xref: /linux/net/sctp/associola.c (revision 5c35a02c545a7bbe77f3a1ae337d9e29beed079b)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Jon Grimm             <jgrimm@us.ibm.com>
36  *    Xingang Guo           <xingang.guo@intel.com>
37  *    Hui Huang             <hui.huang@nokia.com>
38  *    Sridhar Samudrala	    <sri@us.ibm.com>
39  *    Daisy Chang	    <daisyc@us.ibm.com>
40  *    Ryan Layer	    <rmlayer@us.ibm.com>
41  *    Kevin Gao             <kevin.gao@intel.com>
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50 
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56 
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62 
63 /* 1st Level Abstractions. */
64 
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(
67 					struct sctp_association *asoc,
68 					const struct sctp_endpoint *ep,
69 					const struct sock *sk,
70 					enum sctp_scope scope, gfp_t gfp)
71 {
72 	struct net *net = sock_net(sk);
73 	struct sctp_sock *sp;
74 	struct sctp_paramhdr *p;
75 	int i;
76 
77 	/* Retrieve the SCTP per socket area.  */
78 	sp = sctp_sk((struct sock *)sk);
79 
80 	/* Discarding const is appropriate here.  */
81 	asoc->ep = (struct sctp_endpoint *)ep;
82 	asoc->base.sk = (struct sock *)sk;
83 
84 	sctp_endpoint_hold(asoc->ep);
85 	sock_hold(asoc->base.sk);
86 
87 	/* Initialize the common base substructure.  */
88 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
89 
90 	/* Initialize the object handling fields.  */
91 	refcount_set(&asoc->base.refcnt, 1);
92 
93 	/* Initialize the bind addr area.  */
94 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
95 
96 	asoc->state = SCTP_STATE_CLOSED;
97 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
98 	asoc->user_frag = sp->user_frag;
99 
100 	/* Set the association max_retrans and RTO values from the
101 	 * socket values.
102 	 */
103 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
104 	asoc->pf_retrans  = net->sctp.pf_retrans;
105 
106 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
107 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
108 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
109 
110 	/* Initialize the association's heartbeat interval based on the
111 	 * sock configured value.
112 	 */
113 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
114 
115 	/* Initialize path max retrans value. */
116 	asoc->pathmaxrxt = sp->pathmaxrxt;
117 
118 	/* Initialize default path MTU. */
119 	asoc->pathmtu = sp->pathmtu;
120 
121 	/* Set association default SACK delay */
122 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
123 	asoc->sackfreq = sp->sackfreq;
124 
125 	/* Set the association default flags controlling
126 	 * Heartbeat, SACK delay, and Path MTU Discovery.
127 	 */
128 	asoc->param_flags = sp->param_flags;
129 
130 	/* Initialize the maximum number of new data packets that can be sent
131 	 * in a burst.
132 	 */
133 	asoc->max_burst = sp->max_burst;
134 
135 	/* initialize association timers */
136 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
137 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
138 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
139 
140 	/* sctpimpguide Section 2.12.2
141 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
142 	 * recommended value of 5 times 'RTO.Max'.
143 	 */
144 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
145 		= 5 * asoc->rto_max;
146 
147 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
148 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
149 
150 	/* Initializes the timers */
151 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
152 		timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
153 
154 	/* Pull default initialization values from the sock options.
155 	 * Note: This assumes that the values have already been
156 	 * validated in the sock.
157 	 */
158 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
159 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
160 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
161 
162 	asoc->max_init_timeo =
163 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
164 
165 	/* Set the local window size for receive.
166 	 * This is also the rcvbuf space per association.
167 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
168 	 * 1500 bytes in one SCTP packet.
169 	 */
170 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
171 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
172 	else
173 		asoc->rwnd = sk->sk_rcvbuf/2;
174 
175 	asoc->a_rwnd = asoc->rwnd;
176 
177 	/* Use my own max window until I learn something better.  */
178 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
179 
180 	/* Initialize the receive memory counter */
181 	atomic_set(&asoc->rmem_alloc, 0);
182 
183 	init_waitqueue_head(&asoc->wait);
184 
185 	asoc->c.my_vtag = sctp_generate_tag(ep);
186 	asoc->c.my_port = ep->base.bind_addr.port;
187 
188 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
189 
190 	asoc->next_tsn = asoc->c.initial_tsn;
191 
192 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
193 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
194 	asoc->highest_sacked = asoc->ctsn_ack_point;
195 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
196 
197 	/* ADDIP Section 4.1 Asconf Chunk Procedures
198 	 *
199 	 * When an endpoint has an ASCONF signaled change to be sent to the
200 	 * remote endpoint it should do the following:
201 	 * ...
202 	 * A2) a serial number should be assigned to the chunk. The serial
203 	 * number SHOULD be a monotonically increasing number. The serial
204 	 * numbers SHOULD be initialized at the start of the
205 	 * association to the same value as the initial TSN.
206 	 */
207 	asoc->addip_serial = asoc->c.initial_tsn;
208 	asoc->strreset_outseq = asoc->c.initial_tsn;
209 
210 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
211 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
212 
213 	/* Make an empty list of remote transport addresses.  */
214 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
215 
216 	/* RFC 2960 5.1 Normal Establishment of an Association
217 	 *
218 	 * After the reception of the first data chunk in an
219 	 * association the endpoint must immediately respond with a
220 	 * sack to acknowledge the data chunk.  Subsequent
221 	 * acknowledgements should be done as described in Section
222 	 * 6.2.
223 	 *
224 	 * [We implement this by telling a new association that it
225 	 * already received one packet.]
226 	 */
227 	asoc->peer.sack_needed = 1;
228 	asoc->peer.sack_generation = 1;
229 
230 	/* Assume that the peer will tell us if he recognizes ASCONF
231 	 * as part of INIT exchange.
232 	 * The sctp_addip_noauth option is there for backward compatibility
233 	 * and will revert old behavior.
234 	 */
235 	if (net->sctp.addip_noauth)
236 		asoc->peer.asconf_capable = 1;
237 
238 	/* Create an input queue.  */
239 	sctp_inq_init(&asoc->base.inqueue);
240 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
241 
242 	/* Create an output queue.  */
243 	sctp_outq_init(asoc, &asoc->outqueue);
244 
245 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
246 		goto fail_init;
247 
248 	if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
249 			     0, gfp))
250 		goto fail_init;
251 
252 	/* Assume that peer would support both address types unless we are
253 	 * told otherwise.
