1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@us.ibm.com> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com> 41 * Kevin Gao <kevin.gao@intel.com> 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/types.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 51 #include <linux/slab.h> 52 #include <linux/in.h> 53 #include <net/ipv6.h> 54 #include <net/sctp/sctp.h> 55 #include <net/sctp/sm.h> 56 57 /* Forward declarations for internal functions. */ 58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init( 67 struct sctp_association *asoc, 68 const struct sctp_endpoint *ep, 69 const struct sock *sk, 70 enum sctp_scope scope, gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 struct sctp_paramhdr *p; 75 int i; 76 77 /* Retrieve the SCTP per socket area. */ 78 sp = sctp_sk((struct sock *)sk); 79 80 /* Discarding const is appropriate here. */ 81 asoc->ep = (struct sctp_endpoint *)ep; 82 asoc->base.sk = (struct sock *)sk; 83 84 sctp_endpoint_hold(asoc->ep); 85 sock_hold(asoc->base.sk); 86 87 /* Initialize the common base substructure. */ 88 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 89 90 /* Initialize the object handling fields. */ 91 refcount_set(&asoc->base.refcnt, 1); 92 93 /* Initialize the bind addr area. */ 94 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 95 96 asoc->state = SCTP_STATE_CLOSED; 97 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 98 asoc->user_frag = sp->user_frag; 99 100 /* Set the association max_retrans and RTO values from the 101 * socket values. 102 */ 103 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 104 asoc->pf_retrans = net->sctp.pf_retrans; 105 106 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 107 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 108 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 109 110 /* Initialize the association's heartbeat interval based on the 111 * sock configured value. 112 */ 113 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 114 115 /* Initialize path max retrans value. */ 116 asoc->pathmaxrxt = sp->pathmaxrxt; 117 118 /* Initialize default path MTU. */ 119 asoc->pathmtu = sp->pathmtu; 120 121 /* Set association default SACK delay */ 122 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 123 asoc->sackfreq = sp->sackfreq; 124 125 /* Set the association default flags controlling 126 * Heartbeat, SACK delay, and Path MTU Discovery. 127 */ 128 asoc->param_flags = sp->param_flags; 129 130 /* Initialize the maximum number of new data packets that can be sent 131 * in a burst. 132 */ 133 asoc->max_burst = sp->max_burst; 134 135 /* initialize association timers */ 136 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 139 140 /* sctpimpguide Section 2.12.2 141 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 142 * recommended value of 5 times 'RTO.Max'. 143 */ 144 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 145 = 5 * asoc->rto_max; 146 147 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 148 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 149 150 /* Initializes the timers */ 151 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 152 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0); 153 154 /* Pull default initialization values from the sock options. 155 * Note: This assumes that the values have already been 156 * validated in the sock. 157 */ 158 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 159 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 160 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 161 162 asoc->max_init_timeo = 163 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 164 165 /* Set the local window size for receive. 166 * This is also the rcvbuf space per association. 167 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 168 * 1500 bytes in one SCTP packet. 169 */ 170 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 171 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 172 else 173 asoc->rwnd = sk->sk_rcvbuf/2; 174 175 asoc->a_rwnd = asoc->rwnd; 176 177 /* Use my own max window until I learn something better. */ 178 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 179 180 /* Initialize the receive memory counter */ 181 atomic_set(&asoc->rmem_alloc, 0); 182 183 init_waitqueue_head(&asoc->wait); 184 185 asoc->c.my_vtag = sctp_generate_tag(ep); 186 asoc->c.my_port = ep->base.bind_addr.port; 187 188 asoc->c.initial_tsn = sctp_generate_tsn(ep); 189 190 asoc->next_tsn = asoc->c.initial_tsn; 191 192 asoc->ctsn_ack_point = asoc->next_tsn - 1; 193 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 194 asoc->highest_sacked = asoc->ctsn_ack_point; 195 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 196 197 /* ADDIP Section 4.1 Asconf Chunk Procedures 198 * 199 * When an endpoint has an ASCONF signaled change to be sent to the 200 * remote endpoint it should do the following: 201 * ... 202 * A2) a serial number should be assigned to the chunk. The serial 203 * number SHOULD be a monotonically increasing number. The serial 204 * numbers SHOULD be initialized at the start of the 205 * association to the same value as the initial TSN. 206 */ 207 asoc->addip_serial = asoc->c.initial_tsn; 208 asoc->strreset_outseq = asoc->c.initial_tsn; 209 210 INIT_LIST_HEAD(&asoc->addip_chunk_list); 211 INIT_LIST_HEAD(&asoc->asconf_ack_list); 212 213 /* Make an empty list of remote transport addresses. */ 214 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 215 216 /* RFC 2960 5.1 Normal Establishment of an Association 217 * 218 * After the reception of the first data chunk in an 219 * association the endpoint must immediately respond with a 220 * sack to acknowledge the data chunk. Subsequent 221 * acknowledgements should be done as described in Section 222 * 6.2. 223 * 224 * [We implement this by telling a new association that it 225 * already received one packet.] 226 */ 227 asoc->peer.sack_needed = 1; 228 asoc->peer.sack_generation = 1; 229 230 /* Assume that the peer will tell us if he recognizes ASCONF 231 * as part of INIT exchange. 232 * The sctp_addip_noauth option is there for backward compatibility 233 * and will revert old behavior. 234 */ 235 if (net->sctp.addip_noauth) 236 asoc->peer.asconf_capable = 1; 237 238 /* Create an input queue. */ 239 sctp_inq_init(&asoc->base.inqueue); 240 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 241 242 /* Create an output queue. */ 243 sctp_outq_init(asoc, &asoc->outqueue); 244 245 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 246 goto fail_init; 247 248 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 249 0, gfp)) 250 goto fail_init; 251 252 /* Assume that peer would support both address types unless we are 253 * told otherwise. 