xref: /linux/net/sctp/associola.c (revision af873fcecef567abf8a3468b06dd4e4aab46da6d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001 Intel Corp.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * This module provides the abstraction for an SCTP association.
12  *
13  * Please send any bug reports or fixes you make to the
14  * email address(es):
15  *    lksctp developers <linux-sctp@vger.kernel.org>
16  *
17  * Written or modified by:
18  *    La Monte H.P. Yarroll <piggy@acm.org>
19  *    Karl Knutson          <karl@athena.chicago.il.us>
20  *    Jon Grimm             <jgrimm@us.ibm.com>
21  *    Xingang Guo           <xingang.guo@intel.com>
22  *    Hui Huang             <hui.huang@nokia.com>
23  *    Sridhar Samudrala	    <sri@us.ibm.com>
24  *    Daisy Chang	    <daisyc@us.ibm.com>
25  *    Ryan Layer	    <rmlayer@us.ibm.com>
26  *    Kevin Gao             <kevin.gao@intel.com>
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/poll.h>
34 #include <linux/init.h>
35 
36 #include <linux/slab.h>
37 #include <linux/in.h>
38 #include <net/ipv6.h>
39 #include <net/sctp/sctp.h>
40 #include <net/sctp/sm.h>
41 
42 /* Forward declarations for internal functions. */
43 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
44 static void sctp_assoc_bh_rcv(struct work_struct *work);
45 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
46 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
47 
48 /* 1st Level Abstractions. */
49 
50 /* Initialize a new association from provided memory. */
51 static struct sctp_association *sctp_association_init(
52 					struct sctp_association *asoc,
53 					const struct sctp_endpoint *ep,
54 					const struct sock *sk,
55 					enum sctp_scope scope, gfp_t gfp)
56 {
57 	struct net *net = sock_net(sk);
58 	struct sctp_sock *sp;
59 	struct sctp_paramhdr *p;
60 	int i;
61 
62 	/* Retrieve the SCTP per socket area.  */
63 	sp = sctp_sk((struct sock *)sk);
64 
65 	/* Discarding const is appropriate here.  */
66 	asoc->ep = (struct sctp_endpoint *)ep;
67 	asoc->base.sk = (struct sock *)sk;
68 
69 	sctp_endpoint_hold(asoc->ep);
70 	sock_hold(asoc->base.sk);
71 
72 	/* Initialize the common base substructure.  */
73 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
74 
75 	/* Initialize the object handling fields.  */
76 	refcount_set(&asoc->base.refcnt, 1);
77 
78 	/* Initialize the bind addr area.  */
79 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
80 
81 	asoc->state = SCTP_STATE_CLOSED;
82 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
83 	asoc->user_frag = sp->user_frag;
84 
85 	/* Set the association max_retrans and RTO values from the
86 	 * socket values.
87 	 */
88 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
89 	asoc->pf_retrans  = sp->pf_retrans;
90 
91 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
92 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
93 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
94 
95 	/* Initialize the association's heartbeat interval based on the
96 	 * sock configured value.
97 	 */
98 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
99 
100 	/* Initialize path max retrans value. */
101 	asoc->pathmaxrxt = sp->pathmaxrxt;
102 
103 	asoc->flowlabel = sp->flowlabel;
104 	asoc->dscp = sp->dscp;
105 
106 	/* Set association default SACK delay */
107 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
108 	asoc->sackfreq = sp->sackfreq;
109 
110 	/* Set the association default flags controlling
111 	 * Heartbeat, SACK delay, and Path MTU Discovery.
112 	 */
113 	asoc->param_flags = sp->param_flags;
114 
115 	/* Initialize the maximum number of new data packets that can be sent
116 	 * in a burst.
117 	 */
118 	asoc->max_burst = sp->max_burst;
119 
120 	asoc->subscribe = sp->subscribe;
121 
122 	/* initialize association timers */
123 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
124 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
125 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
126 
127 	/* sctpimpguide Section 2.12.2
128 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
129 	 * recommended value of 5 times 'RTO.Max'.
130 	 */
131 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
132 		= 5 * asoc->rto_max;
133 
134 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
135 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
136 
137 	/* Initializes the timers */
138 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
139 		timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
140 
141 	/* Pull default initialization values from the sock options.
142 	 * Note: This assumes that the values have already been
143 	 * validated in the sock.
144 	 */
145 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
146 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
147 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
148 
149 	asoc->max_init_timeo =
150 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
151 
152 	/* Set the local window size for receive.
153 	 * This is also the rcvbuf space per association.
154 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
155 	 * 1500 bytes in one SCTP packet.
156 	 */
157 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
158 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
159 	else
160 		asoc->rwnd = sk->sk_rcvbuf/2;
161 
162 	asoc->a_rwnd = asoc->rwnd;
163 
164 	/* Use my own max window until I learn something better.  */
165 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
166 
167 	/* Initialize the receive memory counter */
168 	atomic_set(&asoc->rmem_alloc, 0);
169 
170 	init_waitqueue_head(&asoc->wait);
171 
172 	asoc->c.my_vtag = sctp_generate_tag(ep);
173 	asoc->c.my_port = ep->base.bind_addr.port;
174 
175 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
176 
177 	asoc->next_tsn = asoc->c.initial_tsn;
178 
179 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
180 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
181 	asoc->highest_sacked = asoc->ctsn_ack_point;
182 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
183 
184 	/* ADDIP Section 4.1 Asconf Chunk Procedures
185 	 *
186 	 * When an endpoint has an ASCONF signaled change to be sent to the
187 	 * remote endpoint it should do the following:
188 	 * ...
189 	 * A2) a serial number should be assigned to the chunk. The serial
190 	 * number SHOULD be a monotonically increasing number. The serial
191 	 * numbers SHOULD be initialized at the start of the
192 	 * association to the same value as the initial TSN.
193 	 */
194 	asoc->addip_serial = asoc->c.initial_tsn;
195 	asoc->strreset_outseq = asoc->c.initial_tsn;
196 
197 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
198 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
199 
200 	/* Make an empty list of remote transport addresses.  */
201 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
202 
203 	/* RFC 2960 5.1 Normal Establishment of an Association
204 	 *
205 	 * After the reception of the first data chunk in an
206 	 * association the endpoint must immediately respond with a
207 	 * sack to acknowledge the data chunk.  Subsequent
208 	 * acknowledgements should be done as described in Section
209 	 * 6.2.
210 	 *
211 	 * [We implement this by telling a new association that it
212 	 * already received one packet.]
213 	 */
214 	asoc->peer.sack_needed = 1;
215 	asoc->peer.sack_generation = 1;
216 
217 	/* Assume that the peer will tell us if he recognizes ASCONF
218 	 * as part of INIT exchange.
219 	 * The sctp_addip_noauth option is there for backward compatibility
220 	 * and will revert old behavior.
