1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@us.ibm.com> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com> 41 * Kevin Gao <kevin.gao@intel.com> 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/types.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 51 #include <linux/slab.h> 52 #include <linux/in.h> 53 #include <net/ipv6.h> 54 #include <net/sctp/sctp.h> 55 #include <net/sctp/sm.h> 56 57 /* Forward declarations for internal functions. */ 58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 67 const struct sctp_endpoint *ep, 68 const struct sock *sk, 69 sctp_scope_t scope, 70 gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 int i; 75 sctp_paramhdr_t *p; 76 int err; 77 78 /* Retrieve the SCTP per socket area. */ 79 sp = sctp_sk((struct sock *)sk); 80 81 /* Discarding const is appropriate here. */ 82 asoc->ep = (struct sctp_endpoint *)ep; 83 asoc->base.sk = (struct sock *)sk; 84 85 sctp_endpoint_hold(asoc->ep); 86 sock_hold(asoc->base.sk); 87 88 /* Initialize the common base substructure. */ 89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 90 91 /* Initialize the object handling fields. */ 92 atomic_set(&asoc->base.refcnt, 1); 93 94 /* Initialize the bind addr area. */ 95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 96 97 asoc->state = SCTP_STATE_CLOSED; 98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 99 asoc->user_frag = sp->user_frag; 100 101 /* Set the association max_retrans and RTO values from the 102 * socket values. 103 */ 104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 105 asoc->pf_retrans = net->sctp.pf_retrans; 106 107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 110 111 /* Initialize the association's heartbeat interval based on the 112 * sock configured value. 113 */ 114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 115 116 /* Initialize path max retrans value. */ 117 asoc->pathmaxrxt = sp->pathmaxrxt; 118 119 /* Initialize default path MTU. */ 120 asoc->pathmtu = sp->pathmtu; 121 122 /* Set association default SACK delay */ 123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 124 asoc->sackfreq = sp->sackfreq; 125 126 /* Set the association default flags controlling 127 * Heartbeat, SACK delay, and Path MTU Discovery. 128 */ 129 asoc->param_flags = sp->param_flags; 130 131 /* Initialize the maximum number of new data packets that can be sent 132 * in a burst. 133 */ 134 asoc->max_burst = sp->max_burst; 135 136 /* initialize association timers */ 137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 140 141 /* sctpimpguide Section 2.12.2 142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 143 * recommended value of 5 times 'RTO.Max'. 144 */ 145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 146 = 5 * asoc->rto_max; 147 148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 150 151 /* Initializes the timers */ 152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 153 setup_timer(&asoc->timers[i], sctp_timer_events[i], 154 (unsigned long)asoc); 155 156 /* Pull default initialization values from the sock options. 157 * Note: This assumes that the values have already been 158 * validated in the sock. 159 */ 160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 163 164 asoc->max_init_timeo = 165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 166 167 /* Set the local window size for receive. 168 * This is also the rcvbuf space per association. 169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 170 * 1500 bytes in one SCTP packet. 171 */ 172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 174 else 175 asoc->rwnd = sk->sk_rcvbuf/2; 176 177 asoc->a_rwnd = asoc->rwnd; 178 179 /* Use my own max window until I learn something better. */ 180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 181 182 /* Initialize the receive memory counter */ 183 atomic_set(&asoc->rmem_alloc, 0); 184 185 init_waitqueue_head(&asoc->wait); 186 187 asoc->c.my_vtag = sctp_generate_tag(ep); 188 asoc->c.my_port = ep->base.bind_addr.port; 189 190 asoc->c.initial_tsn = sctp_generate_tsn(ep); 191 192 asoc->next_tsn = asoc->c.initial_tsn; 193 194 asoc->ctsn_ack_point = asoc->next_tsn - 1; 195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 196 asoc->highest_sacked = asoc->ctsn_ack_point; 197 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 198 199 /* ADDIP Section 4.1 Asconf Chunk Procedures 200 * 201 * When an endpoint has an ASCONF signaled change to be sent to the 202 * remote endpoint it should do the following: 203 * ... 204 * A2) a serial number should be assigned to the chunk. The serial 205 * number SHOULD be a monotonically increasing number. The serial 206 * numbers SHOULD be initialized at the start of the 207 * association to the same value as the initial TSN. 208 */ 209 asoc->addip_serial = asoc->c.initial_tsn; 210 211 INIT_LIST_HEAD(&asoc->addip_chunk_list); 212 INIT_LIST_HEAD(&asoc->asconf_ack_list); 213 214 /* Make an empty list of remote transport addresses. */ 215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 216 217 /* RFC 2960 5.1 Normal Establishment of an Association 218 * 219 * After the reception of the first data chunk in an 220 * association the endpoint must immediately respond with a 221 * sack to acknowledge the data chunk. Subsequent 222 * acknowledgements should be done as described in Section 223 * 6.2. 224 * 225 * [We implement this by telling a new association that it 226 * already received one packet.] 227 */ 228 asoc->peer.sack_needed = 1; 229 asoc->peer.sack_generation = 1; 230 231 /* Assume that the peer will tell us if he recognizes ASCONF 232 * as part of INIT exchange. 233 * The sctp_addip_noauth option is there for backward compatibility 234 * and will revert old behavior. 235 */ 236 if (net->sctp.addip_noauth) 237 asoc->peer.asconf_capable = 1; 238 239 /* Create an input queue. */ 240 sctp_inq_init(&asoc->base.inqueue); 241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 242 243 /* Create an output queue. */ 244 sctp_outq_init(asoc, &asoc->outqueue); 245 246 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 247 goto fail_init; 248 249 /* Assume that peer would support both address types unless we are 250 * told otherwise. 