254 */ 255 asoc->peer.ipv4_address = 1; 256 if (asoc->base.sk->sk_family == PF_INET6) 257 asoc->peer.ipv6_address = 1; 258 INIT_LIST_HEAD(&asoc->asocs); 259 260 asoc->default_stream = sp->default_stream; 261 asoc->default_ppid = sp->default_ppid; 262 asoc->default_flags = sp->default_flags; 263 asoc->default_context = sp->default_context; 264 asoc->default_timetolive = sp->default_timetolive; 265 asoc->default_rcv_context = sp->default_rcv_context; 266 267 /* AUTH related initializations */ 268 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 269 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp)) 270 goto stream_free; 271 272 asoc->active_key_id = ep->active_key_id; 273 asoc->prsctp_enable = ep->prsctp_enable; 274 asoc->reconf_enable = ep->reconf_enable; 275 asoc->strreset_enable = ep->strreset_enable; 276 277 /* Save the hmacs and chunks list into this association */ 278 if (ep->auth_hmacs_list) 279 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 280 ntohs(ep->auth_hmacs_list->param_hdr.length)); 281 if (ep->auth_chunk_list) 282 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 283 ntohs(ep->auth_chunk_list->param_hdr.length)); 284 285 /* Get the AUTH random number for this association */ 286 p = (struct sctp_paramhdr *)asoc->c.auth_random; 287 p->type = SCTP_PARAM_RANDOM; 288 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH); 289 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 290 291 return asoc; 292 293 stream_free: 294 sctp_stream_free(&asoc->stream); 295 fail_init: 296 sock_put(asoc->base.sk); 297 sctp_endpoint_put(asoc->ep); 298 return NULL; 299 } 300 301 /* Allocate and initialize a new association */ 302 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 303 const struct sock *sk, 304 enum sctp_scope scope, gfp_t gfp) 305 { 306 struct sctp_association *asoc; 307 308 asoc = kzalloc(sizeof(*asoc), gfp); 309 if (!asoc) 310 goto fail; 311 312 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 313 goto fail_init; 314 315 SCTP_DBG_OBJCNT_INC(assoc); 316 317 pr_debug("Created asoc %p\n", asoc); 318 319 return asoc; 320 321 fail_init: 322 kfree(asoc); 323 fail: 324 return NULL; 325 } 326 327 /* Free this association if possible. There may still be users, so 328 * the actual deallocation may be delayed. 329 */ 330 void sctp_association_free(struct sctp_association *asoc) 331 { 332 struct sock *sk = asoc->base.sk; 333 struct sctp_transport *transport; 334 struct list_head *pos, *temp; 335 int i; 336 337 /* Only real associations count against the endpoint, so 338 * don't bother for if this is a temporary association. 339 */ 340 if (!list_empty(&asoc->asocs)) { 341 list_del(&asoc->asocs); 342 343 /* Decrement the backlog value for a TCP-style listening 344 * socket. 345 */ 346 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 347 sk->sk_ack_backlog--; 348 } 349 350 /* Mark as dead, so other users can know this structure is 351 * going away. 352 */ 353 asoc->base.dead = true; 354 355 /* Dispose of any data lying around in the outqueue. */ 356 sctp_outq_free(&asoc->outqueue); 357 358 /* Dispose of any pending messages for the upper layer. */ 359 sctp_ulpq_free(&asoc->ulpq); 360 361 /* Dispose of any pending chunks on the inqueue. */ 362 sctp_inq_free(&asoc->base.inqueue); 363 364 sctp_tsnmap_free(&asoc->peer.tsn_map); 365 366 /* Free stream information. */ 367 sctp_stream_free(&asoc->stream); 368 369 if (asoc->strreset_chunk) 370 sctp_chunk_free(asoc->strreset_chunk); 371 372 /* Clean up the bound address list. */ 373 sctp_bind_addr_free(&asoc->base.bind_addr); 374 375 /* Do we need to go through all of our timers and 376 * delete them? To be safe we will try to delete all, but we 377 * should be able to go through and make a guess based 378 * on our state. 379 */ 380 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 381 if (del_timer(&asoc->timers[i])) 382 sctp_association_put(asoc); 383 } 384 385 /* Free peer's cached cookie. */ 386 kfree(asoc->peer.cookie); 387 kfree(asoc->peer.peer_random); 388 kfree(asoc->peer.peer_chunks); 389 kfree(asoc->peer.peer_hmacs); 390 391 /* Release the transport structures. */ 392 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 393 transport = list_entry(pos, struct sctp_transport, transports); 394 list_del_rcu(pos); 395 sctp_unhash_transport(transport); 396 sctp_transport_free(transport); 397 } 398 399 asoc->peer.transport_count = 0; 400 401 sctp_asconf_queue_teardown(asoc); 402 403 /* Free pending address space being deleted */ 404 kfree(asoc->asconf_addr_del_pending); 405 406 /* AUTH - Free the endpoint shared keys */ 407 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 408 409 /* AUTH - Free the association shared key */ 410 sctp_auth_key_put(asoc->asoc_shared_key); 411 412 sctp_association_put(asoc); 413 } 414 415 /* Cleanup and free up an association. */ 416 static void sctp_association_destroy(struct sctp_association *asoc) 417 { 418 if (unlikely(!asoc->base.dead)) { 419 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 420 return; 421 } 422 423 sctp_endpoint_put(asoc->ep); 424 sock_put(asoc->base.sk); 425 426 if (asoc->assoc_id != 0) { 427 spin_lock_bh(&sctp_assocs_id_lock); 428 idr_remove(&sctp_assocs_id, asoc->assoc_id); 429 spin_unlock_bh(&sctp_assocs_id_lock); 430 } 431 432 WARN_ON(atomic_read(&asoc->rmem_alloc)); 433 434 kfree(asoc); 435 SCTP_DBG_OBJCNT_DEC(assoc); 436 } 437 438 /* Change the primary destination address for the peer. */ 439 void sctp_assoc_set_primary(struct sctp_association *asoc, 440 struct sctp_transport *transport) 441 { 442 int changeover = 0; 443 444 /* it's a changeover only if we already have a primary path 445 * that we are changing 446 */ 447 if (asoc->peer.primary_path != NULL && 448 asoc->peer.primary_path != transport) 449 changeover = 1 ; 450 451 asoc->peer.primary_path = transport; 452 453 /* Set a default msg_name for events. */ 454 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 455 sizeof(union sctp_addr)); 456 457 /* If the primary path is changing, assume that the 458 * user wants to use this new path. 459 */ 460 if ((transport->state == SCTP_ACTIVE) || 461 (transport->state == SCTP_UNKNOWN)) 462 asoc->peer.active_path = transport; 463 464 /* 465 * SFR-CACC algorithm: 466 * Upon the receipt of a request to change the primary 467 * destination address, on the data structure for the new 468 * primary destination, the sender MUST do the following: 469 * 470 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 471 * to this destination address earlier. The sender MUST set 472 * CYCLING_CHANGEOVER to indicate that this switch is a 473 * double switch to the same destination address. 