xref: /linux/net/sctp/associola.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel reference Implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * The SCTP reference implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * The SCTP reference implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang             <hui.huang@nokia.com>
42  *    Sridhar Samudrala	    <sri@us.ibm.com>
43  *    Daisy Chang	    <daisyc@us.ibm.com>
44  *    Ryan Layer	    <rmlayer@us.ibm.com>
45  *    Kevin Gao             <kevin.gao@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/poll.h>
54 #include <linux/init.h>
55 
56 #include <linux/slab.h>
57 #include <linux/in.h>
58 #include <net/ipv6.h>
59 #include <net/sctp/sctp.h>
60 #include <net/sctp/sm.h>
61 
62 /* Forward declarations for internal functions. */
63 static void sctp_assoc_bh_rcv(struct work_struct *work);
64 
65 
66 /* 1st Level Abstractions. */
67 
68 /* Initialize a new association from provided memory. */
69 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
70 					  const struct sctp_endpoint *ep,
71 					  const struct sock *sk,
72 					  sctp_scope_t scope,
73 					  gfp_t gfp)
74 {
75 	struct sctp_sock *sp;
76 	int i;
77 	sctp_paramhdr_t *p;
78 	int err;
79 
80 	/* Retrieve the SCTP per socket area.  */
81 	sp = sctp_sk((struct sock *)sk);
82 
83 	/* Init all variables to a known value.  */
84 	memset(asoc, 0, sizeof(struct sctp_association));
85 
86 	/* Discarding const is appropriate here.  */
87 	asoc->ep = (struct sctp_endpoint *)ep;
88 	sctp_endpoint_hold(asoc->ep);
89 
90 	/* Hold the sock.  */
91 	asoc->base.sk = (struct sock *)sk;
92 	sock_hold(asoc->base.sk);
93 
94 	/* Initialize the common base substructure.  */
95 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
96 
97 	/* Initialize the object handling fields.  */
98 	atomic_set(&asoc->base.refcnt, 1);
99 	asoc->base.dead = 0;
100 	asoc->base.malloced = 0;
101 
102 	/* Initialize the bind addr area.  */
103 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
104 
105 	asoc->state = SCTP_STATE_CLOSED;
106 
107 	/* Set these values from the socket values, a conversion between
108 	 * millsecons to seconds/microseconds must also be done.
109 	 */
110 	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
111 	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
112 					* 1000;
113 	asoc->frag_point = 0;
114 
115 	/* Set the association max_retrans and RTO values from the
116 	 * socket values.
117 	 */
118 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
119 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
120 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
121 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
122 
123 	asoc->overall_error_count = 0;
124 
125 	/* Initialize the association's heartbeat interval based on the
126 	 * sock configured value.
127 	 */
128 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
129 
130 	/* Initialize path max retrans value. */
131 	asoc->pathmaxrxt = sp->pathmaxrxt;
132 
133 	/* Initialize default path MTU. */
134 	asoc->pathmtu = sp->pathmtu;
135 
136 	/* Set association default SACK delay */
137 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
138 
139 	/* Set the association default flags controlling
140 	 * Heartbeat, SACK delay, and Path MTU Discovery.
141 	 */
142 	asoc->param_flags = sp->param_flags;
143 
144 	/* Initialize the maximum mumber of new data packets that can be sent
145 	 * in a burst.
146 	 */
147 	asoc->max_burst = sp->max_burst;
148 
149 	/* initialize association timers */
150 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
151 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
152 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
153 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
154 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
155 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
156 
157 	/* sctpimpguide Section 2.12.2
158 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
159 	 * recommended value of 5 times 'RTO.Max'.
160 	 */
161 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
162 		= 5 * asoc->rto_max;
163 
164 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
165 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
166 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
167 		sp->autoclose * HZ;
168 
169 	/* Initilizes the timers */
170 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
171 		init_timer(&asoc->timers[i]);
172 		asoc->timers[i].function = sctp_timer_events[i];
173 		asoc->timers[i].data = (unsigned long) asoc;
174 	}
175 
176 	/* Pull default initialization values from the sock options.
177 	 * Note: This assumes that the values have already been
178 	 * validated in the sock.
179 	 */
180 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
181 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
182 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
183 
184 	asoc->max_init_timeo =
185 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
186 
187 	/* Allocate storage for the ssnmap after the inbound and outbound
188 	 * streams have been negotiated during Init.
189 	 */
190 	asoc->ssnmap = NULL;
191 
192 	/* Set the local window size for receive.
193 	 * This is also the rcvbuf space per association.
194 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
195 	 * 1500 bytes in one SCTP packet.
196 	 */
197 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
198 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
199 	else
200 		asoc->rwnd = sk->sk_rcvbuf/2;
201 
202 	asoc->a_rwnd = asoc->rwnd;
203 
204 	asoc->rwnd_over = 0;
205 
206 	/* Use my own max window until I learn something better.  */
207 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
208 
209 	/* Set the sndbuf size for transmit.  */
210 	asoc->sndbuf_used = 0;
211 
212 	/* Initialize the receive memory counter */
213 	atomic_set(&asoc->rmem_alloc, 0);
214 
215 	init_waitqueue_head(&asoc->wait);
216 
217 	asoc->c.my_vtag = sctp_generate_tag(ep);
218 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
219 	asoc->c.peer_vtag = 0;
220 	asoc->c.my_ttag   = 0;
221 	asoc->c.peer_ttag = 0;
222 	asoc->c.my_port = ep->base.bind_addr.port;
223 
224 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
225 
226 	asoc->next_tsn = asoc->c.initial_tsn;
227 
228 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
229 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
230 	asoc->highest_sacked = asoc->ctsn_ack_point;
231 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
232 	asoc->unack_data = 0;
233 
234 	/* ADDIP Section 4.1 Asconf Chunk Procedures
235 	 *
236 	 * When an endpoint has an ASCONF signaled change to be sent to the
237 	 * remote endpoint it should do the following:
238 	 * ...
