xref: /linux/net/sctp/associola.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang             <hui.huang@nokia.com>
42  *    Sridhar Samudrala	    <sri@us.ibm.com>
43  *    Daisy Chang	    <daisyc@us.ibm.com>
44  *    Ryan Layer	    <rmlayer@us.ibm.com>
45  *    Kevin Gao             <kevin.gao@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/poll.h>
54 #include <linux/init.h>
55 
56 #include <linux/slab.h>
57 #include <linux/in.h>
58 #include <net/ipv6.h>
59 #include <net/sctp/sctp.h>
60 #include <net/sctp/sm.h>
61 
62 /* Forward declarations for internal functions. */
63 static void sctp_assoc_bh_rcv(struct work_struct *work);
64 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
65 
66 
67 /* 1st Level Abstractions. */
68 
69 /* Initialize a new association from provided memory. */
70 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
71 					  const struct sctp_endpoint *ep,
72 					  const struct sock *sk,
73 					  sctp_scope_t scope,
74 					  gfp_t gfp)
75 {
76 	struct sctp_sock *sp;
77 	int i;
78 	sctp_paramhdr_t *p;
79 	int err;
80 
81 	/* Retrieve the SCTP per socket area.  */
82 	sp = sctp_sk((struct sock *)sk);
83 
84 	/* Init all variables to a known value.  */
85 	memset(asoc, 0, sizeof(struct sctp_association));
86 
87 	/* Discarding const is appropriate here.  */
88 	asoc->ep = (struct sctp_endpoint *)ep;
89 	sctp_endpoint_hold(asoc->ep);
90 
91 	/* Hold the sock.  */
92 	asoc->base.sk = (struct sock *)sk;
93 	sock_hold(asoc->base.sk);
94 
95 	/* Initialize the common base substructure.  */
96 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
97 
98 	/* Initialize the object handling fields.  */
99 	atomic_set(&asoc->base.refcnt, 1);
100 	asoc->base.dead = 0;
101 	asoc->base.malloced = 0;
102 
103 	/* Initialize the bind addr area.  */
104 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
105 
106 	asoc->state = SCTP_STATE_CLOSED;
107 
108 	/* Set these values from the socket values, a conversion between
109 	 * millsecons to seconds/microseconds must also be done.
110 	 */
111 	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
112 	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
113 					* 1000;
114 	asoc->frag_point = 0;
115 	asoc->user_frag = sp->user_frag;
116 
117 	/* Set the association max_retrans and RTO values from the
118 	 * socket values.
119 	 */
120 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
121 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
122 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
123 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
124 
125 	asoc->overall_error_count = 0;
126 
127 	/* Initialize the association's heartbeat interval based on the
128 	 * sock configured value.
129 	 */
130 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
131 
132 	/* Initialize path max retrans value. */
133 	asoc->pathmaxrxt = sp->pathmaxrxt;
134 
135 	/* Initialize default path MTU. */
136 	asoc->pathmtu = sp->pathmtu;
137 
138 	/* Set association default SACK delay */
139 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
140 	asoc->sackfreq = sp->sackfreq;
141 
142 	/* Set the association default flags controlling
143 	 * Heartbeat, SACK delay, and Path MTU Discovery.
144 	 */
145 	asoc->param_flags = sp->param_flags;
146 
147 	/* Initialize the maximum mumber of new data packets that can be sent
148 	 * in a burst.
149 	 */
150 	asoc->max_burst = sp->max_burst;
151 
152 	/* initialize association timers */
153 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
154 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
155 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
156 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
157 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
158 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
159 
160 	/* sctpimpguide Section 2.12.2
161 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
162 	 * recommended value of 5 times 'RTO.Max'.
163 	 */
164 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
165 		= 5 * asoc->rto_max;
166 
167 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
168 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
169 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
170 		sp->autoclose * HZ;
171 
172 	/* Initilizes the timers */
173 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
174 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
175 				(unsigned long)asoc);
176 
177 	/* Pull default initialization values from the sock options.