251 */ 252 asoc->peer.ipv4_address = 1; 253 if (asoc->base.sk->sk_family == PF_INET6) 254 asoc->peer.ipv6_address = 1; 255 INIT_LIST_HEAD(&asoc->asocs); 256 257 asoc->default_stream = sp->default_stream; 258 asoc->default_ppid = sp->default_ppid; 259 asoc->default_flags = sp->default_flags; 260 asoc->default_context = sp->default_context; 261 asoc->default_timetolive = sp->default_timetolive; 262 asoc->default_rcv_context = sp->default_rcv_context; 263 264 /* AUTH related initializations */ 265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 267 if (err) 268 goto fail_init; 269 270 asoc->active_key_id = ep->active_key_id; 271 272 /* Save the hmacs and chunks list into this association */ 273 if (ep->auth_hmacs_list) 274 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 275 ntohs(ep->auth_hmacs_list->param_hdr.length)); 276 if (ep->auth_chunk_list) 277 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 278 ntohs(ep->auth_chunk_list->param_hdr.length)); 279 280 /* Get the AUTH random number for this association */ 281 p = (sctp_paramhdr_t *)asoc->c.auth_random; 282 p->type = SCTP_PARAM_RANDOM; 283 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 284 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 285 286 return asoc; 287 288 fail_init: 289 sock_put(asoc->base.sk); 290 sctp_endpoint_put(asoc->ep); 291 return NULL; 292 } 293 294 /* Allocate and initialize a new association */ 295 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 296 const struct sock *sk, 297 sctp_scope_t scope, 298 gfp_t gfp) 299 { 300 struct sctp_association *asoc; 301 302 asoc = kzalloc(sizeof(*asoc), gfp); 303 if (!asoc) 304 goto fail; 305 306 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 307 goto fail_init; 308 309 SCTP_DBG_OBJCNT_INC(assoc); 310 311 pr_debug("Created asoc %p\n", asoc); 312 313 return asoc; 314 315 fail_init: 316 kfree(asoc); 317 fail: 318 return NULL; 319 } 320 321 /* Free this association if possible. There may still be users, so 322 * the actual deallocation may be delayed. 323 */ 324 void sctp_association_free(struct sctp_association *asoc) 325 { 326 struct sock *sk = asoc->base.sk; 327 struct sctp_transport *transport; 328 struct list_head *pos, *temp; 329 int i; 330 331 /* Only real associations count against the endpoint, so 332 * don't bother for if this is a temporary association. 333 */ 334 if (!list_empty(&asoc->asocs)) { 335 list_del(&asoc->asocs); 336 337 /* Decrement the backlog value for a TCP-style listening 338 * socket. 339 */ 340 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 341 sk->sk_ack_backlog--; 342 } 343 344 /* Mark as dead, so other users can know this structure is 345 * going away. 346 */ 347 asoc->base.dead = true; 348 349 /* Dispose of any data lying around in the outqueue. */ 350 sctp_outq_free(&asoc->outqueue); 351 352 /* Dispose of any pending messages for the upper layer. */ 353 sctp_ulpq_free(&asoc->ulpq); 354 355 /* Dispose of any pending chunks on the inqueue. */ 356 sctp_inq_free(&asoc->base.inqueue); 357 358 sctp_tsnmap_free(&asoc->peer.tsn_map); 359 360 /* Free ssnmap storage. */ 361 sctp_ssnmap_free(asoc->ssnmap); 362 363 /* Clean up the bound address list. */ 364 sctp_bind_addr_free(&asoc->base.bind_addr); 365 366 /* Do we need to go through all of our timers and 367 * delete them? To be safe we will try to delete all, but we 368 * should be able to go through and make a guess based 369 * on our state. 370 */ 371 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 372 if (del_timer(&asoc->timers[i])) 373 sctp_association_put(asoc); 374 } 375 376 /* Free peer's cached cookie. */ 377 kfree(asoc->peer.cookie); 378 kfree(asoc->peer.peer_random); 379 kfree(asoc->peer.peer_chunks); 380 kfree(asoc->peer.peer_hmacs); 381 382 /* Release the transport structures. */ 383 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 384 transport = list_entry(pos, struct sctp_transport, transports); 385 list_del_rcu(pos); 386 sctp_transport_free(transport); 387 } 388 389 asoc->peer.transport_count = 0; 390 391 sctp_asconf_queue_teardown(asoc); 392 393 /* Free pending address space being deleted */ 394 if (asoc->asconf_addr_del_pending != NULL) 395 kfree(asoc->asconf_addr_del_pending); 396 397 /* AUTH - Free the endpoint shared keys */ 398 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 399 400 /* AUTH - Free the association shared key */ 401 sctp_auth_key_put(asoc->asoc_shared_key); 402 403 sctp_association_put(asoc); 404 } 405 406 /* Cleanup and free up an association. */ 407 static void sctp_association_destroy(struct sctp_association *asoc) 408 { 409 if (unlikely(!asoc->base.dead)) { 410 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 411 return; 412 } 413 414 sctp_endpoint_put(asoc->ep); 415 sock_put(asoc->base.sk); 416 417 if (asoc->assoc_id != 0) { 418 spin_lock_bh(&sctp_assocs_id_lock); 419 idr_remove(&sctp_assocs_id, asoc->assoc_id); 420 spin_unlock_bh(&sctp_assocs_id_lock); 421 } 422 423 WARN_ON(atomic_read(&asoc->rmem_alloc)); 424 425 kfree(asoc); 426 SCTP_DBG_OBJCNT_DEC(assoc); 427 } 428 429 /* Change the primary destination address for the peer. */ 430 void sctp_assoc_set_primary(struct sctp_association *asoc, 431 struct sctp_transport *transport) 432 { 433 int changeover = 0; 434 435 /* it's a changeover only if we already have a primary path 436 * that we are changing 437 */ 438 if (asoc->peer.primary_path != NULL && 439 asoc->peer.primary_path != transport) 440 changeover = 1 ; 441 442 asoc->peer.primary_path = transport; 443 444 /* Set a default msg_name for events. */ 445 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 446 sizeof(union sctp_addr)); 447 448 /* If the primary path is changing, assume that the 449 * user wants to use this new path. 450 */ 451 if ((transport->state == SCTP_ACTIVE) || 452 (transport->state == SCTP_UNKNOWN)) 453 asoc->peer.active_path = transport; 454 455 /* 456 * SFR-CACC algorithm: 457 * Upon the receipt of a request to change the primary 458 * destination address, on the data structure for the new 459 * primary destination, the sender MUST do the following: 460 * 461 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 462 * to this destination address earlier. The sender MUST set 463 * CYCLING_CHANGEOVER to indicate that this switch is a 464 * double switch to the same destination address. 465 * 466 * Really, only bother is we have data queued or outstanding on 467 * the association. 