239 	 * A2) a serial number should be assigned to the chunk. The serial
240 	 * number SHOULD be a monotonically increasing number. The serial
241 	 * numbers SHOULD be initialized at the start of the
242 	 * association to the same value as the initial TSN.
243 	 */
244 	asoc->addip_serial = asoc->c.initial_tsn;
245 
246 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
247 
248 	/* Make an empty list of remote transport addresses.  */
249 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
250 	asoc->peer.transport_count = 0;
251 
252 	/* RFC 2960 5.1 Normal Establishment of an Association
253 	 *
254 	 * After the reception of the first data chunk in an
255 	 * association the endpoint must immediately respond with a
256 	 * sack to acknowledge the data chunk.  Subsequent
257 	 * acknowledgements should be done as described in Section
258 	 * 6.2.
259 	 *
260 	 * [We implement this by telling a new association that it
261 	 * already received one packet.]
262 	 */
263 	asoc->peer.sack_needed = 1;
264 
265 	/* Assume that the peer recongizes ASCONF until reported otherwise
266 	 * via an ERROR chunk.
267 	 */
268 	asoc->peer.asconf_capable = 1;
269 
270 	/* Create an input queue.  */
271 	sctp_inq_init(&asoc->base.inqueue);
272 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
273 
274 	/* Create an output queue.  */
275 	sctp_outq_init(asoc, &asoc->outqueue);
276 
277 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
278 		goto fail_init;
279 
280 	/* Set up the tsn tracking. */
281 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0);
282 
283 	asoc->need_ecne = 0;
284 
285 	asoc->assoc_id = 0;
286 
287 	/* Assume that peer would support both address types unless we are
288 	 * told otherwise.
289 	 */
290 	asoc->peer.ipv4_address = 1;
291 	asoc->peer.ipv6_address = 1;
292 	INIT_LIST_HEAD(&asoc->asocs);
293 
294 	asoc->autoclose = sp->autoclose;
295 
296 	asoc->default_stream = sp->default_stream;
297 	asoc->default_ppid = sp->default_ppid;
298 	asoc->default_flags = sp->default_flags;
299 	asoc->default_context = sp->default_context;
300 	asoc->default_timetolive = sp->default_timetolive;
301 	asoc->default_rcv_context = sp->default_rcv_context;
302 
303 	/* AUTH related initializations */
304 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
305 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
306 	if (err)
307 		goto fail_init;
308 
309 	asoc->active_key_id = ep->active_key_id;
310 	asoc->asoc_shared_key = NULL;
311 
312 	asoc->default_hmac_id = 0;
313 	/* Save the hmacs and chunks list into this association */
314 	if (ep->auth_hmacs_list)
315 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
316 			ntohs(ep->auth_hmacs_list->param_hdr.length));
317 	if (ep->auth_chunk_list)
318 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
319 			ntohs(ep->auth_chunk_list->param_hdr.length));
320 
321 	/* Get the AUTH random number for this association */
322 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
323 	p->type = SCTP_PARAM_RANDOM;
324 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
325 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
326 
327 	return asoc;
328 
329 fail_init:
330 	sctp_endpoint_put(asoc->ep);
331 	sock_put(asoc->base.sk);
332 	return NULL;
333 }
334 
335 /* Allocate and initialize a new association */
336 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
337 					 const struct sock *sk,
338 					 sctp_scope_t scope,
339 					 gfp_t gfp)
340 {
341 	struct sctp_association *asoc;
342 
343 	asoc = t_new(struct sctp_association, gfp);
344 	if (!asoc)
345 		goto fail;
346 
347 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
348 		goto fail_init;
349 
350 	asoc->base.malloced = 1;
351 	SCTP_DBG_OBJCNT_INC(assoc);
352 	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
353 
354 	return asoc;
355 
356 fail_init:
357 	kfree(asoc);
358 fail:
359 	return NULL;
360 }
361 
362 /* Free this association if possible.  There may still be users, so
363  * the actual deallocation may be delayed.
364  */
365 void sctp_association_free(struct sctp_association *asoc)
366 {
367 	struct sock *sk = asoc->base.sk;
368 	struct sctp_transport *transport;
369 	struct list_head *pos, *temp;
370 	int i;
371 
372 	/* Only real associations count against the endpoint, so
373 	 * don't bother for if this is a temporary association.
374 	 */
375 	if (!asoc->temp) {
376 		list_del(&asoc->asocs);
377 
378 		/* Decrement the backlog value for a TCP-style listening
379 		 * socket.
380 		 */
381 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
382 			sk->sk_ack_backlog--;
383 	}
384 
385 	/* Mark as dead, so other users can know this structure is
386 	 * going away.
387 	 */
388 	asoc->base.dead = 1;
389 
390 	/* Dispose of any data lying around in the outqueue. */
391 	sctp_outq_free(&asoc->outqueue);
392 
393 	/* Dispose of any pending messages for the upper layer. */
394 	sctp_ulpq_free(&asoc->ulpq);
395 
396 	/* Dispose of any pending chunks on the inqueue. */
397 	sctp_inq_free(&asoc->base.inqueue);
398 
399 	/* Free ssnmap storage. */
400 	sctp_ssnmap_free(asoc->ssnmap);
401 
402 	/* Clean up the bound address list. */
403 	sctp_bind_addr_free(&asoc->base.bind_addr);
404 
405 	/* Do we need to go through all of our timers and
406 	 * delete them?   To be safe we will try to delete all, but we
407 	 * should be able to go through and make a guess based
408 	 * on our state.
