1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 52 53 #include <linux/types.h> 54 #include <linux/fcntl.h> 55 #include <linux/poll.h> 56 #include <linux/init.h> 57 58 #include <linux/slab.h> 59 #include <linux/in.h> 60 #include <net/ipv6.h> 61 #include <net/sctp/sctp.h> 62 #include <net/sctp/sm.h> 63 64 /* Forward declarations for internal functions. */ 65 static void sctp_assoc_bh_rcv(struct work_struct *work); 66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 68 69 /* Keep track of the new idr low so that we don't re-use association id 70 * numbers too fast. It is protected by they idr spin lock is in the 71 * range of 1 - INT_MAX. 72 */ 73 static u32 idr_low = 1; 74 75 76 /* 1st Level Abstractions. */ 77 78 /* Initialize a new association from provided memory. */ 79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 80 const struct sctp_endpoint *ep, 81 const struct sock *sk, 82 sctp_scope_t scope, 83 gfp_t gfp) 84 { 85 struct sctp_sock *sp; 86 int i; 87 sctp_paramhdr_t *p; 88 int err; 89 90 /* Retrieve the SCTP per socket area. */ 91 sp = sctp_sk((struct sock *)sk); 92 93 /* Discarding const is appropriate here. */ 94 asoc->ep = (struct sctp_endpoint *)ep; 95 sctp_endpoint_hold(asoc->ep); 96 97 /* Hold the sock. */ 98 asoc->base.sk = (struct sock *)sk; 99 sock_hold(asoc->base.sk); 100 101 /* Initialize the common base substructure. */ 102 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 103 104 /* Initialize the object handling fields. */ 105 atomic_set(&asoc->base.refcnt, 1); 106 asoc->base.dead = 0; 107 asoc->base.malloced = 0; 108 109 /* Initialize the bind addr area. */ 110 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 111 112 asoc->state = SCTP_STATE_CLOSED; 113 114 /* Set these values from the socket values, a conversion between 115 * millsecons to seconds/microseconds must also be done. 116 */ 117 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 118 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 119 * 1000; 120 asoc->frag_point = 0; 121 asoc->user_frag = sp->user_frag; 122 123 /* Set the association max_retrans and RTO values from the 124 * socket values. 125 */ 126 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 127 asoc->pf_retrans = sctp_pf_retrans; 128 129 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 130 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 131 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 132 133 asoc->overall_error_count = 0; 134 135 /* Initialize the association's heartbeat interval based on the 136 * sock configured value. 137 */ 138 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 139 140 /* Initialize path max retrans value. */ 141 asoc->pathmaxrxt = sp->pathmaxrxt; 142 143 /* Initialize default path MTU. */ 144 asoc->pathmtu = sp->pathmtu; 145 146 /* Set association default SACK delay */ 147 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 148 asoc->sackfreq = sp->sackfreq; 149 150 /* Set the association default flags controlling 151 * Heartbeat, SACK delay, and Path MTU Discovery. 152 */ 153 asoc->param_flags = sp->param_flags; 154 155 /* Initialize the maximum mumber of new data packets that can be sent 156 * in a burst. 157 */ 158 asoc->max_burst = sp->max_burst; 159 160 /* initialize association timers */ 161 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 162 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 164 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 165 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 166 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 167 168 /* sctpimpguide Section 2.12.2 169 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 170 * recommended value of 5 times 'RTO.Max'. 171 */ 172 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 173 = 5 * asoc->rto_max; 174 175 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 176 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 177 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 178 min_t(unsigned long, sp->autoclose, sctp_max_autoclose) * HZ; 179 180 /* Initializes the timers */ 181 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 182 setup_timer(&asoc->timers[i], sctp_timer_events[i], 183 (unsigned long)asoc); 184 185 /* Pull default initialization values from the sock options. 186 * Note: This assumes that the values have already been 187 * validated in the sock. 188 */ 189 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 190 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 191 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 192 193 asoc->max_init_timeo = 194 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 195 196 /* Allocate storage for the ssnmap after the inbound and outbound 197 * streams have been negotiated during Init. 198 */ 199 asoc->ssnmap = NULL; 200 201 /* Set the local window size for receive. 202 * This is also the rcvbuf space per association. 203 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 204 * 1500 bytes in one SCTP packet. 205 */ 206 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 207 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 208 else 209 asoc->rwnd = sk->sk_rcvbuf/2; 210 211 asoc->a_rwnd = asoc->rwnd; 212 213 asoc->rwnd_over = 0; 214 asoc->rwnd_press = 0; 215 216 /* Use my own max window until I learn something better. */ 217 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 218 219 /* Set the sndbuf size for transmit. */ 220 asoc->sndbuf_used = 0; 221 222 /* Initialize the receive memory counter */ 223 atomic_set(&asoc->rmem_alloc, 0); 224 225 init_waitqueue_head(&asoc->wait); 226 227 asoc->c.my_vtag = sctp_generate_tag(ep); 228 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 229 asoc->c.peer_vtag = 0; 230 asoc->c.my_ttag = 0; 231 asoc->c.peer_ttag = 0; 232 asoc->c.my_port = ep->base.bind_addr.port; 233 234 asoc->c.initial_tsn = sctp_generate_tsn(ep); 235 236 asoc->next_tsn = asoc->c.initial_tsn; 237 238 asoc->ctsn_ack_point = asoc->next_tsn - 1; 239 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 240 asoc->highest_sacked = asoc->ctsn_ack_point; 241 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 242 asoc->unack_data = 0; 243 244 /* ADDIP Section 4.1 Asconf Chunk Procedures 245 * 246 * When an endpoint has an ASCONF signaled change to be sent to the 247 * remote endpoint it should do the following: 248 * ... 