xref: /linux/net/sctp/associola.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang             <hui.huang@nokia.com>
42  *    Sridhar Samudrala	    <sri@us.ibm.com>
43  *    Daisy Chang	    <daisyc@us.ibm.com>
44  *    Ryan Layer	    <rmlayer@us.ibm.com>
45  *    Kevin Gao             <kevin.gao@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52 
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57 
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
68 
69 /* Keep track of the new idr low so that we don't re-use association id
70  * numbers too fast.  It is protected by they idr spin lock is in the
71  * range of 1 - INT_MAX.
72  */
73 static u32 idr_low = 1;
74 
75 
76 /* 1st Level Abstractions. */
77 
78 /* Initialize a new association from provided memory. */
79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
80 					  const struct sctp_endpoint *ep,
81 					  const struct sock *sk,
82 					  sctp_scope_t scope,
83 					  gfp_t gfp)
84 {
85 	struct sctp_sock *sp;
86 	int i;
87 	sctp_paramhdr_t *p;
88 	int err;
89 
90 	/* Retrieve the SCTP per socket area.  */
91 	sp = sctp_sk((struct sock *)sk);
92 
93 	/* Discarding const is appropriate here.  */
94 	asoc->ep = (struct sctp_endpoint *)ep;
95 	sctp_endpoint_hold(asoc->ep);
96 
97 	/* Hold the sock.  */
98 	asoc->base.sk = (struct sock *)sk;
99 	sock_hold(asoc->base.sk);
100 
101 	/* Initialize the common base substructure.  */
102 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
103 
104 	/* Initialize the object handling fields.  */
105 	atomic_set(&asoc->base.refcnt, 1);
106 	asoc->base.dead = 0;
107 	asoc->base.malloced = 0;
108 
109 	/* Initialize the bind addr area.  */
110 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
111 
112 	asoc->state = SCTP_STATE_CLOSED;
113 
114 	/* Set these values from the socket values, a conversion between
115 	 * millsecons to seconds/microseconds must also be done.
116 	 */
117 	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
118 	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
119 					* 1000;
120 	asoc->frag_point = 0;
121 	asoc->user_frag = sp->user_frag;
122 
123 	/* Set the association max_retrans and RTO values from the
124 	 * socket values.
125 	 */
126 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
127 	asoc->pf_retrans  = sctp_pf_retrans;
128 
129 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
130 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
131 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
132 
133 	asoc->overall_error_count = 0;
134 
135 	/* Initialize the association's heartbeat interval based on the
136 	 * sock configured value.
137 	 */
138 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
139 
140 	/* Initialize path max retrans value. */
141 	asoc->pathmaxrxt = sp->pathmaxrxt;
142 
143 	/* Initialize default path MTU. */
144 	asoc->pathmtu = sp->pathmtu;
145 
146 	/* Set association default SACK delay */
147 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
148 	asoc->sackfreq = sp->sackfreq;
149 
150 	/* Set the association default flags controlling
151 	 * Heartbeat, SACK delay, and Path MTU Discovery.
152 	 */
153 	asoc->param_flags = sp->param_flags;
154 
155 	/* Initialize the maximum mumber of new data packets that can be sent
156 	 * in a burst.
157 	 */
158 	asoc->max_burst = sp->max_burst;
159 
160 	/* initialize association timers */
161 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
162 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
163 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
164 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
165 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
166 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
167 
168 	/* sctpimpguide Section 2.12.2
169 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
170 	 * recommended value of 5 times 'RTO.Max'.
171 	 */
172 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
173 		= 5 * asoc->rto_max;
174 
175 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
176 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
177 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
178 		min_t(unsigned long, sp->autoclose, sctp_max_autoclose) * HZ;
179 
180 	/* Initializes the timers */
181 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
182 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
183 				(unsigned long)asoc);
184 
185 	/* Pull default initialization values from the sock options.
186 	 * Note: This assumes that the values have already been
187 	 * validated in the sock.
188 	 */
189 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
190 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
191 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
192 
193 	asoc->max_init_timeo =
194 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
195 
196 	/* Allocate storage for the ssnmap after the inbound and outbound
197 	 * streams have been negotiated during Init.
198 	 */
199 	asoc->ssnmap = NULL;
200 
201 	/* Set the local window size for receive.
202 	 * This is also the rcvbuf space per association.
203 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
204 	 * 1500 bytes in one SCTP packet.
205 	 */
206 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
207 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
208 	else
209 		asoc->rwnd = sk->sk_rcvbuf/2;
210 
211 	asoc->a_rwnd = asoc->rwnd;
212 
213 	asoc->rwnd_over = 0;
214 	asoc->rwnd_press = 0;
215 
216 	/* Use my own max window until I learn something better.  */
217 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
218 
219 	/* Set the sndbuf size for transmit.  */
220 	asoc->sndbuf_used = 0;
221 
222 	/* Initialize the receive memory counter */
223 	atomic_set(&asoc->rmem_alloc, 0);
224 
225 	init_waitqueue_head(&asoc->wait);
226 
227 	asoc->c.my_vtag = sctp_generate_tag(ep);
228 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
229 	asoc->c.peer_vtag = 0;
230 	asoc->c.my_ttag   = 0;
231 	asoc->c.peer_ttag = 0;
232 	asoc->c.my_port = ep->base.bind_addr.port;
233 
234 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
235 
236 	asoc->next_tsn = asoc->c.initial_tsn;
237 
238 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
239 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
240 	asoc->highest_sacked = asoc->ctsn_ack_point;
241 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
242 	asoc->unack_data = 0;
243 
244 	/* ADDIP Section 4.1 Asconf Chunk Procedures
245 	 *
246 	 * When an endpoint has an ASCONF signaled change to be sent to the
247 	 * remote endpoint it should do the following:
248 	 * ...
249 	 * A2) a serial number should be assigned to the chunk. The serial
250 	 * number SHOULD be a monotonically increasing number. The serial
251 	 * numbers SHOULD be initialized at the start of the
252 	 * association to the same value as the initial TSN.
253 	 */
254 	asoc->addip_serial = asoc->c.initial_tsn;
255 
256 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
257 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
258 
259 	/* Make an empty list of remote transport addresses.  */
260 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
261 	asoc->peer.transport_count = 0;
262 
263 	/* RFC 2960 5.1 Normal Establishment of an Association
264 	 *
265 	 * After the reception of the first data chunk in an
266 	 * association the endpoint must immediately respond with a
267 	 * sack to acknowledge the data chunk.  Subsequent
268 	 * acknowledgements should be done as described in Section
269 	 * 6.2.