409 	 */
410 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
411 		if (timer_pending(&asoc->timers[i]) &&
412 		    del_timer(&asoc->timers[i]))
413 			sctp_association_put(asoc);
414 	}
415 
416 	/* Free peer's cached cookie. */
417 	kfree(asoc->peer.cookie);
418 	kfree(asoc->peer.peer_random);
419 	kfree(asoc->peer.peer_chunks);
420 	kfree(asoc->peer.peer_hmacs);
421 
422 	/* Release the transport structures. */
423 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
424 		transport = list_entry(pos, struct sctp_transport, transports);
425 		list_del(pos);
426 		sctp_transport_free(transport);
427 	}
428 
429 	asoc->peer.transport_count = 0;
430 
431 	/* Free any cached ASCONF_ACK chunk. */
432 	if (asoc->addip_last_asconf_ack)
433 		sctp_chunk_free(asoc->addip_last_asconf_ack);
434 
435 	/* Free any cached ASCONF chunk. */
436 	if (asoc->addip_last_asconf)
437 		sctp_chunk_free(asoc->addip_last_asconf);
438 
439 	/* AUTH - Free the endpoint shared keys */
440 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
441 
442 	/* AUTH - Free the association shared key */
443 	sctp_auth_key_put(asoc->asoc_shared_key);
444 
445 	sctp_association_put(asoc);
446 }
447 
448 /* Cleanup and free up an association. */
449 static void sctp_association_destroy(struct sctp_association *asoc)
450 {
451 	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
452 
453 	sctp_endpoint_put(asoc->ep);
454 	sock_put(asoc->base.sk);
455 
456 	if (asoc->assoc_id != 0) {
457 		spin_lock_bh(&sctp_assocs_id_lock);
458 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
459 		spin_unlock_bh(&sctp_assocs_id_lock);
460 	}
461 
462 	BUG_TRAP(!atomic_read(&asoc->rmem_alloc));
463 
464 	if (asoc->base.malloced) {
465 		kfree(asoc);
466 		SCTP_DBG_OBJCNT_DEC(assoc);
467 	}
468 }
469 
470 /* Change the primary destination address for the peer. */
471 void sctp_assoc_set_primary(struct sctp_association *asoc,
472 			    struct sctp_transport *transport)
473 {
474 	asoc->peer.primary_path = transport;
475 
476 	/* Set a default msg_name for events. */
477 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
478 	       sizeof(union sctp_addr));
479 
480 	/* If the primary path is changing, assume that the
481 	 * user wants to use this new path.
482 	 */
483 	if ((transport->state == SCTP_ACTIVE) ||
484 	    (transport->state == SCTP_UNKNOWN))
485 		asoc->peer.active_path = transport;
486 
487 	/*
488 	 * SFR-CACC algorithm:
489 	 * Upon the receipt of a request to change the primary
490 	 * destination address, on the data structure for the new
491 	 * primary destination, the sender MUST do the following:
492 	 *
493 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
494 	 * to this destination address earlier. The sender MUST set
495 	 * CYCLING_CHANGEOVER to indicate that this switch is a
496 	 * double switch to the same destination address.
497 	 */
498 	if (transport->cacc.changeover_active)
499 		transport->cacc.cycling_changeover = 1;
500 
501 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
502 	 * a changeover has occurred.
503 	 */
504 	transport->cacc.changeover_active = 1;
505 
506 	/* 3) The sender MUST store the next TSN to be sent in
507 	 * next_tsn_at_change.
508 	 */
509 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
510 }
511 
512 /* Remove a transport from an association.  */
513 void sctp_assoc_rm_peer(struct sctp_association *asoc,
514 			struct sctp_transport *peer)
515 {
516 	struct list_head	*pos;
517 	struct sctp_transport	*transport;
518 
519 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
520 				 " port: %d\n",
521 				 asoc,
522 				 (&peer->ipaddr),
523 				 ntohs(peer->ipaddr.v4.sin_port));
524 
525 	/* If we are to remove the current retran_path, update it
526 	 * to the next peer before removing this peer from the list.
527 	 */
528 	if (asoc->peer.retran_path == peer)
529 		sctp_assoc_update_retran_path(asoc);
530 
531 	/* Remove this peer from the list. */
532 	list_del(&peer->transports);
533 
534 	/* Get the first transport of asoc. */
535 	pos = asoc->peer.transport_addr_list.next;
536 	transport = list_entry(pos, struct sctp_transport, transports);
537 
538 	/* Update any entries that match the peer to be deleted. */
539 	if (asoc->peer.primary_path == peer)
540 		sctp_assoc_set_primary(asoc, transport);
541 	if (asoc->peer.active_path == peer)
542 		asoc->peer.active_path = transport;
543 	if (asoc->peer.last_data_from == peer)
544 		asoc->peer.last_data_from = transport;
545 
546 	/* If we remove the transport an INIT was last sent to, set it to
547 	 * NULL. Combined with the update of the retran path above, this
548 	 * will cause the next INIT to be sent to the next available
549 	 * transport, maintaining the cycle.
550 	 */
551 	if (asoc->init_last_sent_to == peer)
552 		asoc->init_last_sent_to = NULL;
553 
554 	asoc->peer.transport_count--;
555 
556 	sctp_transport_free(peer);
557 }
558 
559 /* Add a transport address to an association.  */
560 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
561 					   const union sctp_addr *addr,
562 					   const gfp_t gfp,
563 					   const int peer_state)
564 {
565 	struct sctp_transport *peer;
566 	struct sctp_sock *sp;
567 	unsigned short port;
568 
569 	sp = sctp_sk(asoc->base.sk);
570 
571 	/* AF_INET and AF_INET6 share common port field. */
572 	port = ntohs(addr->v4.sin_port);
573 
574 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
575 				 " port: %d state:%d\n",
576 				 asoc,
577 				 addr,
578 				 port,
579 				 peer_state);
580 
581 	/* Set the port if it has not been set yet.  */
582 	if (0 == asoc->peer.port)
583 		asoc->peer.port = port;
584 
585 	/* Check to see if this is a duplicate. */
586 	peer = sctp_assoc_lookup_paddr(asoc, addr);
587 	if (peer) {
588 		if (peer->state == SCTP_UNKNOWN) {
589 			if (peer_state == SCTP_ACTIVE)
590 				peer->state = SCTP_ACTIVE;
591 			if (peer_state == SCTP_UNCONFIRMED)
592 				peer->state = SCTP_UNCONFIRMED;
593 		}
594 		return peer;
595 	}
596 
597 	peer = sctp_transport_new(addr, gfp);
598 	if (!peer)
599 		return NULL;
600 
601 	sctp_transport_set_owner(peer, asoc);
602 
603 	/* Initialize the peer's heartbeat interval based on the
604 	 * association configured value.
