timer_pending(timer) && del_timer(timer)) 1463 sctp_association_put(asoc); 1464 } 1465 } 1466 1467 /* Decrease asoc's rwnd by len. */ 1468 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) 1469 { 1470 int rx_count; 1471 int over = 0; 1472 1473 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1474 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1475 1476 if (asoc->ep->rcvbuf_policy) 1477 rx_count = atomic_read(&asoc->rmem_alloc); 1478 else 1479 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1480 1481 /* If we've reached or overflowed our receive buffer, announce 1482 * a 0 rwnd if rwnd would still be positive. Store the 1483 * the pottential pressure overflow so that the window can be restored 1484 * back to original value. 1485 */ 1486 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1487 over = 1; 1488 1489 if (asoc->rwnd >= len) { 1490 asoc->rwnd -= len; 1491 if (over) { 1492 asoc->rwnd_press += asoc->rwnd; 1493 asoc->rwnd = 0; 1494 } 1495 } else { 1496 asoc->rwnd_over = len - asoc->rwnd; 1497 asoc->rwnd = 0; 1498 } 1499 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n", 1500 __func__, asoc, len, asoc->rwnd, 1501 asoc->rwnd_over, asoc->rwnd_press); 1502 } 1503 1504 /* Build the bind address list for the association based on info from the 1505 * local endpoint and the remote peer. 1506 */ 1507 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1508 sctp_scope_t scope, gfp_t gfp) 1509 { 1510 int flags; 1511 1512 /* Use scoping rules to determine the subset of addresses from 1513 * the endpoint. 1514 */ 1515 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1516 if (asoc->peer.ipv4_address) 1517 flags |= SCTP_ADDR4_PEERSUPP; 1518 if (asoc->peer.ipv6_address) 1519 flags |= SCTP_ADDR6_PEERSUPP; 1520 1521 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1522 &asoc->ep->base.bind_addr, 1523 scope, gfp, flags); 1524 } 1525 1526 /* Build the association's bind address list from the cookie. */ 1527 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1528 struct sctp_cookie *cookie, 1529 gfp_t gfp) 1530 { 1531 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1532 int var_size3 = cookie->raw_addr_list_len; 1533 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1534 1535 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1536 asoc->ep->base.bind_addr.port, gfp); 1537 } 1538 1539 /* Lookup laddr in the bind address list of an association. */ 1540 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1541 const union sctp_addr *laddr) 1542 { 1543 int found = 0; 1544 1545 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1546 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1547 sctp_sk(asoc->base.sk))) 1548 found = 1; 1549 1550 return found; 1551 } 1552 1553 /* Set an association id for a given association */ 1554 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1555 { 1556 int assoc_id; 1557 int error = 0; 1558 1559 /* If the id is already assigned, keep it. */ 1560 if (asoc->assoc_id) 1561 return error; 1562 retry: 1563 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp))) 1564 return -ENOMEM; 1565 1566 spin_lock_bh(&sctp_assocs_id_lock); 1567 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc, 1568 idr_low, &assoc_id); 1569 if (!error) { 1570 idr_low = assoc_id + 1; 1571 if (idr_low == INT_MAX) 1572 idr_low = 1; 1573 } 1574 spin_unlock_bh(&sctp_assocs_id_lock); 1575 if (error == -EAGAIN) 1576 goto retry; 1577 else if (error) 1578 return error; 1579 1580 asoc->assoc_id = (sctp_assoc_t) assoc_id; 1581 return error; 1582 } 1583 1584 /* Free the ASCONF queue */ 1585 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1586 { 1587 struct sctp_chunk *asconf; 1588 struct sctp_chunk *tmp; 1589 1590 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1591 list_del_init(&asconf->list); 1592 sctp_chunk_free(asconf); 1593 } 1594 } 1595 1596 /* Free asconf_ack cache */ 1597 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1598 { 1599 struct sctp_chunk *ack; 1600 struct sctp_chunk *tmp; 1601 1602 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1603 transmitted_list) { 1604 list_del_init(&ack->transmitted_list); 1605 sctp_chunk_free(ack); 1606 } 1607 } 1608 1609 /* Clean up the ASCONF_ACK queue */ 1610 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1611 { 1612 struct sctp_chunk *ack; 1613 struct sctp_chunk *tmp; 1614 1615 /* We can remove all the entries from the queue up to 1616 * the "Peer-Sequence-Number". 1617 */ 1618 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1619 transmitted_list) { 1620 if (ack->subh.addip_hdr->serial == 1621 htonl(asoc->peer.addip_serial)) 1622 break; 1623 1624 list_del_init(&ack->transmitted_list); 1625 sctp_chunk_free(ack); 1626 } 1627 } 1628 1629 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1630 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1631 const struct sctp_association *asoc, 1632 __be32 serial) 1633 { 1634 struct sctp_chunk *ack; 1635 1636 /* Walk through the list of cached ASCONF-ACKs and find the 1637 * ack chunk whose serial number matches that of the request. 1638 */ 1639 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1640 if (ack->subh.addip_hdr->serial == serial) { 1641 sctp_chunk_hold(ack); 1642 return ack; 1643 } 1644 } 1645 1646 return NULL; 1647 } 1648 1649 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1650 { 1651 /* Free any cached ASCONF_ACK chunk. */ 1652 sctp_assoc_free_asconf_acks(asoc); 1653 1654 /* Free the ASCONF queue. */ 1655 sctp_assoc_free_asconf_queue(asoc); 1656 1657 /* Free any cached ASCONF chunk. */ 1658 if (asoc->addip_last_asconf) 1659 sctp_chunk_free(asoc->addip_last_asconf); 1660 } 1661