474 * 475 * Really, only bother is we have data queued or outstanding on 476 * the association. 477 */ 478 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 479 return; 480 481 if (transport->cacc.changeover_active) 482 transport->cacc.cycling_changeover = changeover; 483 484 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 485 * a changeover has occurred. 486 */ 487 transport->cacc.changeover_active = changeover; 488 489 /* 3) The sender MUST store the next TSN to be sent in 490 * next_tsn_at_change. 491 */ 492 transport->cacc.next_tsn_at_change = asoc->next_tsn; 493 } 494 495 /* Remove a transport from an association. */ 496 void sctp_assoc_rm_peer(struct sctp_association *asoc, 497 struct sctp_transport *peer) 498 { 499 struct list_head *pos; 500 struct sctp_transport *transport; 501 502 pr_debug("%s: association:%p addr:%pISpc\n", 503 __func__, asoc, &peer->ipaddr.sa); 504 505 /* If we are to remove the current retran_path, update it 506 * to the next peer before removing this peer from the list. 507 */ 508 if (asoc->peer.retran_path == peer) 509 sctp_assoc_update_retran_path(asoc); 510 511 /* Remove this peer from the list. */ 512 list_del_rcu(&peer->transports); 513 /* Remove this peer from the transport hashtable */ 514 sctp_unhash_transport(peer); 515 516 /* Get the first transport of asoc. */ 517 pos = asoc->peer.transport_addr_list.next; 518 transport = list_entry(pos, struct sctp_transport, transports); 519 520 /* Update any entries that match the peer to be deleted. */ 521 if (asoc->peer.primary_path == peer) 522 sctp_assoc_set_primary(asoc, transport); 523 if (asoc->peer.active_path == peer) 524 asoc->peer.active_path = transport; 525 if (asoc->peer.retran_path == peer) 526 asoc->peer.retran_path = transport; 527 if (asoc->peer.last_data_from == peer) 528 asoc->peer.last_data_from = transport; 529 530 if (asoc->strreset_chunk && 531 asoc->strreset_chunk->transport == peer) { 532 asoc->strreset_chunk->transport = transport; 533 sctp_transport_reset_reconf_timer(transport); 534 } 535 536 /* If we remove the transport an INIT was last sent to, set it to 537 * NULL. Combined with the update of the retran path above, this 538 * will cause the next INIT to be sent to the next available 539 * transport, maintaining the cycle. 540 */ 541 if (asoc->init_last_sent_to == peer) 542 asoc->init_last_sent_to = NULL; 543 544 /* If we remove the transport an SHUTDOWN was last sent to, set it 545 * to NULL. Combined with the update of the retran path above, this 546 * will cause the next SHUTDOWN to be sent to the next available 547 * transport, maintaining the cycle. 548 */ 549 if (asoc->shutdown_last_sent_to == peer) 550 asoc->shutdown_last_sent_to = NULL; 551 552 /* If we remove the transport an ASCONF was last sent to, set it to 553 * NULL. 554 */ 555 if (asoc->addip_last_asconf && 556 asoc->addip_last_asconf->transport == peer) 557 asoc->addip_last_asconf->transport = NULL; 558 559 /* If we have something on the transmitted list, we have to 560 * save it off. The best place is the active path. 561 */ 562 if (!list_empty(&peer->transmitted)) { 563 struct sctp_transport *active = asoc->peer.active_path; 564 struct sctp_chunk *ch; 565 566 /* Reset the transport of each chunk on this list */ 567 list_for_each_entry(ch, &peer->transmitted, 568 transmitted_list) { 569 ch->transport = NULL; 570 ch->rtt_in_progress = 0; 571 } 572 573 list_splice_tail_init(&peer->transmitted, 574 &active->transmitted); 575 576 /* Start a T3 timer here in case it wasn't running so 577 * that these migrated packets have a chance to get 578 * retransmitted. 579 */ 580 if (!timer_pending(&active->T3_rtx_timer)) 581 if (!mod_timer(&active->T3_rtx_timer, 582 jiffies + active->rto)) 583 sctp_transport_hold(active); 584 } 585 586 asoc->peer.transport_count--; 587 588 sctp_transport_free(peer); 589 } 590 591 /* Add a transport address to an association. */ 592 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 593 const union sctp_addr *addr, 594 const gfp_t gfp, 595 const int peer_state) 596 { 597 struct net *net = sock_net(asoc->base.sk); 598 struct sctp_transport *peer; 599 struct sctp_sock *sp; 600 unsigned short port; 601 602 sp = sctp_sk(asoc->base.sk); 603 604 /* AF_INET and AF_INET6 share common port field. */ 605 port = ntohs(addr->v4.sin_port); 606 607 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 608 asoc, &addr->sa, peer_state); 609 610 /* Set the port if it has not been set yet. */ 611 if (0 == asoc->peer.port) 612 asoc->peer.port = port; 613 614 /* Check to see if this is a duplicate. */ 615 peer = sctp_assoc_lookup_paddr(asoc, addr); 616 if (peer) { 617 /* An UNKNOWN state is only set on transports added by 618 * user in sctp_connectx() call. Such transports should be 619 * considered CONFIRMED per RFC 4960, Section 5.4. 620 */ 621 if (peer->state == SCTP_UNKNOWN) { 622 peer->state = SCTP_ACTIVE; 623 } 624 return peer; 625 } 626 627 peer = sctp_transport_new(net, addr, gfp); 628 if (!peer) 629 return NULL; 630 631 sctp_transport_set_owner(peer, asoc); 632 633 /* Initialize the peer's heartbeat interval based on the 634 * association configured value. 635 */ 636 peer->hbinterval = asoc->hbinterval; 637 638 /* Set the path max_retrans. */ 639 peer->pathmaxrxt = asoc->pathmaxrxt; 640 641 /* And the partial failure retrans threshold */ 642 peer->pf_retrans = asoc->pf_retrans; 643 644 /* Initialize the peer's SACK delay timeout based on the 645 * association configured value. 646 */ 647 peer->sackdelay = asoc->sackdelay; 648 peer->sackfreq = asoc->sackfreq; 649 650 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 651 * based on association setting. 652 */ 653 peer->param_flags = asoc->param_flags; 654 655 /* Initialize the pmtu of the transport. */ 656 sctp_transport_route(peer, NULL, sp); 657 658 /* If this is the first transport addr on this association, 659 * initialize the association PMTU to the peer's PMTU. 660 * If not and the current association PMTU is higher than the new 661 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 662 */ 663 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ? 