1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@us.ibm.com> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com> 41 * Kevin Gao <kevin.gao@intel.com> 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/types.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 51 #include <linux/slab.h> 52 #include <linux/in.h> 53 #include <net/ipv6.h> 54 #include <net/sctp/sctp.h> 55 #include <net/sctp/sm.h> 56 57 /* Forward declarations for internal functions. */ 58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 67 const struct sctp_endpoint *ep, 68 const struct sock *sk, 69 sctp_scope_t scope, 70 gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 int i; 75 sctp_paramhdr_t *p; 76 int err; 77 78 /* Retrieve the SCTP per socket area. */ 79 sp = sctp_sk((struct sock *)sk); 80 81 /* Discarding const is appropriate here. */ 82 asoc->ep = (struct sctp_endpoint *)ep; 83 asoc->base.sk = (struct sock *)sk; 84 85 sctp_endpoint_hold(asoc->ep); 86 sock_hold(asoc->base.sk); 87 88 /* Initialize the common base substructure. */ 89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 90 91 /* Initialize the object handling fields. */ 92 atomic_set(&asoc->base.refcnt, 1); 93 94 /* Initialize the bind addr area. */ 95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 96 97 asoc->state = SCTP_STATE_CLOSED; 98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 99 asoc->user_frag = sp->user_frag; 100 101 /* Set the association max_retrans and RTO values from the 102 * socket values. 103 */ 104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 105 asoc->pf_retrans = net->sctp.pf_retrans; 106 107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 110 111 /* Initialize the association's heartbeat interval based on the 112 * sock configured value. 113 */ 114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 115 116 /* Initialize path max retrans value. */ 117 asoc->pathmaxrxt = sp->pathmaxrxt; 118 119 /* Initialize default path MTU. */ 120 asoc->pathmtu = sp->pathmtu; 121 122 /* Set association default SACK delay */ 123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 124 asoc->sackfreq = sp->sackfreq; 125 126 /* Set the association default flags controlling 127 * Heartbeat, SACK delay, and Path MTU Discovery. 128 */ 129 asoc->param_flags = sp->param_flags; 130 131 /* Initialize the maximum number of new data packets that can be sent 132 * in a burst. 133 */ 134 asoc->max_burst = sp->max_burst; 135 136 /* initialize association timers */ 137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 140 141 /* sctpimpguide Section 2.12.2 142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 143 * recommended value of 5 times 'RTO.Max'. 144 */ 145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 146 = 5 * asoc->rto_max; 147 148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 150 151 /* Initializes the timers */ 152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 153 setup_timer(&asoc->timers[i], sctp_timer_events[i], 154 (unsigned long)asoc); 155 156 /* Pull default initialization values from the sock options. 157 * Note: This assumes that the values have already been 158 * validated in the sock. 159 */ 160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 163 164 asoc->max_init_timeo = 165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 166 167 /* Set the local window size for receive. 168 * This is also the rcvbuf space per association. 169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 170 * 1500 bytes in one SCTP packet. 171 */ 172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 174 else 175 asoc->rwnd = sk->sk_rcvbuf/2; 176 177 asoc->a_rwnd = asoc->rwnd; 178 179 /* Use my own max window until I learn something better. */ 180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 181 182 /* Initialize the receive memory counter */ 183 atomic_set(&asoc->rmem_alloc, 0); 184 185 init_waitqueue_head(&asoc->wait); 186 187 asoc->c.my_vtag = sctp_generate_tag(ep); 188 asoc->c.my_port = ep->base.bind_addr.port; 189 190 asoc->c.initial_tsn = sctp_generate_tsn(ep); 191 192 asoc->next_tsn = asoc->c.initial_tsn; 193 194 asoc->ctsn_ack_point = asoc->next_tsn - 1; 195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 196 asoc->highest_sacked = asoc->ctsn_ack_point; 197 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 198 199 /* ADDIP Section 4.1 Asconf Chunk Procedures 200 * 201 * When an endpoint has an ASCONF signaled change to be sent to the 202 * remote endpoint it should do the following: 203 * ... 204 * A2) a serial number should be assigned to the chunk. The serial 205 * number SHOULD be a monotonically increasing number. The serial 206 * numbers SHOULD be initialized at the start of the 207 * association to the same value as the initial TSN. 208 */ 209 asoc->addip_serial = asoc->c.initial_tsn; 210 211 INIT_LIST_HEAD(&asoc->addip_chunk_list); 212 INIT_LIST_HEAD(&asoc->asconf_ack_list); 213 214 /* Make an empty list of remote transport addresses. */ 215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 216 217 /* RFC 2960 5.1 Normal Establishment of an Association 218 * 219 * After the reception of the first data chunk in an 220 * association the endpoint must immediately respond with a 221 * sack to acknowledge the data chunk. Subsequent 222 * acknowledgements should be done as described in Section 223 * 6.2. 224 * 225 * [We implement this by telling a new association that it 226 * already received one packet.] 227 */ 228 asoc->peer.sack_needed = 1; 229 asoc->peer.sack_generation = 1; 230 231 /* Assume that the peer will tell us if he recognizes ASCONF 232 * as part of INIT exchange. 233 * The sctp_addip_noauth option is there for backward compatibility 234 * and will revert old behavior. 235 */ 236 if (net->sctp.addip_noauth) 237 asoc->peer.asconf_capable = 1; 238 239 /* Create an input queue. */ 240 sctp_inq_init(&asoc->base.inqueue); 241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 242 243 /* Create an output queue. */ 244 sctp_outq_init(asoc, &asoc->outqueue); 245 246 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 247 goto fail_init; 248 249 /* Assume that peer would support both address types unless we are 250 * told otherwise. 