254 	 */
255 	asoc->peer.ipv4_address = 1;
256 	if (asoc->base.sk->sk_family == PF_INET6)
257 		asoc->peer.ipv6_address = 1;
258 	INIT_LIST_HEAD(&asoc->asocs);
259 
260 	asoc->default_stream = sp->default_stream;
261 	asoc->default_ppid = sp->default_ppid;
262 	asoc->default_flags = sp->default_flags;
263 	asoc->default_context = sp->default_context;
264 	asoc->default_timetolive = sp->default_timetolive;
265 	asoc->default_rcv_context = sp->default_rcv_context;
266 
267 	/* AUTH related initializations */
268 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
269 	if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
270 		goto stream_free;
271 
272 	asoc->active_key_id = ep->active_key_id;
273 	asoc->prsctp_enable = ep->prsctp_enable;
274 	asoc->reconf_enable = ep->reconf_enable;
275 	asoc->strreset_enable = ep->strreset_enable;
276 
277 	/* Save the hmacs and chunks list into this association */
278 	if (ep->auth_hmacs_list)
279 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
280 			ntohs(ep->auth_hmacs_list->param_hdr.length));
281 	if (ep->auth_chunk_list)
282 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
283 			ntohs(ep->auth_chunk_list->param_hdr.length));
284 
285 	/* Get the AUTH random number for this association */
286 	p = (struct sctp_paramhdr *)asoc->c.auth_random;
287 	p->type = SCTP_PARAM_RANDOM;
288 	p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
289 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
290 
291 	return asoc;
292 
293 stream_free:
294 	sctp_stream_free(&asoc->stream);
295 fail_init:
296 	sock_put(asoc->base.sk);
297 	sctp_endpoint_put(asoc->ep);
298 	return NULL;
299 }
300 
301 /* Allocate and initialize a new association */
302 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
303 					      const struct sock *sk,
304 					      enum sctp_scope scope, gfp_t gfp)
305 {
306 	struct sctp_association *asoc;
307 
308 	asoc = kzalloc(sizeof(*asoc), gfp);
309 	if (!asoc)
310 		goto fail;
311 
312 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
313 		goto fail_init;
314 
315 	SCTP_DBG_OBJCNT_INC(assoc);
316 
317 	pr_debug("Created asoc %p\n", asoc);
318 
319 	return asoc;
320 
321 fail_init:
322 	kfree(asoc);
323 fail:
324 	return NULL;
325 }
326 
327 /* Free this association if possible.  There may still be users, so
328  * the actual deallocation may be delayed.
329  */
330 void sctp_association_free(struct sctp_association *asoc)
331 {
332 	struct sock *sk = asoc->base.sk;
333 	struct sctp_transport *transport;
334 	struct list_head *pos, *temp;
335 	int i;
336 
337 	/* Only real associations count against the endpoint, so
338 	 * don't bother for if this is a temporary association.
339 	 */
340 	if (!list_empty(&asoc->asocs)) {
341 		list_del(&asoc->asocs);
342 
343 		/* Decrement the backlog value for a TCP-style listening
344 		 * socket.
345 		 */
346 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
347 			sk->sk_ack_backlog--;
348 	}
349 
350 	/* Mark as dead, so other users can know this structure is
351 	 * going away.
352 	 */
353 	asoc->base.dead = true;
354 
355 	/* Dispose of any data lying around in the outqueue. */
356 	sctp_outq_free(&asoc->outqueue);
357 
358 	/* Dispose of any pending messages for the upper layer. */
359 	sctp_ulpq_free(&asoc->ulpq);
360 
361 	/* Dispose of any pending chunks on the inqueue. */
362 	sctp_inq_free(&asoc->base.inqueue);
363 
364 	sctp_tsnmap_free(&asoc->peer.tsn_map);
365 
366 	/* Free stream information. */
367 	sctp_stream_free(&asoc->stream);
368 
369 	if (asoc->strreset_chunk)
370 		sctp_chunk_free(asoc->strreset_chunk);
371 
372 	/* Clean up the bound address list. */
373 	sctp_bind_addr_free(&asoc->base.bind_addr);
374 
375 	/* Do we need to go through all of our timers and
376 	 * delete them?   To be safe we will try to delete all, but we
377 	 * should be able to go through and make a guess based
378 	 * on our state.
379 	 */
380 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
381 		if (del_timer(&asoc->timers[i]))
382 			sctp_association_put(asoc);
383 	}
384 
385 	/* Free peer's cached cookie. */
386 	kfree(asoc->peer.cookie);
387 	kfree(asoc->peer.peer_random);
388 	kfree(asoc->peer.peer_chunks);
389 	kfree(asoc->peer.peer_hmacs);
390 
391 	/* Release the transport structures. */
392 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
393 		transport = list_entry(pos, struct sctp_transport, transports);
394 		list_del_rcu(pos);
395 		sctp_unhash_transport(transport);
396 		sctp_transport_free(transport);
397 	}
398 
399 	asoc->peer.transport_count = 0;
400 
401 	sctp_asconf_queue_teardown(asoc);
402 
403 	/* Free pending address space being deleted */
404 	kfree(asoc->asconf_addr_del_pending);
405 
406 	/* AUTH - Free the endpoint shared keys */
407 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
408 
409 	/* AUTH - Free the association shared key */
410 	sctp_auth_key_put(asoc->asoc_shared_key);
411 
412 	sctp_association_put(asoc);
413 }
414 
415 /* Cleanup and free up an association. */
416 static void sctp_association_destroy(struct sctp_association *asoc)
417 {
418 	if (unlikely(!asoc->base.dead)) {
419 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
420 		return;
421 	}
422 
423 	sctp_endpoint_put(asoc->ep);
424 	sock_put(asoc->base.sk);
425 
426 	if (asoc->assoc_id != 0) {
427 		spin_lock_bh(&sctp_assocs_id_lock);
428 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
429 		spin_unlock_bh(&sctp_assocs_id_lock);
430 	}
431 
432 	WARN_ON(atomic_read(&asoc->rmem_alloc));
433 
434 	kfree(asoc);
435 	SCTP_DBG_OBJCNT_DEC(assoc);
436 }
437 
438 /* Change the primary destination address for the peer. */
439 void sctp_assoc_set_primary(struct sctp_association *asoc,
440 			    struct sctp_transport *transport)
441 {
442 	int changeover = 0;
443 
444 	/* it's a changeover only if we already have a primary path
445 	 * that we are changing
446 	 */
447 	if (asoc->peer.primary_path != NULL &&
448 	    asoc->peer.primary_path != transport)
449 		changeover = 1 ;
450 
451 	asoc->peer.primary_path = transport;
452 
453 	/* Set a default msg_name for events. */
454 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
455 	       sizeof(union sctp_addr));
456 
457 	/* If the primary path is changing, assume that the
458 	 * user wants to use this new path.
459 	 */
460 	if ((transport->state == SCTP_ACTIVE) ||
461 	    (transport->state == SCTP_UNKNOWN))
462 		asoc->peer.active_path = transport;
463 
464 	/*
465 	 * SFR-CACC algorithm:
466 	 * Upon the receipt of a request to change the primary
467 	 * destination address, on the data structure for the new
468 	 * primary destination, the sender MUST do the following:
469 	 *
470 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
471 	 * to this destination address earlier. The sender MUST set
472 	 * CYCLING_CHANGEOVER to indicate that this switch is a
473 	 * double switch to the same destination address.