605 	 */
606 	peer->hbinterval = asoc->hbinterval;
607 
608 	/* Set the path max_retrans.  */
609 	peer->pathmaxrxt = asoc->pathmaxrxt;
610 
611 	/* Initialize the peer's SACK delay timeout based on the
612 	 * association configured value.
613 	 */
614 	peer->sackdelay = asoc->sackdelay;
615 
616 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
617 	 * based on association setting.
618 	 */
619 	peer->param_flags = asoc->param_flags;
620 
621 	/* Initialize the pmtu of the transport. */
622 	if (peer->param_flags & SPP_PMTUD_ENABLE)
623 		sctp_transport_pmtu(peer);
624 	else if (asoc->pathmtu)
625 		peer->pathmtu = asoc->pathmtu;
626 	else
627 		peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
628 
629 	/* If this is the first transport addr on this association,
630 	 * initialize the association PMTU to the peer's PMTU.
631 	 * If not and the current association PMTU is higher than the new
632 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
633 	 */
634 	if (asoc->pathmtu)
635 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
636 	else
637 		asoc->pathmtu = peer->pathmtu;
638 
639 	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
640 			  "%d\n", asoc, asoc->pathmtu);
641 
642 	asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
643 
644 	/* The asoc->peer.port might not be meaningful yet, but
645 	 * initialize the packet structure anyway.
646 	 */
647 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
648 			 asoc->peer.port);
649 
650 	/* 7.2.1 Slow-Start
651 	 *
652 	 * o The initial cwnd before DATA transmission or after a sufficiently
653 	 *   long idle period MUST be set to
654 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
655 	 *
656 	 * o The initial value of ssthresh MAY be arbitrarily high
657 	 *   (for example, implementations MAY use the size of the
658 	 *   receiver advertised window).
659 	 */
660 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
661 
662 	/* At this point, we may not have the receiver's advertised window,
663 	 * so initialize ssthresh to the default value and it will be set
664 	 * later when we process the INIT.
665 	 */
666 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
667 
668 	peer->partial_bytes_acked = 0;
669 	peer->flight_size = 0;
670 
671 	/* Set the transport's RTO.initial value */
672 	peer->rto = asoc->rto_initial;
673 
674 	/* Set the peer's active state. */
675 	peer->state = peer_state;
676 
677 	/* Attach the remote transport to our asoc.  */
678 	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
679 	asoc->peer.transport_count++;
680 
681 	/* If we do not yet have a primary path, set one.  */
682 	if (!asoc->peer.primary_path) {
683 		sctp_assoc_set_primary(asoc, peer);
684 		asoc->peer.retran_path = peer;
685 	}
686 
687 	if (asoc->peer.active_path == asoc->peer.retran_path) {
688 		asoc->peer.retran_path = peer;
689 	}
690 
691 	return peer;
692 }
693 
694 /* Delete a transport address from an association.  */
695 void sctp_assoc_del_peer(struct sctp_association *asoc,
696 			 const union sctp_addr *addr)
697 {
698 	struct list_head	*pos;
699 	struct list_head	*temp;
700 	struct sctp_transport	*transport;
701 
702 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
703 		transport = list_entry(pos, struct sctp_transport, transports);
704 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
705 			/* Do book keeping for removing the peer and free it. */
706 			sctp_assoc_rm_peer(asoc, transport);
707 			break;
708 		}
709 	}
710 }
711 
712 /* Lookup a transport by address. */
713 struct sctp_transport *sctp_assoc_lookup_paddr(
714 					const struct sctp_association *asoc,
715 					const union sctp_addr *address)
716 {
717 	struct sctp_transport *t;
718 	struct list_head *pos;
719 
720 	/* Cycle through all transports searching for a peer address. */
721 
722 	list_for_each(pos, &asoc->peer.transport_addr_list) {
723 		t = list_entry(pos, struct sctp_transport, transports);
724 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
725 			return t;
726 	}
727 
728 	return NULL;
729 }
730 
731 /* Engage in transport control operations.
732  * Mark the transport up or down and send a notification to the user.
733  * Select and update the new active and retran paths.
734  */
735 void sctp_assoc_control_transport(struct sctp_association *asoc,
736 				  struct sctp_transport *transport,
737 				  sctp_transport_cmd_t command,
738 				  sctp_sn_error_t error)
739 {
740 	struct sctp_transport *t = NULL;
741 	struct sctp_transport *first;
742 	struct sctp_transport *second;
743 	struct sctp_ulpevent *event;
744 	struct sockaddr_storage addr;
745 	struct list_head *pos;
746 	int spc_state = 0;
747 
748 	/* Record the transition on the transport.  */
749 	switch (command) {
750 	case SCTP_TRANSPORT_UP:
751 		/* If we are moving from UNCONFIRMED state due
752 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
753 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
754 		 */
755 		if (SCTP_UNCONFIRMED == transport->state &&
756 		    SCTP_HEARTBEAT_SUCCESS == error)
757 			spc_state = SCTP_ADDR_CONFIRMED;
758 		else
759 			spc_state = SCTP_ADDR_AVAILABLE;
760 		transport->state = SCTP_ACTIVE;
761 		break;
762 
763 	case SCTP_TRANSPORT_DOWN:
764 		/* if the transort was never confirmed, do not transition it
765 		 * to inactive state.