249 * A2) a serial number should be assigned to the chunk. The serial 250 * number SHOULD be a monotonically increasing number. The serial 251 * numbers SHOULD be initialized at the start of the 252 * association to the same value as the initial TSN. 253 */ 254 asoc->addip_serial = asoc->c.initial_tsn; 255 256 INIT_LIST_HEAD(&asoc->addip_chunk_list); 257 INIT_LIST_HEAD(&asoc->asconf_ack_list); 258 259 /* Make an empty list of remote transport addresses. */ 260 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 261 asoc->peer.transport_count = 0; 262 263 /* RFC 2960 5.1 Normal Establishment of an Association 264 * 265 * After the reception of the first data chunk in an 266 * association the endpoint must immediately respond with a 267 * sack to acknowledge the data chunk. Subsequent 268 * acknowledgements should be done as described in Section 269 * 6.2. 270 * 271 * [We implement this by telling a new association that it 272 * already received one packet.] 273 */ 274 asoc->peer.sack_needed = 1; 275 asoc->peer.sack_cnt = 0; 276 asoc->peer.sack_generation = 1; 277 278 /* Assume that the peer will tell us if he recognizes ASCONF 279 * as part of INIT exchange. 280 * The sctp_addip_noauth option is there for backward compatibilty 281 * and will revert old behavior. 282 */ 283 asoc->peer.asconf_capable = 0; 284 if (sctp_addip_noauth) 285 asoc->peer.asconf_capable = 1; 286 asoc->asconf_addr_del_pending = NULL; 287 asoc->src_out_of_asoc_ok = 0; 288 asoc->new_transport = NULL; 289 290 /* Create an input queue. */ 291 sctp_inq_init(&asoc->base.inqueue); 292 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 293 294 /* Create an output queue. */ 295 sctp_outq_init(asoc, &asoc->outqueue); 296 297 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 298 goto fail_init; 299 300 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 301 302 asoc->need_ecne = 0; 303 304 asoc->assoc_id = 0; 305 306 /* Assume that peer would support both address types unless we are 307 * told otherwise. 308 */ 309 asoc->peer.ipv4_address = 1; 310 if (asoc->base.sk->sk_family == PF_INET6) 311 asoc->peer.ipv6_address = 1; 312 INIT_LIST_HEAD(&asoc->asocs); 313 314 asoc->autoclose = sp->autoclose; 315 316 asoc->default_stream = sp->default_stream; 317 asoc->default_ppid = sp->default_ppid; 318 asoc->default_flags = sp->default_flags; 319 asoc->default_context = sp->default_context; 320 asoc->default_timetolive = sp->default_timetolive; 321 asoc->default_rcv_context = sp->default_rcv_context; 322 323 /* AUTH related initializations */ 324 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 325 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 326 if (err) 327 goto fail_init; 328 329 asoc->active_key_id = ep->active_key_id; 330 asoc->asoc_shared_key = NULL; 331 332 asoc->default_hmac_id = 0; 333 /* Save the hmacs and chunks list into this association */ 334 if (ep->auth_hmacs_list) 335 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 336 ntohs(ep->auth_hmacs_list->param_hdr.length)); 337 if (ep->auth_chunk_list) 338 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 339 ntohs(ep->auth_chunk_list->param_hdr.length)); 340 341 /* Get the AUTH random number for this association */ 342 p = (sctp_paramhdr_t *)asoc->c.auth_random; 343 p->type = SCTP_PARAM_RANDOM; 344 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 345 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 346 347 return asoc; 348 349 fail_init: 350 sctp_endpoint_put(asoc->ep); 351 sock_put(asoc->base.sk); 352 return NULL; 353 } 354 355 /* Allocate and initialize a new association */ 356 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 357 const struct sock *sk, 358 sctp_scope_t scope, 359 gfp_t gfp) 360 { 361 struct sctp_association *asoc; 362 363 asoc = t_new(struct sctp_association, gfp); 364 if (!asoc) 365 goto fail; 366 367 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 368 goto fail_init; 369 370 asoc->base.malloced = 1; 371 SCTP_DBG_OBJCNT_INC(assoc); 372 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 373 374 return asoc; 375 376 fail_init: 377 kfree(asoc); 378 fail: 379 return NULL; 380 } 381 382 /* Free this association if possible. There may still be users, so 383 * the actual deallocation may be delayed. 384 */ 385 void sctp_association_free(struct sctp_association *asoc) 386 { 387 struct sock *sk = asoc->base.sk; 388 struct sctp_transport *transport; 389 struct list_head *pos, *temp; 390 int i; 391 392 /* Only real associations count against the endpoint, so 393 * don't bother for if this is a temporary association. 394 */ 395 if (!asoc->temp) { 396 list_del(&asoc->asocs); 397 398 /* Decrement the backlog value for a TCP-style listening 399 * socket. 400 */ 401 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 402 sk->sk_ack_backlog--; 403 } 404 405 /* Mark as dead, so other users can know this structure is 406 * going away. 407 */ 408 asoc->base.dead = 1; 409 410 /* Dispose of any data lying around in the outqueue. */ 411 sctp_outq_free(&asoc->outqueue); 412 413 /* Dispose of any pending messages for the upper layer. */ 414 sctp_ulpq_free(&asoc->ulpq); 415 416 /* Dispose of any pending chunks on the inqueue. */ 417 sctp_inq_free(&asoc->base.inqueue); 418 419 sctp_tsnmap_free(&asoc->peer.tsn_map); 420 421 /* Free ssnmap storage. */ 422 sctp_ssnmap_free(asoc->ssnmap); 423 424 /* Clean up the bound address list. */ 425 sctp_bind_addr_free(&asoc->base.bind_addr); 426 427 /* Do we need to go through all of our timers and 428 * delete them? To be safe we will try to delete all, but we 429 * should be able to go through and make a guess based 430 * on our state. 