221 	 */
222 	if (net->sctp.addip_noauth)
223 		asoc->peer.asconf_capable = 1;
224 
225 	/* Create an input queue.  */
226 	sctp_inq_init(&asoc->base.inqueue);
227 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
228 
229 	/* Create an output queue.  */
230 	sctp_outq_init(asoc, &asoc->outqueue);
231 
232 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
233 		goto fail_init;
234 
235 	if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
236 			     0, gfp))
237 		goto fail_init;
238 
239 	/* Initialize default path MTU. */
240 	asoc->pathmtu = sp->pathmtu;
241 	sctp_assoc_update_frag_point(asoc);
242 
243 	/* Assume that peer would support both address types unless we are
244 	 * told otherwise.
245 	 */
246 	asoc->peer.ipv4_address = 1;
247 	if (asoc->base.sk->sk_family == PF_INET6)
248 		asoc->peer.ipv6_address = 1;
249 	INIT_LIST_HEAD(&asoc->asocs);
250 
251 	asoc->default_stream = sp->default_stream;
252 	asoc->default_ppid = sp->default_ppid;
253 	asoc->default_flags = sp->default_flags;
254 	asoc->default_context = sp->default_context;
255 	asoc->default_timetolive = sp->default_timetolive;
256 	asoc->default_rcv_context = sp->default_rcv_context;
257 
258 	/* AUTH related initializations */
259 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
260 	if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
261 		goto stream_free;
262 
263 	asoc->active_key_id = ep->active_key_id;
264 	asoc->prsctp_enable = ep->prsctp_enable;
265 	asoc->reconf_enable = ep->reconf_enable;
266 	asoc->strreset_enable = ep->strreset_enable;
267 
268 	/* Save the hmacs and chunks list into this association */
269 	if (ep->auth_hmacs_list)
270 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
271 			ntohs(ep->auth_hmacs_list->param_hdr.length));
272 	if (ep->auth_chunk_list)
273 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
274 			ntohs(ep->auth_chunk_list->param_hdr.length));
275 
276 	/* Get the AUTH random number for this association */
277 	p = (struct sctp_paramhdr *)asoc->c.auth_random;
278 	p->type = SCTP_PARAM_RANDOM;
279 	p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
280 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
281 
282 	return asoc;
283 
284 stream_free:
285 	sctp_stream_free(&asoc->stream);
286 fail_init:
287 	sock_put(asoc->base.sk);
288 	sctp_endpoint_put(asoc->ep);
289 	return NULL;
290 }
291 
292 /* Allocate and initialize a new association */
293 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
294 					      const struct sock *sk,
295 					      enum sctp_scope scope, gfp_t gfp)
296 {
297 	struct sctp_association *asoc;
298 
299 	asoc = kzalloc(sizeof(*asoc), gfp);
300 	if (!asoc)
301 		goto fail;
302 
303 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
304 		goto fail_init;
305 
306 	SCTP_DBG_OBJCNT_INC(assoc);
307 
308 	pr_debug("Created asoc %p\n", asoc);
309 
310 	return asoc;
311 
312 fail_init:
313 	kfree(asoc);
314 fail:
315 	return NULL;
316 }
317 
318 /* Free this association if possible.  There may still be users, so
319  * the actual deallocation may be delayed.
320  */
321 void sctp_association_free(struct sctp_association *asoc)
322 {
323 	struct sock *sk = asoc->base.sk;
324 	struct sctp_transport *transport;
325 	struct list_head *pos, *temp;
326 	int i;
327 
328 	/* Only real associations count against the endpoint, so
329 	 * don't bother for if this is a temporary association.
330 	 */
331 	if (!list_empty(&asoc->asocs)) {
332 		list_del(&asoc->asocs);
333 
334 		/* Decrement the backlog value for a TCP-style listening
335 		 * socket.
336 		 */
337 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
338 			sk->sk_ack_backlog--;
339 	}
340 
341 	/* Mark as dead, so other users can know this structure is
342 	 * going away.
343 	 */
344 	asoc->base.dead = true;
345 
346 	/* Dispose of any data lying around in the outqueue. */
347 	sctp_outq_free(&asoc->outqueue);
348 
349 	/* Dispose of any pending messages for the upper layer. */
350 	sctp_ulpq_free(&asoc->ulpq);
351 
352 	/* Dispose of any pending chunks on the inqueue. */
353 	sctp_inq_free(&asoc->base.inqueue);
354 
355 	sctp_tsnmap_free(&asoc->peer.tsn_map);
356 
357 	/* Free stream information. */
358 	sctp_stream_free(&asoc->stream);
359 
360 	if (asoc->strreset_chunk)
361 		sctp_chunk_free(asoc->strreset_chunk);
362 
363 	/* Clean up the bound address list. */
364 	sctp_bind_addr_free(&asoc->base.bind_addr);
365 
366 	/* Do we need to go through all of our timers and
367 	 * delete them?   To be safe we will try to delete all, but we
368 	 * should be able to go through and make a guess based
369 	 * on our state.
370 	 */
371 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
372 		if (del_timer(&asoc->timers[i]))
373 			sctp_association_put(asoc);
374 	}
375 
376 	/* Free peer's cached cookie. */
377 	kfree(asoc->peer.cookie);
378 	kfree(asoc->peer.peer_random);
379 	kfree(asoc->peer.peer_chunks);
380 	kfree(asoc->peer.peer_hmacs);
381 
382 	/* Release the transport structures. */
383 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
384 		transport = list_entry(pos, struct sctp_transport, transports);
385 		list_del_rcu(pos);
386 		sctp_unhash_transport(transport);
387 		sctp_transport_free(transport);
388 	}
389 
390 	asoc->peer.transport_count = 0;
391 
392 	sctp_asconf_queue_teardown(asoc);
393 
394 	/* Free pending address space being deleted */
395 	kfree(asoc->asconf_addr_del_pending);
396 
397 	/* AUTH - Free the endpoint shared keys */
398 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
399 
400 	/* AUTH - Free the association shared key */
401 	sctp_auth_key_put(asoc->asoc_shared_key);
402 
403 	sctp_association_put(asoc);
404 }
405 
406 /* Cleanup and free up an association. */
407 static void sctp_association_destroy(struct sctp_association *asoc)
408 {
409 	if (unlikely(!asoc->base.dead)) {
410 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
411 		return;
412 	}
413 
414 	sctp_endpoint_put(asoc->ep);
415 	sock_put(asoc->base.sk);
416 
417 	if (asoc->assoc_id != 0) {
418 		spin_lock_bh(&sctp_assocs_id_lock);
419 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
420 		spin_unlock_bh(&sctp_assocs_id_lock);
421 	}
422 
423 	WARN_ON(atomic_read(&asoc->rmem_alloc));
424 
425 	kfree_rcu(asoc, rcu);
426 	SCTP_DBG_OBJCNT_DEC(assoc);
427 }
428 
429 /* Change the primary destination address for the peer. */
430 void sctp_assoc_set_primary(struct sctp_association *asoc,
431 			    struct sctp_transport *transport)
432 {
433 	int changeover = 0;
434 
435 	/* it's a changeover only if we already have a primary path
436 	 * that we are changing
437 	 */
438 	if (asoc->peer.primary_path != NULL &&
439 	    asoc->peer.primary_path != transport)
440 		changeover = 1 ;
441 
442 	asoc->peer.primary_path = transport;
443 
444 	/* Set a default msg_name for events. */
445 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
446 	       sizeof(union sctp_addr));
447 
448 	/* If the primary path is changing, assume that the
449 	 * user wants to use this new path.