468 */ 469 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 470 return; 471 472 if (transport->cacc.changeover_active) 473 transport->cacc.cycling_changeover = changeover; 474 475 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 476 * a changeover has occurred. 477 */ 478 transport->cacc.changeover_active = changeover; 479 480 /* 3) The sender MUST store the next TSN to be sent in 481 * next_tsn_at_change. 482 */ 483 transport->cacc.next_tsn_at_change = asoc->next_tsn; 484 } 485 486 /* Remove a transport from an association. */ 487 void sctp_assoc_rm_peer(struct sctp_association *asoc, 488 struct sctp_transport *peer) 489 { 490 struct list_head *pos; 491 struct sctp_transport *transport; 492 493 pr_debug("%s: association:%p addr:%pISpc\n", 494 __func__, asoc, &peer->ipaddr.sa); 495 496 /* If we are to remove the current retran_path, update it 497 * to the next peer before removing this peer from the list. 498 */ 499 if (asoc->peer.retran_path == peer) 500 sctp_assoc_update_retran_path(asoc); 501 502 /* Remove this peer from the list. */ 503 list_del_rcu(&peer->transports); 504 505 /* Get the first transport of asoc. */ 506 pos = asoc->peer.transport_addr_list.next; 507 transport = list_entry(pos, struct sctp_transport, transports); 508 509 /* Update any entries that match the peer to be deleted. */ 510 if (asoc->peer.primary_path == peer) 511 sctp_assoc_set_primary(asoc, transport); 512 if (asoc->peer.active_path == peer) 513 asoc->peer.active_path = transport; 514 if (asoc->peer.retran_path == peer) 515 asoc->peer.retran_path = transport; 516 if (asoc->peer.last_data_from == peer) 517 asoc->peer.last_data_from = transport; 518 519 /* If we remove the transport an INIT was last sent to, set it to 520 * NULL. Combined with the update of the retran path above, this 521 * will cause the next INIT to be sent to the next available 522 * transport, maintaining the cycle. 523 */ 524 if (asoc->init_last_sent_to == peer) 525 asoc->init_last_sent_to = NULL; 526 527 /* If we remove the transport an SHUTDOWN was last sent to, set it 528 * to NULL. Combined with the update of the retran path above, this 529 * will cause the next SHUTDOWN to be sent to the next available 530 * transport, maintaining the cycle. 531 */ 532 if (asoc->shutdown_last_sent_to == peer) 533 asoc->shutdown_last_sent_to = NULL; 534 535 /* If we remove the transport an ASCONF was last sent to, set it to 536 * NULL. 537 */ 538 if (asoc->addip_last_asconf && 539 asoc->addip_last_asconf->transport == peer) 540 asoc->addip_last_asconf->transport = NULL; 541 542 /* If we have something on the transmitted list, we have to 543 * save it off. The best place is the active path. 544 */ 545 if (!list_empty(&peer->transmitted)) { 546 struct sctp_transport *active = asoc->peer.active_path; 547 struct sctp_chunk *ch; 548 549 /* Reset the transport of each chunk on this list */ 550 list_for_each_entry(ch, &peer->transmitted, 551 transmitted_list) { 552 ch->transport = NULL; 553 ch->rtt_in_progress = 0; 554 } 555 556 list_splice_tail_init(&peer->transmitted, 557 &active->transmitted); 558 559 /* Start a T3 timer here in case it wasn't running so 560 * that these migrated packets have a chance to get 561 * retransmitted. 562 */ 563 if (!timer_pending(&active->T3_rtx_timer)) 564 if (!mod_timer(&active->T3_rtx_timer, 565 jiffies + active->rto)) 566 sctp_transport_hold(active); 567 } 568 569 asoc->peer.transport_count--; 570 571 sctp_transport_free(peer); 572 } 573 574 /* Add a transport address to an association. */ 575 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 576 const union sctp_addr *addr, 577 const gfp_t gfp, 578 const int peer_state) 579 { 580 struct net *net = sock_net(asoc->base.sk); 581 struct sctp_transport *peer; 582 struct sctp_sock *sp; 583 unsigned short port; 584 585 sp = sctp_sk(asoc->base.sk); 586 587 /* AF_INET and AF_INET6 share common port field. */ 588 port = ntohs(addr->v4.sin_port); 589 590 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 591 asoc, &addr->sa, peer_state); 592 593 /* Set the port if it has not been set yet. */ 594 if (0 == asoc->peer.port) 595 asoc->peer.port = port; 596 597 /* Check to see if this is a duplicate. */ 598 peer = sctp_assoc_lookup_paddr(asoc, addr); 599 if (peer) { 600 /* An UNKNOWN state is only set on transports added by 601 * user in sctp_connectx() call. Such transports should be 602 * considered CONFIRMED per RFC 4960, Section 5.4. 603 */ 604 if (peer->state == SCTP_UNKNOWN) { 605 peer->state = SCTP_ACTIVE; 606 } 607 return peer; 608 } 609 610 peer = sctp_transport_new(net, addr, gfp); 611 if (!peer) 612 return NULL; 613 614 sctp_transport_set_owner(peer, asoc); 615 616 /* Initialize the peer's heartbeat interval based on the 617 * association configured value. 618 */ 619 peer->hbinterval = asoc->hbinterval; 620 621 /* Set the path max_retrans. */ 622 peer->pathmaxrxt = asoc->pathmaxrxt; 623 624 /* And the partial failure retrans threshold */ 625 peer->pf_retrans = asoc->pf_retrans; 626 627 /* Initialize the peer's SACK delay timeout based on the 628 * association configured value. 629 */ 630 peer->sackdelay = asoc->sackdelay; 631 peer->sackfreq = asoc->sackfreq; 632 633 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 634 * based on association setting. 635 */ 636 peer->param_flags = asoc->param_flags; 637 638 sctp_transport_route(peer, NULL, sp); 639 640 /* Initialize the pmtu of the transport. */ 641 if (peer->param_flags & SPP_PMTUD_DISABLE) { 642 if (asoc->pathmtu) 643 peer->pathmtu = asoc->pathmtu; 644 else 645 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 646 } 647 648 /* If this is the first transport addr on this association, 649 * initialize the association PMTU to the peer's PMTU. 650 * If not and the current association PMTU is higher than the new 651 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 652 */ 653 if (asoc->pathmtu) 654 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 655 else 656 asoc->pathmtu = peer->pathmtu; 657 658 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, 659 asoc->pathmtu); 660 661 peer->pmtu_pending = 0; 662 663 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 664 665 /* The asoc->peer.port might not be meaningful yet, but 666 * initialize the packet structure anyway. 