431 */ 432 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 433 if (timer_pending(&asoc->timers[i]) && 434 del_timer(&asoc->timers[i])) 435 sctp_association_put(asoc); 436 } 437 438 /* Free peer's cached cookie. */ 439 kfree(asoc->peer.cookie); 440 kfree(asoc->peer.peer_random); 441 kfree(asoc->peer.peer_chunks); 442 kfree(asoc->peer.peer_hmacs); 443 444 /* Release the transport structures. */ 445 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 446 transport = list_entry(pos, struct sctp_transport, transports); 447 list_del(pos); 448 sctp_transport_free(transport); 449 } 450 451 asoc->peer.transport_count = 0; 452 453 sctp_asconf_queue_teardown(asoc); 454 455 /* Free pending address space being deleted */ 456 if (asoc->asconf_addr_del_pending != NULL) 457 kfree(asoc->asconf_addr_del_pending); 458 459 /* AUTH - Free the endpoint shared keys */ 460 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 461 462 /* AUTH - Free the association shared key */ 463 sctp_auth_key_put(asoc->asoc_shared_key); 464 465 sctp_association_put(asoc); 466 } 467 468 /* Cleanup and free up an association. */ 469 static void sctp_association_destroy(struct sctp_association *asoc) 470 { 471 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 472 473 sctp_endpoint_put(asoc->ep); 474 sock_put(asoc->base.sk); 475 476 if (asoc->assoc_id != 0) { 477 spin_lock_bh(&sctp_assocs_id_lock); 478 idr_remove(&sctp_assocs_id, asoc->assoc_id); 479 spin_unlock_bh(&sctp_assocs_id_lock); 480 } 481 482 WARN_ON(atomic_read(&asoc->rmem_alloc)); 483 484 if (asoc->base.malloced) { 485 kfree(asoc); 486 SCTP_DBG_OBJCNT_DEC(assoc); 487 } 488 } 489 490 /* Change the primary destination address for the peer. */ 491 void sctp_assoc_set_primary(struct sctp_association *asoc, 492 struct sctp_transport *transport) 493 { 494 int changeover = 0; 495 496 /* it's a changeover only if we already have a primary path 497 * that we are changing 498 */ 499 if (asoc->peer.primary_path != NULL && 500 asoc->peer.primary_path != transport) 501 changeover = 1 ; 502 503 asoc->peer.primary_path = transport; 504 505 /* Set a default msg_name for events. */ 506 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 507 sizeof(union sctp_addr)); 508 509 /* If the primary path is changing, assume that the 510 * user wants to use this new path. 511 */ 512 if ((transport->state == SCTP_ACTIVE) || 513 (transport->state == SCTP_UNKNOWN)) 514 asoc->peer.active_path = transport; 515 516 /* 517 * SFR-CACC algorithm: 518 * Upon the receipt of a request to change the primary 519 * destination address, on the data structure for the new 520 * primary destination, the sender MUST do the following: 521 * 522 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 523 * to this destination address earlier. The sender MUST set 524 * CYCLING_CHANGEOVER to indicate that this switch is a 525 * double switch to the same destination address. 526 * 527 * Really, only bother is we have data queued or outstanding on 528 * the association. 529 */ 530 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 531 return; 532 533 if (transport->cacc.changeover_active) 534 transport->cacc.cycling_changeover = changeover; 535 536 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 537 * a changeover has occurred. 538 */ 539 transport->cacc.changeover_active = changeover; 540 541 /* 3) The sender MUST store the next TSN to be sent in 542 * next_tsn_at_change. 543 */ 544 transport->cacc.next_tsn_at_change = asoc->next_tsn; 545 } 546 547 /* Remove a transport from an association. */ 548 void sctp_assoc_rm_peer(struct sctp_association *asoc, 549 struct sctp_transport *peer) 550 { 551 struct list_head *pos; 552 struct sctp_transport *transport; 553 554 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 555 " port: %d\n", 556 asoc, 557 (&peer->ipaddr), 558 ntohs(peer->ipaddr.v4.sin_port)); 559 560 /* If we are to remove the current retran_path, update it 561 * to the next peer before removing this peer from the list. 562 */ 563 if (asoc->peer.retran_path == peer) 564 sctp_assoc_update_retran_path(asoc); 565 566 /* Remove this peer from the list. */ 567 list_del(&peer->transports); 568 569 /* Get the first transport of asoc. */ 570 pos = asoc->peer.transport_addr_list.next; 571 transport = list_entry(pos, struct sctp_transport, transports); 572 573 /* Update any entries that match the peer to be deleted. */ 574 if (asoc->peer.primary_path == peer) 575 sctp_assoc_set_primary(asoc, transport); 576 if (asoc->peer.active_path == peer) 577 asoc->peer.active_path = transport; 578 if (asoc->peer.retran_path == peer) 579 asoc->peer.retran_path = transport; 580 if (asoc->peer.last_data_from == peer) 581 asoc->peer.last_data_from = transport; 582 583 /* If we remove the transport an INIT was last sent to, set it to 584 * NULL. Combined with the update of the retran path above, this 585 * will cause the next INIT to be sent to the next available 586 * transport, maintaining the cycle. 587 */ 588 if (asoc->init_last_sent_to == peer) 589 asoc->init_last_sent_to = NULL; 590 591 /* If we remove the transport an SHUTDOWN was last sent to, set it 592 * to NULL. Combined with the update of the retran path above, this 593 * will cause the next SHUTDOWN to be sent to the next available 594 * transport, maintaining the cycle. 595 */ 596 if (asoc->shutdown_last_sent_to == peer) 597 asoc->shutdown_last_sent_to = NULL; 598 599 /* If we remove the transport an ASCONF was last sent to, set it to 600 * NULL. 601 */ 602 if (asoc->addip_last_asconf && 603 asoc->addip_last_asconf->transport == peer) 604 asoc->addip_last_asconf->transport = NULL; 605 606 /* If we have something on the transmitted list, we have to 607 * save it off. The best place is the active path. 608 */ 609 if (!list_empty(&peer->transmitted)) { 610 struct sctp_transport *active = asoc->peer.active_path; 611 struct sctp_chunk *ch; 612 613 /* Reset the transport of each chunk on this list */ 614 list_for_each_entry(ch, &peer->transmitted, 615 transmitted_list) { 616 ch->transport = NULL; 617 ch->rtt_in_progress = 0; 618 } 619 620 list_splice_tail_init(&peer->transmitted, 621 &active->transmitted); 622 623 /* Start a T3 timer here in case it wasn't running so 624 * that these migrated packets have a chance to get 625 * retrnasmitted. 