178 	 * Note: This assumes that the values have already been
179 	 * validated in the sock.
180 	 */
181 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
182 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
183 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
184 
185 	asoc->max_init_timeo =
186 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
187 
188 	/* Allocate storage for the ssnmap after the inbound and outbound
189 	 * streams have been negotiated during Init.
190 	 */
191 	asoc->ssnmap = NULL;
192 
193 	/* Set the local window size for receive.
194 	 * This is also the rcvbuf space per association.
195 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
196 	 * 1500 bytes in one SCTP packet.
197 	 */
198 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
199 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
200 	else
201 		asoc->rwnd = sk->sk_rcvbuf/2;
202 
203 	asoc->a_rwnd = asoc->rwnd;
204 
205 	asoc->rwnd_over = 0;
206 	asoc->rwnd_press = 0;
207 
208 	/* Use my own max window until I learn something better.  */
209 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
210 
211 	/* Set the sndbuf size for transmit.  */
212 	asoc->sndbuf_used = 0;
213 
214 	/* Initialize the receive memory counter */
215 	atomic_set(&asoc->rmem_alloc, 0);
216 
217 	init_waitqueue_head(&asoc->wait);
218 
219 	asoc->c.my_vtag = sctp_generate_tag(ep);
220 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
221 	asoc->c.peer_vtag = 0;
222 	asoc->c.my_ttag   = 0;
223 	asoc->c.peer_ttag = 0;
224 	asoc->c.my_port = ep->base.bind_addr.port;
225 
226 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
227 
228 	asoc->next_tsn = asoc->c.initial_tsn;
229 
230 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
231 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
232 	asoc->highest_sacked = asoc->ctsn_ack_point;
233 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
234 	asoc->unack_data = 0;
235 
236 	/* ADDIP Section 4.1 Asconf Chunk Procedures
237 	 *
238 	 * When an endpoint has an ASCONF signaled change to be sent to the
239 	 * remote endpoint it should do the following:
240 	 * ...
241 	 * A2) a serial number should be assigned to the chunk. The serial
242 	 * number SHOULD be a monotonically increasing number. The serial
243 	 * numbers SHOULD be initialized at the start of the
244 	 * association to the same value as the initial TSN.
245 	 */
246 	asoc->addip_serial = asoc->c.initial_tsn;
247 
248 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
249 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
250 
251 	/* Make an empty list of remote transport addresses.  */
252 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
253 	asoc->peer.transport_count = 0;
254 
255 	/* RFC 2960 5.1 Normal Establishment of an Association
256 	 *
257 	 * After the reception of the first data chunk in an
258 	 * association the endpoint must immediately respond with a
259 	 * sack to acknowledge the data chunk.  Subsequent
260 	 * acknowledgements should be done as described in Section
261 	 * 6.2.
262 	 *
263 	 * [We implement this by telling a new association that it
264 	 * already received one packet.]
265 	 */
266 	asoc->peer.sack_needed = 1;
267 	asoc->peer.sack_cnt = 0;
268 
269 	/* Assume that the peer will tell us if he recognizes ASCONF
270 	 * as part of INIT exchange.
271 	 * The sctp_addip_noauth option is there for backward compatibilty
272 	 * and will revert old behavior.
273 	 */
274 	asoc->peer.asconf_capable = 0;
275 	if (sctp_addip_noauth)
276 		asoc->peer.asconf_capable = 1;
277 
278 	/* Create an input queue.  */
279 	sctp_inq_init(&asoc->base.inqueue);
280 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
281 
282 	/* Create an output queue.  */
283 	sctp_outq_init(asoc, &asoc->outqueue);
284 
285 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
286 		goto fail_init;
287 
288 	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
289 
290 	asoc->need_ecne = 0;
291 
292 	asoc->assoc_id = 0;
293 
294 	/* Assume that peer would support both address types unless we are
295 	 * told otherwise.