766 		 */
767 		if (transport->state != SCTP_UNCONFIRMED)
768 			transport->state = SCTP_INACTIVE;
769 
770 		spc_state = SCTP_ADDR_UNREACHABLE;
771 		break;
772 
773 	default:
774 		return;
775 	}
776 
777 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
778 	 * user.
779 	 */
780 	memset(&addr, 0, sizeof(struct sockaddr_storage));
781 	memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
782 	event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
783 				0, spc_state, error, GFP_ATOMIC);
784 	if (event)
785 		sctp_ulpq_tail_event(&asoc->ulpq, event);
786 
787 	/* Select new active and retran paths. */
788 
789 	/* Look for the two most recently used active transports.
790 	 *
791 	 * This code produces the wrong ordering whenever jiffies
792 	 * rolls over, but we still get usable transports, so we don't
793 	 * worry about it.
794 	 */
795 	first = NULL; second = NULL;
796 
797 	list_for_each(pos, &asoc->peer.transport_addr_list) {
798 		t = list_entry(pos, struct sctp_transport, transports);
799 
800 		if ((t->state == SCTP_INACTIVE) ||
801 		    (t->state == SCTP_UNCONFIRMED))
802 			continue;
803 		if (!first || t->last_time_heard > first->last_time_heard) {
804 			second = first;
805 			first = t;
806 		}
807 		if (!second || t->last_time_heard > second->last_time_heard)
808 			second = t;
809 	}
810 
811 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
812 	 *
813 	 * By default, an endpoint should always transmit to the
814 	 * primary path, unless the SCTP user explicitly specifies the
815 	 * destination transport address (and possibly source
816 	 * transport address) to use.
817 	 *
818 	 * [If the primary is active but not most recent, bump the most
819 	 * recently used transport.]
820 	 */
821 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
822 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
823 	    first != asoc->peer.primary_path) {
824 		second = first;
825 		first = asoc->peer.primary_path;
826 	}
827 
828 	/* If we failed to find a usable transport, just camp on the
829 	 * primary, even if it is inactive.
830 	 */
831 	if (!first) {
832 		first = asoc->peer.primary_path;
833 		second = asoc->peer.primary_path;
834 	}
835 
836 	/* Set the active and retran transports.  */
837 	asoc->peer.active_path = first;
838 	asoc->peer.retran_path = second;
839 }
840 
841 /* Hold a reference to an association. */
842 void sctp_association_hold(struct sctp_association *asoc)
843 {
844 	atomic_inc(&asoc->base.refcnt);
845 }
846 
847 /* Release a reference to an association and cleanup
848  * if there are no more references.
849  */
850 void sctp_association_put(struct sctp_association *asoc)
851 {
852 	if (atomic_dec_and_test(&asoc->base.refcnt))
853 		sctp_association_destroy(asoc);
854 }
855 
856 /* Allocate the next TSN, Transmission Sequence Number, for the given
857  * association.
858  */
859 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
860 {
861 	/* From Section 1.6 Serial Number Arithmetic:
862 	 * Transmission Sequence Numbers wrap around when they reach
863 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
864 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
865 	 */
866 	__u32 retval = asoc->next_tsn;
867 	asoc->next_tsn++;
868 	asoc->unack_data++;
869 
870 	return retval;
871 }
872 
873 /* Compare two addresses to see if they match.  Wildcard addresses
874  * only match themselves.
875  */
876 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
877 			const union sctp_addr *ss2)
878 {
879 	struct sctp_af *af;
880 
881 	af = sctp_get_af_specific(ss1->sa.sa_family);
882 	if (unlikely(!af))
883 		return 0;
884 
885 	return af->cmp_addr(ss1, ss2);
886 }
887 
888 /* Return an ecne chunk to get prepended to a packet.
889  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
890  * No we don't, but we could/should.
891  */
892 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
893 {
894 	struct sctp_chunk *chunk;
895 
896 	/* Send ECNE if needed.
897 	 * Not being able to allocate a chunk here is not deadly.
898 	 */
899 	if (asoc->need_ecne)
900 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
901 	else
902 		chunk = NULL;
903 
904 	return chunk;
905 }
906 
907 /*
908  * Find which transport this TSN was sent on.
909  */
910 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
911 					     __u32 tsn)
912 {
913 	struct sctp_transport *active;
914 	struct sctp_transport *match;
915 	struct list_head *entry, *pos;
916 	struct sctp_transport *transport;
917 	struct sctp_chunk *chunk;
918 	__be32 key = htonl(tsn);
919 
920 	match = NULL;
921 
922 	/*
923 	 * FIXME: In general, find a more efficient data structure for
924 	 * searching.
925 	 */
926 
927 	/*
928 	 * The general strategy is to search each transport's transmitted
929 	 * list.   Return which transport this TSN lives on.
930 	 *
931 	 * Let's be hopeful and check the active_path first.
932 	 * Another optimization would be to know if there is only one
933 	 * outbound path and not have to look for the TSN at all.