626 */ 627 if (!timer_pending(&active->T3_rtx_timer)) 628 if (!mod_timer(&active->T3_rtx_timer, 629 jiffies + active->rto)) 630 sctp_transport_hold(active); 631 } 632 633 asoc->peer.transport_count--; 634 635 sctp_transport_free(peer); 636 } 637 638 /* Add a transport address to an association. */ 639 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 640 const union sctp_addr *addr, 641 const gfp_t gfp, 642 const int peer_state) 643 { 644 struct sctp_transport *peer; 645 struct sctp_sock *sp; 646 unsigned short port; 647 648 sp = sctp_sk(asoc->base.sk); 649 650 /* AF_INET and AF_INET6 share common port field. */ 651 port = ntohs(addr->v4.sin_port); 652 653 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 654 " port: %d state:%d\n", 655 asoc, 656 addr, 657 port, 658 peer_state); 659 660 /* Set the port if it has not been set yet. */ 661 if (0 == asoc->peer.port) 662 asoc->peer.port = port; 663 664 /* Check to see if this is a duplicate. */ 665 peer = sctp_assoc_lookup_paddr(asoc, addr); 666 if (peer) { 667 /* An UNKNOWN state is only set on transports added by 668 * user in sctp_connectx() call. Such transports should be 669 * considered CONFIRMED per RFC 4960, Section 5.4. 670 */ 671 if (peer->state == SCTP_UNKNOWN) { 672 peer->state = SCTP_ACTIVE; 673 } 674 return peer; 675 } 676 677 peer = sctp_transport_new(addr, gfp); 678 if (!peer) 679 return NULL; 680 681 sctp_transport_set_owner(peer, asoc); 682 683 /* Initialize the peer's heartbeat interval based on the 684 * association configured value. 685 */ 686 peer->hbinterval = asoc->hbinterval; 687 688 /* Set the path max_retrans. */ 689 peer->pathmaxrxt = asoc->pathmaxrxt; 690 691 /* And the partial failure retrnas threshold */ 692 peer->pf_retrans = asoc->pf_retrans; 693 694 /* Initialize the peer's SACK delay timeout based on the 695 * association configured value. 696 */ 697 peer->sackdelay = asoc->sackdelay; 698 peer->sackfreq = asoc->sackfreq; 699 700 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 701 * based on association setting. 702 */ 703 peer->param_flags = asoc->param_flags; 704 705 sctp_transport_route(peer, NULL, sp); 706 707 /* Initialize the pmtu of the transport. */ 708 if (peer->param_flags & SPP_PMTUD_DISABLE) { 709 if (asoc->pathmtu) 710 peer->pathmtu = asoc->pathmtu; 711 else 712 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 713 } 714 715 /* If this is the first transport addr on this association, 716 * initialize the association PMTU to the peer's PMTU. 717 * If not and the current association PMTU is higher than the new 718 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 719 */ 720 if (asoc->pathmtu) 721 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 722 else 723 asoc->pathmtu = peer->pathmtu; 724 725 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 726 "%d\n", asoc, asoc->pathmtu); 727 peer->pmtu_pending = 0; 728 729 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 730 731 /* The asoc->peer.port might not be meaningful yet, but 732 * initialize the packet structure anyway. 733 */ 734 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 735 asoc->peer.port); 736 737 /* 7.2.1 Slow-Start 738 * 739 * o The initial cwnd before DATA transmission or after a sufficiently 740 * long idle period MUST be set to 741 * min(4*MTU, max(2*MTU, 4380 bytes)) 742 * 743 * o The initial value of ssthresh MAY be arbitrarily high 744 * (for example, implementations MAY use the size of the 745 * receiver advertised window). 746 */ 747 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 748 749 /* At this point, we may not have the receiver's advertised window, 750 * so initialize ssthresh to the default value and it will be set 751 * later when we process the INIT. 752 */ 753 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 754 755 peer->partial_bytes_acked = 0; 756 peer->flight_size = 0; 757 peer->burst_limited = 0; 758 759 /* Set the transport's RTO.initial value */ 760 peer->rto = asoc->rto_initial; 761 762 /* Set the peer's active state. */ 763 peer->state = peer_state; 764 765 /* Attach the remote transport to our asoc. */ 766 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 767 asoc->peer.transport_count++; 768 769 /* If we do not yet have a primary path, set one. */ 770 if (!asoc->peer.primary_path) { 771 sctp_assoc_set_primary(asoc, peer); 772 asoc->peer.retran_path = peer; 773 } 774 775 if (asoc->peer.active_path == asoc->peer.retran_path && 776 peer->state != SCTP_UNCONFIRMED) { 777 asoc->peer.retran_path = peer; 778 } 779 780 return peer; 781 } 782 783 /* Delete a transport address from an association. */ 784 void sctp_assoc_del_peer(struct sctp_association *asoc, 785 const union sctp_addr *addr) 786 { 787 struct list_head *pos; 788 struct list_head *temp; 789 struct sctp_transport *transport; 790 791 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 792 transport = list_entry(pos, struct sctp_transport, transports); 793 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 794 /* Do book keeping for removing the peer and free it. */ 795 sctp_assoc_rm_peer(asoc, transport); 796 break; 797 } 798 } 799 } 800 801 /* Lookup a transport by address. */ 802 struct sctp_transport *sctp_assoc_lookup_paddr( 803 const struct sctp_association *asoc, 804 const union sctp_addr *address) 805 { 806 struct sctp_transport *t; 807 808 /* Cycle through all transports searching for a peer address. */ 809 810 list_for_each_entry(t, &asoc->peer.transport_addr_list, 811 transports) { 812 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 813 return t; 814 } 815 816 return NULL; 817 } 818 819 /* Remove all transports except a give one */ 820 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 821 struct sctp_transport *primary) 822 { 823 struct sctp_transport *temp; 824 struct sctp_transport *t; 825 826 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 827 transports) { 828 /* if the current transport is not the primary one, delete it */ 829 if (t != primary) 830 sctp_assoc_rm_peer(asoc, t); 831 } 832 } 833 834 /* Engage in transport control operations. 835 * Mark the transport up or down and send a notification to the user. 836 * Select and update the new active and retran paths. 