296 	 */
297 	asoc->peer.ipv4_address = 1;
298 	if (asoc->base.sk->sk_family == PF_INET6)
299 		asoc->peer.ipv6_address = 1;
300 	INIT_LIST_HEAD(&asoc->asocs);
301 
302 	asoc->autoclose = sp->autoclose;
303 
304 	asoc->default_stream = sp->default_stream;
305 	asoc->default_ppid = sp->default_ppid;
306 	asoc->default_flags = sp->default_flags;
307 	asoc->default_context = sp->default_context;
308 	asoc->default_timetolive = sp->default_timetolive;
309 	asoc->default_rcv_context = sp->default_rcv_context;
310 
311 	/* AUTH related initializations */
312 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
313 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
314 	if (err)
315 		goto fail_init;
316 
317 	asoc->active_key_id = ep->active_key_id;
318 	asoc->asoc_shared_key = NULL;
319 
320 	asoc->default_hmac_id = 0;
321 	/* Save the hmacs and chunks list into this association */
322 	if (ep->auth_hmacs_list)
323 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
324 			ntohs(ep->auth_hmacs_list->param_hdr.length));
325 	if (ep->auth_chunk_list)
326 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
327 			ntohs(ep->auth_chunk_list->param_hdr.length));
328 
329 	/* Get the AUTH random number for this association */
330 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
331 	p->type = SCTP_PARAM_RANDOM;
332 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
333 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
334 
335 	return asoc;
336 
337 fail_init:
338 	sctp_endpoint_put(asoc->ep);
339 	sock_put(asoc->base.sk);
340 	return NULL;
341 }
342 
343 /* Allocate and initialize a new association */
344 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
345 					 const struct sock *sk,
346 					 sctp_scope_t scope,
347 					 gfp_t gfp)
348 {
349 	struct sctp_association *asoc;
350 
351 	asoc = t_new(struct sctp_association, gfp);
352 	if (!asoc)
353 		goto fail;
354 
355 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
356 		goto fail_init;
357 
358 	asoc->base.malloced = 1;
359 	SCTP_DBG_OBJCNT_INC(assoc);
360 	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
361 
362 	return asoc;
363 
364 fail_init:
365 	kfree(asoc);
366 fail:
367 	return NULL;
368 }
369 
370 /* Free this association if possible.  There may still be users, so
371  * the actual deallocation may be delayed.
372  */
373 void sctp_association_free(struct sctp_association *asoc)
374 {
375 	struct sock *sk = asoc->base.sk;
376 	struct sctp_transport *transport;
377 	struct list_head *pos, *temp;
378 	int i;
379 
380 	/* Only real associations count against the endpoint, so
381 	 * don't bother for if this is a temporary association.
382 	 */
383 	if (!asoc->temp) {
384 		list_del(&asoc->asocs);
385 
386 		/* Decrement the backlog value for a TCP-style listening
387 		 * socket.
388 		 */
389 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
390 			sk->sk_ack_backlog--;
391 	}
392 
393 	/* Mark as dead, so other users can know this structure is
394 	 * going away.
395 	 */
396 	asoc->base.dead = 1;
397 
398 	/* Dispose of any data lying around in the outqueue. */
399 	sctp_outq_free(&asoc->outqueue);
400 
401 	/* Dispose of any pending messages for the upper layer. */
402 	sctp_ulpq_free(&asoc->ulpq);
403 
404 	/* Dispose of any pending chunks on the inqueue. */
405 	sctp_inq_free(&asoc->base.inqueue);
406 
407 	sctp_tsnmap_free(&asoc->peer.tsn_map);
408 
409 	/* Free ssnmap storage. */
410 	sctp_ssnmap_free(asoc->ssnmap);
411 
412 	/* Clean up the bound address list. */
413 	sctp_bind_addr_free(&asoc->base.bind_addr);
414 
415 	/* Do we need to go through all of our timers and
416 	 * delete them?   To be safe we will try to delete all, but we
417 	 * should be able to go through and make a guess based
418 	 * on our state.