667 */ 668 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 669 asoc->peer.port); 670 671 /* 7.2.1 Slow-Start 672 * 673 * o The initial cwnd before DATA transmission or after a sufficiently 674 * long idle period MUST be set to 675 * min(4*MTU, max(2*MTU, 4380 bytes)) 676 * 677 * o The initial value of ssthresh MAY be arbitrarily high 678 * (for example, implementations MAY use the size of the 679 * receiver advertised window). 680 */ 681 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 682 683 /* At this point, we may not have the receiver's advertised window, 684 * so initialize ssthresh to the default value and it will be set 685 * later when we process the INIT. 686 */ 687 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 688 689 peer->partial_bytes_acked = 0; 690 peer->flight_size = 0; 691 peer->burst_limited = 0; 692 693 /* Set the transport's RTO.initial value */ 694 peer->rto = asoc->rto_initial; 695 sctp_max_rto(asoc, peer); 696 697 /* Set the peer's active state. */ 698 peer->state = peer_state; 699 700 /* Attach the remote transport to our asoc. */ 701 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 702 asoc->peer.transport_count++; 703 704 /* If we do not yet have a primary path, set one. */ 705 if (!asoc->peer.primary_path) { 706 sctp_assoc_set_primary(asoc, peer); 707 asoc->peer.retran_path = peer; 708 } 709 710 if (asoc->peer.active_path == asoc->peer.retran_path && 711 peer->state != SCTP_UNCONFIRMED) { 712 asoc->peer.retran_path = peer; 713 } 714 715 return peer; 716 } 717 718 /* Delete a transport address from an association. */ 719 void sctp_assoc_del_peer(struct sctp_association *asoc, 720 const union sctp_addr *addr) 721 { 722 struct list_head *pos; 723 struct list_head *temp; 724 struct sctp_transport *transport; 725 726 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 727 transport = list_entry(pos, struct sctp_transport, transports); 728 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 729 /* Do book keeping for removing the peer and free it. */ 730 sctp_assoc_rm_peer(asoc, transport); 731 break; 732 } 733 } 734 } 735 736 /* Lookup a transport by address. */ 737 struct sctp_transport *sctp_assoc_lookup_paddr( 738 const struct sctp_association *asoc, 739 const union sctp_addr *address) 740 { 741 struct sctp_transport *t; 742 743 /* Cycle through all transports searching for a peer address. */ 744 745 list_for_each_entry(t, &asoc->peer.transport_addr_list, 746 transports) { 747 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 748 return t; 749 } 750 751 return NULL; 752 } 753 754 /* Remove all transports except a give one */ 755 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 756 struct sctp_transport *primary) 757 { 758 struct sctp_transport *temp; 759 struct sctp_transport *t; 760 761 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 762 transports) { 763 /* if the current transport is not the primary one, delete it */ 764 if (t != primary) 765 sctp_assoc_rm_peer(asoc, t); 766 } 767 } 768 769 /* Engage in transport control operations. 770 * Mark the transport up or down and send a notification to the user. 771 * Select and update the new active and retran paths. 772 */ 773 void sctp_assoc_control_transport(struct sctp_association *asoc, 774 struct sctp_transport *transport, 775 sctp_transport_cmd_t command, 776 sctp_sn_error_t error) 777 { 778 struct sctp_ulpevent *event; 779 struct sockaddr_storage addr; 780 int spc_state = 0; 781 bool ulp_notify = true; 782 783 /* Record the transition on the transport. */ 784 switch (command) { 785 case SCTP_TRANSPORT_UP: 786 /* If we are moving from UNCONFIRMED state due 787 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 788 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 789 */ 790 if (SCTP_UNCONFIRMED == transport->state && 791 SCTP_HEARTBEAT_SUCCESS == error) 792 spc_state = SCTP_ADDR_CONFIRMED; 793 else 794 spc_state = SCTP_ADDR_AVAILABLE; 795 /* Don't inform ULP about transition from PF to 796 * active state and set cwnd to 1 MTU, see SCTP 797 * Quick failover draft section 5.1, point 5 798 */ 799 if (transport->state == SCTP_PF) { 800 ulp_notify = false; 801 transport->cwnd = asoc->pathmtu; 802 } 803 transport->state = SCTP_ACTIVE; 804 break; 805 806 case SCTP_TRANSPORT_DOWN: 807 /* If the transport was never confirmed, do not transition it 808 * to inactive state. Also, release the cached route since 809 * there may be a better route next time. 810 */ 811 if (transport->state != SCTP_UNCONFIRMED) 812 transport->state = SCTP_INACTIVE; 813 else { 814 dst_release(transport->dst); 815 transport->dst = NULL; 816 ulp_notify = false; 817 } 818 819 spc_state = SCTP_ADDR_UNREACHABLE; 820 break; 821 822 case SCTP_TRANSPORT_PF: 823 transport->state = SCTP_PF; 824 ulp_notify = false; 825 break; 826 827 default: 828 return; 829 } 830 831 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 832 * to the user. 833 */ 834 if (ulp_notify) { 835 memset(&addr, 0, sizeof(struct sockaddr_storage)); 836 memcpy(&addr, &transport->ipaddr, 837 transport->af_specific->sockaddr_len); 838 839 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 840 0, spc_state, error, GFP_ATOMIC); 841 if (event) 842 sctp_ulpq_tail_event(&asoc->ulpq, event); 843 } 844 845 /* Select new active and retran paths. */ 846 sctp_select_active_and_retran_path(asoc); 847 } 848 849 /* Hold a reference to an association. */ 850 void sctp_association_hold(struct sctp_association *asoc) 851 { 852 atomic_inc(&asoc->base.refcnt); 853 } 854 855 /* Release a reference to an association and cleanup 856 * if there are no more references. 857 */ 858 void sctp_association_put(struct sctp_association *asoc) 859 { 860 if (atomic_dec_and_test(&asoc->base.refcnt)) 861 sctp_association_destroy(asoc); 862 } 863 864 /* Allocate the next TSN, Transmission Sequence Number, for the given 865 * association. 866 */ 867 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 868 { 869 /* From Section 1.6 Serial Number Arithmetic: 870 * Transmission Sequence Numbers wrap around when they reach 871 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 872 * after transmitting TSN = 2*32 - 1 is TSN = 0. 873 */ 874 __u32 retval = asoc->next_tsn; 875 asoc->next_tsn++; 876 asoc->unack_data++; 877 878 return retval; 879 } 880 881 /* Compare two addresses to see if they match. Wildcard addresses 882 * only match themselves. 