270 	 *
271 	 * [We implement this by telling a new association that it
272 	 * already received one packet.]
273 	 */
274 	asoc->peer.sack_needed = 1;
275 	asoc->peer.sack_cnt = 0;
276 	asoc->peer.sack_generation = 1;
277 
278 	/* Assume that the peer will tell us if he recognizes ASCONF
279 	 * as part of INIT exchange.
280 	 * The sctp_addip_noauth option is there for backward compatibilty
281 	 * and will revert old behavior.
282 	 */
283 	asoc->peer.asconf_capable = 0;
284 	if (sctp_addip_noauth)
285 		asoc->peer.asconf_capable = 1;
286 	asoc->asconf_addr_del_pending = NULL;
287 	asoc->src_out_of_asoc_ok = 0;
288 	asoc->new_transport = NULL;
289 
290 	/* Create an input queue.  */
291 	sctp_inq_init(&asoc->base.inqueue);
292 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
293 
294 	/* Create an output queue.  */
295 	sctp_outq_init(asoc, &asoc->outqueue);
296 
297 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
298 		goto fail_init;
299 
300 	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
301 
302 	asoc->need_ecne = 0;
303 
304 	asoc->assoc_id = 0;
305 
306 	/* Assume that peer would support both address types unless we are
307 	 * told otherwise.
308 	 */
309 	asoc->peer.ipv4_address = 1;
310 	if (asoc->base.sk->sk_family == PF_INET6)
311 		asoc->peer.ipv6_address = 1;
312 	INIT_LIST_HEAD(&asoc->asocs);
313 
314 	asoc->autoclose = sp->autoclose;
315 
316 	asoc->default_stream = sp->default_stream;
317 	asoc->default_ppid = sp->default_ppid;
318 	asoc->default_flags = sp->default_flags;
319 	asoc->default_context = sp->default_context;
320 	asoc->default_timetolive = sp->default_timetolive;
321 	asoc->default_rcv_context = sp->default_rcv_context;
322 
323 	/* AUTH related initializations */
324 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
325 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
326 	if (err)
327 		goto fail_init;
328 
329 	asoc->active_key_id = ep->active_key_id;
330 	asoc->asoc_shared_key = NULL;
331 
332 	asoc->default_hmac_id = 0;
333 	/* Save the hmacs and chunks list into this association */
334 	if (ep->auth_hmacs_list)
335 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
336 			ntohs(ep->auth_hmacs_list->param_hdr.length));
337 	if (ep->auth_chunk_list)
338 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
339 			ntohs(ep->auth_chunk_list->param_hdr.length));
340 
341 	/* Get the AUTH random number for this association */
342 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
343 	p->type = SCTP_PARAM_RANDOM;
344 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
345 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
346 
347 	return asoc;
348 
349 fail_init:
350 	sctp_endpoint_put(asoc->ep);
351 	sock_put(asoc->base.sk);
352 	return NULL;
353 }
354 
355 /* Allocate and initialize a new association */
356 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
357 					 const struct sock *sk,
358 					 sctp_scope_t scope,
359 					 gfp_t gfp)
360 {
361 	struct sctp_association *asoc;
362 
363 	asoc = t_new(struct sctp_association, gfp);
364 	if (!asoc)
365 		goto fail;
366 
367 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
368 		goto fail_init;
369 
370 	asoc->base.malloced = 1;
371 	SCTP_DBG_OBJCNT_INC(assoc);
372 	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
373 
374 	return asoc;
375 
376 fail_init:
377 	kfree(asoc);
378 fail:
379 	return NULL;
380 }
381 
382 /* Free this association if possible.  There may still be users, so
383  * the actual deallocation may be delayed.
384  */
385 void sctp_association_free(struct sctp_association *asoc)
386 {
387 	struct sock *sk = asoc->base.sk;
388 	struct sctp_transport *transport;
389 	struct list_head *pos, *temp;
390 	int i;
391 
392 	/* Only real associations count against the endpoint, so
393 	 * don't bother for if this is a temporary association.
394 	 */
395 	if (!asoc->temp) {
396 		list_del(&asoc->asocs);
397 
398 		/* Decrement the backlog value for a TCP-style listening
399 		 * socket.
400 		 */
401 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
402 			sk->sk_ack_backlog--;
403 	}
404 
405 	/* Mark as dead, so other users can know this structure is
406 	 * going away.
407 	 */
408 	asoc->base.dead = 1;
409 
410 	/* Dispose of any data lying around in the outqueue. */
411 	sctp_outq_free(&asoc->outqueue);
412 
413 	/* Dispose of any pending messages for the upper layer. */
414 	sctp_ulpq_free(&asoc->ulpq);
415 
416 	/* Dispose of any pending chunks on the inqueue. */
417 	sctp_inq_free(&asoc->base.inqueue);
418 
419 	sctp_tsnmap_free(&asoc->peer.tsn_map);
420 
421 	/* Free ssnmap storage. */
422 	sctp_ssnmap_free(asoc->ssnmap);
423 
424 	/* Clean up the bound address list. */
425 	sctp_bind_addr_free(&asoc->base.bind_addr);
426 
427 	/* Do we need to go through all of our timers and
428 	 * delete them?   To be safe we will try to delete all, but we
429 	 * should be able to go through and make a guess based
430 	 * on our state.