251 */ 252 asoc->peer.ipv4_address = 1; 253 if (asoc->base.sk->sk_family == PF_INET6) 254 asoc->peer.ipv6_address = 1; 255 INIT_LIST_HEAD(&asoc->asocs); 256 257 asoc->default_stream = sp->default_stream; 258 asoc->default_ppid = sp->default_ppid; 259 asoc->default_flags = sp->default_flags; 260 asoc->default_context = sp->default_context; 261 asoc->default_timetolive = sp->default_timetolive; 262 asoc->default_rcv_context = sp->default_rcv_context; 263 264 /* AUTH related initializations */ 265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 267 if (err) 268 goto fail_init; 269 270 asoc->active_key_id = ep->active_key_id; 271 asoc->prsctp_enable = ep->prsctp_enable; 272 273 /* Save the hmacs and chunks list into this association */ 274 if (ep->auth_hmacs_list) 275 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 276 ntohs(ep->auth_hmacs_list->param_hdr.length)); 277 if (ep->auth_chunk_list) 278 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 279 ntohs(ep->auth_chunk_list->param_hdr.length)); 280 281 /* Get the AUTH random number for this association */ 282 p = (sctp_paramhdr_t *)asoc->c.auth_random; 283 p->type = SCTP_PARAM_RANDOM; 284 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 285 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 286 287 return asoc; 288 289 fail_init: 290 sock_put(asoc->base.sk); 291 sctp_endpoint_put(asoc->ep); 292 return NULL; 293 } 294 295 /* Allocate and initialize a new association */ 296 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 297 const struct sock *sk, 298 sctp_scope_t scope, 299 gfp_t gfp) 300 { 301 struct sctp_association *asoc; 302 303 asoc = kzalloc(sizeof(*asoc), gfp); 304 if (!asoc) 305 goto fail; 306 307 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 308 goto fail_init; 309 310 SCTP_DBG_OBJCNT_INC(assoc); 311 312 pr_debug("Created asoc %p\n", asoc); 313 314 return asoc; 315 316 fail_init: 317 kfree(asoc); 318 fail: 319 return NULL; 320 } 321 322 /* Free this association if possible. There may still be users, so 323 * the actual deallocation may be delayed. 324 */ 325 void sctp_association_free(struct sctp_association *asoc) 326 { 327 struct sock *sk = asoc->base.sk; 328 struct sctp_transport *transport; 329 struct list_head *pos, *temp; 330 int i; 331 332 /* Only real associations count against the endpoint, so 333 * don't bother for if this is a temporary association. 334 */ 335 if (!list_empty(&asoc->asocs)) { 336 list_del(&asoc->asocs); 337 338 /* Decrement the backlog value for a TCP-style listening 339 * socket. 340 */ 341 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 342 sk->sk_ack_backlog--; 343 } 344 345 /* Mark as dead, so other users can know this structure is 346 * going away. 347 */ 348 asoc->base.dead = true; 349 350 /* Dispose of any data lying around in the outqueue. */ 351 sctp_outq_free(&asoc->outqueue); 352 353 /* Dispose of any pending messages for the upper layer. */ 354 sctp_ulpq_free(&asoc->ulpq); 355 356 /* Dispose of any pending chunks on the inqueue. */ 357 sctp_inq_free(&asoc->base.inqueue); 358 359 sctp_tsnmap_free(&asoc->peer.tsn_map); 360 361 /* Free ssnmap storage. */ 362 sctp_ssnmap_free(asoc->ssnmap); 363 364 /* Clean up the bound address list. */ 365 sctp_bind_addr_free(&asoc->base.bind_addr); 366 367 /* Do we need to go through all of our timers and 368 * delete them? To be safe we will try to delete all, but we 369 * should be able to go through and make a guess based 370 * on our state. 371 */ 372 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 373 if (del_timer(&asoc->timers[i])) 374 sctp_association_put(asoc); 375 } 376 377 /* Free peer's cached cookie. */ 378 kfree(asoc->peer.cookie); 379 kfree(asoc->peer.peer_random); 380 kfree(asoc->peer.peer_chunks); 381 kfree(asoc->peer.peer_hmacs); 382 383 /* Release the transport structures. */ 384 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 385 transport = list_entry(pos, struct sctp_transport, transports); 386 list_del_rcu(pos); 387 sctp_unhash_transport(transport); 388 sctp_transport_free(transport); 389 } 390 391 asoc->peer.transport_count = 0; 392 393 sctp_asconf_queue_teardown(asoc); 394 395 /* Free pending address space being deleted */ 396 kfree(asoc->asconf_addr_del_pending); 397 398 /* AUTH - Free the endpoint shared keys */ 399 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 400 401 /* AUTH - Free the association shared key */ 402 sctp_auth_key_put(asoc->asoc_shared_key); 403 404 sctp_association_put(asoc); 405 } 406 407 /* Cleanup and free up an association. */ 408 static void sctp_association_destroy(struct sctp_association *asoc) 409 { 410 if (unlikely(!asoc->base.dead)) { 411 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 412 return; 413 } 414 415 sctp_endpoint_put(asoc->ep); 416 sock_put(asoc->base.sk); 417 418 if (asoc->assoc_id != 0) { 419 spin_lock_bh(&sctp_assocs_id_lock); 420 idr_remove(&sctp_assocs_id, asoc->assoc_id); 421 spin_unlock_bh(&sctp_assocs_id_lock); 422 } 423 424 WARN_ON(atomic_read(&asoc->rmem_alloc)); 425 426 kfree(asoc); 427 SCTP_DBG_OBJCNT_DEC(assoc); 428 } 429 430 /* Change the primary destination address for the peer. */ 431 void sctp_assoc_set_primary(struct sctp_association *asoc, 432 struct sctp_transport *transport) 433 { 434 int changeover = 0; 435 436 /* it's a changeover only if we already have a primary path 437 * that we are changing 438 */ 439 if (asoc->peer.primary_path != NULL && 440 asoc->peer.primary_path != transport) 441 changeover = 1 ; 442 443 asoc->peer.primary_path = transport; 444 445 /* Set a default msg_name for events. */ 446 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 447 sizeof(union sctp_addr)); 448 449 /* If the primary path is changing, assume that the 450 * user wants to use this new path. 451 */ 452 if ((transport->state == SCTP_ACTIVE) || 453 (transport->state == SCTP_UNKNOWN)) 454 asoc->peer.active_path = transport; 455 456 /* 457 * SFR-CACC algorithm: 458 * Upon the receipt of a request to change the primary 459 * destination address, on the data structure for the new 460 * primary destination, the sender MUST do the following: 461 * 462 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 463 * to this destination address earlier. The sender MUST set 464 * CYCLING_CHANGEOVER to indicate that this switch is a 465 * double switch to the same destination address. 466 * 467 * Really, only bother is we have data queued or outstanding on 468 * the association. 