837 */ 838 void sctp_assoc_control_transport(struct sctp_association *asoc, 839 struct sctp_transport *transport, 840 sctp_transport_cmd_t command, 841 sctp_sn_error_t error) 842 { 843 struct sctp_transport *t = NULL; 844 struct sctp_transport *first; 845 struct sctp_transport *second; 846 struct sctp_ulpevent *event; 847 struct sockaddr_storage addr; 848 int spc_state = 0; 849 bool ulp_notify = true; 850 851 /* Record the transition on the transport. */ 852 switch (command) { 853 case SCTP_TRANSPORT_UP: 854 /* If we are moving from UNCONFIRMED state due 855 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 856 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 857 */ 858 if (SCTP_UNCONFIRMED == transport->state && 859 SCTP_HEARTBEAT_SUCCESS == error) 860 spc_state = SCTP_ADDR_CONFIRMED; 861 else 862 spc_state = SCTP_ADDR_AVAILABLE; 863 /* Don't inform ULP about transition from PF to 864 * active state and set cwnd to 1, see SCTP 865 * Quick failover draft section 5.1, point 5 866 */ 867 if (transport->state == SCTP_PF) { 868 ulp_notify = false; 869 transport->cwnd = 1; 870 } 871 transport->state = SCTP_ACTIVE; 872 break; 873 874 case SCTP_TRANSPORT_DOWN: 875 /* If the transport was never confirmed, do not transition it 876 * to inactive state. Also, release the cached route since 877 * there may be a better route next time. 878 */ 879 if (transport->state != SCTP_UNCONFIRMED) 880 transport->state = SCTP_INACTIVE; 881 else { 882 dst_release(transport->dst); 883 transport->dst = NULL; 884 } 885 886 spc_state = SCTP_ADDR_UNREACHABLE; 887 break; 888 889 case SCTP_TRANSPORT_PF: 890 transport->state = SCTP_PF; 891 ulp_notify = false; 892 break; 893 894 default: 895 return; 896 } 897 898 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 899 * user. 900 */ 901 if (ulp_notify) { 902 memset(&addr, 0, sizeof(struct sockaddr_storage)); 903 memcpy(&addr, &transport->ipaddr, 904 transport->af_specific->sockaddr_len); 905 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 906 0, spc_state, error, GFP_ATOMIC); 907 if (event) 908 sctp_ulpq_tail_event(&asoc->ulpq, event); 909 } 910 911 /* Select new active and retran paths. */ 912 913 /* Look for the two most recently used active transports. 914 * 915 * This code produces the wrong ordering whenever jiffies 916 * rolls over, but we still get usable transports, so we don't 917 * worry about it. 918 */ 919 first = NULL; second = NULL; 920 921 list_for_each_entry(t, &asoc->peer.transport_addr_list, 922 transports) { 923 924 if ((t->state == SCTP_INACTIVE) || 925 (t->state == SCTP_UNCONFIRMED) || 926 (t->state == SCTP_PF)) 927 continue; 928 if (!first || t->last_time_heard > first->last_time_heard) { 929 second = first; 930 first = t; 931 } 932 if (!second || t->last_time_heard > second->last_time_heard) 933 second = t; 934 } 935 936 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 937 * 938 * By default, an endpoint should always transmit to the 939 * primary path, unless the SCTP user explicitly specifies the 940 * destination transport address (and possibly source 941 * transport address) to use. 942 * 943 * [If the primary is active but not most recent, bump the most 944 * recently used transport.] 945 */ 946 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 947 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 948 first != asoc->peer.primary_path) { 949 second = first; 950 first = asoc->peer.primary_path; 951 } 952 953 /* If we failed to find a usable transport, just camp on the 954 * primary, even if it is inactive. 955 */ 956 if (!first) { 957 first = asoc->peer.primary_path; 958 second = asoc->peer.primary_path; 959 } 960 961 /* Set the active and retran transports. */ 962 asoc->peer.active_path = first; 963 asoc->peer.retran_path = second; 964 } 965 966 /* Hold a reference to an association. */ 967 void sctp_association_hold(struct sctp_association *asoc) 968 { 969 atomic_inc(&asoc->base.refcnt); 970 } 971 972 /* Release a reference to an association and cleanup 973 * if there are no more references. 974 */ 975 void sctp_association_put(struct sctp_association *asoc) 976 { 977 if (atomic_dec_and_test(&asoc->base.refcnt)) 978 sctp_association_destroy(asoc); 979 } 980 981 /* Allocate the next TSN, Transmission Sequence Number, for the given 982 * association. 983 */ 984 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 985 { 986 /* From Section 1.6 Serial Number Arithmetic: 987 * Transmission Sequence Numbers wrap around when they reach 988 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 989 * after transmitting TSN = 2*32 - 1 is TSN = 0. 990 */ 991 __u32 retval = asoc->next_tsn; 992 asoc->next_tsn++; 993 asoc->unack_data++; 994 995 return retval; 996 } 997 998 /* Compare two addresses to see if they match. Wildcard addresses 999 * only match themselves. 1000 */ 1001 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 1002 const union sctp_addr *ss2) 1003 { 1004 struct sctp_af *af; 1005 1006 af = sctp_get_af_specific(ss1->sa.sa_family); 1007 if (unlikely(!af)) 1008 return 0; 1009 1010 return af->cmp_addr(ss1, ss2); 1011 } 1012 1013 /* Return an ecne chunk to get prepended to a packet. 1014 * Note: We are sly and return a shared, prealloced chunk. FIXME: 1015 * No we don't, but we could/should. 1016 */ 1017 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 1018 { 1019 struct sctp_chunk *chunk; 1020 1021 /* Send ECNE if needed. 1022 * Not being able to allocate a chunk here is not deadly. 1023 */ 1024 if (asoc->need_ecne) 1025 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 1026 else 1027 chunk = NULL; 1028 1029 return chunk; 1030 } 1031 1032 /* 1033 * Find which transport this TSN was sent on. 1034 */ 1035 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 1036 __u32 tsn) 1037 { 1038 struct sctp_transport *active; 1039 struct sctp_transport *match; 1040 struct sctp_transport *transport; 1041 struct sctp_chunk *chunk; 1042 __be32 key = htonl(tsn); 1043 1044 match = NULL; 1045 1046 /* 1047 * FIXME: In general, find a more efficient data structure for 1048 * searching. 1049 */ 1050 1051 /* 1052 * The general strategy is to search each transport's transmitted 1053 * list. Return which transport this TSN lives on. 1054 * 1055 * Let's be hopeful and check the active_path first. 