431 	 */
432 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
433 		if (timer_pending(&asoc->timers[i]) &&
434 		    del_timer(&asoc->timers[i]))
435 			sctp_association_put(asoc);
436 	}
437 
438 	/* Free peer's cached cookie. */
439 	kfree(asoc->peer.cookie);
440 	kfree(asoc->peer.peer_random);
441 	kfree(asoc->peer.peer_chunks);
442 	kfree(asoc->peer.peer_hmacs);
443 
444 	/* Release the transport structures. */
445 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
446 		transport = list_entry(pos, struct sctp_transport, transports);
447 		list_del(pos);
448 		sctp_transport_free(transport);
449 	}
450 
451 	asoc->peer.transport_count = 0;
452 
453 	sctp_asconf_queue_teardown(asoc);
454 
455 	/* Free pending address space being deleted */
456 	if (asoc->asconf_addr_del_pending != NULL)
457 		kfree(asoc->asconf_addr_del_pending);
458 
459 	/* AUTH - Free the endpoint shared keys */
460 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
461 
462 	/* AUTH - Free the association shared key */
463 	sctp_auth_key_put(asoc->asoc_shared_key);
464 
465 	sctp_association_put(asoc);
466 }
467 
468 /* Cleanup and free up an association. */
469 static void sctp_association_destroy(struct sctp_association *asoc)
470 {
471 	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
472 
473 	sctp_endpoint_put(asoc->ep);
474 	sock_put(asoc->base.sk);
475 
476 	if (asoc->assoc_id != 0) {
477 		spin_lock_bh(&sctp_assocs_id_lock);
478 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
479 		spin_unlock_bh(&sctp_assocs_id_lock);
480 	}
481 
482 	WARN_ON(atomic_read(&asoc->rmem_alloc));
483 
484 	if (asoc->base.malloced) {
485 		kfree(asoc);
486 		SCTP_DBG_OBJCNT_DEC(assoc);
487 	}
488 }
489 
490 /* Change the primary destination address for the peer. */
491 void sctp_assoc_set_primary(struct sctp_association *asoc,
492 			    struct sctp_transport *transport)
493 {
494 	int changeover = 0;
495 
496 	/* it's a changeover only if we already have a primary path
497 	 * that we are changing
498 	 */
499 	if (asoc->peer.primary_path != NULL &&
500 	    asoc->peer.primary_path != transport)
501 		changeover = 1 ;
502 
503 	asoc->peer.primary_path = transport;
504 
505 	/* Set a default msg_name for events. */
506 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
507 	       sizeof(union sctp_addr));
508 
509 	/* If the primary path is changing, assume that the
510 	 * user wants to use this new path.
511 	 */
512 	if ((transport->state == SCTP_ACTIVE) ||
513 	    (transport->state == SCTP_UNKNOWN))
514 		asoc->peer.active_path = transport;
515 
516 	/*
517 	 * SFR-CACC algorithm:
518 	 * Upon the receipt of a request to change the primary
519 	 * destination address, on the data structure for the new
520 	 * primary destination, the sender MUST do the following:
521 	 *
522 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
523 	 * to this destination address earlier. The sender MUST set
524 	 * CYCLING_CHANGEOVER to indicate that this switch is a
525 	 * double switch to the same destination address.
526 	 *
527 	 * Really, only bother is we have data queued or outstanding on
528 	 * the association.
529 	 */
530 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
531 		return;
532 
533 	if (transport->cacc.changeover_active)
534 		transport->cacc.cycling_changeover = changeover;
535 
536 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
537 	 * a changeover has occurred.
538 	 */
539 	transport->cacc.changeover_active = changeover;
540 
541 	/* 3) The sender MUST store the next TSN to be sent in
542 	 * next_tsn_at_change.
543 	 */
544 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
545 }
546 
547 /* Remove a transport from an association.  */
548 void sctp_assoc_rm_peer(struct sctp_association *asoc,
549 			struct sctp_transport *peer)
550 {
551 	struct list_head	*pos;
552 	struct sctp_transport	*transport;
553 
554 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
555 				 " port: %d\n",
556 				 asoc,
557 				 (&peer->ipaddr),
558 				 ntohs(peer->ipaddr.v4.sin_port));
559 
560 	/* If we are to remove the current retran_path, update it
561 	 * to the next peer before removing this peer from the list.
562 	 */
563 	if (asoc->peer.retran_path == peer)
564 		sctp_assoc_update_retran_path(asoc);
565 
566 	/* Remove this peer from the list. */
567 	list_del(&peer->transports);
568 
569 	/* Get the first transport of asoc. */
570 	pos = asoc->peer.transport_addr_list.next;
571 	transport = list_entry(pos, struct sctp_transport, transports);
572 
573 	/* Update any entries that match the peer to be deleted. */
574 	if (asoc->peer.primary_path == peer)
575 		sctp_assoc_set_primary(asoc, transport);
576 	if (asoc->peer.active_path == peer)
577 		asoc->peer.active_path = transport;
578 	if (asoc->peer.retran_path == peer)
579 		asoc->peer.retran_path = transport;
580 	if (asoc->peer.last_data_from == peer)
581 		asoc->peer.last_data_from = transport;
582 
583 	/* If we remove the transport an INIT was last sent to, set it to
584 	 * NULL. Combined with the update of the retran path above, this
585 	 * will cause the next INIT to be sent to the next available
586 	 * transport, maintaining the cycle.
587 	 */
588 	if (asoc->init_last_sent_to == peer)
589 		asoc->init_last_sent_to = NULL;
590 
591 	/* If we remove the transport an SHUTDOWN was last sent to, set it
592 	 * to NULL. Combined with the update of the retran path above, this
593 	 * will cause the next SHUTDOWN to be sent to the next available
594 	 * transport, maintaining the cycle.
595 	 */
596 	if (asoc->shutdown_last_sent_to == peer)
597 		asoc->shutdown_last_sent_to = NULL;
598 
599 	/* If we remove the transport an ASCONF was last sent to, set it to
600 	 * NULL.
601 	 */
602 	if (asoc->addip_last_asconf &&
603 	    asoc->addip_last_asconf->transport == peer)
604 		asoc->addip_last_asconf->transport = NULL;
605 
606 	/* If we have something on the transmitted list, we have to
607 	 * save it off.  The best place is the active path.
608 	 */
609 	if (!list_empty(&peer->transmitted)) {
610 		struct sctp_transport *active = asoc->peer.active_path;
611 		struct sctp_chunk *ch;
612 
613 		/* Reset the transport of each chunk on this list */
614 		list_for_each_entry(ch, &peer->transmitted,
615 					transmitted_list) {
616 			ch->transport = NULL;
617 			ch->rtt_in_progress = 0;
618 		}
619 
620 		list_splice_tail_init(&peer->transmitted,
621 					&active->transmitted);
622 
623 		/* Start a T3 timer here in case it wasn't running so
624 		 * that these migrated packets have a chance to get
625 		 * retrnasmitted.
626 		 */
627 		if (!timer_pending(&active->T3_rtx_timer))
628 			if (!mod_timer(&active->T3_rtx_timer,
629 					jiffies + active->rto))
630 				sctp_transport_hold(active);
631 	}
632 
633 	asoc->peer.transport_count--;
634 
635 	sctp_transport_free(peer);
636 }
637 
638 /* Add a transport address to an association.  */
639 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
640 					   const union sctp_addr *addr,
641 					   const gfp_t gfp,
642 					   const int peer_state)
643 {
644 	struct sctp_transport *peer;
645 	struct sctp_sock *sp;
646 	unsigned short port;
647 
648 	sp = sctp_sk(asoc->base.sk);
649 
650 	/* AF_INET and AF_INET6 share common port field. */
651 	port = ntohs(addr->v4.sin_port);
652 
653 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
654 				 " port: %d state:%d\n",
655 				 asoc,
656 				 addr,
657 				 port,
658 				 peer_state);
659 
660 	/* Set the port if it has not been set yet.  */
661 	if (0 == asoc->peer.port)
662 		asoc->peer.port = port;
663 
664 	/* Check to see if this is a duplicate. */
665 	peer = sctp_assoc_lookup_paddr(asoc, addr);
666 	if (peer) {
667 		/* An UNKNOWN state is only set on transports added by
668 		 * user in sctp_connectx() call.  Such transports should be
669 		 * considered CONFIRMED per RFC 4960, Section 5.4.