474 	 *
475 	 * Really, only bother is we have data queued or outstanding on
476 	 * the association.
477 	 */
478 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
479 		return;
480 
481 	if (transport->cacc.changeover_active)
482 		transport->cacc.cycling_changeover = changeover;
483 
484 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
485 	 * a changeover has occurred.
486 	 */
487 	transport->cacc.changeover_active = changeover;
488 
489 	/* 3) The sender MUST store the next TSN to be sent in
490 	 * next_tsn_at_change.
491 	 */
492 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
493 }
494 
495 /* Remove a transport from an association.  */
496 void sctp_assoc_rm_peer(struct sctp_association *asoc,
497 			struct sctp_transport *peer)
498 {
499 	struct list_head	*pos;
500 	struct sctp_transport	*transport;
501 
502 	pr_debug("%s: association:%p addr:%pISpc\n",
503 		 __func__, asoc, &peer->ipaddr.sa);
504 
505 	/* If we are to remove the current retran_path, update it
506 	 * to the next peer before removing this peer from the list.
507 	 */
508 	if (asoc->peer.retran_path == peer)
509 		sctp_assoc_update_retran_path(asoc);
510 
511 	/* Remove this peer from the list. */
512 	list_del_rcu(&peer->transports);
513 	/* Remove this peer from the transport hashtable */
514 	sctp_unhash_transport(peer);
515 
516 	/* Get the first transport of asoc. */
517 	pos = asoc->peer.transport_addr_list.next;
518 	transport = list_entry(pos, struct sctp_transport, transports);
519 
520 	/* Update any entries that match the peer to be deleted. */
521 	if (asoc->peer.primary_path == peer)
522 		sctp_assoc_set_primary(asoc, transport);
523 	if (asoc->peer.active_path == peer)
524 		asoc->peer.active_path = transport;
525 	if (asoc->peer.retran_path == peer)
526 		asoc->peer.retran_path = transport;
527 	if (asoc->peer.last_data_from == peer)
528 		asoc->peer.last_data_from = transport;
529 
530 	if (asoc->strreset_chunk &&
531 	    asoc->strreset_chunk->transport == peer) {
532 		asoc->strreset_chunk->transport = transport;
533 		sctp_transport_reset_reconf_timer(transport);
534 	}
535 
536 	/* If we remove the transport an INIT was last sent to, set it to
537 	 * NULL. Combined with the update of the retran path above, this
538 	 * will cause the next INIT to be sent to the next available
539 	 * transport, maintaining the cycle.
540 	 */
541 	if (asoc->init_last_sent_to == peer)
542 		asoc->init_last_sent_to = NULL;
543 
544 	/* If we remove the transport an SHUTDOWN was last sent to, set it
545 	 * to NULL. Combined with the update of the retran path above, this
546 	 * will cause the next SHUTDOWN to be sent to the next available
547 	 * transport, maintaining the cycle.
548 	 */
549 	if (asoc->shutdown_last_sent_to == peer)
550 		asoc->shutdown_last_sent_to = NULL;
551 
552 	/* If we remove the transport an ASCONF was last sent to, set it to
553 	 * NULL.
554 	 */
555 	if (asoc->addip_last_asconf &&
556 	    asoc->addip_last_asconf->transport == peer)
557 		asoc->addip_last_asconf->transport = NULL;
558 
559 	/* If we have something on the transmitted list, we have to
560 	 * save it off.  The best place is the active path.
561 	 */
562 	if (!list_empty(&peer->transmitted)) {
563 		struct sctp_transport *active = asoc->peer.active_path;
564 		struct sctp_chunk *ch;
565 
566 		/* Reset the transport of each chunk on this list */
567 		list_for_each_entry(ch, &peer->transmitted,
568 					transmitted_list) {
569 			ch->transport = NULL;
570 			ch->rtt_in_progress = 0;
571 		}
572 
573 		list_splice_tail_init(&peer->transmitted,
574 					&active->transmitted);
575 
576 		/* Start a T3 timer here in case it wasn't running so
577 		 * that these migrated packets have a chance to get
578 		 * retransmitted.
579 		 */
580 		if (!timer_pending(&active->T3_rtx_timer))
581 			if (!mod_timer(&active->T3_rtx_timer,
582 					jiffies + active->rto))
583 				sctp_transport_hold(active);
584 	}
585 
586 	asoc->peer.transport_count--;
587 
588 	sctp_transport_free(peer);
589 }
590 
591 /* Add a transport address to an association.  */
592 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
593 					   const union sctp_addr *addr,
594 					   const gfp_t gfp,
595 					   const int peer_state)
596 {
597 	struct net *net = sock_net(asoc->base.sk);
598 	struct sctp_transport *peer;
599 	struct sctp_sock *sp;
600 	unsigned short port;
601 
602 	sp = sctp_sk(asoc->base.sk);
603 
604 	/* AF_INET and AF_INET6 share common port field. */
605 	port = ntohs(addr->v4.sin_port);
606 
607 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
608 		 asoc, &addr->sa, peer_state);
609 
610 	/* Set the port if it has not been set yet.  */
611 	if (0 == asoc->peer.port)
612 		asoc->peer.port = port;
613 
614 	/* Check to see if this is a duplicate. */
615 	peer = sctp_assoc_lookup_paddr(asoc, addr);
616 	if (peer) {
617 		/* An UNKNOWN state is only set on transports added by
618 		 * user in sctp_connectx() call.  Such transports should be
619 		 * considered CONFIRMED per RFC 4960, Section 5.4.
620 		 */
621 		if (peer->state == SCTP_UNKNOWN) {
622 			peer->state = SCTP_ACTIVE;
623 		}
624 		return peer;
625 	}
626 
627 	peer = sctp_transport_new(net, addr, gfp);
628 	if (!peer)
629 		return NULL;
630 
631 	sctp_transport_set_owner(peer, asoc);
632 
633 	/* Initialize the peer's heartbeat interval based on the
634 	 * association configured value.
635 	 */
636 	peer->hbinterval = asoc->hbinterval;
637 
638 	/* Set the path max_retrans.  */
639 	peer->pathmaxrxt = asoc->pathmaxrxt;
640 
641 	/* And the partial failure retrans threshold */
642 	peer->pf_retrans = asoc->pf_retrans;
643 
644 	/* Initialize the peer's SACK delay timeout based on the
645 	 * association configured value.
646 	 */
647 	peer->sackdelay = asoc->sackdelay;
648 	peer->sackfreq = asoc->sackfreq;
649 
650 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
651 	 * based on association setting.
652 	 */
653 	peer->param_flags = asoc->param_flags;
654 
655 	/* Initialize the pmtu of the transport. */
656 	sctp_transport_route(peer, NULL, sp);
657 
658 	/* If this is the first transport addr on this association,
659 	 * initialize the association PMTU to the peer's PMTU.