1056 * Another optimization would be to know if there is only one 1057 * outbound path and not have to look for the TSN at all. 1058 * 1059 */ 1060 1061 active = asoc->peer.active_path; 1062 1063 list_for_each_entry(chunk, &active->transmitted, 1064 transmitted_list) { 1065 1066 if (key == chunk->subh.data_hdr->tsn) { 1067 match = active; 1068 goto out; 1069 } 1070 } 1071 1072 /* If not found, go search all the other transports. */ 1073 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1074 transports) { 1075 1076 if (transport == active) 1077 break; 1078 list_for_each_entry(chunk, &transport->transmitted, 1079 transmitted_list) { 1080 if (key == chunk->subh.data_hdr->tsn) { 1081 match = transport; 1082 goto out; 1083 } 1084 } 1085 } 1086 out: 1087 return match; 1088 } 1089 1090 /* Is this the association we are looking for? */ 1091 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1092 const union sctp_addr *laddr, 1093 const union sctp_addr *paddr) 1094 { 1095 struct sctp_transport *transport; 1096 1097 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1098 (htons(asoc->peer.port) == paddr->v4.sin_port)) { 1099 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1100 if (!transport) 1101 goto out; 1102 1103 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1104 sctp_sk(asoc->base.sk))) 1105 goto out; 1106 } 1107 transport = NULL; 1108 1109 out: 1110 return transport; 1111 } 1112 1113 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1114 static void sctp_assoc_bh_rcv(struct work_struct *work) 1115 { 1116 struct sctp_association *asoc = 1117 container_of(work, struct sctp_association, 1118 base.inqueue.immediate); 1119 struct sctp_endpoint *ep; 1120 struct sctp_chunk *chunk; 1121 struct sctp_inq *inqueue; 1122 int state; 1123 sctp_subtype_t subtype; 1124 int error = 0; 1125 1126 /* The association should be held so we should be safe. */ 1127 ep = asoc->ep; 1128 1129 inqueue = &asoc->base.inqueue; 1130 sctp_association_hold(asoc); 1131 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1132 state = asoc->state; 1133 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1134 1135 /* SCTP-AUTH, Section 6.3: 1136 * The receiver has a list of chunk types which it expects 1137 * to be received only after an AUTH-chunk. This list has 1138 * been sent to the peer during the association setup. It 1139 * MUST silently discard these chunks if they are not placed 1140 * after an AUTH chunk in the packet. 1141 */ 1142 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1143 continue; 1144 1145 /* Remember where the last DATA chunk came from so we 1146 * know where to send the SACK. 1147 */ 1148 if (sctp_chunk_is_data(chunk)) 1149 asoc->peer.last_data_from = chunk->transport; 1150 else 1151 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 1152 1153 if (chunk->transport) 1154 chunk->transport->last_time_heard = jiffies; 1155 1156 /* Run through the state machine. */ 1157 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 1158 state, ep, asoc, chunk, GFP_ATOMIC); 1159 1160 /* Check to see if the association is freed in response to 1161 * the incoming chunk. If so, get out of the while loop. 1162 */ 1163 if (asoc->base.dead) 1164 break; 1165 1166 /* If there is an error on chunk, discard this packet. */ 1167 if (error && chunk) 1168 chunk->pdiscard = 1; 1169 } 1170 sctp_association_put(asoc); 1171 } 1172 1173 /* This routine moves an association from its old sk to a new sk. */ 1174 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1175 { 1176 struct sctp_sock *newsp = sctp_sk(newsk); 1177 struct sock *oldsk = assoc->base.sk; 1178 1179 /* Delete the association from the old endpoint's list of 1180 * associations. 1181 */ 1182 list_del_init(&assoc->asocs); 1183 1184 /* Decrement the backlog value for a TCP-style socket. */ 1185 if (sctp_style(oldsk, TCP)) 1186 oldsk->sk_ack_backlog--; 1187 1188 /* Release references to the old endpoint and the sock. */ 1189 sctp_endpoint_put(assoc->ep); 1190 sock_put(assoc->base.sk); 1191 1192 /* Get a reference to the new endpoint. */ 1193 assoc->ep = newsp->ep; 1194 sctp_endpoint_hold(assoc->ep); 1195 1196 /* Get a reference to the new sock. */ 1197 assoc->base.sk = newsk; 1198 sock_hold(assoc->base.sk); 1199 1200 /* Add the association to the new endpoint's list of associations. */ 1201 sctp_endpoint_add_asoc(newsp->ep, assoc); 1202 } 1203 1204 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1205 void sctp_assoc_update(struct sctp_association *asoc, 1206 struct sctp_association *new) 1207 { 1208 struct sctp_transport *trans; 1209 struct list_head *pos, *temp; 1210 1211 /* Copy in new parameters of peer. */ 1212 asoc->c = new->c; 1213 asoc->peer.rwnd = new->peer.rwnd; 1214 asoc->peer.sack_needed = new->peer.sack_needed; 1215 asoc->peer.i = new->peer.i; 1216 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1217 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1218 1219 /* Remove any peer addresses not present in the new association. */ 1220 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1221 trans = list_entry(pos, struct sctp_transport, transports); 1222 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1223 sctp_assoc_rm_peer(asoc, trans); 1224 continue; 1225 } 1226 1227 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1228 sctp_transport_reset(trans); 1229 } 1230 1231 /* If the case is A (association restart), use 1232 * initial_tsn as next_tsn. If the case is B, use 1233 * current next_tsn in case data sent to peer 1234 * has been discarded and needs retransmission. 1235 */ 1236 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1237 asoc->next_tsn = new->next_tsn; 1238 asoc->ctsn_ack_point = new->ctsn_ack_point; 1239 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1240 1241 /* Reinitialize SSN for both local streams 1242 * and peer's streams. 1243 */ 1244 sctp_ssnmap_clear(asoc->ssnmap); 1245 1246 /* Flush the ULP reassembly and ordered queue. 1247 * Any data there will now be stale and will 1248 * cause problems. 1249 */ 1250 sctp_ulpq_flush(&asoc->ulpq); 1251 1252 /* reset the overall association error count so 1253 * that the restarted association doesn't get torn 1254 * down on the next retransmission timer. 