883 */ 884 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 885 const union sctp_addr *ss2) 886 { 887 struct sctp_af *af; 888 889 af = sctp_get_af_specific(ss1->sa.sa_family); 890 if (unlikely(!af)) 891 return 0; 892 893 return af->cmp_addr(ss1, ss2); 894 } 895 896 /* Return an ecne chunk to get prepended to a packet. 897 * Note: We are sly and return a shared, prealloced chunk. FIXME: 898 * No we don't, but we could/should. 899 */ 900 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 901 { 902 if (!asoc->need_ecne) 903 return NULL; 904 905 /* Send ECNE if needed. 906 * Not being able to allocate a chunk here is not deadly. 907 */ 908 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 909 } 910 911 /* 912 * Find which transport this TSN was sent on. 913 */ 914 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 915 __u32 tsn) 916 { 917 struct sctp_transport *active; 918 struct sctp_transport *match; 919 struct sctp_transport *transport; 920 struct sctp_chunk *chunk; 921 __be32 key = htonl(tsn); 922 923 match = NULL; 924 925 /* 926 * FIXME: In general, find a more efficient data structure for 927 * searching. 928 */ 929 930 /* 931 * The general strategy is to search each transport's transmitted 932 * list. Return which transport this TSN lives on. 933 * 934 * Let's be hopeful and check the active_path first. 935 * Another optimization would be to know if there is only one 936 * outbound path and not have to look for the TSN at all. 937 * 938 */ 939 940 active = asoc->peer.active_path; 941 942 list_for_each_entry(chunk, &active->transmitted, 943 transmitted_list) { 944 945 if (key == chunk->subh.data_hdr->tsn) { 946 match = active; 947 goto out; 948 } 949 } 950 951 /* If not found, go search all the other transports. */ 952 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 953 transports) { 954 955 if (transport == active) 956 continue; 957 list_for_each_entry(chunk, &transport->transmitted, 958 transmitted_list) { 959 if (key == chunk->subh.data_hdr->tsn) { 960 match = transport; 961 goto out; 962 } 963 } 964 } 965 out: 966 return match; 967 } 968 969 /* Is this the association we are looking for? */ 970 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 971 struct net *net, 972 const union sctp_addr *laddr, 973 const union sctp_addr *paddr) 974 { 975 struct sctp_transport *transport; 976 977 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 978 (htons(asoc->peer.port) == paddr->v4.sin_port) && 979 net_eq(sock_net(asoc->base.sk), net)) { 980 transport = sctp_assoc_lookup_paddr(asoc, paddr); 981 if (!transport) 982 goto out; 983 984 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 985 sctp_sk(asoc->base.sk))) 986 goto out; 987 } 988 transport = NULL; 989 990 out: 991 return transport; 992 } 993 994 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 995 static void sctp_assoc_bh_rcv(struct work_struct *work) 996 { 997 struct sctp_association *asoc = 998 container_of(work, struct sctp_association, 999 base.inqueue.immediate); 1000 struct net *net = sock_net(asoc->base.sk); 1001 struct sctp_endpoint *ep; 1002 struct sctp_chunk *chunk; 1003 struct sctp_inq *inqueue; 1004 int state; 1005 sctp_subtype_t subtype; 1006 int error = 0; 1007 1008 /* The association should be held so we should be safe. */ 1009 ep = asoc->ep; 1010 1011 inqueue = &asoc->base.inqueue; 1012 sctp_association_hold(asoc); 1013 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1014 state = asoc->state; 1015 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1016 1017 /* SCTP-AUTH, Section 6.3: 1018 * The receiver has a list of chunk types which it expects 1019 * to be received only after an AUTH-chunk. This list has 1020 * been sent to the peer during the association setup. It 1021 * MUST silently discard these chunks if they are not placed 1022 * after an AUTH chunk in the packet. 1023 */ 1024 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1025 continue; 1026 1027 /* Remember where the last DATA chunk came from so we 1028 * know where to send the SACK. 1029 */ 1030 if (sctp_chunk_is_data(chunk)) 1031 asoc->peer.last_data_from = chunk->transport; 1032 else { 1033 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1034 asoc->stats.ictrlchunks++; 1035 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1036 asoc->stats.isacks++; 1037 } 1038 1039 if (chunk->transport) 1040 chunk->transport->last_time_heard = ktime_get(); 1041 1042 /* Run through the state machine. */ 1043 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1044 state, ep, asoc, chunk, GFP_ATOMIC); 1045 1046 /* Check to see if the association is freed in response to 1047 * the incoming chunk. If so, get out of the while loop. 1048 */ 1049 if (asoc->base.dead) 1050 break; 1051 1052 /* If there is an error on chunk, discard this packet. */ 1053 if (error && chunk) 1054 chunk->pdiscard = 1; 1055 } 1056 sctp_association_put(asoc); 1057 } 1058 1059 /* This routine moves an association from its old sk to a new sk. */ 1060 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1061 { 1062 struct sctp_sock *newsp = sctp_sk(newsk); 1063 struct sock *oldsk = assoc->base.sk; 1064 1065 /* Delete the association from the old endpoint's list of 1066 * associations. 1067 */ 1068 list_del_init(&assoc->asocs); 1069 1070 /* Decrement the backlog value for a TCP-style socket. */ 1071 if (sctp_style(oldsk, TCP)) 1072 oldsk->sk_ack_backlog--; 1073 1074 /* Release references to the old endpoint and the sock. */ 1075 sctp_endpoint_put(assoc->ep); 1076 sock_put(assoc->base.sk); 1077 1078 /* Get a reference to the new endpoint. */ 1079 assoc->ep = newsp->ep; 1080 sctp_endpoint_hold(assoc->ep); 1081 1082 /* Get a reference to the new sock. */ 1083 assoc->base.sk = newsk; 1084 sock_hold(assoc->base.sk); 1085 1086 /* Add the association to the new endpoint's list of associations. */ 1087 sctp_endpoint_add_asoc(newsp->ep, assoc); 1088 } 1089 1090 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1091 void sctp_assoc_update(struct sctp_association *asoc, 1092 struct sctp_association *new) 1093 { 1094 struct sctp_transport *trans; 1095 struct list_head *pos, *temp; 1096 1097 /* Copy in new parameters of peer. */ 1098 asoc->c = new->c; 1099 asoc->peer.rwnd = new->peer.rwnd; 1100 asoc->peer.sack_needed = new->peer.sack_needed; 1101 asoc->peer.auth_capable = new->peer.auth_capable; 1102 asoc->peer.i = new->peer.i; 1103 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1104 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1105 1106 /* Remove any peer addresses not present in the new association. */ 1107 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1108 trans = list_entry(pos, struct sctp_transport, transports); 1109 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1110 sctp_assoc_rm_peer(asoc, trans); 1111 continue; 1112 } 1113 1114 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1115 sctp_transport_reset(trans); 1116 } 1117 1118 /* If the case is A (association restart), use 1119 * initial_tsn as next_tsn. If the case is B, use 1120 * current next_tsn in case data sent to peer 1121 * has been discarded and needs retransmission. 