670 		 */
671 		if (peer->state == SCTP_UNKNOWN) {
672 			peer->state = SCTP_ACTIVE;
673 		}
674 		return peer;
675 	}
676 
677 	peer = sctp_transport_new(addr, gfp);
678 	if (!peer)
679 		return NULL;
680 
681 	sctp_transport_set_owner(peer, asoc);
682 
683 	/* Initialize the peer's heartbeat interval based on the
684 	 * association configured value.
685 	 */
686 	peer->hbinterval = asoc->hbinterval;
687 
688 	/* Set the path max_retrans.  */
689 	peer->pathmaxrxt = asoc->pathmaxrxt;
690 
691 	/* And the partial failure retrnas threshold */
692 	peer->pf_retrans = asoc->pf_retrans;
693 
694 	/* Initialize the peer's SACK delay timeout based on the
695 	 * association configured value.
696 	 */
697 	peer->sackdelay = asoc->sackdelay;
698 	peer->sackfreq = asoc->sackfreq;
699 
700 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
701 	 * based on association setting.
702 	 */
703 	peer->param_flags = asoc->param_flags;
704 
705 	sctp_transport_route(peer, NULL, sp);
706 
707 	/* Initialize the pmtu of the transport. */
708 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
709 		if (asoc->pathmtu)
710 			peer->pathmtu = asoc->pathmtu;
711 		else
712 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
713 	}
714 
715 	/* If this is the first transport addr on this association,
716 	 * initialize the association PMTU to the peer's PMTU.
717 	 * If not and the current association PMTU is higher than the new
718 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
719 	 */
720 	if (asoc->pathmtu)
721 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
722 	else
723 		asoc->pathmtu = peer->pathmtu;
724 
725 	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
726 			  "%d\n", asoc, asoc->pathmtu);
727 	peer->pmtu_pending = 0;
728 
729 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
730 
731 	/* The asoc->peer.port might not be meaningful yet, but
732 	 * initialize the packet structure anyway.
733 	 */
734 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
735 			 asoc->peer.port);
736 
737 	/* 7.2.1 Slow-Start
738 	 *
739 	 * o The initial cwnd before DATA transmission or after a sufficiently
740 	 *   long idle period MUST be set to
741 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
742 	 *
743 	 * o The initial value of ssthresh MAY be arbitrarily high
744 	 *   (for example, implementations MAY use the size of the
745 	 *   receiver advertised window).
746 	 */
747 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
748 
749 	/* At this point, we may not have the receiver's advertised window,
750 	 * so initialize ssthresh to the default value and it will be set
751 	 * later when we process the INIT.
752 	 */
753 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
754 
755 	peer->partial_bytes_acked = 0;
756 	peer->flight_size = 0;
757 	peer->burst_limited = 0;
758 
759 	/* Set the transport's RTO.initial value */
760 	peer->rto = asoc->rto_initial;
761 
762 	/* Set the peer's active state. */
763 	peer->state = peer_state;
764 
765 	/* Attach the remote transport to our asoc.  */
766 	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
767 	asoc->peer.transport_count++;
768 
769 	/* If we do not yet have a primary path, set one.  */
770 	if (!asoc->peer.primary_path) {
771 		sctp_assoc_set_primary(asoc, peer);
772 		asoc->peer.retran_path = peer;
773 	}
774 
775 	if (asoc->peer.active_path == asoc->peer.retran_path &&
776 	    peer->state != SCTP_UNCONFIRMED) {
777 		asoc->peer.retran_path = peer;
778 	}
779 
780 	return peer;
781 }
782 
783 /* Delete a transport address from an association.  */
784 void sctp_assoc_del_peer(struct sctp_association *asoc,
785 			 const union sctp_addr *addr)
786 {
787 	struct list_head	*pos;
788 	struct list_head	*temp;
789 	struct sctp_transport	*transport;
790 
791 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
792 		transport = list_entry(pos, struct sctp_transport, transports);
793 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
794 			/* Do book keeping for removing the peer and free it. */
795 			sctp_assoc_rm_peer(asoc, transport);
796 			break;
797 		}
798 	}
799 }
800 
801 /* Lookup a transport by address. */
802 struct sctp_transport *sctp_assoc_lookup_paddr(
803 					const struct sctp_association *asoc,
804 					const union sctp_addr *address)
805 {
806 	struct sctp_transport *t;
807 
808 	/* Cycle through all transports searching for a peer address. */
809 
810 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
811 			transports) {
812 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
813 			return t;
814 	}
815 
816 	return NULL;
817 }
818 
819 /* Remove all transports except a give one */
820 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
821 				     struct sctp_transport *primary)
822 {
823 	struct sctp_transport	*temp;
824 	struct sctp_transport	*t;
825 
826 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
827 				 transports) {
828 		/* if the current transport is not the primary one, delete it */
829 		if (t != primary)
830 			sctp_assoc_rm_peer(asoc, t);
831 	}
832 }
833 
834 /* Engage in transport control operations.
835  * Mark the transport up or down and send a notification to the user.
836  * Select and update the new active and retran paths.