664 min_t(int, peer->pathmtu, asoc->pathmtu) : 665 peer->pathmtu); 666 667 peer->pmtu_pending = 0; 668 669 /* The asoc->peer.port might not be meaningful yet, but 670 * initialize the packet structure anyway. 671 */ 672 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 673 asoc->peer.port); 674 675 /* 7.2.1 Slow-Start 676 * 677 * o The initial cwnd before DATA transmission or after a sufficiently 678 * long idle period MUST be set to 679 * min(4*MTU, max(2*MTU, 4380 bytes)) 680 * 681 * o The initial value of ssthresh MAY be arbitrarily high 682 * (for example, implementations MAY use the size of the 683 * receiver advertised window). 684 */ 685 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 686 687 /* At this point, we may not have the receiver's advertised window, 688 * so initialize ssthresh to the default value and it will be set 689 * later when we process the INIT. 690 */ 691 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 692 693 peer->partial_bytes_acked = 0; 694 peer->flight_size = 0; 695 peer->burst_limited = 0; 696 697 /* Set the transport's RTO.initial value */ 698 peer->rto = asoc->rto_initial; 699 sctp_max_rto(asoc, peer); 700 701 /* Set the peer's active state. */ 702 peer->state = peer_state; 703 704 /* Add this peer into the transport hashtable */ 705 if (sctp_hash_transport(peer)) { 706 sctp_transport_free(peer); 707 return NULL; 708 } 709 710 /* Attach the remote transport to our asoc. */ 711 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 712 asoc->peer.transport_count++; 713 714 /* If we do not yet have a primary path, set one. */ 715 if (!asoc->peer.primary_path) { 716 sctp_assoc_set_primary(asoc, peer); 717 asoc->peer.retran_path = peer; 718 } 719 720 if (asoc->peer.active_path == asoc->peer.retran_path && 721 peer->state != SCTP_UNCONFIRMED) { 722 asoc->peer.retran_path = peer; 723 } 724 725 return peer; 726 } 727 728 /* Delete a transport address from an association. */ 729 void sctp_assoc_del_peer(struct sctp_association *asoc, 730 const union sctp_addr *addr) 731 { 732 struct list_head *pos; 733 struct list_head *temp; 734 struct sctp_transport *transport; 735 736 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 737 transport = list_entry(pos, struct sctp_transport, transports); 738 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 739 /* Do book keeping for removing the peer and free it. */ 740 sctp_assoc_rm_peer(asoc, transport); 741 break; 742 } 743 } 744 } 745 746 /* Lookup a transport by address. */ 747 struct sctp_transport *sctp_assoc_lookup_paddr( 748 const struct sctp_association *asoc, 749 const union sctp_addr *address) 750 { 751 struct sctp_transport *t; 752 753 /* Cycle through all transports searching for a peer address. */ 754 755 list_for_each_entry(t, &asoc->peer.transport_addr_list, 756 transports) { 757 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 758 return t; 759 } 760 761 return NULL; 762 } 763 764 /* Remove all transports except a give one */ 765 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 766 struct sctp_transport *primary) 767 { 768 struct sctp_transport *temp; 769 struct sctp_transport *t; 770 771 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 772 transports) { 773 /* if the current transport is not the primary one, delete it */ 774 if (t != primary) 775 sctp_assoc_rm_peer(asoc, t); 776 } 777 } 778 779 /* Engage in transport control operations. 780 * Mark the transport up or down and send a notification to the user. 781 * Select and update the new active and retran paths. 782 */ 783 void sctp_assoc_control_transport(struct sctp_association *asoc, 784 struct sctp_transport *transport, 785 enum sctp_transport_cmd command, 786 sctp_sn_error_t error) 787 { 788 struct sctp_ulpevent *event; 789 struct sockaddr_storage addr; 790 int spc_state = 0; 791 bool ulp_notify = true; 792 793 /* Record the transition on the transport. */ 794 switch (command) { 795 case SCTP_TRANSPORT_UP: 796 /* If we are moving from UNCONFIRMED state due 797 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 798 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 799 */ 800 if (SCTP_UNCONFIRMED == transport->state && 801 SCTP_HEARTBEAT_SUCCESS == error) 802 spc_state = SCTP_ADDR_CONFIRMED; 803 else 804 spc_state = SCTP_ADDR_AVAILABLE; 805 /* Don't inform ULP about transition from PF to 806 * active state and set cwnd to 1 MTU, see SCTP 807 * Quick failover draft section 5.1, point 5 808 */ 809 if (transport->state == SCTP_PF) { 810 ulp_notify = false; 811 transport->cwnd = asoc->pathmtu; 812 } 813 transport->state = SCTP_ACTIVE; 814 break; 815 816 case SCTP_TRANSPORT_DOWN: 817 /* If the transport was never confirmed, do not transition it 818 * to inactive state. Also, release the cached route since 819 * there may be a better route next time. 820 */ 821 if (transport->state != SCTP_UNCONFIRMED) 822 transport->state = SCTP_INACTIVE; 823 else { 824 sctp_transport_dst_release(transport); 825 ulp_notify = false; 826 } 827 828 spc_state = SCTP_ADDR_UNREACHABLE; 829 break; 830 831 case SCTP_TRANSPORT_PF: 832 transport->state = SCTP_PF; 833 ulp_notify = false; 834 break; 835 836 default: 837 return; 838 } 839 840 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 841 * to the user. 842 */ 843 if (ulp_notify) { 844 memset(&addr, 0, sizeof(struct sockaddr_storage)); 845 memcpy(&addr, &transport->ipaddr, 846 transport->af_specific->sockaddr_len); 847 848 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 849 0, spc_state, error, GFP_ATOMIC); 850 if (event) 851 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 852 } 853 854 /* Select new active and retran paths. */ 855 sctp_select_active_and_retran_path(asoc); 856 } 857 858 /* Hold a reference to an association. */ 859 void sctp_association_hold(struct sctp_association *asoc) 860 { 861 refcount_inc(&asoc->base.refcnt); 862 } 863 864 /* Release a reference to an association and cleanup 865 * if there are no more references. 866 */ 867 void sctp_association_put(struct sctp_association *asoc) 868 { 869 if (refcount_dec_and_test(&asoc->base.refcnt)) 870 sctp_association_destroy(asoc); 871 } 872 873 /* Allocate the next TSN, Transmission Sequence Number, for the given 874 * association. 875 */ 876 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 877 { 878 /* From Section 1.6 Serial Number Arithmetic: 879 * Transmission Sequence Numbers wrap around when they reach 880 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 881 * after transmitting TSN = 2*32 - 1 is TSN = 0. 