1122 */ 1123 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1124 asoc->next_tsn = new->next_tsn; 1125 asoc->ctsn_ack_point = new->ctsn_ack_point; 1126 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1127 1128 /* Reinitialize SSN for both local streams 1129 * and peer's streams. 1130 */ 1131 sctp_ssnmap_clear(asoc->ssnmap); 1132 1133 /* Flush the ULP reassembly and ordered queue. 1134 * Any data there will now be stale and will 1135 * cause problems. 1136 */ 1137 sctp_ulpq_flush(&asoc->ulpq); 1138 1139 /* reset the overall association error count so 1140 * that the restarted association doesn't get torn 1141 * down on the next retransmission timer. 1142 */ 1143 asoc->overall_error_count = 0; 1144 1145 } else { 1146 /* Add any peer addresses from the new association. */ 1147 list_for_each_entry(trans, &new->peer.transport_addr_list, 1148 transports) { 1149 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1150 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1151 GFP_ATOMIC, trans->state); 1152 } 1153 1154 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1155 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1156 if (!asoc->ssnmap) { 1157 /* Move the ssnmap. */ 1158 asoc->ssnmap = new->ssnmap; 1159 new->ssnmap = NULL; 1160 } 1161 1162 if (!asoc->assoc_id) { 1163 /* get a new association id since we don't have one 1164 * yet. 1165 */ 1166 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1167 } 1168 } 1169 1170 /* SCTP-AUTH: Save the peer parameters from the new associations 1171 * and also move the association shared keys over 1172 */ 1173 kfree(asoc->peer.peer_random); 1174 asoc->peer.peer_random = new->peer.peer_random; 1175 new->peer.peer_random = NULL; 1176 1177 kfree(asoc->peer.peer_chunks); 1178 asoc->peer.peer_chunks = new->peer.peer_chunks; 1179 new->peer.peer_chunks = NULL; 1180 1181 kfree(asoc->peer.peer_hmacs); 1182 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1183 new->peer.peer_hmacs = NULL; 1184 1185 sctp_auth_key_put(asoc->asoc_shared_key); 1186 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1187 } 1188 1189 /* Update the retran path for sending a retransmitted packet. 1190 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1191 * 1192 * When there is outbound data to send and the primary path 1193 * becomes inactive (e.g., due to failures), or where the 1194 * SCTP user explicitly requests to send data to an 1195 * inactive destination transport address, before reporting 1196 * an error to its ULP, the SCTP endpoint should try to send 1197 * the data to an alternate active destination transport 1198 * address if one exists. 1199 * 1200 * When retransmitting data that timed out, if the endpoint 1201 * is multihomed, it should consider each source-destination 1202 * address pair in its retransmission selection policy. 1203 * When retransmitting timed-out data, the endpoint should 1204 * attempt to pick the most divergent source-destination 1205 * pair from the original source-destination pair to which 1206 * the packet was transmitted. 1207 * 1208 * Note: Rules for picking the most divergent source-destination 1209 * pair are an implementation decision and are not specified 1210 * within this document. 1211 * 1212 * Our basic strategy is to round-robin transports in priorities 1213 * according to sctp_state_prio_map[] e.g., if no such 1214 * transport with state SCTP_ACTIVE exists, round-robin through 1215 * SCTP_UNKNOWN, etc. You get the picture. 1216 */ 1217 static const u8 sctp_trans_state_to_prio_map[] = { 1218 [SCTP_ACTIVE] = 3, /* best case */ 1219 [SCTP_UNKNOWN] = 2, 1220 [SCTP_PF] = 1, 1221 [SCTP_INACTIVE] = 0, /* worst case */ 1222 }; 1223 1224 static u8 sctp_trans_score(const struct sctp_transport *trans) 1225 { 1226 return sctp_trans_state_to_prio_map[trans->state]; 1227 } 1228 1229 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1230 struct sctp_transport *trans2) 1231 { 1232 if (trans1->error_count > trans2->error_count) { 1233 return trans2; 1234 } else if (trans1->error_count == trans2->error_count && 1235 ktime_after(trans2->last_time_heard, 1236 trans1->last_time_heard)) { 1237 return trans2; 1238 } else { 1239 return trans1; 1240 } 1241 } 1242 1243 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1244 struct sctp_transport *best) 1245 { 1246 u8 score_curr, score_best; 1247 1248 if (best == NULL || curr == best) 1249 return curr; 1250 1251 score_curr = sctp_trans_score(curr); 1252 score_best = sctp_trans_score(best); 1253 1254 /* First, try a score-based selection if both transport states 1255 * differ. If we're in a tie, lets try to make a more clever 1256 * decision here based on error counts and last time heard. 