934 	 *
935 	 */
936 
937 	active = asoc->peer.active_path;
938 
939 	list_for_each(entry, &active->transmitted) {
940 		chunk = list_entry(entry, struct sctp_chunk, transmitted_list);
941 
942 		if (key == chunk->subh.data_hdr->tsn) {
943 			match = active;
944 			goto out;
945 		}
946 	}
947 
948 	/* If not found, go search all the other transports. */
949 	list_for_each(pos, &asoc->peer.transport_addr_list) {
950 		transport = list_entry(pos, struct sctp_transport, transports);
951 
952 		if (transport == active)
953 			break;
954 		list_for_each(entry, &transport->transmitted) {
955 			chunk = list_entry(entry, struct sctp_chunk,
956 					   transmitted_list);
957 			if (key == chunk->subh.data_hdr->tsn) {
958 				match = transport;
959 				goto out;
960 			}
961 		}
962 	}
963 out:
964 	return match;
965 }
966 
967 /* Is this the association we are looking for? */
968 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
969 					   const union sctp_addr *laddr,
970 					   const union sctp_addr *paddr)
971 {
972 	struct sctp_transport *transport;
973 
974 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
975 	    (htons(asoc->peer.port) == paddr->v4.sin_port)) {
976 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
977 		if (!transport)
978 			goto out;
979 
980 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
981 					 sctp_sk(asoc->base.sk)))
982 			goto out;
983 	}
984 	transport = NULL;
985 
986 out:
987 	return transport;
988 }
989 
990 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
991 static void sctp_assoc_bh_rcv(struct work_struct *work)
992 {
993 	struct sctp_association *asoc =
994 		container_of(work, struct sctp_association,
995 			     base.inqueue.immediate);
996 	struct sctp_endpoint *ep;
997 	struct sctp_chunk *chunk;
998 	struct sock *sk;
999 	struct sctp_inq *inqueue;
1000 	int state;
1001 	sctp_subtype_t subtype;
1002 	int error = 0;
1003 
1004 	/* The association should be held so we should be safe. */
1005 	ep = asoc->ep;
1006 	sk = asoc->base.sk;
1007 
1008 	inqueue = &asoc->base.inqueue;
1009 	sctp_association_hold(asoc);
1010 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1011 		state = asoc->state;
1012 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1013 
1014 		/* SCTP-AUTH, Section 6.3:
1015 		 *    The receiver has a list of chunk types which it expects
1016 		 *    to be received only after an AUTH-chunk.  This list has
1017 		 *    been sent to the peer during the association setup.  It
1018 		 *    MUST silently discard these chunks if they are not placed
1019 		 *    after an AUTH chunk in the packet.
1020 		 */
1021 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1022 			continue;
1023 
1024 		/* Remember where the last DATA chunk came from so we
1025 		 * know where to send the SACK.
1026 		 */
1027 		if (sctp_chunk_is_data(chunk))
1028 			asoc->peer.last_data_from = chunk->transport;
1029 		else
1030 			SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
1031 
1032 		if (chunk->transport)
1033 			chunk->transport->last_time_heard = jiffies;
1034 
1035 		/* Run through the state machine. */
1036 		error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1037 				   state, ep, asoc, chunk, GFP_ATOMIC);
1038 
1039 		/* Check to see if the association is freed in response to
1040 		 * the incoming chunk.  If so, get out of the while loop.
1041 		 */
1042 		if (asoc->base.dead)
1043 			break;
1044 
1045 		/* If there is an error on chunk, discard this packet. */
1046 		if (error && chunk)
1047 			chunk->pdiscard = 1;
1048 	}
1049 	sctp_association_put(asoc);
1050 }
1051 
1052 /* This routine moves an association from its old sk to a new sk.  */
1053 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1054 {
1055 	struct sctp_sock *newsp = sctp_sk(newsk);
1056 	struct sock *oldsk = assoc->base.sk;
1057 
1058 	/* Delete the association from the old endpoint's list of
1059 	 * associations.
1060 	 */
1061 	list_del_init(&assoc->asocs);
1062 
1063 	/* Decrement the backlog value for a TCP-style socket. */
1064 	if (sctp_style(oldsk, TCP))
1065 		oldsk->sk_ack_backlog--;
1066 
1067 	/* Release references to the old endpoint and the sock.  */
1068 	sctp_endpoint_put(assoc->ep);
1069 	sock_put(assoc->base.sk);
1070 
1071 	/* Get a reference to the new endpoint.  */
1072 	assoc->ep = newsp->ep;
1073 	sctp_endpoint_hold(assoc->ep);
1074 
1075 	/* Get a reference to the new sock.  */
1076 	assoc->base.sk = newsk;
1077 	sock_hold(assoc->base.sk);
1078 
1079 	/* Add the association to the new endpoint's list of associations.  */
1080 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1081 }
1082 
1083 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1084 void sctp_assoc_update(struct sctp_association *asoc,
1085 		       struct sctp_association *new)
1086 {
1087 	struct sctp_transport *trans;
1088 	struct list_head *pos, *temp;
1089 
1090 	/* Copy in new parameters of peer. */
1091 	asoc->c = new->c;
1092 	asoc->peer.rwnd = new->peer.rwnd;
1093 	asoc->peer.sack_needed = new->peer.sack_needed;
1094 	asoc->peer.i = new->peer.i;
1095 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE,
1096 			 asoc->peer.i.initial_tsn);
1097 
1098 	/* Remove any peer addresses not present in the new association. */
1099 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1100 		trans = list_entry(pos, struct sctp_transport, transports);
1101 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr))
1102 			sctp_assoc_del_peer(asoc, &trans->ipaddr);
1103 
1104 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1105 			sctp_transport_reset(trans);
1106 	}
1107 
1108 	/* If the case is A (association restart), use
1109 	 * initial_tsn as next_tsn. If the case is B, use
1110 	 * current next_tsn in case data sent to peer
1111 	 * has been discarded and needs retransmission.
1112 	 */
1113 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1114 		asoc->next_tsn = new->next_tsn;
1115 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1116 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1117 
1118 		/* Reinitialize SSN for both local streams
1119 		 * and peer's streams.
1120 		 */
1121 		sctp_ssnmap_clear(asoc->ssnmap);
1122 
1123 		/* Flush the ULP reassembly and ordered queue.