469 */ 470 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 471 return; 472 473 if (transport->cacc.changeover_active) 474 transport->cacc.cycling_changeover = changeover; 475 476 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 477 * a changeover has occurred. 478 */ 479 transport->cacc.changeover_active = changeover; 480 481 /* 3) The sender MUST store the next TSN to be sent in 482 * next_tsn_at_change. 483 */ 484 transport->cacc.next_tsn_at_change = asoc->next_tsn; 485 } 486 487 /* Remove a transport from an association. */ 488 void sctp_assoc_rm_peer(struct sctp_association *asoc, 489 struct sctp_transport *peer) 490 { 491 struct list_head *pos; 492 struct sctp_transport *transport; 493 494 pr_debug("%s: association:%p addr:%pISpc\n", 495 __func__, asoc, &peer->ipaddr.sa); 496 497 /* If we are to remove the current retran_path, update it 498 * to the next peer before removing this peer from the list. 499 */ 500 if (asoc->peer.retran_path == peer) 501 sctp_assoc_update_retran_path(asoc); 502 503 /* Remove this peer from the list. */ 504 list_del_rcu(&peer->transports); 505 /* Remove this peer from the transport hashtable */ 506 sctp_unhash_transport(peer); 507 508 /* Get the first transport of asoc. */ 509 pos = asoc->peer.transport_addr_list.next; 510 transport = list_entry(pos, struct sctp_transport, transports); 511 512 /* Update any entries that match the peer to be deleted. */ 513 if (asoc->peer.primary_path == peer) 514 sctp_assoc_set_primary(asoc, transport); 515 if (asoc->peer.active_path == peer) 516 asoc->peer.active_path = transport; 517 if (asoc->peer.retran_path == peer) 518 asoc->peer.retran_path = transport; 519 if (asoc->peer.last_data_from == peer) 520 asoc->peer.last_data_from = transport; 521 522 /* If we remove the transport an INIT was last sent to, set it to 523 * NULL. Combined with the update of the retran path above, this 524 * will cause the next INIT to be sent to the next available 525 * transport, maintaining the cycle. 526 */ 527 if (asoc->init_last_sent_to == peer) 528 asoc->init_last_sent_to = NULL; 529 530 /* If we remove the transport an SHUTDOWN was last sent to, set it 531 * to NULL. Combined with the update of the retran path above, this 532 * will cause the next SHUTDOWN to be sent to the next available 533 * transport, maintaining the cycle. 534 */ 535 if (asoc->shutdown_last_sent_to == peer) 536 asoc->shutdown_last_sent_to = NULL; 537 538 /* If we remove the transport an ASCONF was last sent to, set it to 539 * NULL. 540 */ 541 if (asoc->addip_last_asconf && 542 asoc->addip_last_asconf->transport == peer) 543 asoc->addip_last_asconf->transport = NULL; 544 545 /* If we have something on the transmitted list, we have to 546 * save it off. The best place is the active path. 547 */ 548 if (!list_empty(&peer->transmitted)) { 549 struct sctp_transport *active = asoc->peer.active_path; 550 struct sctp_chunk *ch; 551 552 /* Reset the transport of each chunk on this list */ 553 list_for_each_entry(ch, &peer->transmitted, 554 transmitted_list) { 555 ch->transport = NULL; 556 ch->rtt_in_progress = 0; 557 } 558 559 list_splice_tail_init(&peer->transmitted, 560 &active->transmitted); 561 562 /* Start a T3 timer here in case it wasn't running so 563 * that these migrated packets have a chance to get 564 * retransmitted. 565 */ 566 if (!timer_pending(&active->T3_rtx_timer)) 567 if (!mod_timer(&active->T3_rtx_timer, 568 jiffies + active->rto)) 569 sctp_transport_hold(active); 570 } 571 572 asoc->peer.transport_count--; 573 574 sctp_transport_free(peer); 575 } 576 577 /* Add a transport address to an association. */ 578 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 579 const union sctp_addr *addr, 580 const gfp_t gfp, 581 const int peer_state) 582 { 583 struct net *net = sock_net(asoc->base.sk); 584 struct sctp_transport *peer; 585 struct sctp_sock *sp; 586 unsigned short port; 587 588 sp = sctp_sk(asoc->base.sk); 589 590 /* AF_INET and AF_INET6 share common port field. */ 591 port = ntohs(addr->v4.sin_port); 592 593 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 594 asoc, &addr->sa, peer_state); 595 596 /* Set the port if it has not been set yet. */ 597 if (0 == asoc->peer.port) 598 asoc->peer.port = port; 599 600 /* Check to see if this is a duplicate. */ 601 peer = sctp_assoc_lookup_paddr(asoc, addr); 602 if (peer) { 603 /* An UNKNOWN state is only set on transports added by 604 * user in sctp_connectx() call. Such transports should be 605 * considered CONFIRMED per RFC 4960, Section 5.4. 606 */ 607 if (peer->state == SCTP_UNKNOWN) { 608 peer->state = SCTP_ACTIVE; 609 } 610 return peer; 611 } 612 613 peer = sctp_transport_new(net, addr, gfp); 614 if (!peer) 615 return NULL; 616 617 sctp_transport_set_owner(peer, asoc); 618 619 /* Initialize the peer's heartbeat interval based on the 620 * association configured value. 621 */ 622 peer->hbinterval = asoc->hbinterval; 623 624 /* Set the path max_retrans. */ 625 peer->pathmaxrxt = asoc->pathmaxrxt; 626 627 /* And the partial failure retrans threshold */ 628 peer->pf_retrans = asoc->pf_retrans; 629 630 /* Initialize the peer's SACK delay timeout based on the 631 * association configured value. 632 */ 633 peer->sackdelay = asoc->sackdelay; 634 peer->sackfreq = asoc->sackfreq; 635 636 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 637 * based on association setting. 638 */ 639 peer->param_flags = asoc->param_flags; 640 641 sctp_transport_route(peer, NULL, sp); 642 643 /* Initialize the pmtu of the transport. */ 644 if (peer->param_flags & SPP_PMTUD_DISABLE) { 645 if (asoc->pathmtu) 646 peer->pathmtu = asoc->pathmtu; 647 else 648 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 649 } 650 651 /* If this is the first transport addr on this association, 652 * initialize the association PMTU to the peer's PMTU. 653 * If not and the current association PMTU is higher than the new 654 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 655 */ 656 if (asoc->pathmtu) 657 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 658 else 659 asoc->pathmtu = peer->pathmtu; 660 661 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, 662 asoc->pathmtu); 663 664 peer->pmtu_pending = 0; 665 666 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 667 668 /* The asoc->peer.port might not be meaningful yet, but 669 * initialize the packet structure anyway. 