1257 */ 1258 if (score_curr > score_best) 1259 return curr; 1260 else if (score_curr == score_best) 1261 return sctp_trans_elect_tie(curr, best); 1262 else 1263 return best; 1264 } 1265 1266 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1267 { 1268 struct sctp_transport *trans = asoc->peer.retran_path; 1269 struct sctp_transport *trans_next = NULL; 1270 1271 /* We're done as we only have the one and only path. */ 1272 if (asoc->peer.transport_count == 1) 1273 return; 1274 /* If active_path and retran_path are the same and active, 1275 * then this is the only active path. Use it. 1276 */ 1277 if (asoc->peer.active_path == asoc->peer.retran_path && 1278 asoc->peer.active_path->state == SCTP_ACTIVE) 1279 return; 1280 1281 /* Iterate from retran_path's successor back to retran_path. */ 1282 for (trans = list_next_entry(trans, transports); 1; 1283 trans = list_next_entry(trans, transports)) { 1284 /* Manually skip the head element. */ 1285 if (&trans->transports == &asoc->peer.transport_addr_list) 1286 continue; 1287 if (trans->state == SCTP_UNCONFIRMED) 1288 continue; 1289 trans_next = sctp_trans_elect_best(trans, trans_next); 1290 /* Active is good enough for immediate return. */ 1291 if (trans_next->state == SCTP_ACTIVE) 1292 break; 1293 /* We've reached the end, time to update path. */ 1294 if (trans == asoc->peer.retran_path) 1295 break; 1296 } 1297 1298 asoc->peer.retran_path = trans_next; 1299 1300 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1301 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1302 } 1303 1304 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1305 { 1306 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1307 struct sctp_transport *trans_pf = NULL; 1308 1309 /* Look for the two most recently used active transports. */ 1310 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1311 transports) { 1312 /* Skip uninteresting transports. */ 1313 if (trans->state == SCTP_INACTIVE || 1314 trans->state == SCTP_UNCONFIRMED) 1315 continue; 1316 /* Keep track of the best PF transport from our 1317 * list in case we don't find an active one. 1318 */ 1319 if (trans->state == SCTP_PF) { 1320 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1321 continue; 1322 } 1323 /* For active transports, pick the most recent ones. */ 1324 if (trans_pri == NULL || 1325 ktime_after(trans->last_time_heard, 1326 trans_pri->last_time_heard)) { 1327 trans_sec = trans_pri; 1328 trans_pri = trans; 1329 } else if (trans_sec == NULL || 1330 ktime_after(trans->last_time_heard, 1331 trans_sec->last_time_heard)) { 1332 trans_sec = trans; 1333 } 1334 } 1335 1336 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1337 * 1338 * By default, an endpoint should always transmit to the primary 1339 * path, unless the SCTP user explicitly specifies the 1340 * destination transport address (and possibly source transport 1341 * address) to use. [If the primary is active but not most recent, 1342 * bump the most recently used transport.] 1343 */ 1344 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1345 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1346 asoc->peer.primary_path != trans_pri) { 1347 trans_sec = trans_pri; 1348 trans_pri = asoc->peer.primary_path; 1349 } 1350 1351 /* We did not find anything useful for a possible retransmission 1352 * path; either primary path that we found is the the same as 1353 * the current one, or we didn't generally find an active one. 1354 */ 1355 if (trans_sec == NULL) 1356 trans_sec = trans_pri; 1357 1358 /* If we failed to find a usable transport, just camp on the 1359 * active or pick a PF iff it's the better choice. 1360 */ 1361 if (trans_pri == NULL) { 1362 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1363 trans_sec = trans_pri; 1364 } 1365 1366 /* Set the active and retran transports. */ 1367 asoc->peer.active_path = trans_pri; 1368 asoc->peer.retran_path = trans_sec; 1369 } 1370 1371 struct sctp_transport * 1372 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1373 struct sctp_transport *last_sent_to) 1374 { 1375 /* If this is the first time packet is sent, use the active path, 1376 * else use the retran path. If the last packet was sent over the 1377 * retran path, update the retran path and use it. 1378 */ 1379 if (last_sent_to == NULL) { 1380 return asoc->peer.active_path; 1381 } else { 1382 if (last_sent_to == asoc->peer.retran_path) 1383 sctp_assoc_update_retran_path(asoc); 1384 1385 return asoc->peer.retran_path; 1386 } 1387 } 1388 1389 /* Update the association's pmtu and frag_point by going through all the 1390 * transports. This routine is called when a transport's PMTU has changed. 1391 */ 1392 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1393 { 1394 struct sctp_transport *t; 1395 __u32 pmtu = 0; 1396 1397 if (!asoc) 1398 return; 1399 1400 /* Get the lowest pmtu of all the transports. */ 1401 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1402 transports) { 1403 if (t->pmtu_pending && t->dst) { 1404 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst)); 1405 t->pmtu_pending = 0; 1406 } 1407 if (!pmtu || (t->pathmtu < pmtu)) 1408 pmtu = t->pathmtu; 1409 } 1410 1411 if (pmtu) { 1412 asoc->pathmtu = pmtu; 1413 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1414 } 1415 1416 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1417 asoc->pathmtu, asoc->frag_point); 1418 } 1419 1420 /* Should we send a SACK to update our peer? */ 1421 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1422 { 1423 struct net *net = sock_net(asoc->base.sk); 1424 switch (asoc->state) { 1425 case SCTP_STATE_ESTABLISHED: 1426 case SCTP_STATE_SHUTDOWN_PENDING: 1427 case SCTP_STATE_SHUTDOWN_RECEIVED: 1428 case SCTP_STATE_SHUTDOWN_SENT: 1429 if ((asoc->rwnd > asoc->a_rwnd) && 1430 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1431 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1432 asoc->pathmtu))) 1433 return true; 1434 break; 1435 default: 1436 break; 1437 } 1438 return false; 1439 } 1440 1441 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1442 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1443 { 1444 struct sctp_chunk *sack; 1445 struct timer_list *timer; 1446 1447 if (asoc->rwnd_over) { 1448 if (asoc->rwnd_over >= len) { 1449 asoc->rwnd_over -= len; 1450 } else { 1451 asoc->rwnd += (len - asoc->rwnd_over); 1452 asoc->rwnd_over = 0; 1453 } 1454 } else { 1455 asoc->rwnd += len; 1456 } 1457 1458 /* If we had window pressure, start recovering it 1459 * once our rwnd had reached the accumulated pressure 1460 * threshold. The idea is to recover slowly, but up 1461 * to the initial advertised window. 1462 */ 1463 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1464 int change = min(asoc->pathmtu, asoc->rwnd_press); 1465 asoc->rwnd += change; 1466 asoc->rwnd_press -= change; 1467 } 1468 1469 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1470 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1471 asoc->a_rwnd); 1472 1473 /* Send a window update SACK if the rwnd has increased by at least the 1474 * minimum of the association's PMTU and half of the receive buffer. 