450 	 */
451 	if ((transport->state == SCTP_ACTIVE) ||
452 	    (transport->state == SCTP_UNKNOWN))
453 		asoc->peer.active_path = transport;
454 
455 	/*
456 	 * SFR-CACC algorithm:
457 	 * Upon the receipt of a request to change the primary
458 	 * destination address, on the data structure for the new
459 	 * primary destination, the sender MUST do the following:
460 	 *
461 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
462 	 * to this destination address earlier. The sender MUST set
463 	 * CYCLING_CHANGEOVER to indicate that this switch is a
464 	 * double switch to the same destination address.
465 	 *
466 	 * Really, only bother is we have data queued or outstanding on
467 	 * the association.
468 	 */
469 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
470 		return;
471 
472 	if (transport->cacc.changeover_active)
473 		transport->cacc.cycling_changeover = changeover;
474 
475 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
476 	 * a changeover has occurred.
477 	 */
478 	transport->cacc.changeover_active = changeover;
479 
480 	/* 3) The sender MUST store the next TSN to be sent in
481 	 * next_tsn_at_change.
482 	 */
483 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
484 }
485 
486 /* Remove a transport from an association.  */
487 void sctp_assoc_rm_peer(struct sctp_association *asoc,
488 			struct sctp_transport *peer)
489 {
490 	struct sctp_transport *transport;
491 	struct list_head *pos;
492 	struct sctp_chunk *ch;
493 
494 	pr_debug("%s: association:%p addr:%pISpc\n",
495 		 __func__, asoc, &peer->ipaddr.sa);
496 
497 	/* If we are to remove the current retran_path, update it
498 	 * to the next peer before removing this peer from the list.
499 	 */
500 	if (asoc->peer.retran_path == peer)
501 		sctp_assoc_update_retran_path(asoc);
502 
503 	/* Remove this peer from the list. */
504 	list_del_rcu(&peer->transports);
505 	/* Remove this peer from the transport hashtable */
506 	sctp_unhash_transport(peer);
507 
508 	/* Get the first transport of asoc. */
509 	pos = asoc->peer.transport_addr_list.next;
510 	transport = list_entry(pos, struct sctp_transport, transports);
511 
512 	/* Update any entries that match the peer to be deleted. */
513 	if (asoc->peer.primary_path == peer)
514 		sctp_assoc_set_primary(asoc, transport);
515 	if (asoc->peer.active_path == peer)
516 		asoc->peer.active_path = transport;
517 	if (asoc->peer.retran_path == peer)
518 		asoc->peer.retran_path = transport;
519 	if (asoc->peer.last_data_from == peer)
520 		asoc->peer.last_data_from = transport;
521 
522 	if (asoc->strreset_chunk &&
523 	    asoc->strreset_chunk->transport == peer) {
524 		asoc->strreset_chunk->transport = transport;
525 		sctp_transport_reset_reconf_timer(transport);
526 	}
527 
528 	/* If we remove the transport an INIT was last sent to, set it to
529 	 * NULL. Combined with the update of the retran path above, this
530 	 * will cause the next INIT to be sent to the next available
531 	 * transport, maintaining the cycle.
532 	 */
533 	if (asoc->init_last_sent_to == peer)
534 		asoc->init_last_sent_to = NULL;
535 
536 	/* If we remove the transport an SHUTDOWN was last sent to, set it
537 	 * to NULL. Combined with the update of the retran path above, this
538 	 * will cause the next SHUTDOWN to be sent to the next available
539 	 * transport, maintaining the cycle.
540 	 */
541 	if (asoc->shutdown_last_sent_to == peer)
542 		asoc->shutdown_last_sent_to = NULL;
543 
544 	/* If we remove the transport an ASCONF was last sent to, set it to
545 	 * NULL.
546 	 */
547 	if (asoc->addip_last_asconf &&
548 	    asoc->addip_last_asconf->transport == peer)
549 		asoc->addip_last_asconf->transport = NULL;
550 
551 	/* If we have something on the transmitted list, we have to
552 	 * save it off.  The best place is the active path.
553 	 */
554 	if (!list_empty(&peer->transmitted)) {
555 		struct sctp_transport *active = asoc->peer.active_path;
556 
557 		/* Reset the transport of each chunk on this list */
558 		list_for_each_entry(ch, &peer->transmitted,
559 					transmitted_list) {
560 			ch->transport = NULL;
561 			ch->rtt_in_progress = 0;
562 		}
563 
564 		list_splice_tail_init(&peer->transmitted,
565 					&active->transmitted);
566 
567 		/* Start a T3 timer here in case it wasn't running so
568 		 * that these migrated packets have a chance to get
569 		 * retransmitted.
570 		 */
571 		if (!timer_pending(&active->T3_rtx_timer))
572 			if (!mod_timer(&active->T3_rtx_timer,
573 					jiffies + active->rto))
574 				sctp_transport_hold(active);
575 	}
576 
577 	list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
578 		if (ch->transport == peer)
579 			ch->transport = NULL;
580 
581 	asoc->peer.transport_count--;
582 
583 	sctp_transport_free(peer);
584 }
585 
586 /* Add a transport address to an association.  */
587 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
588 					   const union sctp_addr *addr,
589 					   const gfp_t gfp,
590 					   const int peer_state)
591 {
592 	struct net *net = sock_net(asoc->base.sk);
593 	struct sctp_transport *peer;
594 	struct sctp_sock *sp;
595 	unsigned short port;
596 
597 	sp = sctp_sk(asoc->base.sk);
598 
599 	/* AF_INET and AF_INET6 share common port field. */
600 	port = ntohs(addr->v4.sin_port);
601 
602 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
603 		 asoc, &addr->sa, peer_state);
604 
605 	/* Set the port if it has not been set yet.  */
606 	if (0 == asoc->peer.port)
607 		asoc->peer.port = port;
608 
609 	/* Check to see if this is a duplicate. */
610 	peer = sctp_assoc_lookup_paddr(asoc, addr);
611 	if (peer) {
612 		/* An UNKNOWN state is only set on transports added by
613 		 * user in sctp_connectx() call.  Such transports should be
614 		 * considered CONFIRMED per RFC 4960, Section 5.4.
615 		 */
616 		if (peer->state == SCTP_UNKNOWN) {
617 			peer->state = SCTP_ACTIVE;
618 		}
619 		return peer;
620 	}
621 
622 	peer = sctp_transport_new(net, addr, gfp);
623 	if (!peer)
624 		return NULL;
625 
626 	sctp_transport_set_owner(peer, asoc);
627 
628 	/* Initialize the peer's heartbeat interval based on the
629 	 * association configured value.