670 */ 671 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 672 asoc->peer.port); 673 674 /* 7.2.1 Slow-Start 675 * 676 * o The initial cwnd before DATA transmission or after a sufficiently 677 * long idle period MUST be set to 678 * min(4*MTU, max(2*MTU, 4380 bytes)) 679 * 680 * o The initial value of ssthresh MAY be arbitrarily high 681 * (for example, implementations MAY use the size of the 682 * receiver advertised window). 683 */ 684 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 685 686 /* At this point, we may not have the receiver's advertised window, 687 * so initialize ssthresh to the default value and it will be set 688 * later when we process the INIT. 689 */ 690 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 691 692 peer->partial_bytes_acked = 0; 693 peer->flight_size = 0; 694 peer->burst_limited = 0; 695 696 /* Set the transport's RTO.initial value */ 697 peer->rto = asoc->rto_initial; 698 sctp_max_rto(asoc, peer); 699 700 /* Set the peer's active state. */ 701 peer->state = peer_state; 702 703 /* Add this peer into the transport hashtable */ 704 if (sctp_hash_transport(peer)) { 705 sctp_transport_free(peer); 706 return NULL; 707 } 708 709 /* Attach the remote transport to our asoc. */ 710 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 711 asoc->peer.transport_count++; 712 713 /* If we do not yet have a primary path, set one. */ 714 if (!asoc->peer.primary_path) { 715 sctp_assoc_set_primary(asoc, peer); 716 asoc->peer.retran_path = peer; 717 } 718 719 if (asoc->peer.active_path == asoc->peer.retran_path && 720 peer->state != SCTP_UNCONFIRMED) { 721 asoc->peer.retran_path = peer; 722 } 723 724 return peer; 725 } 726 727 /* Delete a transport address from an association. */ 728 void sctp_assoc_del_peer(struct sctp_association *asoc, 729 const union sctp_addr *addr) 730 { 731 struct list_head *pos; 732 struct list_head *temp; 733 struct sctp_transport *transport; 734 735 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 736 transport = list_entry(pos, struct sctp_transport, transports); 737 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 738 /* Do book keeping for removing the peer and free it. */ 739 sctp_assoc_rm_peer(asoc, transport); 740 break; 741 } 742 } 743 } 744 745 /* Lookup a transport by address. */ 746 struct sctp_transport *sctp_assoc_lookup_paddr( 747 const struct sctp_association *asoc, 748 const union sctp_addr *address) 749 { 750 struct sctp_transport *t; 751 752 /* Cycle through all transports searching for a peer address. */ 753 754 list_for_each_entry(t, &asoc->peer.transport_addr_list, 755 transports) { 756 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 757 return t; 758 } 759 760 return NULL; 761 } 762 763 /* Remove all transports except a give one */ 764 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 765 struct sctp_transport *primary) 766 { 767 struct sctp_transport *temp; 768 struct sctp_transport *t; 769 770 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 771 transports) { 772 /* if the current transport is not the primary one, delete it */ 773 if (t != primary) 774 sctp_assoc_rm_peer(asoc, t); 775 } 776 } 777 778 /* Engage in transport control operations. 779 * Mark the transport up or down and send a notification to the user. 780 * Select and update the new active and retran paths. 781 */ 782 void sctp_assoc_control_transport(struct sctp_association *asoc, 783 struct sctp_transport *transport, 784 sctp_transport_cmd_t command, 785 sctp_sn_error_t error) 786 { 787 struct sctp_ulpevent *event; 788 struct sockaddr_storage addr; 789 int spc_state = 0; 790 bool ulp_notify = true; 791 792 /* Record the transition on the transport. */ 793 switch (command) { 794 case SCTP_TRANSPORT_UP: 795 /* If we are moving from UNCONFIRMED state due 796 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 797 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 798 */ 799 if (SCTP_UNCONFIRMED == transport->state && 800 SCTP_HEARTBEAT_SUCCESS == error) 801 spc_state = SCTP_ADDR_CONFIRMED; 802 else 803 spc_state = SCTP_ADDR_AVAILABLE; 804 /* Don't inform ULP about transition from PF to 805 * active state and set cwnd to 1 MTU, see SCTP 806 * Quick failover draft section 5.1, point 5 807 */ 808 if (transport->state == SCTP_PF) { 809 ulp_notify = false; 810 transport->cwnd = asoc->pathmtu; 811 } 812 transport->state = SCTP_ACTIVE; 813 break; 814 815 case SCTP_TRANSPORT_DOWN: 816 /* If the transport was never confirmed, do not transition it 817 * to inactive state. Also, release the cached route since 818 * there may be a better route next time. 819 */ 820 if (transport->state != SCTP_UNCONFIRMED) 821 transport->state = SCTP_INACTIVE; 822 else { 823 dst_release(transport->dst); 824 transport->dst = NULL; 825 ulp_notify = false; 826 } 827 828 spc_state = SCTP_ADDR_UNREACHABLE; 829 break; 830 831 case SCTP_TRANSPORT_PF: 832 transport->state = SCTP_PF; 833 ulp_notify = false; 834 break; 835 836 default: 837 return; 838 } 839 840 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 841 * to the user. 842 */ 843 if (ulp_notify) { 844 memset(&addr, 0, sizeof(struct sockaddr_storage)); 845 memcpy(&addr, &transport->ipaddr, 846 transport->af_specific->sockaddr_len); 847 848 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 849 0, spc_state, error, GFP_ATOMIC); 850 if (event) 851 sctp_ulpq_tail_event(&asoc->ulpq, event); 852 } 853 854 /* Select new active and retran paths. */ 855 sctp_select_active_and_retran_path(asoc); 856 } 857 858 /* Hold a reference to an association. */ 859 void sctp_association_hold(struct sctp_association *asoc) 860 { 861 atomic_inc(&asoc->base.refcnt); 862 } 863 864 /* Release a reference to an association and cleanup 865 * if there are no more references. 866 */ 867 void sctp_association_put(struct sctp_association *asoc) 868 { 869 if (atomic_dec_and_test(&asoc->base.refcnt)) 870 sctp_association_destroy(asoc); 871 } 872 873 /* Allocate the next TSN, Transmission Sequence Number, for the given 874 * association. 875 */ 876 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 877 { 878 /* From Section 1.6 Serial Number Arithmetic: 879 * Transmission Sequence Numbers wrap around when they reach 880 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 881 * after transmitting TSN = 2*32 - 1 is TSN = 0. 