1475 * The algorithm used is similar to the one described in 1476 * Section 4.2.3.3 of RFC 1122. 1477 */ 1478 if (sctp_peer_needs_update(asoc)) { 1479 asoc->a_rwnd = asoc->rwnd; 1480 1481 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1482 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1483 asoc->a_rwnd); 1484 1485 sack = sctp_make_sack(asoc); 1486 if (!sack) 1487 return; 1488 1489 asoc->peer.sack_needed = 0; 1490 1491 sctp_outq_tail(&asoc->outqueue, sack); 1492 1493 /* Stop the SACK timer. */ 1494 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1495 if (del_timer(timer)) 1496 sctp_association_put(asoc); 1497 } 1498 } 1499 1500 /* Decrease asoc's rwnd by len. */ 1501 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1502 { 1503 int rx_count; 1504 int over = 0; 1505 1506 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1507 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1508 "asoc->rwnd_over:%u!\n", __func__, asoc, 1509 asoc->rwnd, asoc->rwnd_over); 1510 1511 if (asoc->ep->rcvbuf_policy) 1512 rx_count = atomic_read(&asoc->rmem_alloc); 1513 else 1514 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1515 1516 /* If we've reached or overflowed our receive buffer, announce 1517 * a 0 rwnd if rwnd would still be positive. Store the 1518 * the potential pressure overflow so that the window can be restored 1519 * back to original value. 1520 */ 1521 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1522 over = 1; 1523 1524 if (asoc->rwnd >= len) { 1525 asoc->rwnd -= len; 1526 if (over) { 1527 asoc->rwnd_press += asoc->rwnd; 1528 asoc->rwnd = 0; 1529 } 1530 } else { 1531 asoc->rwnd_over = len - asoc->rwnd; 1532 asoc->rwnd = 0; 1533 } 1534 1535 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1536 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1537 asoc->rwnd_press); 1538 } 1539 1540 /* Build the bind address list for the association based on info from the 1541 * local endpoint and the remote peer. 1542 */ 1543 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1544 sctp_scope_t scope, gfp_t gfp) 1545 { 1546 int flags; 1547 1548 /* Use scoping rules to determine the subset of addresses from 1549 * the endpoint. 1550 */ 1551 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1552 if (asoc->peer.ipv4_address) 1553 flags |= SCTP_ADDR4_PEERSUPP; 1554 if (asoc->peer.ipv6_address) 1555 flags |= SCTP_ADDR6_PEERSUPP; 1556 1557 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1558 &asoc->base.bind_addr, 1559 &asoc->ep->base.bind_addr, 1560 scope, gfp, flags); 1561 } 1562 1563 /* Build the association's bind address list from the cookie. */ 1564 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1565 struct sctp_cookie *cookie, 1566 gfp_t gfp) 1567 { 1568 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1569 int var_size3 = cookie->raw_addr_list_len; 1570 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1571 1572 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1573 asoc->ep->base.bind_addr.port, gfp); 1574 } 1575 1576 /* Lookup laddr in the bind address list of an association. */ 1577 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1578 const union sctp_addr *laddr) 1579 { 1580 int found = 0; 1581 1582 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1583 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1584 sctp_sk(asoc->base.sk))) 1585 found = 1; 1586 1587 return found; 1588 } 1589 1590 /* Set an association id for a given association */ 1591 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1592 { 1593 bool preload = !!(gfp & __GFP_WAIT); 1594 int ret; 1595 1596 /* If the id is already assigned, keep it. */ 1597 if (asoc->assoc_id) 1598 return 0; 1599 1600 if (preload) 1601 idr_preload(gfp); 1602 spin_lock_bh(&sctp_assocs_id_lock); 1603 /* 0 is not a valid assoc_id, must be >= 1 */ 1604 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1605 spin_unlock_bh(&sctp_assocs_id_lock); 1606 if (preload) 1607 idr_preload_end(); 1608 if (ret < 0) 1609 return ret; 1610 1611 asoc->assoc_id = (sctp_assoc_t)ret; 1612 return 0; 1613 } 1614 1615 /* Free the ASCONF queue */ 1616 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1617 { 1618 struct sctp_chunk *asconf; 1619 struct sctp_chunk *tmp; 1620 1621 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1622 list_del_init(&asconf->list); 1623 sctp_chunk_free(asconf); 1624 } 1625 } 1626 1627 /* Free asconf_ack cache */ 1628 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1629 { 1630 struct sctp_chunk *ack; 1631 struct sctp_chunk *tmp; 1632 1633 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1634 transmitted_list) { 1635 list_del_init(&ack->transmitted_list); 1636 sctp_chunk_free(ack); 1637 } 1638 } 1639 1640 /* Clean up the ASCONF_ACK queue */ 1641 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1642 { 1643 struct sctp_chunk *ack; 1644 struct sctp_chunk *tmp; 1645 1646 /* We can remove all the entries from the queue up to 1647 * the "Peer-Sequence-Number". 1648 */ 1649 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1650 transmitted_list) { 1651 if (ack->subh.addip_hdr->serial == 1652 htonl(asoc->peer.addip_serial)) 1653 break; 1654 1655 list_del_init(&ack->transmitted_list); 1656 sctp_chunk_free(ack); 1657 } 1658 } 1659 1660 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1661 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1662 const struct sctp_association *asoc, 1663 __be32 serial) 1664 { 1665 struct sctp_chunk *ack; 1666 1667 /* Walk through the list of cached ASCONF-ACKs and find the 1668 * ack chunk whose serial number matches that of the request. 1669 */ 1670 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1671 if (ack->subh.addip_hdr->serial == serial) { 1672 sctp_chunk_hold(ack); 1673 return ack; 1674 } 1675 } 1676 1677 return NULL; 1678 } 1679 1680 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1681 { 1682 /* Free any cached ASCONF_ACK chunk. */ 1683 sctp_assoc_free_asconf_acks(asoc); 1684 1685 /* Free the ASCONF queue. */ 1686 sctp_assoc_free_asconf_queue(asoc); 1687 1688 /* Free any cached ASCONF chunk. */ 1689 if (asoc->addip_last_asconf) 1690 sctp_chunk_free(asoc->addip_last_asconf); 1691 } 1692