630 	 */
631 	peer->hbinterval = asoc->hbinterval;
632 
633 	/* Set the path max_retrans.  */
634 	peer->pathmaxrxt = asoc->pathmaxrxt;
635 
636 	/* And the partial failure retrans threshold */
637 	peer->pf_retrans = asoc->pf_retrans;
638 
639 	/* Initialize the peer's SACK delay timeout based on the
640 	 * association configured value.
641 	 */
642 	peer->sackdelay = asoc->sackdelay;
643 	peer->sackfreq = asoc->sackfreq;
644 
645 	if (addr->sa.sa_family == AF_INET6) {
646 		__be32 info = addr->v6.sin6_flowinfo;
647 
648 		if (info) {
649 			peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
650 			peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
651 		} else {
652 			peer->flowlabel = asoc->flowlabel;
653 		}
654 	}
655 	peer->dscp = asoc->dscp;
656 
657 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
658 	 * based on association setting.
659 	 */
660 	peer->param_flags = asoc->param_flags;
661 
662 	/* Initialize the pmtu of the transport. */
663 	sctp_transport_route(peer, NULL, sp);
664 
665 	/* If this is the first transport addr on this association,
666 	 * initialize the association PMTU to the peer's PMTU.
667 	 * If not and the current association PMTU is higher than the new
668 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
669 	 */
670 	sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
671 				  min_t(int, peer->pathmtu, asoc->pathmtu) :
672 				  peer->pathmtu);
673 
674 	peer->pmtu_pending = 0;
675 
676 	/* The asoc->peer.port might not be meaningful yet, but
677 	 * initialize the packet structure anyway.
678 	 */
679 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
680 			 asoc->peer.port);
681 
682 	/* 7.2.1 Slow-Start
683 	 *
684 	 * o The initial cwnd before DATA transmission or after a sufficiently
685 	 *   long idle period MUST be set to
686 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
687 	 *
688 	 * o The initial value of ssthresh MAY be arbitrarily high
689 	 *   (for example, implementations MAY use the size of the
690 	 *   receiver advertised window).
691 	 */
692 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
693 
694 	/* At this point, we may not have the receiver's advertised window,
695 	 * so initialize ssthresh to the default value and it will be set
696 	 * later when we process the INIT.
697 	 */
698 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
699 
700 	peer->partial_bytes_acked = 0;
701 	peer->flight_size = 0;
702 	peer->burst_limited = 0;
703 
704 	/* Set the transport's RTO.initial value */
705 	peer->rto = asoc->rto_initial;
706 	sctp_max_rto(asoc, peer);
707 
708 	/* Set the peer's active state. */
709 	peer->state = peer_state;
710 
711 	/* Add this peer into the transport hashtable */
712 	if (sctp_hash_transport(peer)) {
713 		sctp_transport_free(peer);
714 		return NULL;
715 	}
716 
717 	/* Attach the remote transport to our asoc.  */
718 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
719 	asoc->peer.transport_count++;
720 
721 	/* If we do not yet have a primary path, set one.  */
722 	if (!asoc->peer.primary_path) {
723 		sctp_assoc_set_primary(asoc, peer);
724 		asoc->peer.retran_path = peer;
725 	}
726 
727 	if (asoc->peer.active_path == asoc->peer.retran_path &&
728 	    peer->state != SCTP_UNCONFIRMED) {
729 		asoc->peer.retran_path = peer;
730 	}
731 
732 	return peer;
733 }
734 
735 /* Delete a transport address from an association.  */
736 void sctp_assoc_del_peer(struct sctp_association *asoc,
737 			 const union sctp_addr *addr)
738 {
739 	struct list_head	*pos;
740 	struct list_head	*temp;
741 	struct sctp_transport	*transport;
742 
743 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
744 		transport = list_entry(pos, struct sctp_transport, transports);
745 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
746 			/* Do book keeping for removing the peer and free it. */
747 			sctp_assoc_rm_peer(asoc, transport);
748 			break;
749 		}
750 	}
751 }
752 
753 /* Lookup a transport by address. */
754 struct sctp_transport *sctp_assoc_lookup_paddr(
755 					const struct sctp_association *asoc,
756 					const union sctp_addr *address)
757 {
758 	struct sctp_transport *t;
759 
760 	/* Cycle through all transports searching for a peer address. */
761 
762 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
763 			transports) {
764 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
765 			return t;
766 	}
767 
768 	return NULL;
769 }
770 
771 /* Remove all transports except a give one */
772 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
773 				     struct sctp_transport *primary)
774 {
775 	struct sctp_transport	*temp;
776 	struct sctp_transport	*t;
777 
778 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
779 				 transports) {
780 		/* if the current transport is not the primary one, delete it */
781 		if (t != primary)
782 			sctp_assoc_rm_peer(asoc, t);
783 	}
784 }
785 
786 /* Engage in transport control operations.
787  * Mark the transport up or down and send a notification to the user.
788  * Select and update the new active and retran paths.
789  */
790 void sctp_assoc_control_transport(struct sctp_association *asoc,
791 				  struct sctp_transport *transport,
792 				  enum sctp_transport_cmd command,
793 				  sctp_sn_error_t error)
794 {
795 	struct sctp_ulpevent *event;
796 	struct sockaddr_storage addr;
797 	int spc_state = 0;
798 	bool ulp_notify = true;
799 
800 	/* Record the transition on the transport.  */
801 	switch (command) {
802 	case SCTP_TRANSPORT_UP:
803 		/* If we are moving from UNCONFIRMED state due
804 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
805 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
806 		 */
807 		if (SCTP_UNCONFIRMED == transport->state &&
808 		    SCTP_HEARTBEAT_SUCCESS == error)
809 			spc_state = SCTP_ADDR_CONFIRMED;
810 		else
811 			spc_state = SCTP_ADDR_AVAILABLE;
812 		/* Don't inform ULP about transition from PF to
813 		 * active state and set cwnd to 1 MTU, see SCTP
814 		 * Quick failover draft section 5.1, point 5
815 		 */
816 		if (transport->state == SCTP_PF) {
817 			ulp_notify = false;
818 			transport->cwnd = asoc->pathmtu;
819 		}
820 		transport->state = SCTP_ACTIVE;
821 		break;
822 
823 	case SCTP_TRANSPORT_DOWN:
824 		/* If the transport was never confirmed, do not transition it
825 		 * to inactive state.  Also, release the cached route since
826 		 * there may be a better route next time.
827 		 */
828 		if (transport->state != SCTP_UNCONFIRMED)
829 			transport->state = SCTP_INACTIVE;
830 		else {
831 			sctp_transport_dst_release(transport);
832 			ulp_notify = false;
833 		}
834 
835 		spc_state = SCTP_ADDR_UNREACHABLE;
836 		break;
837 
838 	case SCTP_TRANSPORT_PF:
839 		transport->state = SCTP_PF;
840 		ulp_notify = false;
841 		break;
842 
843 	default:
844 		return;
845 	}
846 
847 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
848 	 * to the user.