837  */
838 void sctp_assoc_control_transport(struct sctp_association *asoc,
839 				  struct sctp_transport *transport,
840 				  sctp_transport_cmd_t command,
841 				  sctp_sn_error_t error)
842 {
843 	struct sctp_transport *t = NULL;
844 	struct sctp_transport *first;
845 	struct sctp_transport *second;
846 	struct sctp_ulpevent *event;
847 	struct sockaddr_storage addr;
848 	int spc_state = 0;
849 	bool ulp_notify = true;
850 
851 	/* Record the transition on the transport.  */
852 	switch (command) {
853 	case SCTP_TRANSPORT_UP:
854 		/* If we are moving from UNCONFIRMED state due
855 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
856 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
857 		 */
858 		if (SCTP_UNCONFIRMED == transport->state &&
859 		    SCTP_HEARTBEAT_SUCCESS == error)
860 			spc_state = SCTP_ADDR_CONFIRMED;
861 		else
862 			spc_state = SCTP_ADDR_AVAILABLE;
863 		/* Don't inform ULP about transition from PF to
864 		 * active state and set cwnd to 1, see SCTP
865 		 * Quick failover draft section 5.1, point 5
866 		 */
867 		if (transport->state == SCTP_PF) {
868 			ulp_notify = false;
869 			transport->cwnd = 1;
870 		}
871 		transport->state = SCTP_ACTIVE;
872 		break;
873 
874 	case SCTP_TRANSPORT_DOWN:
875 		/* If the transport was never confirmed, do not transition it
876 		 * to inactive state.  Also, release the cached route since
877 		 * there may be a better route next time.
878 		 */
879 		if (transport->state != SCTP_UNCONFIRMED)
880 			transport->state = SCTP_INACTIVE;
881 		else {
882 			dst_release(transport->dst);
883 			transport->dst = NULL;
884 		}
885 
886 		spc_state = SCTP_ADDR_UNREACHABLE;
887 		break;
888 
889 	case SCTP_TRANSPORT_PF:
890 		transport->state = SCTP_PF;
891 		ulp_notify = false;
892 		break;
893 
894 	default:
895 		return;
896 	}
897 
898 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
899 	 * user.
900 	 */
901 	if (ulp_notify) {
902 		memset(&addr, 0, sizeof(struct sockaddr_storage));
903 		memcpy(&addr, &transport->ipaddr,
904 		       transport->af_specific->sockaddr_len);
905 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
906 					0, spc_state, error, GFP_ATOMIC);
907 		if (event)
908 			sctp_ulpq_tail_event(&asoc->ulpq, event);
909 	}
910 
911 	/* Select new active and retran paths. */
912 
913 	/* Look for the two most recently used active transports.
914 	 *
915 	 * This code produces the wrong ordering whenever jiffies
916 	 * rolls over, but we still get usable transports, so we don't
917 	 * worry about it.
918 	 */
919 	first = NULL; second = NULL;
920 
921 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
922 			transports) {
923 
924 		if ((t->state == SCTP_INACTIVE) ||
925 		    (t->state == SCTP_UNCONFIRMED) ||
926 		    (t->state == SCTP_PF))
927 			continue;
928 		if (!first || t->last_time_heard > first->last_time_heard) {
929 			second = first;
930 			first = t;
931 		}
932 		if (!second || t->last_time_heard > second->last_time_heard)
933 			second = t;
934 	}
935 
936 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
937 	 *
938 	 * By default, an endpoint should always transmit to the
939 	 * primary path, unless the SCTP user explicitly specifies the
940 	 * destination transport address (and possibly source
941 	 * transport address) to use.
942 	 *
943 	 * [If the primary is active but not most recent, bump the most
944 	 * recently used transport.]
945 	 */
946 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
947 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
948 	    first != asoc->peer.primary_path) {
949 		second = first;
950 		first = asoc->peer.primary_path;
951 	}
952 
953 	/* If we failed to find a usable transport, just camp on the
954 	 * primary, even if it is inactive.
955 	 */
956 	if (!first) {
957 		first = asoc->peer.primary_path;
958 		second = asoc->peer.primary_path;
959 	}
960 
961 	/* Set the active and retran transports.  */
962 	asoc->peer.active_path = first;
963 	asoc->peer.retran_path = second;
964 }
965 
966 /* Hold a reference to an association. */
967 void sctp_association_hold(struct sctp_association *asoc)
968 {
969 	atomic_inc(&asoc->base.refcnt);
970 }
971 
972 /* Release a reference to an association and cleanup
973  * if there are no more references.
974  */
975 void sctp_association_put(struct sctp_association *asoc)
976 {
977 	if (atomic_dec_and_test(&asoc->base.refcnt))
978 		sctp_association_destroy(asoc);
979 }
980 
981 /* Allocate the next TSN, Transmission Sequence Number, for the given
982  * association.
983  */
984 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
985 {
986 	/* From Section 1.6 Serial Number Arithmetic:
987 	 * Transmission Sequence Numbers wrap around when they reach
988 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
989 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
990 	 */
991 	__u32 retval = asoc->next_tsn;
992 	asoc->next_tsn++;
993 	asoc->unack_data++;
994 
995 	return retval;
996 }
997 
998 /* Compare two addresses to see if they match.  Wildcard addresses
999  * only match themselves.
1000  */
1001 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
1002 			const union sctp_addr *ss2)
1003 {
1004 	struct sctp_af *af;
1005 
1006 	af = sctp_get_af_specific(ss1->sa.sa_family);
1007 	if (unlikely(!af))
1008 		return 0;
1009 
1010 	return af->cmp_addr(ss1, ss2);
1011 }
1012 
1013 /* Return an ecne chunk to get prepended to a packet.
1014  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
1015  * No we don't, but we could/should.
1016  */
1017 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
1018 {
1019 	struct sctp_chunk *chunk;
1020 
1021 	/* Send ECNE if needed.
1022 	 * Not being able to allocate a chunk here is not deadly.
1023 	 */
1024 	if (asoc->need_ecne)
1025 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1026 	else
1027 		chunk = NULL;
1028 
1029 	return chunk;
1030 }
1031 
1032 /*
1033  * Find which transport this TSN was sent on.
1034  */
1035 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1036 					     __u32 tsn)
1037 {
1038 	struct sctp_transport *active;
1039 	struct sctp_transport *match;
1040 	struct sctp_transport *transport;
1041 	struct sctp_chunk *chunk;
1042 	__be32 key = htonl(tsn);
1043 
1044 	match = NULL;
1045 
1046 	/*
1047 	 * FIXME: In general, find a more efficient data structure for
1048 	 * searching.
1049 	 */
1050 
1051 	/*
1052 	 * The general strategy is to search each transport's transmitted
1053 	 * list.   Return which transport this TSN lives on.
1054 	 *
1055 	 * Let's be hopeful and check the active_path first.
1056 	 * Another optimization would be to know if there is only one
1057 	 * outbound path and not have to look for the TSN at all.