882 */ 883 __u32 retval = asoc->next_tsn; 884 asoc->next_tsn++; 885 asoc->unack_data++; 886 887 return retval; 888 } 889 890 /* Compare two addresses to see if they match. Wildcard addresses 891 * only match themselves. 892 */ 893 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 894 const union sctp_addr *ss2) 895 { 896 struct sctp_af *af; 897 898 af = sctp_get_af_specific(ss1->sa.sa_family); 899 if (unlikely(!af)) 900 return 0; 901 902 return af->cmp_addr(ss1, ss2); 903 } 904 905 /* Return an ecne chunk to get prepended to a packet. 906 * Note: We are sly and return a shared, prealloced chunk. FIXME: 907 * No we don't, but we could/should. 908 */ 909 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 910 { 911 if (!asoc->need_ecne) 912 return NULL; 913 914 /* Send ECNE if needed. 915 * Not being able to allocate a chunk here is not deadly. 916 */ 917 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 918 } 919 920 /* 921 * Find which transport this TSN was sent on. 922 */ 923 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 924 __u32 tsn) 925 { 926 struct sctp_transport *active; 927 struct sctp_transport *match; 928 struct sctp_transport *transport; 929 struct sctp_chunk *chunk; 930 __be32 key = htonl(tsn); 931 932 match = NULL; 933 934 /* 935 * FIXME: In general, find a more efficient data structure for 936 * searching. 937 */ 938 939 /* 940 * The general strategy is to search each transport's transmitted 941 * list. Return which transport this TSN lives on. 942 * 943 * Let's be hopeful and check the active_path first. 944 * Another optimization would be to know if there is only one 945 * outbound path and not have to look for the TSN at all. 946 * 947 */ 948 949 active = asoc->peer.active_path; 950 951 list_for_each_entry(chunk, &active->transmitted, 952 transmitted_list) { 953 954 if (key == chunk->subh.data_hdr->tsn) { 955 match = active; 956 goto out; 957 } 958 } 959 960 /* If not found, go search all the other transports. */ 961 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 962 transports) { 963 964 if (transport == active) 965 continue; 966 list_for_each_entry(chunk, &transport->transmitted, 967 transmitted_list) { 968 if (key == chunk->subh.data_hdr->tsn) { 969 match = transport; 970 goto out; 971 } 972 } 973 } 974 out: 975 return match; 976 } 977 978 /* Is this the association we are looking for? */ 979 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 980 struct net *net, 981 const union sctp_addr *laddr, 982 const union sctp_addr *paddr) 983 { 984 struct sctp_transport *transport; 985 986 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 987 (htons(asoc->peer.port) == paddr->v4.sin_port) && 988 net_eq(sock_net(asoc->base.sk), net)) { 989 transport = sctp_assoc_lookup_paddr(asoc, paddr); 990 if (!transport) 991 goto out; 992 993 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 994 sctp_sk(asoc->base.sk))) 995 goto out; 996 } 997 transport = NULL; 998 999 out: 1000 return transport; 1001 } 1002 1003 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1004 static void sctp_assoc_bh_rcv(struct work_struct *work) 1005 { 1006 struct sctp_association *asoc = 1007 container_of(work, struct sctp_association, 1008 base.inqueue.immediate); 1009 struct net *net = sock_net(asoc->base.sk); 1010 struct sctp_endpoint *ep; 1011 struct sctp_chunk *chunk; 1012 struct sctp_inq *inqueue; 1013 int state; 1014 sctp_subtype_t subtype; 1015 int error = 0; 1016 1017 /* The association should be held so we should be safe. */ 1018 ep = asoc->ep; 1019 1020 inqueue = &asoc->base.inqueue; 1021 sctp_association_hold(asoc); 1022 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1023 state = asoc->state; 1024 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1025 1026 /* SCTP-AUTH, Section 6.3: 1027 * The receiver has a list of chunk types which it expects 1028 * to be received only after an AUTH-chunk. This list has 1029 * been sent to the peer during the association setup. It 1030 * MUST silently discard these chunks if they are not placed 1031 * after an AUTH chunk in the packet. 1032 */ 1033 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1034 continue; 1035 1036 /* Remember where the last DATA chunk came from so we 1037 * know where to send the SACK. 1038 */ 1039 if (sctp_chunk_is_data(chunk)) 1040 asoc->peer.last_data_from = chunk->transport; 1041 else { 1042 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1043 asoc->stats.ictrlchunks++; 1044 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1045 asoc->stats.isacks++; 1046 } 1047 1048 if (chunk->transport) 1049 chunk->transport->last_time_heard = ktime_get(); 1050 1051 /* Run through the state machine. */ 1052 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1053 state, ep, asoc, chunk, GFP_ATOMIC); 1054 1055 /* Check to see if the association is freed in response to 1056 * the incoming chunk. If so, get out of the while loop. 1057 */ 1058 if (asoc->base.dead) 1059 break; 1060 1061 /* If there is an error on chunk, discard this packet. */ 1062 if (error && chunk) 1063 chunk->pdiscard = 1; 1064 } 1065 sctp_association_put(asoc); 1066 } 1067 1068 /* This routine moves an association from its old sk to a new sk. */ 1069 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1070 { 1071 struct sctp_sock *newsp = sctp_sk(newsk); 1072 struct sock *oldsk = assoc->base.sk; 1073 1074 /* Delete the association from the old endpoint's list of 1075 * associations. 