882 */ 883 __u32 retval = asoc->next_tsn; 884 asoc->next_tsn++; 885 asoc->unack_data++; 886 887 return retval; 888 } 889 890 /* Compare two addresses to see if they match. Wildcard addresses 891 * only match themselves. 892 */ 893 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 894 const union sctp_addr *ss2) 895 { 896 struct sctp_af *af; 897 898 af = sctp_get_af_specific(ss1->sa.sa_family); 899 if (unlikely(!af)) 900 return 0; 901 902 return af->cmp_addr(ss1, ss2); 903 } 904 905 /* Return an ecne chunk to get prepended to a packet. 906 * Note: We are sly and return a shared, prealloced chunk. FIXME: 907 * No we don't, but we could/should. 908 */ 909 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 910 { 911 if (!asoc->need_ecne) 912 return NULL; 913 914 /* Send ECNE if needed. 915 * Not being able to allocate a chunk here is not deadly. 916 */ 917 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 918 } 919 920 /* 921 * Find which transport this TSN was sent on. 922 */ 923 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 924 __u32 tsn) 925 { 926 struct sctp_transport *active; 927 struct sctp_transport *match; 928 struct sctp_transport *transport; 929 struct sctp_chunk *chunk; 930 __be32 key = htonl(tsn); 931 932 match = NULL; 933 934 /* 935 * FIXME: In general, find a more efficient data structure for 936 * searching. 937 */ 938 939 /* 940 * The general strategy is to search each transport's transmitted 941 * list. Return which transport this TSN lives on. 942 * 943 * Let's be hopeful and check the active_path first. 944 * Another optimization would be to know if there is only one 945 * outbound path and not have to look for the TSN at all. 946 * 947 */ 948 949 active = asoc->peer.active_path; 950 951 list_for_each_entry(chunk, &active->transmitted, 952 transmitted_list) { 953 954 if (key == chunk->subh.data_hdr->tsn) { 955 match = active; 956 goto out; 957 } 958 } 959 960 /* If not found, go search all the other transports. */ 961 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 962 transports) { 963 964 if (transport == active) 965 continue; 966 list_for_each_entry(chunk, &transport->transmitted, 967 transmitted_list) { 968 if (key == chunk->subh.data_hdr->tsn) { 969 match = transport; 970 goto out; 971 } 972 } 973 } 974 out: 975 return match; 976 } 977 978 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 979 static void sctp_assoc_bh_rcv(struct work_struct *work) 980 { 981 struct sctp_association *asoc = 982 container_of(work, struct sctp_association, 983 base.inqueue.immediate); 984 struct net *net = sock_net(asoc->base.sk); 985 union sctp_subtype subtype; 986 struct sctp_endpoint *ep; 987 struct sctp_chunk *chunk; 988 struct sctp_inq *inqueue; 989 int first_time = 1; /* is this the first time through the loop */ 990 int error = 0; 991 int state; 992 993 /* The association should be held so we should be safe. */ 994 ep = asoc->ep; 995 996 inqueue = &asoc->base.inqueue; 997 sctp_association_hold(asoc); 998 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 999 state = asoc->state; 1000 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1001 1002 /* If the first chunk in the packet is AUTH, do special 1003 * processing specified in Section 6.3 of SCTP-AUTH spec 1004 */ 1005 if (first_time && subtype.chunk == SCTP_CID_AUTH) { 1006 struct sctp_chunkhdr *next_hdr; 1007 1008 next_hdr = sctp_inq_peek(inqueue); 1009 if (!next_hdr) 1010 goto normal; 1011 1012 /* If the next chunk is COOKIE-ECHO, skip the AUTH 1013 * chunk while saving a pointer to it so we can do 1014 * Authentication later (during cookie-echo 1015 * processing). 1016 */ 1017 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) { 1018 chunk->auth_chunk = skb_clone(chunk->skb, 1019 GFP_ATOMIC); 1020 chunk->auth = 1; 1021 continue; 1022 } 1023 } 1024 1025 normal: 1026 /* SCTP-AUTH, Section 6.3: 1027 * The receiver has a list of chunk types which it expects 1028 * to be received only after an AUTH-chunk. This list has 1029 * been sent to the peer during the association setup. It 1030 * MUST silently discard these chunks if they are not placed 1031 * after an AUTH chunk in the packet. 1032 */ 1033 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1034 continue; 1035 1036 /* Remember where the last DATA chunk came from so we 1037 * know where to send the SACK. 1038 */ 1039 if (sctp_chunk_is_data(chunk)) 1040 asoc->peer.last_data_from = chunk->transport; 1041 else { 1042 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1043 asoc->stats.ictrlchunks++; 1044 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1045 asoc->stats.isacks++; 1046 } 1047 1048 if (chunk->transport) 1049 chunk->transport->last_time_heard = ktime_get(); 1050 1051 /* Run through the state machine. */ 1052 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1053 state, ep, asoc, chunk, GFP_ATOMIC); 1054 1055 /* Check to see if the association is freed in response to 1056 * the incoming chunk. If so, get out of the while loop. 1057 */ 1058 if (asoc->base.dead) 1059 break; 1060 1061 /* If there is an error on chunk, discard this packet. */ 1062 if (error && chunk) 1063 chunk->pdiscard = 1; 1064 1065 if (first_time) 1066 first_time = 0; 1067 } 1068 sctp_association_put(asoc); 1069 } 1070 1071 /* This routine moves an association from its old sk to a new sk. */ 1072 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1073 { 1074 struct sctp_sock *newsp = sctp_sk(newsk); 1075 struct sock *oldsk = assoc->base.sk; 1076 1077 /* Delete the association from the old endpoint's list of 1078 * associations. 