419 	 */
420 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
421 		if (timer_pending(&asoc->timers[i]) &&
422 		    del_timer(&asoc->timers[i]))
423 			sctp_association_put(asoc);
424 	}
425 
426 	/* Free peer's cached cookie. */
427 	kfree(asoc->peer.cookie);
428 	kfree(asoc->peer.peer_random);
429 	kfree(asoc->peer.peer_chunks);
430 	kfree(asoc->peer.peer_hmacs);
431 
432 	/* Release the transport structures. */
433 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
434 		transport = list_entry(pos, struct sctp_transport, transports);
435 		list_del(pos);
436 		sctp_transport_free(transport);
437 	}
438 
439 	asoc->peer.transport_count = 0;
440 
441 	/* Free any cached ASCONF_ACK chunk. */
442 	sctp_assoc_free_asconf_acks(asoc);
443 
444 	/* Free any cached ASCONF chunk. */
445 	if (asoc->addip_last_asconf)
446 		sctp_chunk_free(asoc->addip_last_asconf);
447 
448 	/* AUTH - Free the endpoint shared keys */
449 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
450 
451 	/* AUTH - Free the association shared key */
452 	sctp_auth_key_put(asoc->asoc_shared_key);
453 
454 	sctp_association_put(asoc);
455 }
456 
457 /* Cleanup and free up an association. */
458 static void sctp_association_destroy(struct sctp_association *asoc)
459 {
460 	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
461 
462 	sctp_endpoint_put(asoc->ep);
463 	sock_put(asoc->base.sk);
464 
465 	if (asoc->assoc_id != 0) {
466 		spin_lock_bh(&sctp_assocs_id_lock);
467 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
468 		spin_unlock_bh(&sctp_assocs_id_lock);
469 	}
470 
471 	WARN_ON(atomic_read(&asoc->rmem_alloc));
472 
473 	if (asoc->base.malloced) {
474 		kfree(asoc);
475 		SCTP_DBG_OBJCNT_DEC(assoc);
476 	}
477 }
478 
479 /* Change the primary destination address for the peer. */
480 void sctp_assoc_set_primary(struct sctp_association *asoc,
481 			    struct sctp_transport *transport)
482 {
483 	int changeover = 0;
484 
485 	/* it's a changeover only if we already have a primary path
486 	 * that we are changing
487 	 */
488 	if (asoc->peer.primary_path != NULL &&
489 	    asoc->peer.primary_path != transport)
490 		changeover = 1 ;
491 
492 	asoc->peer.primary_path = transport;
493 
494 	/* Set a default msg_name for events. */
495 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
496 	       sizeof(union sctp_addr));
497 
498 	/* If the primary path is changing, assume that the
499 	 * user wants to use this new path.
500 	 */
501 	if ((transport->state == SCTP_ACTIVE) ||
502 	    (transport->state == SCTP_UNKNOWN))
503 		asoc->peer.active_path = transport;
504 
505 	/*
506 	 * SFR-CACC algorithm:
507 	 * Upon the receipt of a request to change the primary
508 	 * destination address, on the data structure for the new
509 	 * primary destination, the sender MUST do the following:
510 	 *
511 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
512 	 * to this destination address earlier. The sender MUST set
513 	 * CYCLING_CHANGEOVER to indicate that this switch is a
514 	 * double switch to the same destination address.
515 	 */
516 	if (transport->cacc.changeover_active)
517 		transport->cacc.cycling_changeover = changeover;
518 
519 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
520 	 * a changeover has occurred.
521 	 */
522 	transport->cacc.changeover_active = changeover;
523 
524 	/* 3) The sender MUST store the next TSN to be sent in
525 	 * next_tsn_at_change.