849 	 */
850 	if (ulp_notify) {
851 		memset(&addr, 0, sizeof(struct sockaddr_storage));
852 		memcpy(&addr, &transport->ipaddr,
853 		       transport->af_specific->sockaddr_len);
854 
855 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
856 					0, spc_state, error, GFP_ATOMIC);
857 		if (event)
858 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
859 	}
860 
861 	/* Select new active and retran paths. */
862 	sctp_select_active_and_retran_path(asoc);
863 }
864 
865 /* Hold a reference to an association. */
866 void sctp_association_hold(struct sctp_association *asoc)
867 {
868 	refcount_inc(&asoc->base.refcnt);
869 }
870 
871 /* Release a reference to an association and cleanup
872  * if there are no more references.
873  */
874 void sctp_association_put(struct sctp_association *asoc)
875 {
876 	if (refcount_dec_and_test(&asoc->base.refcnt))
877 		sctp_association_destroy(asoc);
878 }
879 
880 /* Allocate the next TSN, Transmission Sequence Number, for the given
881  * association.
882  */
883 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
884 {
885 	/* From Section 1.6 Serial Number Arithmetic:
886 	 * Transmission Sequence Numbers wrap around when they reach
887 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
888 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
889 	 */
890 	__u32 retval = asoc->next_tsn;
891 	asoc->next_tsn++;
892 	asoc->unack_data++;
893 
894 	return retval;
895 }
896 
897 /* Compare two addresses to see if they match.  Wildcard addresses
898  * only match themselves.
899  */
900 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
901 			const union sctp_addr *ss2)
902 {
903 	struct sctp_af *af;
904 
905 	af = sctp_get_af_specific(ss1->sa.sa_family);
906 	if (unlikely(!af))
907 		return 0;
908 
909 	return af->cmp_addr(ss1, ss2);
910 }
911 
912 /* Return an ecne chunk to get prepended to a packet.
913  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
914  * No we don't, but we could/should.
915  */
916 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
917 {
918 	if (!asoc->need_ecne)
919 		return NULL;
920 
921 	/* Send ECNE if needed.
922 	 * Not being able to allocate a chunk here is not deadly.
923 	 */
924 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
925 }
926 
927 /*
928  * Find which transport this TSN was sent on.
929  */
930 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
931 					     __u32 tsn)
932 {
933 	struct sctp_transport *active;
934 	struct sctp_transport *match;
935 	struct sctp_transport *transport;
936 	struct sctp_chunk *chunk;
937 	__be32 key = htonl(tsn);
938 
939 	match = NULL;
940 
941 	/*
942 	 * FIXME: In general, find a more efficient data structure for
943 	 * searching.
944 	 */
945 
946 	/*
947 	 * The general strategy is to search each transport's transmitted
948 	 * list.   Return which transport this TSN lives on.
949 	 *
950 	 * Let's be hopeful and check the active_path first.
951 	 * Another optimization would be to know if there is only one
952 	 * outbound path and not have to look for the TSN at all.
953 	 *
954 	 */
955 
956 	active = asoc->peer.active_path;
957 
958 	list_for_each_entry(chunk, &active->transmitted,
959 			transmitted_list) {
960 
961 		if (key == chunk->subh.data_hdr->tsn) {
962 			match = active;
963 			goto out;
964 		}
965 	}
966 
967 	/* If not found, go search all the other transports. */
968 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
969 			transports) {
970 
971 		if (transport == active)
972 			continue;
973 		list_for_each_entry(chunk, &transport->transmitted,
974 				transmitted_list) {
975 			if (key == chunk->subh.data_hdr->tsn) {
976 				match = transport;
977 				goto out;
978 			}
979 		}
980 	}
981 out:
982 	return match;
983 }
984 
985 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
986 static void sctp_assoc_bh_rcv(struct work_struct *work)
987 {
988 	struct sctp_association *asoc =
989 		container_of(work, struct sctp_association,
990 			     base.inqueue.immediate);
991 	struct net *net = sock_net(asoc->base.sk);
992 	union sctp_subtype subtype;
993 	struct sctp_endpoint *ep;
994 	struct sctp_chunk *chunk;
995 	struct sctp_inq *inqueue;
996 	int first_time = 1;	/* is this the first time through the loop */
997 	int error = 0;
998 	int state;
999 
1000 	/* The association should be held so we should be safe. */
1001 	ep = asoc->ep;
1002 
1003 	inqueue = &asoc->base.inqueue;
1004 	sctp_association_hold(asoc);
1005 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1006 		state = asoc->state;
1007 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1008 
1009 		/* If the first chunk in the packet is AUTH, do special
1010 		 * processing specified in Section 6.3 of SCTP-AUTH spec
1011 		 */
1012 		if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1013 			struct sctp_chunkhdr *next_hdr;
1014 
1015 			next_hdr = sctp_inq_peek(inqueue);
1016 			if (!next_hdr)
1017 				goto normal;
1018 
1019 			/* If the next chunk is COOKIE-ECHO, skip the AUTH
1020 			 * chunk while saving a pointer to it so we can do
1021 			 * Authentication later (during cookie-echo
1022 			 * processing).
1023 			 */
1024 			if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1025 				chunk->auth_chunk = skb_clone(chunk->skb,
1026 							      GFP_ATOMIC);
1027 				chunk->auth = 1;
1028 				continue;
1029 			}
1030 		}
1031 
1032 normal:
1033 		/* SCTP-AUTH, Section 6.3:
1034 		 *    The receiver has a list of chunk types which it expects
1035 		 *    to be received only after an AUTH-chunk.  This list has
1036 		 *    been sent to the peer during the association setup.  It
1037 		 *    MUST silently discard these chunks if they are not placed
1038 		 *    after an AUTH chunk in the packet.
1039 		 */
1040 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1041 			continue;
1042 
1043 		/* Remember where the last DATA chunk came from so we
1044 		 * know where to send the SACK.
1045 		 */
1046 		if (sctp_chunk_is_data(chunk))
1047 			asoc->peer.last_data_from = chunk->transport;
1048 		else {
1049 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1050 			asoc->stats.ictrlchunks++;
1051 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1052 				asoc->stats.isacks++;
1053 		}
1054 
1055 		if (chunk->transport)
1056 			chunk->transport->last_time_heard = ktime_get();
1057 
1058 		/* Run through the state machine. */
1059 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1060 				   state, ep, asoc, chunk, GFP_ATOMIC);
1061 
1062 		/* Check to see if the association is freed in response to
1063 		 * the incoming chunk.  If so, get out of the while loop.
1064 		 */
1065 		if (asoc->base.dead)
1066 			break;
1067 
1068 		/* If there is an error on chunk, discard this packet. */
1069 		if (error && chunk)
1070 			chunk->pdiscard = 1;
1071 
1072 		if (first_time)
1073 			first_time = 0;
1074 	}
1075 	sctp_association_put(asoc);
1076 }
1077 
1078 /* This routine moves an association from its old sk to a new sk.  */
1079 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1080 {
1081 	struct sctp_sock *newsp = sctp_sk(newsk);
1082 	struct sock *oldsk = assoc->base.sk;
1083 
1084 	/* Delete the association from the old endpoint's list of
1085 	 * associations.