1079 */ 1080 list_del_init(&assoc->asocs); 1081 1082 /* Decrement the backlog value for a TCP-style socket. */ 1083 if (sctp_style(oldsk, TCP)) 1084 oldsk->sk_ack_backlog--; 1085 1086 /* Release references to the old endpoint and the sock. */ 1087 sctp_endpoint_put(assoc->ep); 1088 sock_put(assoc->base.sk); 1089 1090 /* Get a reference to the new endpoint. */ 1091 assoc->ep = newsp->ep; 1092 sctp_endpoint_hold(assoc->ep); 1093 1094 /* Get a reference to the new sock. */ 1095 assoc->base.sk = newsk; 1096 sock_hold(assoc->base.sk); 1097 1098 /* Add the association to the new endpoint's list of associations. */ 1099 sctp_endpoint_add_asoc(newsp->ep, assoc); 1100 } 1101 1102 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1103 int sctp_assoc_update(struct sctp_association *asoc, 1104 struct sctp_association *new) 1105 { 1106 struct sctp_transport *trans; 1107 struct list_head *pos, *temp; 1108 1109 /* Copy in new parameters of peer. */ 1110 asoc->c = new->c; 1111 asoc->peer.rwnd = new->peer.rwnd; 1112 asoc->peer.sack_needed = new->peer.sack_needed; 1113 asoc->peer.auth_capable = new->peer.auth_capable; 1114 asoc->peer.i = new->peer.i; 1115 1116 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1117 asoc->peer.i.initial_tsn, GFP_ATOMIC)) 1118 return -ENOMEM; 1119 1120 /* Remove any peer addresses not present in the new association. */ 1121 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1122 trans = list_entry(pos, struct sctp_transport, transports); 1123 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1124 sctp_assoc_rm_peer(asoc, trans); 1125 continue; 1126 } 1127 1128 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1129 sctp_transport_reset(trans); 1130 } 1131 1132 /* If the case is A (association restart), use 1133 * initial_tsn as next_tsn. If the case is B, use 1134 * current next_tsn in case data sent to peer 1135 * has been discarded and needs retransmission. 1136 */ 1137 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1138 asoc->next_tsn = new->next_tsn; 1139 asoc->ctsn_ack_point = new->ctsn_ack_point; 1140 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1141 1142 /* Reinitialize SSN for both local streams 1143 * and peer's streams. 1144 */ 1145 sctp_stream_clear(&asoc->stream); 1146 1147 /* Flush the ULP reassembly and ordered queue. 1148 * Any data there will now be stale and will 1149 * cause problems. 1150 */ 1151 sctp_ulpq_flush(&asoc->ulpq); 1152 1153 /* reset the overall association error count so 1154 * that the restarted association doesn't get torn 1155 * down on the next retransmission timer. 1156 */ 1157 asoc->overall_error_count = 0; 1158 1159 } else { 1160 /* Add any peer addresses from the new association. */ 1161 list_for_each_entry(trans, &new->peer.transport_addr_list, 1162 transports) 1163 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) && 1164 !sctp_assoc_add_peer(asoc, &trans->ipaddr, 1165 GFP_ATOMIC, trans->state)) 1166 return -ENOMEM; 1167 1168 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1169 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1170 1171 if (sctp_state(asoc, COOKIE_WAIT)) 1172 sctp_stream_update(&asoc->stream, &new->stream); 1173 1174 /* get a new assoc id if we don't have one yet. */ 1175 if (sctp_assoc_set_id(asoc, GFP_ATOMIC)) 1176 return -ENOMEM; 1177 } 1178 1179 /* SCTP-AUTH: Save the peer parameters from the new associations 1180 * and also move the association shared keys over 1181 */ 1182 kfree(asoc->peer.peer_random); 1183 asoc->peer.peer_random = new->peer.peer_random; 1184 new->peer.peer_random = NULL; 1185 1186 kfree(asoc->peer.peer_chunks); 1187 asoc->peer.peer_chunks = new->peer.peer_chunks; 1188 new->peer.peer_chunks = NULL; 1189 1190 kfree(asoc->peer.peer_hmacs); 1191 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1192 new->peer.peer_hmacs = NULL; 1193 1194 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1195 } 1196 1197 /* Update the retran path for sending a retransmitted packet. 1198 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1199 * 1200 * When there is outbound data to send and the primary path 1201 * becomes inactive (e.g., due to failures), or where the 1202 * SCTP user explicitly requests to send data to an 1203 * inactive destination transport address, before reporting 1204 * an error to its ULP, the SCTP endpoint should try to send 1205 * the data to an alternate active destination transport 1206 * address if one exists. 1207 * 1208 * When retransmitting data that timed out, if the endpoint 1209 * is multihomed, it should consider each source-destination 1210 * address pair in its retransmission selection policy. 1211 * When retransmitting timed-out data, the endpoint should 1212 * attempt to pick the most divergent source-destination 1213 * pair from the original source-destination pair to which 1214 * the packet was transmitted. 1215 * 1216 * Note: Rules for picking the most divergent source-destination 1217 * pair are an implementation decision and are not specified 1218 * within this document. 1219 * 1220 * Our basic strategy is to round-robin transports in priorities 1221 * according to sctp_trans_score() e.g., if no such 1222 * transport with state SCTP_ACTIVE exists, round-robin through 1223 * SCTP_UNKNOWN, etc. You get the picture. 1224 */ 1225 static u8 sctp_trans_score(const struct sctp_transport *trans) 1226 { 1227 switch (trans->state) { 1228 case SCTP_ACTIVE: 1229 return 3; /* best case */ 1230 case SCTP_UNKNOWN: 1231 return 2; 1232 case SCTP_PF: 1233 return 1; 1234 default: /* case SCTP_INACTIVE */ 1235 return 0; /* worst case */ 1236 } 1237 } 1238 1239 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1240 struct sctp_transport *trans2) 1241 { 1242 if (trans1->error_count > trans2->error_count) { 1243 return trans2; 1244 } else if (trans1->error_count == trans2->error_count && 1245 ktime_after(trans2->last_time_heard, 1246 trans1->last_time_heard)) { 1247 return trans2; 1248 } else { 1249 return trans1; 1250 } 1251 } 1252 1253 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1254 struct sctp_transport *best) 1255 { 1256 u8 score_curr, score_best; 1257 1258 if (best == NULL || curr == best) 1259 return curr; 1260 1261 score_curr = sctp_trans_score(curr); 1262 score_best = sctp_trans_score(best); 1263 1264 /* First, try a score-based selection if both transport states 1265 * differ. If we're in a tie, lets try to make a more clever 1266 * decision here based on error counts and last time heard. 