1076 */ 1077 list_del_init(&assoc->asocs); 1078 1079 /* Decrement the backlog value for a TCP-style socket. */ 1080 if (sctp_style(oldsk, TCP)) 1081 oldsk->sk_ack_backlog--; 1082 1083 /* Release references to the old endpoint and the sock. */ 1084 sctp_endpoint_put(assoc->ep); 1085 sock_put(assoc->base.sk); 1086 1087 /* Get a reference to the new endpoint. */ 1088 assoc->ep = newsp->ep; 1089 sctp_endpoint_hold(assoc->ep); 1090 1091 /* Get a reference to the new sock. */ 1092 assoc->base.sk = newsk; 1093 sock_hold(assoc->base.sk); 1094 1095 /* Add the association to the new endpoint's list of associations. */ 1096 sctp_endpoint_add_asoc(newsp->ep, assoc); 1097 } 1098 1099 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1100 void sctp_assoc_update(struct sctp_association *asoc, 1101 struct sctp_association *new) 1102 { 1103 struct sctp_transport *trans; 1104 struct list_head *pos, *temp; 1105 1106 /* Copy in new parameters of peer. */ 1107 asoc->c = new->c; 1108 asoc->peer.rwnd = new->peer.rwnd; 1109 asoc->peer.sack_needed = new->peer.sack_needed; 1110 asoc->peer.auth_capable = new->peer.auth_capable; 1111 asoc->peer.i = new->peer.i; 1112 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1113 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1114 1115 /* Remove any peer addresses not present in the new association. */ 1116 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1117 trans = list_entry(pos, struct sctp_transport, transports); 1118 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1119 sctp_assoc_rm_peer(asoc, trans); 1120 continue; 1121 } 1122 1123 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1124 sctp_transport_reset(trans); 1125 } 1126 1127 /* If the case is A (association restart), use 1128 * initial_tsn as next_tsn. If the case is B, use 1129 * current next_tsn in case data sent to peer 1130 * has been discarded and needs retransmission. 1131 */ 1132 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1133 asoc->next_tsn = new->next_tsn; 1134 asoc->ctsn_ack_point = new->ctsn_ack_point; 1135 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1136 1137 /* Reinitialize SSN for both local streams 1138 * and peer's streams. 1139 */ 1140 sctp_ssnmap_clear(asoc->ssnmap); 1141 1142 /* Flush the ULP reassembly and ordered queue. 1143 * Any data there will now be stale and will 1144 * cause problems. 1145 */ 1146 sctp_ulpq_flush(&asoc->ulpq); 1147 1148 /* reset the overall association error count so 1149 * that the restarted association doesn't get torn 1150 * down on the next retransmission timer. 1151 */ 1152 asoc->overall_error_count = 0; 1153 1154 } else { 1155 /* Add any peer addresses from the new association. */ 1156 list_for_each_entry(trans, &new->peer.transport_addr_list, 1157 transports) { 1158 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1159 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1160 GFP_ATOMIC, trans->state); 1161 } 1162 1163 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1164 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1165 if (!asoc->ssnmap) { 1166 /* Move the ssnmap. */ 1167 asoc->ssnmap = new->ssnmap; 1168 new->ssnmap = NULL; 1169 } 1170 1171 if (!asoc->assoc_id) { 1172 /* get a new association id since we don't have one 1173 * yet. 1174 */ 1175 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1176 } 1177 } 1178 1179 /* SCTP-AUTH: Save the peer parameters from the new associations 1180 * and also move the association shared keys over 1181 */ 1182 kfree(asoc->peer.peer_random); 1183 asoc->peer.peer_random = new->peer.peer_random; 1184 new->peer.peer_random = NULL; 1185 1186 kfree(asoc->peer.peer_chunks); 1187 asoc->peer.peer_chunks = new->peer.peer_chunks; 1188 new->peer.peer_chunks = NULL; 1189 1190 kfree(asoc->peer.peer_hmacs); 1191 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1192 new->peer.peer_hmacs = NULL; 1193 1194 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1195 } 1196 1197 /* Update the retran path for sending a retransmitted packet. 1198 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1199 * 1200 * When there is outbound data to send and the primary path 1201 * becomes inactive (e.g., due to failures), or where the 1202 * SCTP user explicitly requests to send data to an 1203 * inactive destination transport address, before reporting 1204 * an error to its ULP, the SCTP endpoint should try to send 1205 * the data to an alternate active destination transport 1206 * address if one exists. 1207 * 1208 * When retransmitting data that timed out, if the endpoint 1209 * is multihomed, it should consider each source-destination 1210 * address pair in its retransmission selection policy. 1211 * When retransmitting timed-out data, the endpoint should 1212 * attempt to pick the most divergent source-destination 1213 * pair from the original source-destination pair to which 1214 * the packet was transmitted. 1215 * 1216 * Note: Rules for picking the most divergent source-destination 1217 * pair are an implementation decision and are not specified 1218 * within this document. 1219 * 1220 * Our basic strategy is to round-robin transports in priorities 1221 * according to sctp_trans_score() e.g., if no such 1222 * transport with state SCTP_ACTIVE exists, round-robin through 1223 * SCTP_UNKNOWN, etc. You get the picture. 1224 */ 1225 static u8 sctp_trans_score(const struct sctp_transport *trans) 1226 { 1227 switch (trans->state) { 1228 case SCTP_ACTIVE: 1229 return 3; /* best case */ 1230 case SCTP_UNKNOWN: 1231 return 2; 1232 case SCTP_PF: 1233 return 1; 1234 default: /* case SCTP_INACTIVE */ 1235 return 0; /* worst case */ 1236 } 1237 } 1238 1239 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1240 struct sctp_transport *trans2) 1241 { 1242 if (trans1->error_count > trans2->error_count) { 1243 return trans2; 1244 } else if (trans1->error_count == trans2->error_count && 1245 ktime_after(trans2->last_time_heard, 1246 trans1->last_time_heard)) { 1247 return trans2; 1248 } else { 1249 return trans1; 1250 } 1251 } 1252 1253 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1254 struct sctp_transport *best) 1255 { 1256 u8 score_curr, score_best; 1257 1258 if (best == NULL || curr == best) 1259 return curr; 1260 1261 score_curr = sctp_trans_score(curr); 1262 score_best = sctp_trans_score(best); 1263 1264 /* First, try a score-based selection if both transport states 1265 * differ. If we're in a tie, lets try to make a more clever 1266 * decision here based on error counts and last time heard. 