1124 		 * Any data there will now be stale and will
1125 		 * cause problems.
1126 		 */
1127 		sctp_ulpq_flush(&asoc->ulpq);
1128 
1129 		/* reset the overall association error count so
1130 		 * that the restarted association doesn't get torn
1131 		 * down on the next retransmission timer.
1132 		 */
1133 		asoc->overall_error_count = 0;
1134 
1135 	} else {
1136 		/* Add any peer addresses from the new association. */
1137 		list_for_each(pos, &new->peer.transport_addr_list) {
1138 			trans = list_entry(pos, struct sctp_transport,
1139 					   transports);
1140 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1141 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1142 						    GFP_ATOMIC, trans->state);
1143 		}
1144 
1145 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1146 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1147 		if (!asoc->ssnmap) {
1148 			/* Move the ssnmap. */
1149 			asoc->ssnmap = new->ssnmap;
1150 			new->ssnmap = NULL;
1151 		}
1152 
1153 		if (!asoc->assoc_id) {
1154 			/* get a new association id since we don't have one
1155 			 * yet.
1156 			 */
1157 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1158 		}
1159 	}
1160 
1161 	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1162 	 * and also move the association shared keys over
1163 	 */
1164 	kfree(asoc->peer.peer_random);
1165 	asoc->peer.peer_random = new->peer.peer_random;
1166 	new->peer.peer_random = NULL;
1167 
1168 	kfree(asoc->peer.peer_chunks);
1169 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1170 	new->peer.peer_chunks = NULL;
1171 
1172 	kfree(asoc->peer.peer_hmacs);
1173 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1174 	new->peer.peer_hmacs = NULL;
1175 
1176 	sctp_auth_key_put(asoc->asoc_shared_key);
1177 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1178 }
1179 
1180 /* Update the retran path for sending a retransmitted packet.
1181  * Round-robin through the active transports, else round-robin
1182  * through the inactive transports as this is the next best thing
1183  * we can try.
1184  */
1185 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1186 {
1187 	struct sctp_transport *t, *next;
1188 	struct list_head *head = &asoc->peer.transport_addr_list;
1189 	struct list_head *pos;
1190 
1191 	/* Find the next transport in a round-robin fashion. */
1192 	t = asoc->peer.retran_path;
1193 	pos = &t->transports;
1194 	next = NULL;
1195 
1196 	while (1) {
1197 		/* Skip the head. */
1198 		if (pos->next == head)
1199 			pos = head->next;
1200 		else
1201 			pos = pos->next;
1202 
1203 		t = list_entry(pos, struct sctp_transport, transports);
1204 
1205 		/* Try to find an active transport. */
1206 
1207 		if ((t->state == SCTP_ACTIVE) ||
1208 		    (t->state == SCTP_UNKNOWN)) {
1209 			break;
1210 		} else {
1211 			/* Keep track of the next transport in case
1212 			 * we don't find any active transport.
1213 			 */
1214 			if (!next)
1215 				next = t;
1216 		}
1217 
1218 		/* We have exhausted the list, but didn't find any
1219 		 * other active transports.  If so, use the next
1220 		 * transport.
1221 		 */
1222 		if (t == asoc->peer.retran_path) {
1223 			t = next;
1224 			break;
1225 		}
1226 	}
1227 
1228 	asoc->peer.retran_path = t;
1229 
1230 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1231 				 " %p addr: ",
1232 				 " port: %d\n",
1233 				 asoc,
1234 				 (&t->ipaddr),
1235 				 ntohs(t->ipaddr.v4.sin_port));
1236 }
1237 
1238 /* Choose the transport for sending a INIT packet.  */
1239 struct sctp_transport *sctp_assoc_choose_init_transport(
1240 	struct sctp_association *asoc)
1241 {
1242 	struct sctp_transport *t;
1243 
1244 	/* Use the retran path. If the last INIT was sent over the
1245 	 * retran path, update the retran path and use it.
1246 	 */
1247 	if (!asoc->init_last_sent_to) {
1248 		t = asoc->peer.active_path;
1249 	} else {
1250 		if (asoc->init_last_sent_to == asoc->peer.retran_path)
1251 			sctp_assoc_update_retran_path(asoc);
1252 		t = asoc->peer.retran_path;
1253 	}
1254 
1255 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1256 				 " %p addr: ",
1257 				 " port: %d\n",
1258 				 asoc,
1259 				 (&t->ipaddr),
1260 				 ntohs(t->ipaddr.v4.sin_port));
1261 
1262 	return t;
1263 }
1264 
1265 /* Choose the transport for sending a SHUTDOWN packet.  */
1266 struct sctp_transport *sctp_assoc_choose_shutdown_transport(
1267 	struct sctp_association *asoc)
1268 {
1269 	/* If this is the first time SHUTDOWN is sent, use the active path,
1270 	 * else use the retran path. If the last SHUTDOWN was sent over the
1271 	 * retran path, update the retran path and use it.
1272 	 */
1273 	if (!asoc->shutdown_last_sent_to)
1274 		return asoc->peer.active_path;
1275 	else {
1276 		if (asoc->shutdown_last_sent_to == asoc->peer.retran_path)
1277 			sctp_assoc_update_retran_path(asoc);
1278 		return asoc->peer.retran_path;
1279 	}
1280 
1281 }
1282 
1283 /* Update the association's pmtu and frag_point by going through all the
1284  * transports. This routine is called when a transport's PMTU has changed.