1267 */ 1268 if (score_curr > score_best) 1269 return curr; 1270 else if (score_curr == score_best) 1271 return sctp_trans_elect_tie(best, curr); 1272 else 1273 return best; 1274 } 1275 1276 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1277 { 1278 struct sctp_transport *trans = asoc->peer.retran_path; 1279 struct sctp_transport *trans_next = NULL; 1280 1281 /* We're done as we only have the one and only path. */ 1282 if (asoc->peer.transport_count == 1) 1283 return; 1284 /* If active_path and retran_path are the same and active, 1285 * then this is the only active path. Use it. 1286 */ 1287 if (asoc->peer.active_path == asoc->peer.retran_path && 1288 asoc->peer.active_path->state == SCTP_ACTIVE) 1289 return; 1290 1291 /* Iterate from retran_path's successor back to retran_path. */ 1292 for (trans = list_next_entry(trans, transports); 1; 1293 trans = list_next_entry(trans, transports)) { 1294 /* Manually skip the head element. */ 1295 if (&trans->transports == &asoc->peer.transport_addr_list) 1296 continue; 1297 if (trans->state == SCTP_UNCONFIRMED) 1298 continue; 1299 trans_next = sctp_trans_elect_best(trans, trans_next); 1300 /* Active is good enough for immediate return. */ 1301 if (trans_next->state == SCTP_ACTIVE) 1302 break; 1303 /* We've reached the end, time to update path. */ 1304 if (trans == asoc->peer.retran_path) 1305 break; 1306 } 1307 1308 asoc->peer.retran_path = trans_next; 1309 1310 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1311 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1312 } 1313 1314 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1315 { 1316 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1317 struct sctp_transport *trans_pf = NULL; 1318 1319 /* Look for the two most recently used active transports. */ 1320 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1321 transports) { 1322 /* Skip uninteresting transports. */ 1323 if (trans->state == SCTP_INACTIVE || 1324 trans->state == SCTP_UNCONFIRMED) 1325 continue; 1326 /* Keep track of the best PF transport from our 1327 * list in case we don't find an active one. 1328 */ 1329 if (trans->state == SCTP_PF) { 1330 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1331 continue; 1332 } 1333 /* For active transports, pick the most recent ones. */ 1334 if (trans_pri == NULL || 1335 ktime_after(trans->last_time_heard, 1336 trans_pri->last_time_heard)) { 1337 trans_sec = trans_pri; 1338 trans_pri = trans; 1339 } else if (trans_sec == NULL || 1340 ktime_after(trans->last_time_heard, 1341 trans_sec->last_time_heard)) { 1342 trans_sec = trans; 1343 } 1344 } 1345 1346 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1347 * 1348 * By default, an endpoint should always transmit to the primary 1349 * path, unless the SCTP user explicitly specifies the 1350 * destination transport address (and possibly source transport 1351 * address) to use. [If the primary is active but not most recent, 1352 * bump the most recently used transport.] 1353 */ 1354 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1355 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1356 asoc->peer.primary_path != trans_pri) { 1357 trans_sec = trans_pri; 1358 trans_pri = asoc->peer.primary_path; 1359 } 1360 1361 /* We did not find anything useful for a possible retransmission 1362 * path; either primary path that we found is the the same as 1363 * the current one, or we didn't generally find an active one. 1364 */ 1365 if (trans_sec == NULL) 1366 trans_sec = trans_pri; 1367 1368 /* If we failed to find a usable transport, just camp on the 1369 * active or pick a PF iff it's the better choice. 1370 */ 1371 if (trans_pri == NULL) { 1372 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1373 trans_sec = trans_pri; 1374 } 1375 1376 /* Set the active and retran transports. */ 1377 asoc->peer.active_path = trans_pri; 1378 asoc->peer.retran_path = trans_sec; 1379 } 1380 1381 struct sctp_transport * 1382 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1383 struct sctp_transport *last_sent_to) 1384 { 1385 /* If this is the first time packet is sent, use the active path, 1386 * else use the retran path. If the last packet was sent over the 1387 * retran path, update the retran path and use it. 1388 */ 1389 if (last_sent_to == NULL) { 1390 return asoc->peer.active_path; 1391 } else { 1392 if (last_sent_to == asoc->peer.retran_path) 1393 sctp_assoc_update_retran_path(asoc); 1394 1395 return asoc->peer.retran_path; 1396 } 1397 } 1398 1399 void sctp_assoc_update_frag_point(struct sctp_association *asoc) 1400 { 1401 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu, 1402 sctp_datachk_len(&asoc->stream)); 1403 1404 if (asoc->user_frag) 1405 frag = min_t(int, frag, asoc->user_frag); 1406 1407 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN - 1408 sctp_datachk_len(&asoc->stream)); 1409 1410 asoc->frag_point = SCTP_TRUNC4(frag); 1411 } 1412 1413 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu) 1414 { 1415 if (asoc->pathmtu != pmtu) { 1416 asoc->pathmtu = pmtu; 1417 sctp_assoc_update_frag_point(asoc); 1418 } 1419 1420 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1421 asoc->pathmtu, asoc->frag_point); 1422 } 1423 1424 /* Update the association's pmtu and frag_point by going through all the 1425 * transports. This routine is called when a transport's PMTU has changed. 1426 */ 1427 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1428 { 1429 struct sctp_transport *t; 1430 __u32 pmtu = 0; 1431 1432 if (!asoc) 1433 return; 1434 1435 /* Get the lowest pmtu of all the transports. */ 1436 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 1437 if (t->pmtu_pending && t->dst) { 1438 sctp_transport_update_pmtu(t, sctp_dst_mtu(t->dst)); 1439 t->pmtu_pending = 0; 1440 } 1441 if (!pmtu || (t->pathmtu < pmtu)) 1442 pmtu = t->pathmtu; 1443 } 1444 1445 sctp_assoc_set_pmtu(asoc, pmtu); 1446 } 1447 1448 /* Should we send a SACK to update our peer? */ 1449 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1450 { 1451 struct net *net = sock_net(asoc->base.sk); 1452 switch (asoc->state) { 1453 case SCTP_STATE_ESTABLISHED: 1454 case SCTP_STATE_SHUTDOWN_PENDING: 1455 case SCTP_STATE_SHUTDOWN_RECEIVED: 1456 case SCTP_STATE_SHUTDOWN_SENT: 1457 if ((asoc->rwnd > asoc->a_rwnd) && 1458 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1459 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1460 asoc->pathmtu))) 1461 return true; 1462 break; 1463 default: 1464 break; 1465 } 1466 return false; 1467 } 1468 1469 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1470 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1471 { 1472 struct sctp_chunk *sack; 1473 struct timer_list *timer; 1474 1475 if (asoc->rwnd_over) { 1476 if (asoc->rwnd_over >= len) { 1477 asoc->rwnd_over -= len; 1478 } else { 1479 asoc->rwnd += (len - asoc->rwnd_over); 1480 asoc->rwnd_over = 0; 1481 } 1482 } else { 1483 asoc->rwnd += len; 1484 } 1485 1486 /* If we had window pressure, start recovering it 1487 * once our rwnd had reached the accumulated pressure 1488 * threshold. The idea is to recover slowly, but up 1489 * to the initial advertised window. 