660 	 * If not and the current association PMTU is higher than the new
661 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
662 	 */
663 	sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
664 				  min_t(int, peer->pathmtu, asoc->pathmtu) :
665 				  peer->pathmtu);
666 
667 	peer->pmtu_pending = 0;
668 
669 	/* The asoc->peer.port might not be meaningful yet, but
670 	 * initialize the packet structure anyway.
671 	 */
672 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
673 			 asoc->peer.port);
674 
675 	/* 7.2.1 Slow-Start
676 	 *
677 	 * o The initial cwnd before DATA transmission or after a sufficiently
678 	 *   long idle period MUST be set to
679 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
680 	 *
681 	 * o The initial value of ssthresh MAY be arbitrarily high
682 	 *   (for example, implementations MAY use the size of the
683 	 *   receiver advertised window).
684 	 */
685 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
686 
687 	/* At this point, we may not have the receiver's advertised window,
688 	 * so initialize ssthresh to the default value and it will be set
689 	 * later when we process the INIT.
690 	 */
691 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
692 
693 	peer->partial_bytes_acked = 0;
694 	peer->flight_size = 0;
695 	peer->burst_limited = 0;
696 
697 	/* Set the transport's RTO.initial value */
698 	peer->rto = asoc->rto_initial;
699 	sctp_max_rto(asoc, peer);
700 
701 	/* Set the peer's active state. */
702 	peer->state = peer_state;
703 
704 	/* Add this peer into the transport hashtable */
705 	if (sctp_hash_transport(peer)) {
706 		sctp_transport_free(peer);
707 		return NULL;
708 	}
709 
710 	/* Attach the remote transport to our asoc.  */
711 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
712 	asoc->peer.transport_count++;
713 
714 	/* If we do not yet have a primary path, set one.  */
715 	if (!asoc->peer.primary_path) {
716 		sctp_assoc_set_primary(asoc, peer);
717 		asoc->peer.retran_path = peer;
718 	}
719 
720 	if (asoc->peer.active_path == asoc->peer.retran_path &&
721 	    peer->state != SCTP_UNCONFIRMED) {
722 		asoc->peer.retran_path = peer;
723 	}
724 
725 	return peer;
726 }
727 
728 /* Delete a transport address from an association.  */
729 void sctp_assoc_del_peer(struct sctp_association *asoc,
730 			 const union sctp_addr *addr)
731 {
732 	struct list_head	*pos;
733 	struct list_head	*temp;
734 	struct sctp_transport	*transport;
735 
736 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
737 		transport = list_entry(pos, struct sctp_transport, transports);
738 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
739 			/* Do book keeping for removing the peer and free it. */
740 			sctp_assoc_rm_peer(asoc, transport);
741 			break;
742 		}
743 	}
744 }
745 
746 /* Lookup a transport by address. */
747 struct sctp_transport *sctp_assoc_lookup_paddr(
748 					const struct sctp_association *asoc,
749 					const union sctp_addr *address)
750 {
751 	struct sctp_transport *t;
752 
753 	/* Cycle through all transports searching for a peer address. */
754 
755 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
756 			transports) {
757 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
758 			return t;
759 	}
760 
761 	return NULL;
762 }
763 
764 /* Remove all transports except a give one */
765 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
766 				     struct sctp_transport *primary)
767 {
768 	struct sctp_transport	*temp;
769 	struct sctp_transport	*t;
770 
771 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
772 				 transports) {
773 		/* if the current transport is not the primary one, delete it */
774 		if (t != primary)
775 			sctp_assoc_rm_peer(asoc, t);
776 	}
777 }
778 
779 /* Engage in transport control operations.
780  * Mark the transport up or down and send a notification to the user.
781  * Select and update the new active and retran paths.
782  */
783 void sctp_assoc_control_transport(struct sctp_association *asoc,
784 				  struct sctp_transport *transport,
785 				  enum sctp_transport_cmd command,
786 				  sctp_sn_error_t error)
787 {
788 	struct sctp_ulpevent *event;
789 	struct sockaddr_storage addr;
790 	int spc_state = 0;
791 	bool ulp_notify = true;
792 
793 	/* Record the transition on the transport.  */
794 	switch (command) {
795 	case SCTP_TRANSPORT_UP:
796 		/* If we are moving from UNCONFIRMED state due
797 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
798 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
799 		 */
800 		if (SCTP_UNCONFIRMED == transport->state &&
801 		    SCTP_HEARTBEAT_SUCCESS == error)
802 			spc_state = SCTP_ADDR_CONFIRMED;
803 		else
804 			spc_state = SCTP_ADDR_AVAILABLE;
805 		/* Don't inform ULP about transition from PF to
806 		 * active state and set cwnd to 1 MTU, see SCTP
807 		 * Quick failover draft section 5.1, point 5
808 		 */
809 		if (transport->state == SCTP_PF) {
810 			ulp_notify = false;
811 			transport->cwnd = asoc->pathmtu;
812 		}
813 		transport->state = SCTP_ACTIVE;
814 		break;
815 
816 	case SCTP_TRANSPORT_DOWN:
817 		/* If the transport was never confirmed, do not transition it
818 		 * to inactive state.  Also, release the cached route since
819 		 * there may be a better route next time.
820 		 */
821 		if (transport->state != SCTP_UNCONFIRMED)
822 			transport->state = SCTP_INACTIVE;
823 		else {
824 			sctp_transport_dst_release(transport);
825 			ulp_notify = false;
826 		}
827 
828 		spc_state = SCTP_ADDR_UNREACHABLE;
829 		break;
830 
831 	case SCTP_TRANSPORT_PF:
832 		transport->state = SCTP_PF;
833 		ulp_notify = false;
834 		break;
835 
836 	default:
837 		return;
838 	}
839 
840 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
841 	 * to the user.
842 	 */
843 	if (ulp_notify) {
844 		memset(&addr, 0, sizeof(struct sockaddr_storage));
845 		memcpy(&addr, &transport->ipaddr,
846 		       transport->af_specific->sockaddr_len);
847 
848 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
849 					0, spc_state, error, GFP_ATOMIC);
850 		if (event)
851 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
852 	}
853 
854 	/* Select new active and retran paths. */
855 	sctp_select_active_and_retran_path(asoc);
856 }
857 
858 /* Hold a reference to an association. */
859 void sctp_association_hold(struct sctp_association *asoc)
860 {
861 	refcount_inc(&asoc->base.refcnt);
862 }
863 
864 /* Release a reference to an association and cleanup
865  * if there are no more references.
866  */
867 void sctp_association_put(struct sctp_association *asoc)
868 {
869 	if (refcount_dec_and_test(&asoc->base.refcnt))
870 		sctp_association_destroy(asoc);
871 }
872 
873 /* Allocate the next TSN, Transmission Sequence Number, for the given
874  * association.