1058 	 *
1059 	 */
1060 
1061 	active = asoc->peer.active_path;
1062 
1063 	list_for_each_entry(chunk, &active->transmitted,
1064 			transmitted_list) {
1065 
1066 		if (key == chunk->subh.data_hdr->tsn) {
1067 			match = active;
1068 			goto out;
1069 		}
1070 	}
1071 
1072 	/* If not found, go search all the other transports. */
1073 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1074 			transports) {
1075 
1076 		if (transport == active)
1077 			break;
1078 		list_for_each_entry(chunk, &transport->transmitted,
1079 				transmitted_list) {
1080 			if (key == chunk->subh.data_hdr->tsn) {
1081 				match = transport;
1082 				goto out;
1083 			}
1084 		}
1085 	}
1086 out:
1087 	return match;
1088 }
1089 
1090 /* Is this the association we are looking for? */
1091 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1092 					   const union sctp_addr *laddr,
1093 					   const union sctp_addr *paddr)
1094 {
1095 	struct sctp_transport *transport;
1096 
1097 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1098 	    (htons(asoc->peer.port) == paddr->v4.sin_port)) {
1099 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1100 		if (!transport)
1101 			goto out;
1102 
1103 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1104 					 sctp_sk(asoc->base.sk)))
1105 			goto out;
1106 	}
1107 	transport = NULL;
1108 
1109 out:
1110 	return transport;
1111 }
1112 
1113 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1114 static void sctp_assoc_bh_rcv(struct work_struct *work)
1115 {
1116 	struct sctp_association *asoc =
1117 		container_of(work, struct sctp_association,
1118 			     base.inqueue.immediate);
1119 	struct sctp_endpoint *ep;
1120 	struct sctp_chunk *chunk;
1121 	struct sctp_inq *inqueue;
1122 	int state;
1123 	sctp_subtype_t subtype;
1124 	int error = 0;
1125 
1126 	/* The association should be held so we should be safe. */
1127 	ep = asoc->ep;
1128 
1129 	inqueue = &asoc->base.inqueue;
1130 	sctp_association_hold(asoc);
1131 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1132 		state = asoc->state;
1133 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1134 
1135 		/* SCTP-AUTH, Section 6.3:
1136 		 *    The receiver has a list of chunk types which it expects
1137 		 *    to be received only after an AUTH-chunk.  This list has
1138 		 *    been sent to the peer during the association setup.  It
1139 		 *    MUST silently discard these chunks if they are not placed
1140 		 *    after an AUTH chunk in the packet.
1141 		 */
1142 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1143 			continue;
1144 
1145 		/* Remember where the last DATA chunk came from so we
1146 		 * know where to send the SACK.
1147 		 */
1148 		if (sctp_chunk_is_data(chunk))
1149 			asoc->peer.last_data_from = chunk->transport;
1150 		else
1151 			SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
1152 
1153 		if (chunk->transport)
1154 			chunk->transport->last_time_heard = jiffies;
1155 
1156 		/* Run through the state machine. */
1157 		error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1158 				   state, ep, asoc, chunk, GFP_ATOMIC);
1159 
1160 		/* Check to see if the association is freed in response to
1161 		 * the incoming chunk.  If so, get out of the while loop.
1162 		 */
1163 		if (asoc->base.dead)
1164 			break;
1165 
1166 		/* If there is an error on chunk, discard this packet. */
1167 		if (error && chunk)
1168 			chunk->pdiscard = 1;
1169 	}
1170 	sctp_association_put(asoc);
1171 }
1172 
1173 /* This routine moves an association from its old sk to a new sk.  */
1174 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1175 {
1176 	struct sctp_sock *newsp = sctp_sk(newsk);
1177 	struct sock *oldsk = assoc->base.sk;
1178 
1179 	/* Delete the association from the old endpoint's list of
1180 	 * associations.
1181 	 */
1182 	list_del_init(&assoc->asocs);
1183 
1184 	/* Decrement the backlog value for a TCP-style socket. */
1185 	if (sctp_style(oldsk, TCP))
1186 		oldsk->sk_ack_backlog--;
1187 
1188 	/* Release references to the old endpoint and the sock.  */
1189 	sctp_endpoint_put(assoc->ep);
1190 	sock_put(assoc->base.sk);
1191 
1192 	/* Get a reference to the new endpoint.  */
1193 	assoc->ep = newsp->ep;
1194 	sctp_endpoint_hold(assoc->ep);
1195 
1196 	/* Get a reference to the new sock.  */
1197 	assoc->base.sk = newsk;
1198 	sock_hold(assoc->base.sk);
1199 
1200 	/* Add the association to the new endpoint's list of associations.  */
1201 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1202 }
1203 
1204 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1205 void sctp_assoc_update(struct sctp_association *asoc,
1206 		       struct sctp_association *new)
1207 {
1208 	struct sctp_transport *trans;
1209 	struct list_head *pos, *temp;
1210 
1211 	/* Copy in new parameters of peer. */
1212 	asoc->c = new->c;
1213 	asoc->peer.rwnd = new->peer.rwnd;
1214 	asoc->peer.sack_needed = new->peer.sack_needed;
1215 	asoc->peer.i = new->peer.i;
1216 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1217 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1218 
1219 	/* Remove any peer addresses not present in the new association. */
1220 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1221 		trans = list_entry(pos, struct sctp_transport, transports);
1222 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1223 			sctp_assoc_rm_peer(asoc, trans);
1224 			continue;
1225 		}
1226 
1227 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1228 			sctp_transport_reset(trans);
1229 	}
1230 
1231 	/* If the case is A (association restart), use
1232 	 * initial_tsn as next_tsn. If the case is B, use
1233 	 * current next_tsn in case data sent to peer
1234 	 * has been discarded and needs retransmission.
1235 	 */
1236 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1237 		asoc->next_tsn = new->next_tsn;
1238 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1239 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1240 
1241 		/* Reinitialize SSN for both local streams
1242 		 * and peer's streams.
1243 		 */
1244 		sctp_ssnmap_clear(asoc->ssnmap);
1245 
1246 		/* Flush the ULP reassembly and ordered queue.
1247 		 * Any data there will now be stale and will
1248 		 * cause problems.
1249 		 */
1250 		sctp_ulpq_flush(&asoc->ulpq);
1251 
1252 		/* reset the overall association error count so
1253 		 * that the restarted association doesn't get torn
1254 		 * down on the next retransmission timer.
1255 		 */
1256 		asoc->overall_error_count = 0;
1257 
1258 	} else {
1259 		/* Add any peer addresses from the new association. */
1260 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1261 				transports) {
1262 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1263 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1264 						    GFP_ATOMIC, trans->state);
1265 		}
1266 
1267 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1268 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1269 		if (!asoc->ssnmap) {
1270 			/* Move the ssnmap. */
1271 			asoc->ssnmap = new->ssnmap;
1272 			new->ssnmap = NULL;
1273 		}
1274 
1275 		if (!asoc->assoc_id) {
1276 			/* get a new association id since we don't have one
1277 			 * yet.