1086 	 */
1087 	list_del_init(&assoc->asocs);
1088 
1089 	/* Decrement the backlog value for a TCP-style socket. */
1090 	if (sctp_style(oldsk, TCP))
1091 		oldsk->sk_ack_backlog--;
1092 
1093 	/* Release references to the old endpoint and the sock.  */
1094 	sctp_endpoint_put(assoc->ep);
1095 	sock_put(assoc->base.sk);
1096 
1097 	/* Get a reference to the new endpoint.  */
1098 	assoc->ep = newsp->ep;
1099 	sctp_endpoint_hold(assoc->ep);
1100 
1101 	/* Get a reference to the new sock.  */
1102 	assoc->base.sk = newsk;
1103 	sock_hold(assoc->base.sk);
1104 
1105 	/* Add the association to the new endpoint's list of associations.  */
1106 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1107 }
1108 
1109 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1110 int sctp_assoc_update(struct sctp_association *asoc,
1111 		      struct sctp_association *new)
1112 {
1113 	struct sctp_transport *trans;
1114 	struct list_head *pos, *temp;
1115 
1116 	/* Copy in new parameters of peer. */
1117 	asoc->c = new->c;
1118 	asoc->peer.rwnd = new->peer.rwnd;
1119 	asoc->peer.sack_needed = new->peer.sack_needed;
1120 	asoc->peer.auth_capable = new->peer.auth_capable;
1121 	asoc->peer.i = new->peer.i;
1122 
1123 	if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1124 			      asoc->peer.i.initial_tsn, GFP_ATOMIC))
1125 		return -ENOMEM;
1126 
1127 	/* Remove any peer addresses not present in the new association. */
1128 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1129 		trans = list_entry(pos, struct sctp_transport, transports);
1130 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1131 			sctp_assoc_rm_peer(asoc, trans);
1132 			continue;
1133 		}
1134 
1135 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1136 			sctp_transport_reset(trans);
1137 	}
1138 
1139 	/* If the case is A (association restart), use
1140 	 * initial_tsn as next_tsn. If the case is B, use
1141 	 * current next_tsn in case data sent to peer
1142 	 * has been discarded and needs retransmission.
1143 	 */
1144 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1145 		asoc->next_tsn = new->next_tsn;
1146 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1147 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1148 
1149 		/* Reinitialize SSN for both local streams
1150 		 * and peer's streams.
1151 		 */
1152 		sctp_stream_clear(&asoc->stream);
1153 
1154 		/* Flush the ULP reassembly and ordered queue.
1155 		 * Any data there will now be stale and will
1156 		 * cause problems.
1157 		 */
1158 		sctp_ulpq_flush(&asoc->ulpq);
1159 
1160 		/* reset the overall association error count so
1161 		 * that the restarted association doesn't get torn
1162 		 * down on the next retransmission timer.
1163 		 */
1164 		asoc->overall_error_count = 0;
1165 
1166 	} else {
1167 		/* Add any peer addresses from the new association. */
1168 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1169 				    transports)
1170 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1171 			    !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1172 						 GFP_ATOMIC, trans->state))
1173 				return -ENOMEM;
1174 
1175 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1176 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1177 
1178 		if (sctp_state(asoc, COOKIE_WAIT))
1179 			sctp_stream_update(&asoc->stream, &new->stream);
1180 
1181 		/* get a new assoc id if we don't have one yet. */
1182 		if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1183 			return -ENOMEM;
1184 	}
1185 
1186 	/* SCTP-AUTH: Save the peer parameters from the new associations
1187 	 * and also move the association shared keys over
1188 	 */
1189 	kfree(asoc->peer.peer_random);
1190 	asoc->peer.peer_random = new->peer.peer_random;
1191 	new->peer.peer_random = NULL;
1192 
1193 	kfree(asoc->peer.peer_chunks);
1194 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1195 	new->peer.peer_chunks = NULL;
1196 
1197 	kfree(asoc->peer.peer_hmacs);
1198 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1199 	new->peer.peer_hmacs = NULL;
1200 
1201 	return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1202 }
1203 
1204 /* Update the retran path for sending a retransmitted packet.
1205  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1206  *
1207  *   When there is outbound data to send and the primary path
1208  *   becomes inactive (e.g., due to failures), or where the
1209  *   SCTP user explicitly requests to send data to an
1210  *   inactive destination transport address, before reporting
1211  *   an error to its ULP, the SCTP endpoint should try to send
1212  *   the data to an alternate active destination transport
1213  *   address if one exists.
1214  *
1215  *   When retransmitting data that timed out, if the endpoint
1216  *   is multihomed, it should consider each source-destination
1217  *   address pair in its retransmission selection policy.
1218  *   When retransmitting timed-out data, the endpoint should
1219  *   attempt to pick the most divergent source-destination
1220  *   pair from the original source-destination pair to which
1221  *   the packet was transmitted.
1222  *
1223  *   Note: Rules for picking the most divergent source-destination
1224  *   pair are an implementation decision and are not specified
1225  *   within this document.
1226  *
1227  * Our basic strategy is to round-robin transports in priorities
1228  * according to sctp_trans_score() e.g., if no such
1229  * transport with state SCTP_ACTIVE exists, round-robin through
1230  * SCTP_UNKNOWN, etc. You get the picture.
1231  */
1232 static u8 sctp_trans_score(const struct sctp_transport *trans)
1233 {
1234 	switch (trans->state) {
1235 	case SCTP_ACTIVE:
1236 		return 3;	/* best case */
1237 	case SCTP_UNKNOWN:
1238 		return 2;
1239 	case SCTP_PF:
1240 		return 1;
1241 	default: /* case SCTP_INACTIVE */
1242 		return 0;	/* worst case */
1243 	}
1244 }
1245 
1246 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1247 						   struct sctp_transport *trans2)
1248 {
1249 	if (trans1->error_count > trans2->error_count) {
1250 		return trans2;
1251 	} else if (trans1->error_count == trans2->error_count &&
1252 		   ktime_after(trans2->last_time_heard,
1253 			       trans1->last_time_heard)) {
1254 		return trans2;
1255 	} else {
1256 		return trans1;
1257 	}
1258 }
1259 
1260 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1261 						    struct sctp_transport *best)
1262 {
1263 	u8 score_curr, score_best;
1264 
1265 	if (best == NULL || curr == best)
1266 		return curr;
1267 
1268 	score_curr = sctp_trans_score(curr);
1269 	score_best = sctp_trans_score(best);
1270 
1271 	/* First, try a score-based selection if both transport states
1272 	 * differ. If we're in a tie, lets try to make a more clever
1273 	 * decision here based on error counts and last time heard.
1274 	 */
1275 	if (score_curr > score_best)
1276 		return curr;
1277 	else if (score_curr == score_best)
1278 		return sctp_trans_elect_tie(best, curr);
1279 	else
1280 		return best;
1281 }
1282 
1283 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1284 {
1285 	struct sctp_transport *trans = asoc->peer.retran_path;
1286 	struct sctp_transport *trans_next = NULL;
1287 
1288 	/* We're done as we only have the one and only path. */
1289 	if (asoc->peer.transport_count == 1)
1290 		return;
1291 	/* If active_path and retran_path are the same and active,
1292 	 * then this is the only active path. Use it.