1255 */ 1256 asoc->overall_error_count = 0; 1257 1258 } else { 1259 /* Add any peer addresses from the new association. */ 1260 list_for_each_entry(trans, &new->peer.transport_addr_list, 1261 transports) { 1262 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1263 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1264 GFP_ATOMIC, trans->state); 1265 } 1266 1267 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1268 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1269 if (!asoc->ssnmap) { 1270 /* Move the ssnmap. */ 1271 asoc->ssnmap = new->ssnmap; 1272 new->ssnmap = NULL; 1273 } 1274 1275 if (!asoc->assoc_id) { 1276 /* get a new association id since we don't have one 1277 * yet. 1278 */ 1279 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1280 } 1281 } 1282 1283 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1284 * and also move the association shared keys over 1285 */ 1286 kfree(asoc->peer.peer_random); 1287 asoc->peer.peer_random = new->peer.peer_random; 1288 new->peer.peer_random = NULL; 1289 1290 kfree(asoc->peer.peer_chunks); 1291 asoc->peer.peer_chunks = new->peer.peer_chunks; 1292 new->peer.peer_chunks = NULL; 1293 1294 kfree(asoc->peer.peer_hmacs); 1295 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1296 new->peer.peer_hmacs = NULL; 1297 1298 sctp_auth_key_put(asoc->asoc_shared_key); 1299 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1300 } 1301 1302 /* Update the retran path for sending a retransmitted packet. 1303 * Round-robin through the active transports, else round-robin 1304 * through the inactive transports as this is the next best thing 1305 * we can try. 1306 */ 1307 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1308 { 1309 struct sctp_transport *t, *next; 1310 struct list_head *head = &asoc->peer.transport_addr_list; 1311 struct list_head *pos; 1312 1313 if (asoc->peer.transport_count == 1) 1314 return; 1315 1316 /* Find the next transport in a round-robin fashion. */ 1317 t = asoc->peer.retran_path; 1318 pos = &t->transports; 1319 next = NULL; 1320 1321 while (1) { 1322 /* Skip the head. */ 1323 if (pos->next == head) 1324 pos = head->next; 1325 else 1326 pos = pos->next; 1327 1328 t = list_entry(pos, struct sctp_transport, transports); 1329 1330 /* We have exhausted the list, but didn't find any 1331 * other active transports. If so, use the next 1332 * transport. 1333 */ 1334 if (t == asoc->peer.retran_path) { 1335 t = next; 1336 break; 1337 } 1338 1339 /* Try to find an active transport. */ 1340 1341 if ((t->state == SCTP_ACTIVE) || 1342 (t->state == SCTP_UNKNOWN)) { 1343 break; 1344 } else { 1345 /* Keep track of the next transport in case 1346 * we don't find any active transport. 1347 */ 1348 if (t->state != SCTP_UNCONFIRMED && !next) 1349 next = t; 1350 } 1351 } 1352 1353 if (t) 1354 asoc->peer.retran_path = t; 1355 else 1356 t = asoc->peer.retran_path; 1357 1358 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1359 " %p addr: ", 1360 " port: %d\n", 1361 asoc, 1362 (&t->ipaddr), 1363 ntohs(t->ipaddr.v4.sin_port)); 1364 } 1365 1366 /* Choose the transport for sending retransmit packet. */ 1367 struct sctp_transport *sctp_assoc_choose_alter_transport( 1368 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1369 { 1370 /* If this is the first time packet is sent, use the active path, 1371 * else use the retran path. If the last packet was sent over the 1372 * retran path, update the retran path and use it. 1373 */ 1374 if (!last_sent_to) 1375 return asoc->peer.active_path; 1376 else { 1377 if (last_sent_to == asoc->peer.retran_path) 1378 sctp_assoc_update_retran_path(asoc); 1379 return asoc->peer.retran_path; 1380 } 1381 } 1382 1383 /* Update the association's pmtu and frag_point by going through all the 1384 * transports. This routine is called when a transport's PMTU has changed. 1385 */ 1386 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1387 { 1388 struct sctp_transport *t; 1389 __u32 pmtu = 0; 1390 1391 if (!asoc) 1392 return; 1393 1394 /* Get the lowest pmtu of all the transports. */ 1395 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1396 transports) { 1397 if (t->pmtu_pending && t->dst) { 1398 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst)); 1399 t->pmtu_pending = 0; 1400 } 1401 if (!pmtu || (t->pathmtu < pmtu)) 1402 pmtu = t->pathmtu; 1403 } 1404 1405 if (pmtu) { 1406 asoc->pathmtu = pmtu; 1407 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1408 } 1409 1410 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1411 __func__, asoc, asoc->pathmtu, asoc->frag_point); 1412 } 1413 1414 /* Should we send a SACK to update our peer? */ 1415 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1416 { 1417 switch (asoc->state) { 1418 case SCTP_STATE_ESTABLISHED: 1419 case SCTP_STATE_SHUTDOWN_PENDING: 1420 case SCTP_STATE_SHUTDOWN_RECEIVED: 1421 case SCTP_STATE_SHUTDOWN_SENT: 1422 if ((asoc->rwnd > asoc->a_rwnd) && 1423 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1424 (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift), 1425 asoc->pathmtu))) 1426 return 1; 1427 break; 1428 default: 1429 break; 1430 } 1431 return 0; 1432 } 1433 1434 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1435 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1436 { 1437 struct sctp_chunk *sack; 1438 struct timer_list *timer; 1439 1440 if (asoc->rwnd_over) { 1441 if (asoc->rwnd_over >= len) { 1442 asoc->rwnd_over -= len; 1443 } else { 1444 asoc->rwnd += (len - asoc->rwnd_over); 1445 asoc->rwnd_over = 0; 1446 } 1447 } else { 1448 asoc->rwnd += len; 1449 } 1450 1451 /* If we had window pressure, start recovering it 1452 * once our rwnd had reached the accumulated pressure 1453 * threshold. The idea is to recover slowly, but up 1454 * to the initial advertised window. 1455 */ 1456 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1457 int change = min(asoc->pathmtu, asoc->rwnd_press); 1458 asoc->rwnd += change; 1459 asoc->rwnd_press -= change; 1460 } 1461 1462 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1463 "- %u\n", __func__, asoc, len, asoc->rwnd, 1464 asoc->rwnd_over, asoc->a_rwnd); 1465 1466 /* Send a window update SACK if the rwnd has increased by at least the 1467 * minimum of the association's PMTU and half of the receive buffer. 