875  */
876 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
877 {
878 	/* From Section 1.6 Serial Number Arithmetic:
879 	 * Transmission Sequence Numbers wrap around when they reach
880 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
881 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
882 	 */
883 	__u32 retval = asoc->next_tsn;
884 	asoc->next_tsn++;
885 	asoc->unack_data++;
886 
887 	return retval;
888 }
889 
890 /* Compare two addresses to see if they match.  Wildcard addresses
891  * only match themselves.
892  */
893 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
894 			const union sctp_addr *ss2)
895 {
896 	struct sctp_af *af;
897 
898 	af = sctp_get_af_specific(ss1->sa.sa_family);
899 	if (unlikely(!af))
900 		return 0;
901 
902 	return af->cmp_addr(ss1, ss2);
903 }
904 
905 /* Return an ecne chunk to get prepended to a packet.
906  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
907  * No we don't, but we could/should.
908  */
909 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
910 {
911 	if (!asoc->need_ecne)
912 		return NULL;
913 
914 	/* Send ECNE if needed.
915 	 * Not being able to allocate a chunk here is not deadly.
916 	 */
917 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
918 }
919 
920 /*
921  * Find which transport this TSN was sent on.
922  */
923 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
924 					     __u32 tsn)
925 {
926 	struct sctp_transport *active;
927 	struct sctp_transport *match;
928 	struct sctp_transport *transport;
929 	struct sctp_chunk *chunk;
930 	__be32 key = htonl(tsn);
931 
932 	match = NULL;
933 
934 	/*
935 	 * FIXME: In general, find a more efficient data structure for
936 	 * searching.
937 	 */
938 
939 	/*
940 	 * The general strategy is to search each transport's transmitted
941 	 * list.   Return which transport this TSN lives on.
942 	 *
943 	 * Let's be hopeful and check the active_path first.
944 	 * Another optimization would be to know if there is only one
945 	 * outbound path and not have to look for the TSN at all.
946 	 *
947 	 */
948 
949 	active = asoc->peer.active_path;
950 
951 	list_for_each_entry(chunk, &active->transmitted,
952 			transmitted_list) {
953 
954 		if (key == chunk->subh.data_hdr->tsn) {
955 			match = active;
956 			goto out;
957 		}
958 	}
959 
960 	/* If not found, go search all the other transports. */
961 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
962 			transports) {
963 
964 		if (transport == active)
965 			continue;
966 		list_for_each_entry(chunk, &transport->transmitted,
967 				transmitted_list) {
968 			if (key == chunk->subh.data_hdr->tsn) {
969 				match = transport;
970 				goto out;
971 			}
972 		}
973 	}
974 out:
975 	return match;
976 }
977 
978 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
979 static void sctp_assoc_bh_rcv(struct work_struct *work)
980 {
981 	struct sctp_association *asoc =
982 		container_of(work, struct sctp_association,
983 			     base.inqueue.immediate);
984 	struct net *net = sock_net(asoc->base.sk);
985 	union sctp_subtype subtype;
986 	struct sctp_endpoint *ep;
987 	struct sctp_chunk *chunk;
988 	struct sctp_inq *inqueue;
989 	int first_time = 1;	/* is this the first time through the loop */
990 	int error = 0;
991 	int state;
992 
993 	/* The association should be held so we should be safe. */
994 	ep = asoc->ep;
995 
996 	inqueue = &asoc->base.inqueue;
997 	sctp_association_hold(asoc);
998 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
999 		state = asoc->state;
1000 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1001 
1002 		/* If the first chunk in the packet is AUTH, do special
1003 		 * processing specified in Section 6.3 of SCTP-AUTH spec
1004 		 */
1005 		if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1006 			struct sctp_chunkhdr *next_hdr;
1007 
1008 			next_hdr = sctp_inq_peek(inqueue);
1009 			if (!next_hdr)
1010 				goto normal;
1011 
1012 			/* If the next chunk is COOKIE-ECHO, skip the AUTH
1013 			 * chunk while saving a pointer to it so we can do
1014 			 * Authentication later (during cookie-echo
1015 			 * processing).
1016 			 */
1017 			if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1018 				chunk->auth_chunk = skb_clone(chunk->skb,
1019 							      GFP_ATOMIC);
1020 				chunk->auth = 1;
1021 				continue;
1022 			}
1023 		}
1024 
1025 normal:
1026 		/* SCTP-AUTH, Section 6.3:
1027 		 *    The receiver has a list of chunk types which it expects
1028 		 *    to be received only after an AUTH-chunk.  This list has
1029 		 *    been sent to the peer during the association setup.  It
1030 		 *    MUST silently discard these chunks if they are not placed
1031 		 *    after an AUTH chunk in the packet.
1032 		 */
1033 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1034 			continue;
1035 
1036 		/* Remember where the last DATA chunk came from so we
1037 		 * know where to send the SACK.
1038 		 */
1039 		if (sctp_chunk_is_data(chunk))
1040 			asoc->peer.last_data_from = chunk->transport;
1041 		else {
1042 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1043 			asoc->stats.ictrlchunks++;
1044 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1045 				asoc->stats.isacks++;
1046 		}
1047 
1048 		if (chunk->transport)
1049 			chunk->transport->last_time_heard = ktime_get();
1050 
1051 		/* Run through the state machine. */
1052 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1053 				   state, ep, asoc, chunk, GFP_ATOMIC);
1054 
1055 		/* Check to see if the association is freed in response to
1056 		 * the incoming chunk.  If so, get out of the while loop.
1057 		 */
1058 		if (asoc->base.dead)
1059 			break;
1060 
1061 		/* If there is an error on chunk, discard this packet. */
1062 		if (error && chunk)
1063 			chunk->pdiscard = 1;
1064 
1065 		if (first_time)
1066 			first_time = 0;
1067 	}
1068 	sctp_association_put(asoc);
1069 }
1070 
1071 /* This routine moves an association from its old sk to a new sk.  */
1072 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1073 {
1074 	struct sctp_sock *newsp = sctp_sk(newsk);
1075 	struct sock *oldsk = assoc->base.sk;
1076 
1077 	/* Delete the association from the old endpoint's list of
1078 	 * associations.