1285  */
1286 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1287 {
1288 	struct sctp_transport *t;
1289 	struct list_head *pos;
1290 	__u32 pmtu = 0;
1291 
1292 	if (!asoc)
1293 		return;
1294 
1295 	/* Get the lowest pmtu of all the transports. */
1296 	list_for_each(pos, &asoc->peer.transport_addr_list) {
1297 		t = list_entry(pos, struct sctp_transport, transports);
1298 		if (t->pmtu_pending && t->dst) {
1299 			sctp_transport_update_pmtu(t, dst_mtu(t->dst));
1300 			t->pmtu_pending = 0;
1301 		}
1302 		if (!pmtu || (t->pathmtu < pmtu))
1303 			pmtu = t->pathmtu;
1304 	}
1305 
1306 	if (pmtu) {
1307 		struct sctp_sock *sp = sctp_sk(asoc->base.sk);
1308 		asoc->pathmtu = pmtu;
1309 		asoc->frag_point = sctp_frag_point(sp, pmtu);
1310 	}
1311 
1312 	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1313 			  __FUNCTION__, asoc, asoc->pathmtu, asoc->frag_point);
1314 }
1315 
1316 /* Should we send a SACK to update our peer? */
1317 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1318 {
1319 	switch (asoc->state) {
1320 	case SCTP_STATE_ESTABLISHED:
1321 	case SCTP_STATE_SHUTDOWN_PENDING:
1322 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1323 	case SCTP_STATE_SHUTDOWN_SENT:
1324 		if ((asoc->rwnd > asoc->a_rwnd) &&
1325 		    ((asoc->rwnd - asoc->a_rwnd) >=
1326 		     min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu)))
1327 			return 1;
1328 		break;
1329 	default:
1330 		break;
1331 	}
1332 	return 0;
1333 }
1334 
1335 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1336 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1337 {
1338 	struct sctp_chunk *sack;
1339 	struct timer_list *timer;
1340 
1341 	if (asoc->rwnd_over) {
1342 		if (asoc->rwnd_over >= len) {
1343 			asoc->rwnd_over -= len;
1344 		} else {
1345 			asoc->rwnd += (len - asoc->rwnd_over);
1346 			asoc->rwnd_over = 0;
1347 		}
1348 	} else {
1349 		asoc->rwnd += len;
1350 	}
1351 
1352 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1353 			  "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd,
1354 			  asoc->rwnd_over, asoc->a_rwnd);
1355 
1356 	/* Send a window update SACK if the rwnd has increased by at least the
1357 	 * minimum of the association's PMTU and half of the receive buffer.
1358 	 * The algorithm used is similar to the one described in
1359 	 * Section 4.2.3.3 of RFC 1122.
1360 	 */
1361 	if (sctp_peer_needs_update(asoc)) {
1362 		asoc->a_rwnd = asoc->rwnd;
1363 		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1364 				  "rwnd: %u a_rwnd: %u\n", __FUNCTION__,
1365 				  asoc, asoc->rwnd, asoc->a_rwnd);
1366 		sack = sctp_make_sack(asoc);
1367 		if (!sack)
1368 			return;
1369 
1370 		asoc->peer.sack_needed = 0;
1371 
1372 		sctp_outq_tail(&asoc->outqueue, sack);
1373 
1374 		/* Stop the SACK timer.  */
1375 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1376 		if (timer_pending(timer) && del_timer(timer))
1377 			sctp_association_put(asoc);
1378 	}
1379 }
1380 
1381 /* Decrease asoc's rwnd by len. */
1382 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1383 {
1384 	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1385 	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1386 	if (asoc->rwnd >= len) {
1387 		asoc->rwnd -= len;
1388 	} else {
1389 		asoc->rwnd_over = len - asoc->rwnd;
1390 		asoc->rwnd = 0;
1391 	}
1392 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
1393 			  __FUNCTION__, asoc, len, asoc->rwnd,
1394 			  asoc->rwnd_over);
1395 }
1396 
1397 /* Build the bind address list for the association based on info from the
1398  * local endpoint and the remote peer.
1399  */
1400 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1401 				     gfp_t gfp)
1402 {
1403 	sctp_scope_t scope;
1404 	int flags;
1405 
1406 	/* Use scoping rules to determine the subset of addresses from
1407 	 * the endpoint.
1408 	 */
1409 	scope = sctp_scope(&asoc->peer.active_path->ipaddr);
1410 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1411 	if (asoc->peer.ipv4_address)
1412 		flags |= SCTP_ADDR4_PEERSUPP;
1413 	if (asoc->peer.ipv6_address)
1414 		flags |= SCTP_ADDR6_PEERSUPP;
1415 
1416 	return sctp_bind_addr_copy(&asoc->base.bind_addr,
1417 				   &asoc->ep->base.bind_addr,
1418 				   scope, gfp, flags);
1419 }
1420 
1421 /* Build the association's bind address list from the cookie.  */
1422 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1423 					 struct sctp_cookie *cookie,
1424 					 gfp_t gfp)
1425 {
1426 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1427 	int var_size3 = cookie->raw_addr_list_len;
1428 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1429 
1430 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1431 				      asoc->ep->base.bind_addr.port, gfp);
1432 }
1433 
1434 /* Lookup laddr in the bind address list of an association. */
1435 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1436 			    const union sctp_addr *laddr)
1437 {
1438 	int found = 0;
1439 
1440 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1441 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1442 				 sctp_sk(asoc->base.sk)))
1443 		found = 1;
1444 
1445 	return found;
1446 }
1447 
1448 /* Set an association id for a given association */
1449 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1450 {
1451 	int assoc_id;
1452 	int error = 0;
1453 retry:
1454 	if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1455 		return -ENOMEM;
1456 
1457 	spin_lock_bh(&sctp_assocs_id_lock);
1458 	error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1459 				    1, &assoc_id);
1460 	spin_unlock_bh(&sctp_assocs_id_lock);
1461 	if (error == -EAGAIN)
1462 		goto retry;
1463 	else if (error)
1464 		return error;
1465 
1466 	asoc->assoc_id = (sctp_assoc_t) assoc_id;
1467 	return error;
1468 }
1469