1278 			 */
1279 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1280 		}
1281 	}
1282 
1283 	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1284 	 * and also move the association shared keys over
1285 	 */
1286 	kfree(asoc->peer.peer_random);
1287 	asoc->peer.peer_random = new->peer.peer_random;
1288 	new->peer.peer_random = NULL;
1289 
1290 	kfree(asoc->peer.peer_chunks);
1291 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1292 	new->peer.peer_chunks = NULL;
1293 
1294 	kfree(asoc->peer.peer_hmacs);
1295 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1296 	new->peer.peer_hmacs = NULL;
1297 
1298 	sctp_auth_key_put(asoc->asoc_shared_key);
1299 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1300 }
1301 
1302 /* Update the retran path for sending a retransmitted packet.
1303  * Round-robin through the active transports, else round-robin
1304  * through the inactive transports as this is the next best thing
1305  * we can try.
1306  */
1307 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1308 {
1309 	struct sctp_transport *t, *next;
1310 	struct list_head *head = &asoc->peer.transport_addr_list;
1311 	struct list_head *pos;
1312 
1313 	if (asoc->peer.transport_count == 1)
1314 		return;
1315 
1316 	/* Find the next transport in a round-robin fashion. */
1317 	t = asoc->peer.retran_path;
1318 	pos = &t->transports;
1319 	next = NULL;
1320 
1321 	while (1) {
1322 		/* Skip the head. */
1323 		if (pos->next == head)
1324 			pos = head->next;
1325 		else
1326 			pos = pos->next;
1327 
1328 		t = list_entry(pos, struct sctp_transport, transports);
1329 
1330 		/* We have exhausted the list, but didn't find any
1331 		 * other active transports.  If so, use the next
1332 		 * transport.
1333 		 */
1334 		if (t == asoc->peer.retran_path) {
1335 			t = next;
1336 			break;
1337 		}
1338 
1339 		/* Try to find an active transport. */
1340 
1341 		if ((t->state == SCTP_ACTIVE) ||
1342 		    (t->state == SCTP_UNKNOWN)) {
1343 			break;
1344 		} else {
1345 			/* Keep track of the next transport in case
1346 			 * we don't find any active transport.
1347 			 */
1348 			if (t->state != SCTP_UNCONFIRMED && !next)
1349 				next = t;
1350 		}
1351 	}
1352 
1353 	if (t)
1354 		asoc->peer.retran_path = t;
1355 	else
1356 		t = asoc->peer.retran_path;
1357 
1358 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1359 				 " %p addr: ",
1360 				 " port: %d\n",
1361 				 asoc,
1362 				 (&t->ipaddr),
1363 				 ntohs(t->ipaddr.v4.sin_port));
1364 }
1365 
1366 /* Choose the transport for sending retransmit packet.  */
1367 struct sctp_transport *sctp_assoc_choose_alter_transport(
1368 	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1369 {
1370 	/* If this is the first time packet is sent, use the active path,
1371 	 * else use the retran path. If the last packet was sent over the
1372 	 * retran path, update the retran path and use it.
1373 	 */
1374 	if (!last_sent_to)
1375 		return asoc->peer.active_path;
1376 	else {
1377 		if (last_sent_to == asoc->peer.retran_path)
1378 			sctp_assoc_update_retran_path(asoc);
1379 		return asoc->peer.retran_path;
1380 	}
1381 }
1382 
1383 /* Update the association's pmtu and frag_point by going through all the
1384  * transports. This routine is called when a transport's PMTU has changed.
1385  */
1386 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1387 {
1388 	struct sctp_transport *t;
1389 	__u32 pmtu = 0;
1390 
1391 	if (!asoc)
1392 		return;
1393 
1394 	/* Get the lowest pmtu of all the transports. */
1395 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1396 				transports) {
1397 		if (t->pmtu_pending && t->dst) {
1398 			sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1399 			t->pmtu_pending = 0;
1400 		}
1401 		if (!pmtu || (t->pathmtu < pmtu))
1402 			pmtu = t->pathmtu;
1403 	}
1404 
1405 	if (pmtu) {
1406 		asoc->pathmtu = pmtu;
1407 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1408 	}
1409 
1410 	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1411 			  __func__, asoc, asoc->pathmtu, asoc->frag_point);
1412 }
1413 
1414 /* Should we send a SACK to update our peer? */
1415 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1416 {
1417 	switch (asoc->state) {
1418 	case SCTP_STATE_ESTABLISHED:
1419 	case SCTP_STATE_SHUTDOWN_PENDING:
1420 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1421 	case SCTP_STATE_SHUTDOWN_SENT:
1422 		if ((asoc->rwnd > asoc->a_rwnd) &&
1423 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1424 			   (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift),
1425 			   asoc->pathmtu)))
1426 			return 1;
1427 		break;
1428 	default:
1429 		break;
1430 	}
1431 	return 0;
1432 }
1433 
1434 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1435 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1436 {
1437 	struct sctp_chunk *sack;
1438 	struct timer_list *timer;
1439 
1440 	if (asoc->rwnd_over) {
1441 		if (asoc->rwnd_over >= len) {
1442 			asoc->rwnd_over -= len;
1443 		} else {
1444 			asoc->rwnd += (len - asoc->rwnd_over);
1445 			asoc->rwnd_over = 0;
1446 		}
1447 	} else {
1448 		asoc->rwnd += len;
1449 	}
1450 
1451 	/* If we had window pressure, start recovering it
1452 	 * once our rwnd had reached the accumulated pressure
1453 	 * threshold.  The idea is to recover slowly, but up
1454 	 * to the initial advertised window.
1455 	 */
1456 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1457 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1458 		asoc->rwnd += change;
1459 		asoc->rwnd_press -= change;
1460 	}
1461 
1462 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1463 			  "- %u\n", __func__, asoc, len, asoc->rwnd,
1464 			  asoc->rwnd_over, asoc->a_rwnd);
1465 
1466 	/* Send a window update SACK if the rwnd has increased by at least the
1467 	 * minimum of the association's PMTU and half of the receive buffer.
1468 	 * The algorithm used is similar to the one described in
1469 	 * Section 4.2.3.3 of RFC 1122.