1293 	 */
1294 	if (asoc->peer.active_path == asoc->peer.retran_path &&
1295 	    asoc->peer.active_path->state == SCTP_ACTIVE)
1296 		return;
1297 
1298 	/* Iterate from retran_path's successor back to retran_path. */
1299 	for (trans = list_next_entry(trans, transports); 1;
1300 	     trans = list_next_entry(trans, transports)) {
1301 		/* Manually skip the head element. */
1302 		if (&trans->transports == &asoc->peer.transport_addr_list)
1303 			continue;
1304 		if (trans->state == SCTP_UNCONFIRMED)
1305 			continue;
1306 		trans_next = sctp_trans_elect_best(trans, trans_next);
1307 		/* Active is good enough for immediate return. */
1308 		if (trans_next->state == SCTP_ACTIVE)
1309 			break;
1310 		/* We've reached the end, time to update path. */
1311 		if (trans == asoc->peer.retran_path)
1312 			break;
1313 	}
1314 
1315 	asoc->peer.retran_path = trans_next;
1316 
1317 	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1318 		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1319 }
1320 
1321 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1322 {
1323 	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1324 	struct sctp_transport *trans_pf = NULL;
1325 
1326 	/* Look for the two most recently used active transports. */
1327 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1328 			    transports) {
1329 		/* Skip uninteresting transports. */
1330 		if (trans->state == SCTP_INACTIVE ||
1331 		    trans->state == SCTP_UNCONFIRMED)
1332 			continue;
1333 		/* Keep track of the best PF transport from our
1334 		 * list in case we don't find an active one.
1335 		 */
1336 		if (trans->state == SCTP_PF) {
1337 			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1338 			continue;
1339 		}
1340 		/* For active transports, pick the most recent ones. */
1341 		if (trans_pri == NULL ||
1342 		    ktime_after(trans->last_time_heard,
1343 				trans_pri->last_time_heard)) {
1344 			trans_sec = trans_pri;
1345 			trans_pri = trans;
1346 		} else if (trans_sec == NULL ||
1347 			   ktime_after(trans->last_time_heard,
1348 				       trans_sec->last_time_heard)) {
1349 			trans_sec = trans;
1350 		}
1351 	}
1352 
1353 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1354 	 *
1355 	 * By default, an endpoint should always transmit to the primary
1356 	 * path, unless the SCTP user explicitly specifies the
1357 	 * destination transport address (and possibly source transport
1358 	 * address) to use. [If the primary is active but not most recent,
1359 	 * bump the most recently used transport.]
1360 	 */
1361 	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1362 	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1363 	     asoc->peer.primary_path != trans_pri) {
1364 		trans_sec = trans_pri;
1365 		trans_pri = asoc->peer.primary_path;
1366 	}
1367 
1368 	/* We did not find anything useful for a possible retransmission
1369 	 * path; either primary path that we found is the the same as
1370 	 * the current one, or we didn't generally find an active one.
1371 	 */
1372 	if (trans_sec == NULL)
1373 		trans_sec = trans_pri;
1374 
1375 	/* If we failed to find a usable transport, just camp on the
1376 	 * active or pick a PF iff it's the better choice.
1377 	 */
1378 	if (trans_pri == NULL) {
1379 		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1380 		trans_sec = trans_pri;
1381 	}
1382 
1383 	/* Set the active and retran transports. */
1384 	asoc->peer.active_path = trans_pri;
1385 	asoc->peer.retran_path = trans_sec;
1386 }
1387 
1388 struct sctp_transport *
1389 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1390 				  struct sctp_transport *last_sent_to)
1391 {
1392 	/* If this is the first time packet is sent, use the active path,
1393 	 * else use the retran path. If the last packet was sent over the
1394 	 * retran path, update the retran path and use it.
1395 	 */
1396 	if (last_sent_to == NULL) {
1397 		return asoc->peer.active_path;
1398 	} else {
1399 		if (last_sent_to == asoc->peer.retran_path)
1400 			sctp_assoc_update_retran_path(asoc);
1401 
1402 		return asoc->peer.retran_path;
1403 	}
1404 }
1405 
1406 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1407 {
1408 	int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1409 				    sctp_datachk_len(&asoc->stream));
1410 
1411 	if (asoc->user_frag)
1412 		frag = min_t(int, frag, asoc->user_frag);
1413 
1414 	frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1415 				sctp_datachk_len(&asoc->stream));
1416 
1417 	asoc->frag_point = SCTP_TRUNC4(frag);
1418 }
1419 
1420 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1421 {
1422 	if (asoc->pathmtu != pmtu) {
1423 		asoc->pathmtu = pmtu;
1424 		sctp_assoc_update_frag_point(asoc);
1425 	}
1426 
1427 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1428 		 asoc->pathmtu, asoc->frag_point);
1429 }
1430 
1431 /* Update the association's pmtu and frag_point by going through all the
1432  * transports. This routine is called when a transport's PMTU has changed.
1433  */
1434 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1435 {
1436 	struct sctp_transport *t;
1437 	__u32 pmtu = 0;
1438 
1439 	if (!asoc)
1440 		return;
1441 
1442 	/* Get the lowest pmtu of all the transports. */
1443 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1444 		if (t->pmtu_pending && t->dst) {
1445 			sctp_transport_update_pmtu(t,
1446 						   atomic_read(&t->mtu_info));
1447 			t->pmtu_pending = 0;
1448 		}
1449 		if (!pmtu || (t->pathmtu < pmtu))
1450 			pmtu = t->pathmtu;
1451 	}
1452 
1453 	sctp_assoc_set_pmtu(asoc, pmtu);
1454 }
1455 
1456 /* Should we send a SACK to update our peer? */
1457 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1458 {
1459 	struct net *net = sock_net(asoc->base.sk);
1460 	switch (asoc->state) {
1461 	case SCTP_STATE_ESTABLISHED:
1462 	case SCTP_STATE_SHUTDOWN_PENDING:
1463 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1464 	case SCTP_STATE_SHUTDOWN_SENT:
1465 		if ((asoc->rwnd > asoc->a_rwnd) &&
1466 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1467 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1468 			   asoc->pathmtu)))
1469 			return true;
1470 		break;
1471 	default:
1472 		break;
1473 	}
1474 	return false;
1475 }
1476 
1477 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1478 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1479 {
1480 	struct sctp_chunk *sack;
1481 	struct timer_list *timer;
1482 
1483 	if (asoc->rwnd_over) {
1484 		if (asoc->rwnd_over >= len) {
1485 			asoc->rwnd_over -= len;
1486 		} else {
1487 			asoc->rwnd += (len - asoc->rwnd_over);
1488 			asoc->rwnd_over = 0;
1489 		}
1490 	} else {
1491 		asoc->rwnd += len;
1492 	}
1493 
1494 	/* If we had window pressure, start recovering it
1495 	 * once our rwnd had reached the accumulated pressure
1496 	 * threshold.  The idea is to recover slowly, but up
1497 	 * to the initial advertised window.