1079 	 */
1080 	list_del_init(&assoc->asocs);
1081 
1082 	/* Decrement the backlog value for a TCP-style socket. */
1083 	if (sctp_style(oldsk, TCP))
1084 		oldsk->sk_ack_backlog--;
1085 
1086 	/* Release references to the old endpoint and the sock.  */
1087 	sctp_endpoint_put(assoc->ep);
1088 	sock_put(assoc->base.sk);
1089 
1090 	/* Get a reference to the new endpoint.  */
1091 	assoc->ep = newsp->ep;
1092 	sctp_endpoint_hold(assoc->ep);
1093 
1094 	/* Get a reference to the new sock.  */
1095 	assoc->base.sk = newsk;
1096 	sock_hold(assoc->base.sk);
1097 
1098 	/* Add the association to the new endpoint's list of associations.  */
1099 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1100 }
1101 
1102 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1103 int sctp_assoc_update(struct sctp_association *asoc,
1104 		      struct sctp_association *new)
1105 {
1106 	struct sctp_transport *trans;
1107 	struct list_head *pos, *temp;
1108 
1109 	/* Copy in new parameters of peer. */
1110 	asoc->c = new->c;
1111 	asoc->peer.rwnd = new->peer.rwnd;
1112 	asoc->peer.sack_needed = new->peer.sack_needed;
1113 	asoc->peer.auth_capable = new->peer.auth_capable;
1114 	asoc->peer.i = new->peer.i;
1115 
1116 	if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1117 			      asoc->peer.i.initial_tsn, GFP_ATOMIC))
1118 		return -ENOMEM;
1119 
1120 	/* Remove any peer addresses not present in the new association. */
1121 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1122 		trans = list_entry(pos, struct sctp_transport, transports);
1123 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1124 			sctp_assoc_rm_peer(asoc, trans);
1125 			continue;
1126 		}
1127 
1128 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1129 			sctp_transport_reset(trans);
1130 	}
1131 
1132 	/* If the case is A (association restart), use
1133 	 * initial_tsn as next_tsn. If the case is B, use
1134 	 * current next_tsn in case data sent to peer
1135 	 * has been discarded and needs retransmission.
1136 	 */
1137 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1138 		asoc->next_tsn = new->next_tsn;
1139 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1140 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1141 
1142 		/* Reinitialize SSN for both local streams
1143 		 * and peer's streams.
1144 		 */
1145 		sctp_stream_clear(&asoc->stream);
1146 
1147 		/* Flush the ULP reassembly and ordered queue.
1148 		 * Any data there will now be stale and will
1149 		 * cause problems.
1150 		 */
1151 		sctp_ulpq_flush(&asoc->ulpq);
1152 
1153 		/* reset the overall association error count so
1154 		 * that the restarted association doesn't get torn
1155 		 * down on the next retransmission timer.
1156 		 */
1157 		asoc->overall_error_count = 0;
1158 
1159 	} else {
1160 		/* Add any peer addresses from the new association. */
1161 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1162 				    transports)
1163 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1164 			    !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1165 						 GFP_ATOMIC, trans->state))
1166 				return -ENOMEM;
1167 
1168 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1169 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1170 
1171 		if (sctp_state(asoc, COOKIE_WAIT))
1172 			sctp_stream_update(&asoc->stream, &new->stream);
1173 
1174 		/* get a new assoc id if we don't have one yet. */
1175 		if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1176 			return -ENOMEM;
1177 	}
1178 
1179 	/* SCTP-AUTH: Save the peer parameters from the new associations
1180 	 * and also move the association shared keys over
1181 	 */
1182 	kfree(asoc->peer.peer_random);
1183 	asoc->peer.peer_random = new->peer.peer_random;
1184 	new->peer.peer_random = NULL;
1185 
1186 	kfree(asoc->peer.peer_chunks);
1187 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1188 	new->peer.peer_chunks = NULL;
1189 
1190 	kfree(asoc->peer.peer_hmacs);
1191 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1192 	new->peer.peer_hmacs = NULL;
1193 
1194 	return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1195 }
1196 
1197 /* Update the retran path for sending a retransmitted packet.
1198  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1199  *
1200  *   When there is outbound data to send and the primary path
1201  *   becomes inactive (e.g., due to failures), or where the
1202  *   SCTP user explicitly requests to send data to an
1203  *   inactive destination transport address, before reporting
1204  *   an error to its ULP, the SCTP endpoint should try to send
1205  *   the data to an alternate active destination transport
1206  *   address if one exists.
1207  *
1208  *   When retransmitting data that timed out, if the endpoint
1209  *   is multihomed, it should consider each source-destination
1210  *   address pair in its retransmission selection policy.
1211  *   When retransmitting timed-out data, the endpoint should
1212  *   attempt to pick the most divergent source-destination
1213  *   pair from the original source-destination pair to which
1214  *   the packet was transmitted.
1215  *
1216  *   Note: Rules for picking the most divergent source-destination
1217  *   pair are an implementation decision and are not specified
1218  *   within this document.
1219  *
1220  * Our basic strategy is to round-robin transports in priorities
1221  * according to sctp_trans_score() e.g., if no such
1222  * transport with state SCTP_ACTIVE exists, round-robin through
1223  * SCTP_UNKNOWN, etc. You get the picture.
1224  */
1225 static u8 sctp_trans_score(const struct sctp_transport *trans)
1226 {
1227 	switch (trans->state) {
1228 	case SCTP_ACTIVE:
1229 		return 3;	/* best case */
1230 	case SCTP_UNKNOWN:
1231 		return 2;
1232 	case SCTP_PF:
1233 		return 1;
1234 	default: /* case SCTP_INACTIVE */
1235 		return 0;	/* worst case */
1236 	}
1237 }
1238 
1239 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1240 						   struct sctp_transport *trans2)
1241 {
1242 	if (trans1->error_count > trans2->error_count) {
1243 		return trans2;
1244 	} else if (trans1->error_count == trans2->error_count &&
1245 		   ktime_after(trans2->last_time_heard,
1246 			       trans1->last_time_heard)) {
1247 		return trans2;
1248 	} else {
1249 		return trans1;
1250 	}
1251 }
1252 
1253 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1254 						    struct sctp_transport *best)
1255 {
1256 	u8 score_curr, score_best;
1257 
1258 	if (best == NULL || curr == best)
1259 		return curr;
1260 
1261 	score_curr = sctp_trans_score(curr);
1262 	score_best = sctp_trans_score(best);
1263 
1264 	/* First, try a score-based selection if both transport states
1265 	 * differ. If we're in a tie, lets try to make a more clever
1266 	 * decision here based on error counts and last time heard.
1267 	 */
1268 	if (score_curr > score_best)
1269 		return curr;
1270 	else if (score_curr == score_best)
1271 		return sctp_trans_elect_tie(best, curr);
1272 	else
1273 		return best;
1274 }
1275 
1276 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1277 {
1278 	struct sctp_transport *trans = asoc->peer.retran_path;
1279 	struct sctp_transport *trans_next = NULL;
1280 
1281 	/* We're done as we only have the one and only path. */
1282 	if (asoc->peer.transport_count == 1)
1283 		return;
1284 	/* If active_path and retran_path are the same and active,
1285 	 * then this is the only active path. Use it.