1468 * The algorithm used is similar to the one described in 1469 * Section 4.2.3.3 of RFC 1122. 1470 */ 1471 if (sctp_peer_needs_update(asoc)) { 1472 asoc->a_rwnd = asoc->rwnd; 1473 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1474 "rwnd: %u a_rwnd: %u\n", __func__, 1475 asoc, asoc->rwnd, asoc->a_rwnd); 1476 sack = sctp_make_sack(asoc); 1477 if (!sack) 1478 return; 1479 1480 asoc->peer.sack_needed = 0; 1481 1482 sctp_outq_tail(&asoc->outqueue, sack); 1483 1484 /* Stop the SACK timer. */ 1485 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1486 if (timer_pending(timer) && del_timer(timer)) 1487 sctp_association_put(asoc); 1488 } 1489 } 1490 1491 /* Decrease asoc's rwnd by len. */ 1492 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1493 { 1494 int rx_count; 1495 int over = 0; 1496 1497 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1498 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1499 1500 if (asoc->ep->rcvbuf_policy) 1501 rx_count = atomic_read(&asoc->rmem_alloc); 1502 else 1503 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1504 1505 /* If we've reached or overflowed our receive buffer, announce 1506 * a 0 rwnd if rwnd would still be positive. Store the 1507 * the pottential pressure overflow so that the window can be restored 1508 * back to original value. 1509 */ 1510 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1511 over = 1; 1512 1513 if (asoc->rwnd >= len) { 1514 asoc->rwnd -= len; 1515 if (over) { 1516 asoc->rwnd_press += asoc->rwnd; 1517 asoc->rwnd = 0; 1518 } 1519 } else { 1520 asoc->rwnd_over = len - asoc->rwnd; 1521 asoc->rwnd = 0; 1522 } 1523 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n", 1524 __func__, asoc, len, asoc->rwnd, 1525 asoc->rwnd_over, asoc->rwnd_press); 1526 } 1527 1528 /* Build the bind address list for the association based on info from the 1529 * local endpoint and the remote peer. 1530 */ 1531 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1532 sctp_scope_t scope, gfp_t gfp) 1533 { 1534 int flags; 1535 1536 /* Use scoping rules to determine the subset of addresses from 1537 * the endpoint. 1538 */ 1539 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1540 if (asoc->peer.ipv4_address) 1541 flags |= SCTP_ADDR4_PEERSUPP; 1542 if (asoc->peer.ipv6_address) 1543 flags |= SCTP_ADDR6_PEERSUPP; 1544 1545 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1546 &asoc->ep->base.bind_addr, 1547 scope, gfp, flags); 1548 } 1549 1550 /* Build the association's bind address list from the cookie. */ 1551 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1552 struct sctp_cookie *cookie, 1553 gfp_t gfp) 1554 { 1555 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1556 int var_size3 = cookie->raw_addr_list_len; 1557 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1558 1559 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1560 asoc->ep->base.bind_addr.port, gfp); 1561 } 1562 1563 /* Lookup laddr in the bind address list of an association. */ 1564 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1565 const union sctp_addr *laddr) 1566 { 1567 int found = 0; 1568 1569 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1570 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1571 sctp_sk(asoc->base.sk))) 1572 found = 1; 1573 1574 return found; 1575 } 1576 1577 /* Set an association id for a given association */ 1578 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1579 { 1580 int assoc_id; 1581 int error = 0; 1582 1583 /* If the id is already assigned, keep it. */ 1584 if (asoc->assoc_id) 1585 return error; 1586 retry: 1587 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp))) 1588 return -ENOMEM; 1589 1590 spin_lock_bh(&sctp_assocs_id_lock); 1591 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc, 1592 idr_low, &assoc_id); 1593 if (!error) { 1594 idr_low = assoc_id + 1; 1595 if (idr_low == INT_MAX) 1596 idr_low = 1; 1597 } 1598 spin_unlock_bh(&sctp_assocs_id_lock); 1599 if (error == -EAGAIN) 1600 goto retry; 1601 else if (error) 1602 return error; 1603 1604 asoc->assoc_id = (sctp_assoc_t) assoc_id; 1605 return error; 1606 } 1607 1608 /* Free the ASCONF queue */ 1609 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1610 { 1611 struct sctp_chunk *asconf; 1612 struct sctp_chunk *tmp; 1613 1614 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1615 list_del_init(&asconf->list); 1616 sctp_chunk_free(asconf); 1617 } 1618 } 1619 1620 /* Free asconf_ack cache */ 1621 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1622 { 1623 struct sctp_chunk *ack; 1624 struct sctp_chunk *tmp; 1625 1626 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1627 transmitted_list) { 1628 list_del_init(&ack->transmitted_list); 1629 sctp_chunk_free(ack); 1630 } 1631 } 1632 1633 /* Clean up the ASCONF_ACK queue */ 1634 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1635 { 1636 struct sctp_chunk *ack; 1637 struct sctp_chunk *tmp; 1638 1639 /* We can remove all the entries from the queue up to 1640 * the "Peer-Sequence-Number". 1641 */ 1642 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1643 transmitted_list) { 1644 if (ack->subh.addip_hdr->serial == 1645 htonl(asoc->peer.addip_serial)) 1646 break; 1647 1648 list_del_init(&ack->transmitted_list); 1649 sctp_chunk_free(ack); 1650 } 1651 } 1652 1653 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1654 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1655 const struct sctp_association *asoc, 1656 __be32 serial) 1657 { 1658 struct sctp_chunk *ack; 1659 1660 /* Walk through the list of cached ASCONF-ACKs and find the 1661 * ack chunk whose serial number matches that of the request. 1662 */ 1663 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1664 if (ack->subh.addip_hdr->serial == serial) { 1665 sctp_chunk_hold(ack); 1666 return ack; 1667 } 1668 } 1669 1670 return NULL; 1671 } 1672 1673 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1674 { 1675 /* Free any cached ASCONF_ACK chunk. */ 1676 sctp_assoc_free_asconf_acks(asoc); 1677 1678 /* Free the ASCONF queue. */ 1679 sctp_assoc_free_asconf_queue(asoc); 1680 1681 /* Free any cached ASCONF chunk. */ 1682 if (asoc->addip_last_asconf) 1683 sctp_chunk_free(asoc->addip_last_asconf); 1684 } 1685