1267 */ 1268 if (score_curr > score_best) 1269 return curr; 1270 else if (score_curr == score_best) 1271 return sctp_trans_elect_tie(best, curr); 1272 else 1273 return best; 1274 } 1275 1276 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1277 { 1278 struct sctp_transport *trans = asoc->peer.retran_path; 1279 struct sctp_transport *trans_next = NULL; 1280 1281 /* We're done as we only have the one and only path. */ 1282 if (asoc->peer.transport_count == 1) 1283 return; 1284 /* If active_path and retran_path are the same and active, 1285 * then this is the only active path. Use it. 1286 */ 1287 if (asoc->peer.active_path == asoc->peer.retran_path && 1288 asoc->peer.active_path->state == SCTP_ACTIVE) 1289 return; 1290 1291 /* Iterate from retran_path's successor back to retran_path. */ 1292 for (trans = list_next_entry(trans, transports); 1; 1293 trans = list_next_entry(trans, transports)) { 1294 /* Manually skip the head element. */ 1295 if (&trans->transports == &asoc->peer.transport_addr_list) 1296 continue; 1297 if (trans->state == SCTP_UNCONFIRMED) 1298 continue; 1299 trans_next = sctp_trans_elect_best(trans, trans_next); 1300 /* Active is good enough for immediate return. */ 1301 if (trans_next->state == SCTP_ACTIVE) 1302 break; 1303 /* We've reached the end, time to update path. */ 1304 if (trans == asoc->peer.retran_path) 1305 break; 1306 } 1307 1308 asoc->peer.retran_path = trans_next; 1309 1310 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1311 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1312 } 1313 1314 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1315 { 1316 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1317 struct sctp_transport *trans_pf = NULL; 1318 1319 /* Look for the two most recently used active transports. */ 1320 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1321 transports) { 1322 /* Skip uninteresting transports. */ 1323 if (trans->state == SCTP_INACTIVE || 1324 trans->state == SCTP_UNCONFIRMED) 1325 continue; 1326 /* Keep track of the best PF transport from our 1327 * list in case we don't find an active one. 1328 */ 1329 if (trans->state == SCTP_PF) { 1330 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1331 continue; 1332 } 1333 /* For active transports, pick the most recent ones. */ 1334 if (trans_pri == NULL || 1335 ktime_after(trans->last_time_heard, 1336 trans_pri->last_time_heard)) { 1337 trans_sec = trans_pri; 1338 trans_pri = trans; 1339 } else if (trans_sec == NULL || 1340 ktime_after(trans->last_time_heard, 1341 trans_sec->last_time_heard)) { 1342 trans_sec = trans; 1343 } 1344 } 1345 1346 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1347 * 1348 * By default, an endpoint should always transmit to the primary 1349 * path, unless the SCTP user explicitly specifies the 1350 * destination transport address (and possibly source transport 1351 * address) to use. [If the primary is active but not most recent, 1352 * bump the most recently used transport.] 1353 */ 1354 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1355 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1356 asoc->peer.primary_path != trans_pri) { 1357 trans_sec = trans_pri; 1358 trans_pri = asoc->peer.primary_path; 1359 } 1360 1361 /* We did not find anything useful for a possible retransmission 1362 * path; either primary path that we found is the the same as 1363 * the current one, or we didn't generally find an active one. 1364 */ 1365 if (trans_sec == NULL) 1366 trans_sec = trans_pri; 1367 1368 /* If we failed to find a usable transport, just camp on the 1369 * active or pick a PF iff it's the better choice. 1370 */ 1371 if (trans_pri == NULL) { 1372 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1373 trans_sec = trans_pri; 1374 } 1375 1376 /* Set the active and retran transports. */ 1377 asoc->peer.active_path = trans_pri; 1378 asoc->peer.retran_path = trans_sec; 1379 } 1380 1381 struct sctp_transport * 1382 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1383 struct sctp_transport *last_sent_to) 1384 { 1385 /* If this is the first time packet is sent, use the active path, 1386 * else use the retran path. If the last packet was sent over the 1387 * retran path, update the retran path and use it. 1388 */ 1389 if (last_sent_to == NULL) { 1390 return asoc->peer.active_path; 1391 } else { 1392 if (last_sent_to == asoc->peer.retran_path) 1393 sctp_assoc_update_retran_path(asoc); 1394 1395 return asoc->peer.retran_path; 1396 } 1397 } 1398 1399 /* Update the association's pmtu and frag_point by going through all the 1400 * transports. This routine is called when a transport's PMTU has changed. 1401 */ 1402 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1403 { 1404 struct sctp_transport *t; 1405 __u32 pmtu = 0; 1406 1407 if (!asoc) 1408 return; 1409 1410 /* Get the lowest pmtu of all the transports. */ 1411 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1412 transports) { 1413 if (t->pmtu_pending && t->dst) { 1414 sctp_transport_update_pmtu(sk, t, 1415 SCTP_TRUNC4(dst_mtu(t->dst))); 1416 t->pmtu_pending = 0; 1417 } 1418 if (!pmtu || (t->pathmtu < pmtu)) 1419 pmtu = t->pathmtu; 1420 } 1421 1422 if (pmtu) { 1423 asoc->pathmtu = pmtu; 1424 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1425 } 1426 1427 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1428 asoc->pathmtu, asoc->frag_point); 1429 } 1430 1431 /* Should we send a SACK to update our peer? */ 1432 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1433 { 1434 struct net *net = sock_net(asoc->base.sk); 1435 switch (asoc->state) { 1436 case SCTP_STATE_ESTABLISHED: 1437 case SCTP_STATE_SHUTDOWN_PENDING: 1438 case SCTP_STATE_SHUTDOWN_RECEIVED: 1439 case SCTP_STATE_SHUTDOWN_SENT: 1440 if ((asoc->rwnd > asoc->a_rwnd) && 1441 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1442 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1443 asoc->pathmtu))) 1444 return true; 1445 break; 1446 default: 1447 break; 1448 } 1449 return false; 1450 } 1451 1452 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1453 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1454 { 1455 struct sctp_chunk *sack; 1456 struct timer_list *timer; 1457 1458 if (asoc->rwnd_over) { 1459 if (asoc->rwnd_over >= len) { 1460 asoc->rwnd_over -= len; 1461 } else { 1462 asoc->rwnd += (len - asoc->rwnd_over); 1463 asoc->rwnd_over = 0; 1464 } 1465 } else { 1466 asoc->rwnd += len; 1467 } 1468 1469 /* If we had window pressure, start recovering it 1470 * once our rwnd had reached the accumulated pressure 1471 * threshold. The idea is to recover slowly, but up 1472 * to the initial advertised window. 1473 */ 1474 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1475 int change = min(asoc->pathmtu, asoc->rwnd_press); 1476 asoc->rwnd += change; 1477 asoc->rwnd_press -= change; 1478 } 1479 1480 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1481 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1482 asoc->a_rwnd); 1483 1484 /* Send a window update SACK if the rwnd has increased by at least the 1485 * minimum of the association's PMTU and half of the receive buffer. 