1286 	 */
1287 	if (asoc->peer.active_path == asoc->peer.retran_path &&
1288 	    asoc->peer.active_path->state == SCTP_ACTIVE)
1289 		return;
1290 
1291 	/* Iterate from retran_path's successor back to retran_path. */
1292 	for (trans = list_next_entry(trans, transports); 1;
1293 	     trans = list_next_entry(trans, transports)) {
1294 		/* Manually skip the head element. */
1295 		if (&trans->transports == &asoc->peer.transport_addr_list)
1296 			continue;
1297 		if (trans->state == SCTP_UNCONFIRMED)
1298 			continue;
1299 		trans_next = sctp_trans_elect_best(trans, trans_next);
1300 		/* Active is good enough for immediate return. */
1301 		if (trans_next->state == SCTP_ACTIVE)
1302 			break;
1303 		/* We've reached the end, time to update path. */
1304 		if (trans == asoc->peer.retran_path)
1305 			break;
1306 	}
1307 
1308 	asoc->peer.retran_path = trans_next;
1309 
1310 	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1311 		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1312 }
1313 
1314 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1315 {
1316 	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1317 	struct sctp_transport *trans_pf = NULL;
1318 
1319 	/* Look for the two most recently used active transports. */
1320 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1321 			    transports) {
1322 		/* Skip uninteresting transports. */
1323 		if (trans->state == SCTP_INACTIVE ||
1324 		    trans->state == SCTP_UNCONFIRMED)
1325 			continue;
1326 		/* Keep track of the best PF transport from our
1327 		 * list in case we don't find an active one.
1328 		 */
1329 		if (trans->state == SCTP_PF) {
1330 			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1331 			continue;
1332 		}
1333 		/* For active transports, pick the most recent ones. */
1334 		if (trans_pri == NULL ||
1335 		    ktime_after(trans->last_time_heard,
1336 				trans_pri->last_time_heard)) {
1337 			trans_sec = trans_pri;
1338 			trans_pri = trans;
1339 		} else if (trans_sec == NULL ||
1340 			   ktime_after(trans->last_time_heard,
1341 				       trans_sec->last_time_heard)) {
1342 			trans_sec = trans;
1343 		}
1344 	}
1345 
1346 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1347 	 *
1348 	 * By default, an endpoint should always transmit to the primary
1349 	 * path, unless the SCTP user explicitly specifies the
1350 	 * destination transport address (and possibly source transport
1351 	 * address) to use. [If the primary is active but not most recent,
1352 	 * bump the most recently used transport.]
1353 	 */
1354 	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1355 	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1356 	     asoc->peer.primary_path != trans_pri) {
1357 		trans_sec = trans_pri;
1358 		trans_pri = asoc->peer.primary_path;
1359 	}
1360 
1361 	/* We did not find anything useful for a possible retransmission
1362 	 * path; either primary path that we found is the the same as
1363 	 * the current one, or we didn't generally find an active one.
1364 	 */
1365 	if (trans_sec == NULL)
1366 		trans_sec = trans_pri;
1367 
1368 	/* If we failed to find a usable transport, just camp on the
1369 	 * active or pick a PF iff it's the better choice.
1370 	 */
1371 	if (trans_pri == NULL) {
1372 		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1373 		trans_sec = trans_pri;
1374 	}
1375 
1376 	/* Set the active and retran transports. */
1377 	asoc->peer.active_path = trans_pri;
1378 	asoc->peer.retran_path = trans_sec;
1379 }
1380 
1381 struct sctp_transport *
1382 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1383 				  struct sctp_transport *last_sent_to)
1384 {
1385 	/* If this is the first time packet is sent, use the active path,
1386 	 * else use the retran path. If the last packet was sent over the
1387 	 * retran path, update the retran path and use it.
1388 	 */
1389 	if (last_sent_to == NULL) {
1390 		return asoc->peer.active_path;
1391 	} else {
1392 		if (last_sent_to == asoc->peer.retran_path)
1393 			sctp_assoc_update_retran_path(asoc);
1394 
1395 		return asoc->peer.retran_path;
1396 	}
1397 }
1398 
1399 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1400 {
1401 	int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1402 				    sctp_datachk_len(&asoc->stream));
1403 
1404 	if (asoc->user_frag)
1405 		frag = min_t(int, frag, asoc->user_frag);
1406 
1407 	frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1408 				sctp_datachk_len(&asoc->stream));
1409 
1410 	asoc->frag_point = SCTP_TRUNC4(frag);
1411 }
1412 
1413 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1414 {
1415 	if (asoc->pathmtu != pmtu) {
1416 		asoc->pathmtu = pmtu;
1417 		sctp_assoc_update_frag_point(asoc);
1418 	}
1419 
1420 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1421 		 asoc->pathmtu, asoc->frag_point);
1422 }
1423 
1424 /* Update the association's pmtu and frag_point by going through all the
1425  * transports. This routine is called when a transport's PMTU has changed.
1426  */
1427 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1428 {
1429 	struct sctp_transport *t;
1430 	__u32 pmtu = 0;
1431 
1432 	if (!asoc)
1433 		return;
1434 
1435 	/* Get the lowest pmtu of all the transports. */
1436 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1437 		if (t->pmtu_pending && t->dst) {
1438 			sctp_transport_update_pmtu(t, sctp_dst_mtu(t->dst));
1439 			t->pmtu_pending = 0;
1440 		}
1441 		if (!pmtu || (t->pathmtu < pmtu))
1442 			pmtu = t->pathmtu;
1443 	}
1444 
1445 	sctp_assoc_set_pmtu(asoc, pmtu);
1446 }
1447 
1448 /* Should we send a SACK to update our peer? */
1449 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1450 {
1451 	struct net *net = sock_net(asoc->base.sk);
1452 	switch (asoc->state) {
1453 	case SCTP_STATE_ESTABLISHED:
1454 	case SCTP_STATE_SHUTDOWN_PENDING:
1455 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1456 	case SCTP_STATE_SHUTDOWN_SENT:
1457 		if ((asoc->rwnd > asoc->a_rwnd) &&
1458 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1459 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1460 			   asoc->pathmtu)))
1461 			return true;
1462 		break;
1463 	default:
1464 		break;
1465 	}
1466 	return false;
1467 }
1468 
1469 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1470 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1471 {
1472 	struct sctp_chunk *sack;
1473 	struct timer_list *timer;
1474 
1475 	if (asoc->rwnd_over) {
1476 		if (asoc->rwnd_over >= len) {
1477 			asoc->rwnd_over -= len;
1478 		} else {
1479 			asoc->rwnd += (len - asoc->rwnd_over);
1480 			asoc->rwnd_over = 0;
1481 		}
1482 	} else {
1483 		asoc->rwnd += len;
1484 	}
1485 
1486 	/* If we had window pressure, start recovering it
1487 	 * once our rwnd had reached the accumulated pressure
1488 	 * threshold.  The idea is to recover slowly, but up
1489 	 * to the initial advertised window.