1470 	 */
1471 	if (sctp_peer_needs_update(asoc)) {
1472 		asoc->a_rwnd = asoc->rwnd;
1473 		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1474 				  "rwnd: %u a_rwnd: %u\n", __func__,
1475 				  asoc, asoc->rwnd, asoc->a_rwnd);
1476 		sack = sctp_make_sack(asoc);
1477 		if (!sack)
1478 			return;
1479 
1480 		asoc->peer.sack_needed = 0;
1481 
1482 		sctp_outq_tail(&asoc->outqueue, sack);
1483 
1484 		/* Stop the SACK timer.  */
1485 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1486 		if (timer_pending(timer) && del_timer(timer))
1487 			sctp_association_put(asoc);
1488 	}
1489 }
1490 
1491 /* Decrease asoc's rwnd by len. */
1492 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1493 {
1494 	int rx_count;
1495 	int over = 0;
1496 
1497 	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1498 	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1499 
1500 	if (asoc->ep->rcvbuf_policy)
1501 		rx_count = atomic_read(&asoc->rmem_alloc);
1502 	else
1503 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1504 
1505 	/* If we've reached or overflowed our receive buffer, announce
1506 	 * a 0 rwnd if rwnd would still be positive.  Store the
1507 	 * the pottential pressure overflow so that the window can be restored
1508 	 * back to original value.
1509 	 */
1510 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1511 		over = 1;
1512 
1513 	if (asoc->rwnd >= len) {
1514 		asoc->rwnd -= len;
1515 		if (over) {
1516 			asoc->rwnd_press += asoc->rwnd;
1517 			asoc->rwnd = 0;
1518 		}
1519 	} else {
1520 		asoc->rwnd_over = len - asoc->rwnd;
1521 		asoc->rwnd = 0;
1522 	}
1523 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1524 			  __func__, asoc, len, asoc->rwnd,
1525 			  asoc->rwnd_over, asoc->rwnd_press);
1526 }
1527 
1528 /* Build the bind address list for the association based on info from the
1529  * local endpoint and the remote peer.
1530  */
1531 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1532 				     sctp_scope_t scope, gfp_t gfp)
1533 {
1534 	int flags;
1535 
1536 	/* Use scoping rules to determine the subset of addresses from
1537 	 * the endpoint.
1538 	 */
1539 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1540 	if (asoc->peer.ipv4_address)
1541 		flags |= SCTP_ADDR4_PEERSUPP;
1542 	if (asoc->peer.ipv6_address)
1543 		flags |= SCTP_ADDR6_PEERSUPP;
1544 
1545 	return sctp_bind_addr_copy(&asoc->base.bind_addr,
1546 				   &asoc->ep->base.bind_addr,
1547 				   scope, gfp, flags);
1548 }
1549 
1550 /* Build the association's bind address list from the cookie.  */
1551 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1552 					 struct sctp_cookie *cookie,
1553 					 gfp_t gfp)
1554 {
1555 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1556 	int var_size3 = cookie->raw_addr_list_len;
1557 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1558 
1559 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1560 				      asoc->ep->base.bind_addr.port, gfp);
1561 }
1562 
1563 /* Lookup laddr in the bind address list of an association. */
1564 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1565 			    const union sctp_addr *laddr)
1566 {
1567 	int found = 0;
1568 
1569 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1570 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1571 				 sctp_sk(asoc->base.sk)))
1572 		found = 1;
1573 
1574 	return found;
1575 }
1576 
1577 /* Set an association id for a given association */
1578 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1579 {
1580 	int assoc_id;
1581 	int error = 0;
1582 
1583 	/* If the id is already assigned, keep it. */
1584 	if (asoc->assoc_id)
1585 		return error;
1586 retry:
1587 	if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1588 		return -ENOMEM;
1589 
1590 	spin_lock_bh(&sctp_assocs_id_lock);
1591 	error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1592 				    idr_low, &assoc_id);
1593 	if (!error) {
1594 		idr_low = assoc_id + 1;
1595 		if (idr_low == INT_MAX)
1596 			idr_low = 1;
1597 	}
1598 	spin_unlock_bh(&sctp_assocs_id_lock);
1599 	if (error == -EAGAIN)
1600 		goto retry;
1601 	else if (error)
1602 		return error;
1603 
1604 	asoc->assoc_id = (sctp_assoc_t) assoc_id;
1605 	return error;
1606 }
1607 
1608 /* Free the ASCONF queue */
1609 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1610 {
1611 	struct sctp_chunk *asconf;
1612 	struct sctp_chunk *tmp;
1613 
1614 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1615 		list_del_init(&asconf->list);
1616 		sctp_chunk_free(asconf);
1617 	}
1618 }
1619 
1620 /* Free asconf_ack cache */
1621 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1622 {
1623 	struct sctp_chunk *ack;
1624 	struct sctp_chunk *tmp;
1625 
1626 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1627 				transmitted_list) {
1628 		list_del_init(&ack->transmitted_list);
1629 		sctp_chunk_free(ack);
1630 	}
1631 }
1632 
1633 /* Clean up the ASCONF_ACK queue */
1634 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1635 {
1636 	struct sctp_chunk *ack;
1637 	struct sctp_chunk *tmp;
1638 
1639 	/* We can remove all the entries from the queue up to
1640 	 * the "Peer-Sequence-Number".
1641 	 */
1642 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1643 				transmitted_list) {
1644 		if (ack->subh.addip_hdr->serial ==
1645 				htonl(asoc->peer.addip_serial))
1646 			break;
1647 
1648 		list_del_init(&ack->transmitted_list);
1649 		sctp_chunk_free(ack);
1650 	}
1651 }
1652 
1653 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1654 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1655 					const struct sctp_association *asoc,
1656 					__be32 serial)
1657 {
1658 	struct sctp_chunk *ack;
1659 
1660 	/* Walk through the list of cached ASCONF-ACKs and find the
1661 	 * ack chunk whose serial number matches that of the request.
1662 	 */
1663 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1664 		if (ack->subh.addip_hdr->serial == serial) {
1665 			sctp_chunk_hold(ack);
1666 			return ack;
1667 		}
1668 	}
1669 
1670 	return NULL;
1671 }
1672 
1673 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1674 {
1675 	/* Free any cached ASCONF_ACK chunk. */
1676 	sctp_assoc_free_asconf_acks(asoc);
1677 
1678 	/* Free the ASCONF queue. */
1679 	sctp_assoc_free_asconf_queue(asoc);
1680 
1681 	/* Free any cached ASCONF chunk. */
1682 	if (asoc->addip_last_asconf)
1683 		sctp_chunk_free(asoc->addip_last_asconf);
1684 }
1685