1486 * The algorithm used is similar to the one described in 1487 * Section 4.2.3.3 of RFC 1122. 1488 */ 1489 if (sctp_peer_needs_update(asoc)) { 1490 asoc->a_rwnd = asoc->rwnd; 1491 1492 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1493 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1494 asoc->a_rwnd); 1495 1496 sack = sctp_make_sack(asoc); 1497 if (!sack) 1498 return; 1499 1500 asoc->peer.sack_needed = 0; 1501 1502 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); 1503 1504 /* Stop the SACK timer. */ 1505 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1506 if (del_timer(timer)) 1507 sctp_association_put(asoc); 1508 } 1509 } 1510 1511 /* Decrease asoc's rwnd by len. */ 1512 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1513 { 1514 int rx_count; 1515 int over = 0; 1516 1517 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1518 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1519 "asoc->rwnd_over:%u!\n", __func__, asoc, 1520 asoc->rwnd, asoc->rwnd_over); 1521 1522 if (asoc->ep->rcvbuf_policy) 1523 rx_count = atomic_read(&asoc->rmem_alloc); 1524 else 1525 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1526 1527 /* If we've reached or overflowed our receive buffer, announce 1528 * a 0 rwnd if rwnd would still be positive. Store the 1529 * the potential pressure overflow so that the window can be restored 1530 * back to original value. 1531 */ 1532 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1533 over = 1; 1534 1535 if (asoc->rwnd >= len) { 1536 asoc->rwnd -= len; 1537 if (over) { 1538 asoc->rwnd_press += asoc->rwnd; 1539 asoc->rwnd = 0; 1540 } 1541 } else { 1542 asoc->rwnd_over = len - asoc->rwnd; 1543 asoc->rwnd = 0; 1544 } 1545 1546 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1547 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1548 asoc->rwnd_press); 1549 } 1550 1551 /* Build the bind address list for the association based on info from the 1552 * local endpoint and the remote peer. 1553 */ 1554 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1555 sctp_scope_t scope, gfp_t gfp) 1556 { 1557 int flags; 1558 1559 /* Use scoping rules to determine the subset of addresses from 1560 * the endpoint. 1561 */ 1562 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1563 if (asoc->peer.ipv4_address) 1564 flags |= SCTP_ADDR4_PEERSUPP; 1565 if (asoc->peer.ipv6_address) 1566 flags |= SCTP_ADDR6_PEERSUPP; 1567 1568 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1569 &asoc->base.bind_addr, 1570 &asoc->ep->base.bind_addr, 1571 scope, gfp, flags); 1572 } 1573 1574 /* Build the association's bind address list from the cookie. */ 1575 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1576 struct sctp_cookie *cookie, 1577 gfp_t gfp) 1578 { 1579 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1580 int var_size3 = cookie->raw_addr_list_len; 1581 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1582 1583 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1584 asoc->ep->base.bind_addr.port, gfp); 1585 } 1586 1587 /* Lookup laddr in the bind address list of an association. */ 1588 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1589 const union sctp_addr *laddr) 1590 { 1591 int found = 0; 1592 1593 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1594 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1595 sctp_sk(asoc->base.sk))) 1596 found = 1; 1597 1598 return found; 1599 } 1600 1601 /* Set an association id for a given association */ 1602 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1603 { 1604 bool preload = gfpflags_allow_blocking(gfp); 1605 int ret; 1606 1607 /* If the id is already assigned, keep it. */ 1608 if (asoc->assoc_id) 1609 return 0; 1610 1611 if (preload) 1612 idr_preload(gfp); 1613 spin_lock_bh(&sctp_assocs_id_lock); 1614 /* 0 is not a valid assoc_id, must be >= 1 */ 1615 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1616 spin_unlock_bh(&sctp_assocs_id_lock); 1617 if (preload) 1618 idr_preload_end(); 1619 if (ret < 0) 1620 return ret; 1621 1622 asoc->assoc_id = (sctp_assoc_t)ret; 1623 return 0; 1624 } 1625 1626 /* Free the ASCONF queue */ 1627 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1628 { 1629 struct sctp_chunk *asconf; 1630 struct sctp_chunk *tmp; 1631 1632 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1633 list_del_init(&asconf->list); 1634 sctp_chunk_free(asconf); 1635 } 1636 } 1637 1638 /* Free asconf_ack cache */ 1639 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1640 { 1641 struct sctp_chunk *ack; 1642 struct sctp_chunk *tmp; 1643 1644 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1645 transmitted_list) { 1646 list_del_init(&ack->transmitted_list); 1647 sctp_chunk_free(ack); 1648 } 1649 } 1650 1651 /* Clean up the ASCONF_ACK queue */ 1652 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1653 { 1654 struct sctp_chunk *ack; 1655 struct sctp_chunk *tmp; 1656 1657 /* We can remove all the entries from the queue up to 1658 * the "Peer-Sequence-Number". 1659 */ 1660 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1661 transmitted_list) { 1662 if (ack->subh.addip_hdr->serial == 1663 htonl(asoc->peer.addip_serial)) 1664 break; 1665 1666 list_del_init(&ack->transmitted_list); 1667 sctp_chunk_free(ack); 1668 } 1669 } 1670 1671 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1672 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1673 const struct sctp_association *asoc, 1674 __be32 serial) 1675 { 1676 struct sctp_chunk *ack; 1677 1678 /* Walk through the list of cached ASCONF-ACKs and find the 1679 * ack chunk whose serial number matches that of the request. 1680 */ 1681 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1682 if (sctp_chunk_pending(ack)) 1683 continue; 1684 if (ack->subh.addip_hdr->serial == serial) { 1685 sctp_chunk_hold(ack); 1686 return ack; 1687 } 1688 } 1689 1690 return NULL; 1691 } 1692 1693 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1694 { 1695 /* Free any cached ASCONF_ACK chunk. */ 1696 sctp_assoc_free_asconf_acks(asoc); 1697 1698 /* Free the ASCONF queue. */ 1699 sctp_assoc_free_asconf_queue(asoc); 1700 1701 /* Free any cached ASCONF chunk. */ 1702 if (asoc->addip_last_asconf) 1703 sctp_chunk_free(asoc->addip_last_asconf); 1704 } 1705