1490 */ 1491 if (asoc->rwnd_press) { 1492 int change = min(asoc->pathmtu, asoc->rwnd_press); 1493 asoc->rwnd += change; 1494 asoc->rwnd_press -= change; 1495 } 1496 1497 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1498 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1499 asoc->a_rwnd); 1500 1501 /* Send a window update SACK if the rwnd has increased by at least the 1502 * minimum of the association's PMTU and half of the receive buffer. 1503 * The algorithm used is similar to the one described in 1504 * Section 4.2.3.3 of RFC 1122. 1505 */ 1506 if (sctp_peer_needs_update(asoc)) { 1507 asoc->a_rwnd = asoc->rwnd; 1508 1509 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1510 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1511 asoc->a_rwnd); 1512 1513 sack = sctp_make_sack(asoc); 1514 if (!sack) 1515 return; 1516 1517 asoc->peer.sack_needed = 0; 1518 1519 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); 1520 1521 /* Stop the SACK timer. */ 1522 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1523 if (del_timer(timer)) 1524 sctp_association_put(asoc); 1525 } 1526 } 1527 1528 /* Decrease asoc's rwnd by len. */ 1529 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1530 { 1531 int rx_count; 1532 int over = 0; 1533 1534 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1535 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1536 "asoc->rwnd_over:%u!\n", __func__, asoc, 1537 asoc->rwnd, asoc->rwnd_over); 1538 1539 if (asoc->ep->rcvbuf_policy) 1540 rx_count = atomic_read(&asoc->rmem_alloc); 1541 else 1542 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1543 1544 /* If we've reached or overflowed our receive buffer, announce 1545 * a 0 rwnd if rwnd would still be positive. Store the 1546 * the potential pressure overflow so that the window can be restored 1547 * back to original value. 1548 */ 1549 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1550 over = 1; 1551 1552 if (asoc->rwnd >= len) { 1553 asoc->rwnd -= len; 1554 if (over) { 1555 asoc->rwnd_press += asoc->rwnd; 1556 asoc->rwnd = 0; 1557 } 1558 } else { 1559 asoc->rwnd_over += len - asoc->rwnd; 1560 asoc->rwnd = 0; 1561 } 1562 1563 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1564 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1565 asoc->rwnd_press); 1566 } 1567 1568 /* Build the bind address list for the association based on info from the 1569 * local endpoint and the remote peer. 1570 */ 1571 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1572 enum sctp_scope scope, gfp_t gfp) 1573 { 1574 int flags; 1575 1576 /* Use scoping rules to determine the subset of addresses from 1577 * the endpoint. 1578 */ 1579 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1580 if (asoc->peer.ipv4_address) 1581 flags |= SCTP_ADDR4_PEERSUPP; 1582 if (asoc->peer.ipv6_address) 1583 flags |= SCTP_ADDR6_PEERSUPP; 1584 1585 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1586 &asoc->base.bind_addr, 1587 &asoc->ep->base.bind_addr, 1588 scope, gfp, flags); 1589 } 1590 1591 /* Build the association's bind address list from the cookie. */ 1592 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1593 struct sctp_cookie *cookie, 1594 gfp_t gfp) 1595 { 1596 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1597 int var_size3 = cookie->raw_addr_list_len; 1598 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1599 1600 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1601 asoc->ep->base.bind_addr.port, gfp); 1602 } 1603 1604 /* Lookup laddr in the bind address list of an association. */ 1605 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1606 const union sctp_addr *laddr) 1607 { 1608 int found = 0; 1609 1610 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1611 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1612 sctp_sk(asoc->base.sk))) 1613 found = 1; 1614 1615 return found; 1616 } 1617 1618 /* Set an association id for a given association */ 1619 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1620 { 1621 bool preload = gfpflags_allow_blocking(gfp); 1622 int ret; 1623 1624 /* If the id is already assigned, keep it. */ 1625 if (asoc->assoc_id) 1626 return 0; 1627 1628 if (preload) 1629 idr_preload(gfp); 1630 spin_lock_bh(&sctp_assocs_id_lock); 1631 /* 0 is not a valid assoc_id, must be >= 1 */ 1632 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1633 spin_unlock_bh(&sctp_assocs_id_lock); 1634 if (preload) 1635 idr_preload_end(); 1636 if (ret < 0) 1637 return ret; 1638 1639 asoc->assoc_id = (sctp_assoc_t)ret; 1640 return 0; 1641 } 1642 1643 /* Free the ASCONF queue */ 1644 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1645 { 1646 struct sctp_chunk *asconf; 1647 struct sctp_chunk *tmp; 1648 1649 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1650 list_del_init(&asconf->list); 1651 sctp_chunk_free(asconf); 1652 } 1653 } 1654 1655 /* Free asconf_ack cache */ 1656 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1657 { 1658 struct sctp_chunk *ack; 1659 struct sctp_chunk *tmp; 1660 1661 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1662 transmitted_list) { 1663 list_del_init(&ack->transmitted_list); 1664 sctp_chunk_free(ack); 1665 } 1666 } 1667 1668 /* Clean up the ASCONF_ACK queue */ 1669 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1670 { 1671 struct sctp_chunk *ack; 1672 struct sctp_chunk *tmp; 1673 1674 /* We can remove all the entries from the queue up to 1675 * the "Peer-Sequence-Number". 1676 */ 1677 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1678 transmitted_list) { 1679 if (ack->subh.addip_hdr->serial == 1680 htonl(asoc->peer.addip_serial)) 1681 break; 1682 1683 list_del_init(&ack->transmitted_list); 1684 sctp_chunk_free(ack); 1685 } 1686 } 1687 1688 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1689 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1690 const struct sctp_association *asoc, 1691 __be32 serial) 1692 { 1693 struct sctp_chunk *ack; 1694 1695 /* Walk through the list of cached ASCONF-ACKs and find the 1696 * ack chunk whose serial number matches that of the request. 1697 */ 1698 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1699 if (sctp_chunk_pending(ack)) 1700 continue; 1701 if (ack->subh.addip_hdr->serial == serial) { 1702 sctp_chunk_hold(ack); 1703 return ack; 1704 } 1705 } 1706 1707 return NULL; 1708 } 1709 1710 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1711 { 1712 /* Free any cached ASCONF_ACK chunk. */ 1713 sctp_assoc_free_asconf_acks(asoc); 1714 1715 /* Free the ASCONF queue. */ 1716 sctp_assoc_free_asconf_queue(asoc); 1717 1718 /* Free any cached ASCONF chunk. */ 1719 if (asoc->addip_last_asconf) 1720 sctp_chunk_free(asoc->addip_last_asconf); 1721 } 1722