1498 	 */
1499 	if (asoc->rwnd_press) {
1500 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1501 		asoc->rwnd += change;
1502 		asoc->rwnd_press -= change;
1503 	}
1504 
1505 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1506 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1507 		 asoc->a_rwnd);
1508 
1509 	/* Send a window update SACK if the rwnd has increased by at least the
1510 	 * minimum of the association's PMTU and half of the receive buffer.
1511 	 * The algorithm used is similar to the one described in
1512 	 * Section 4.2.3.3 of RFC 1122.
1513 	 */
1514 	if (sctp_peer_needs_update(asoc)) {
1515 		asoc->a_rwnd = asoc->rwnd;
1516 
1517 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1518 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1519 			 asoc->a_rwnd);
1520 
1521 		sack = sctp_make_sack(asoc);
1522 		if (!sack)
1523 			return;
1524 
1525 		asoc->peer.sack_needed = 0;
1526 
1527 		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1528 
1529 		/* Stop the SACK timer.  */
1530 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1531 		if (del_timer(timer))
1532 			sctp_association_put(asoc);
1533 	}
1534 }
1535 
1536 /* Decrease asoc's rwnd by len. */
1537 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1538 {
1539 	int rx_count;
1540 	int over = 0;
1541 
1542 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1543 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1544 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1545 			 asoc->rwnd, asoc->rwnd_over);
1546 
1547 	if (asoc->ep->rcvbuf_policy)
1548 		rx_count = atomic_read(&asoc->rmem_alloc);
1549 	else
1550 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1551 
1552 	/* If we've reached or overflowed our receive buffer, announce
1553 	 * a 0 rwnd if rwnd would still be positive.  Store the
1554 	 * the potential pressure overflow so that the window can be restored
1555 	 * back to original value.
1556 	 */
1557 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1558 		over = 1;
1559 
1560 	if (asoc->rwnd >= len) {
1561 		asoc->rwnd -= len;
1562 		if (over) {
1563 			asoc->rwnd_press += asoc->rwnd;
1564 			asoc->rwnd = 0;
1565 		}
1566 	} else {
1567 		asoc->rwnd_over += len - asoc->rwnd;
1568 		asoc->rwnd = 0;
1569 	}
1570 
1571 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1572 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1573 		 asoc->rwnd_press);
1574 }
1575 
1576 /* Build the bind address list for the association based on info from the
1577  * local endpoint and the remote peer.
1578  */
1579 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1580 				     enum sctp_scope scope, gfp_t gfp)
1581 {
1582 	int flags;
1583 
1584 	/* Use scoping rules to determine the subset of addresses from
1585 	 * the endpoint.
1586 	 */
1587 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1588 	if (asoc->peer.ipv4_address)
1589 		flags |= SCTP_ADDR4_PEERSUPP;
1590 	if (asoc->peer.ipv6_address)
1591 		flags |= SCTP_ADDR6_PEERSUPP;
1592 
1593 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1594 				   &asoc->base.bind_addr,
1595 				   &asoc->ep->base.bind_addr,
1596 				   scope, gfp, flags);
1597 }
1598 
1599 /* Build the association's bind address list from the cookie.  */
1600 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1601 					 struct sctp_cookie *cookie,
1602 					 gfp_t gfp)
1603 {
1604 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1605 	int var_size3 = cookie->raw_addr_list_len;
1606 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1607 
1608 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1609 				      asoc->ep->base.bind_addr.port, gfp);
1610 }
1611 
1612 /* Lookup laddr in the bind address list of an association. */
1613 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1614 			    const union sctp_addr *laddr)
1615 {
1616 	int found = 0;
1617 
1618 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1619 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1620 				 sctp_sk(asoc->base.sk)))
1621 		found = 1;
1622 
1623 	return found;
1624 }
1625 
1626 /* Set an association id for a given association */
1627 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1628 {
1629 	bool preload = gfpflags_allow_blocking(gfp);
1630 	int ret;
1631 
1632 	/* If the id is already assigned, keep it. */
1633 	if (asoc->assoc_id)
1634 		return 0;
1635 
1636 	if (preload)
1637 		idr_preload(gfp);
1638 	spin_lock_bh(&sctp_assocs_id_lock);
1639 	/* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1640 	 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1641 	 */
1642 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1643 			       GFP_NOWAIT);
1644 	spin_unlock_bh(&sctp_assocs_id_lock);
1645 	if (preload)
1646 		idr_preload_end();
1647 	if (ret < 0)
1648 		return ret;
1649 
1650 	asoc->assoc_id = (sctp_assoc_t)ret;
1651 	return 0;
1652 }
1653 
1654 /* Free the ASCONF queue */
1655 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1656 {
1657 	struct sctp_chunk *asconf;
1658 	struct sctp_chunk *tmp;
1659 
1660 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1661 		list_del_init(&asconf->list);
1662 		sctp_chunk_free(asconf);
1663 	}
1664 }
1665 
1666 /* Free asconf_ack cache */
1667 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1668 {
1669 	struct sctp_chunk *ack;
1670 	struct sctp_chunk *tmp;
1671 
1672 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1673 				transmitted_list) {
1674 		list_del_init(&ack->transmitted_list);
1675 		sctp_chunk_free(ack);
1676 	}
1677 }
1678 
1679 /* Clean up the ASCONF_ACK queue */
1680 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1681 {
1682 	struct sctp_chunk *ack;
1683 	struct sctp_chunk *tmp;
1684 
1685 	/* We can remove all the entries from the queue up to
1686 	 * the "Peer-Sequence-Number".
1687 	 */
1688 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1689 				transmitted_list) {
1690 		if (ack->subh.addip_hdr->serial ==
1691 				htonl(asoc->peer.addip_serial))
1692 			break;
1693 
1694 		list_del_init(&ack->transmitted_list);
1695 		sctp_chunk_free(ack);
1696 	}
1697 }
1698 
1699 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1700 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1701 					const struct sctp_association *asoc,
1702 					__be32 serial)
1703 {
1704 	struct sctp_chunk *ack;
1705 
1706 	/* Walk through the list of cached ASCONF-ACKs and find the
1707 	 * ack chunk whose serial number matches that of the request.
1708 	 */
1709 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1710 		if (sctp_chunk_pending(ack))
1711 			continue;
1712 		if (ack->subh.addip_hdr->serial == serial) {
1713 			sctp_chunk_hold(ack);
1714 			return ack;
1715 		}
1716 	}
1717 
1718 	return NULL;
1719 }
1720 
1721 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1722 {
1723 	/* Free any cached ASCONF_ACK chunk. */
1724 	sctp_assoc_free_asconf_acks(asoc);
1725 
1726 	/* Free the ASCONF queue. */
1727 	sctp_assoc_free_asconf_queue(asoc);
1728 
1729 	/* Free any cached ASCONF chunk. */
1730 	if (asoc->addip_last_asconf)
1731 		sctp_chunk_free(asoc->addip_last_asconf);
1732 }
1733