1490 	 */
1491 	if (asoc->rwnd_press) {
1492 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1493 		asoc->rwnd += change;
1494 		asoc->rwnd_press -= change;
1495 	}
1496 
1497 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1498 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1499 		 asoc->a_rwnd);
1500 
1501 	/* Send a window update SACK if the rwnd has increased by at least the
1502 	 * minimum of the association's PMTU and half of the receive buffer.
1503 	 * The algorithm used is similar to the one described in
1504 	 * Section 4.2.3.3 of RFC 1122.
1505 	 */
1506 	if (sctp_peer_needs_update(asoc)) {
1507 		asoc->a_rwnd = asoc->rwnd;
1508 
1509 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1510 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1511 			 asoc->a_rwnd);
1512 
1513 		sack = sctp_make_sack(asoc);
1514 		if (!sack)
1515 			return;
1516 
1517 		asoc->peer.sack_needed = 0;
1518 
1519 		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1520 
1521 		/* Stop the SACK timer.  */
1522 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1523 		if (del_timer(timer))
1524 			sctp_association_put(asoc);
1525 	}
1526 }
1527 
1528 /* Decrease asoc's rwnd by len. */
1529 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1530 {
1531 	int rx_count;
1532 	int over = 0;
1533 
1534 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1535 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1536 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1537 			 asoc->rwnd, asoc->rwnd_over);
1538 
1539 	if (asoc->ep->rcvbuf_policy)
1540 		rx_count = atomic_read(&asoc->rmem_alloc);
1541 	else
1542 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1543 
1544 	/* If we've reached or overflowed our receive buffer, announce
1545 	 * a 0 rwnd if rwnd would still be positive.  Store the
1546 	 * the potential pressure overflow so that the window can be restored
1547 	 * back to original value.
1548 	 */
1549 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1550 		over = 1;
1551 
1552 	if (asoc->rwnd >= len) {
1553 		asoc->rwnd -= len;
1554 		if (over) {
1555 			asoc->rwnd_press += asoc->rwnd;
1556 			asoc->rwnd = 0;
1557 		}
1558 	} else {
1559 		asoc->rwnd_over += len - asoc->rwnd;
1560 		asoc->rwnd = 0;
1561 	}
1562 
1563 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1564 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1565 		 asoc->rwnd_press);
1566 }
1567 
1568 /* Build the bind address list for the association based on info from the
1569  * local endpoint and the remote peer.
1570  */
1571 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1572 				     enum sctp_scope scope, gfp_t gfp)
1573 {
1574 	int flags;
1575 
1576 	/* Use scoping rules to determine the subset of addresses from
1577 	 * the endpoint.
1578 	 */
1579 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1580 	if (asoc->peer.ipv4_address)
1581 		flags |= SCTP_ADDR4_PEERSUPP;
1582 	if (asoc->peer.ipv6_address)
1583 		flags |= SCTP_ADDR6_PEERSUPP;
1584 
1585 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1586 				   &asoc->base.bind_addr,
1587 				   &asoc->ep->base.bind_addr,
1588 				   scope, gfp, flags);
1589 }
1590 
1591 /* Build the association's bind address list from the cookie.  */
1592 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1593 					 struct sctp_cookie *cookie,
1594 					 gfp_t gfp)
1595 {
1596 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1597 	int var_size3 = cookie->raw_addr_list_len;
1598 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1599 
1600 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1601 				      asoc->ep->base.bind_addr.port, gfp);
1602 }
1603 
1604 /* Lookup laddr in the bind address list of an association. */
1605 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1606 			    const union sctp_addr *laddr)
1607 {
1608 	int found = 0;
1609 
1610 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1611 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1612 				 sctp_sk(asoc->base.sk)))
1613 		found = 1;
1614 
1615 	return found;
1616 }
1617 
1618 /* Set an association id for a given association */
1619 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1620 {
1621 	bool preload = gfpflags_allow_blocking(gfp);
1622 	int ret;
1623 
1624 	/* If the id is already assigned, keep it. */
1625 	if (asoc->assoc_id)
1626 		return 0;
1627 
1628 	if (preload)
1629 		idr_preload(gfp);
1630 	spin_lock_bh(&sctp_assocs_id_lock);
1631 	/* 0 is not a valid assoc_id, must be >= 1 */
1632 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1633 	spin_unlock_bh(&sctp_assocs_id_lock);
1634 	if (preload)
1635 		idr_preload_end();
1636 	if (ret < 0)
1637 		return ret;
1638 
1639 	asoc->assoc_id = (sctp_assoc_t)ret;
1640 	return 0;
1641 }
1642 
1643 /* Free the ASCONF queue */
1644 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1645 {
1646 	struct sctp_chunk *asconf;
1647 	struct sctp_chunk *tmp;
1648 
1649 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1650 		list_del_init(&asconf->list);
1651 		sctp_chunk_free(asconf);
1652 	}
1653 }
1654 
1655 /* Free asconf_ack cache */
1656 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1657 {
1658 	struct sctp_chunk *ack;
1659 	struct sctp_chunk *tmp;
1660 
1661 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1662 				transmitted_list) {
1663 		list_del_init(&ack->transmitted_list);
1664 		sctp_chunk_free(ack);
1665 	}
1666 }
1667 
1668 /* Clean up the ASCONF_ACK queue */
1669 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1670 {
1671 	struct sctp_chunk *ack;
1672 	struct sctp_chunk *tmp;
1673 
1674 	/* We can remove all the entries from the queue up to
1675 	 * the "Peer-Sequence-Number".
1676 	 */
1677 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1678 				transmitted_list) {
1679 		if (ack->subh.addip_hdr->serial ==
1680 				htonl(asoc->peer.addip_serial))
1681 			break;
1682 
1683 		list_del_init(&ack->transmitted_list);
1684 		sctp_chunk_free(ack);
1685 	}
1686 }
1687 
1688 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1689 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1690 					const struct sctp_association *asoc,
1691 					__be32 serial)
1692 {
1693 	struct sctp_chunk *ack;
1694 
1695 	/* Walk through the list of cached ASCONF-ACKs and find the
1696 	 * ack chunk whose serial number matches that of the request.
1697 	 */
1698 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1699 		if (sctp_chunk_pending(ack))
1700 			continue;
1701 		if (ack->subh.addip_hdr->serial == serial) {
1702 			sctp_chunk_hold(ack);
1703 			return ack;
1704 		}
1705 	}
1706 
1707 	return NULL;
1708 }
1709 
1710 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1711 {
1712 	/* Free any cached ASCONF_ACK chunk. */
1713 	sctp_assoc_free_asconf_acks(asoc);
1714 
1715 	/* Free the ASCONF queue. */
1716 	sctp_assoc_free_asconf_queue(asoc);
1717 
1718 	/* Free any cached ASCONF chunk. */
1719 	if (asoc->addip_last_asconf)
1720 		sctp_chunk_free(asoc->addip_last_asconf);
1721 }
1722