526 	 */
527 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
528 }
529 
530 /* Remove a transport from an association.  */
531 void sctp_assoc_rm_peer(struct sctp_association *asoc,
532 			struct sctp_transport *peer)
533 {
534 	struct list_head	*pos;
535 	struct sctp_transport	*transport;
536 
537 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
538 				 " port: %d\n",
539 				 asoc,
540 				 (&peer->ipaddr),
541 				 ntohs(peer->ipaddr.v4.sin_port));
542 
543 	/* If we are to remove the current retran_path, update it
544 	 * to the next peer before removing this peer from the list.
545 	 */
546 	if (asoc->peer.retran_path == peer)
547 		sctp_assoc_update_retran_path(asoc);
548 
549 	/* Remove this peer from the list. */
550 	list_del(&peer->transports);
551 
552 	/* Get the first transport of asoc. */
553 	pos = asoc->peer.transport_addr_list.next;
554 	transport = list_entry(pos, struct sctp_transport, transports);
555 
556 	/* Update any entries that match the peer to be deleted. */
557 	if (asoc->peer.primary_path == peer)
558 		sctp_assoc_set_primary(asoc, transport);
559 	if (asoc->peer.active_path == peer)
560 		asoc->peer.active_path = transport;
561 	if (asoc->peer.last_data_from == peer)
562 		asoc->peer.last_data_from = transport;
563 
564 	/* If we remove the transport an INIT was last sent to, set it to
565 	 * NULL. Combined with the update of the retran path above, this
566 	 * will cause the next INIT to be sent to the next available
567 	 * transport, maintaining the cycle.
568 	 */
569 	if (asoc->init_last_sent_to == peer)
570 		asoc->init_last_sent_to = NULL;
571 
572 	/* If we remove the transport an SHUTDOWN was last sent to, set it
573 	 * to NULL. Combined with the update of the retran path above, this
574 	 * will cause the next SHUTDOWN to be sent to the next available
575 	 * transport, maintaining the cycle.
576 	 */
577 	if (asoc->shutdown_last_sent_to == peer)
578 		asoc->shutdown_last_sent_to = NULL;
579 
580 	/* If we remove the transport an ASCONF was last sent to, set it to
581 	 * NULL.
582 	 */
583 	if (asoc->addip_last_asconf &&
584 	    asoc->addip_last_asconf->transport == peer)
585 		asoc->addip_last_asconf->transport = NULL;
586 
587 	/* If we have something on the transmitted list, we have to
588 	 * save it off.  The best place is the active path.
589 	 */
590 	if (!list_empty(&peer->transmitted)) {
591 		struct sctp_transport *active = asoc->peer.active_path;
592 		struct sctp_chunk *ch;
593 
594 		/* Reset the transport of each chunk on this list */
595 		list_for_each_entry(ch, &peer->transmitted,
596 					transmitted_list) {
597 			ch->transport = NULL;
598 			ch->rtt_in_progress = 0;
599 		}
600 
601 		list_splice_tail_init(&peer->transmitted,
602 					&active->transmitted);
603 
604 		/* Start a T3 timer here in case it wasn't running so
605 		 * that these migrated packets have a chance to get
606 		 * retrnasmitted.
607 		 */
608 		if (!timer_pending(&active->T3_rtx_timer))
609 			if (!mod_timer(&active->T3_rtx_timer,
610 					jiffies + active->rto))
611 				sctp_transport_hold(active);
612 	}
613 
614 	asoc->peer.transport_count--;
615 
616 	sctp_transport_free(peer);
617 }
618 
619 /* Add a transport address to an association.  */
620 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
621 					   const union sctp_addr *addr,
622 					   const gfp_t gfp,
623 					   const int peer_state)
624 {
625 	struct sctp_transport *peer;
626 	struct sctp_sock *sp;
627 	unsigned short port;
628 
629 	sp = sctp_sk(asoc->base.sk);
630 
631 	/* AF_INET and AF_INET6 share common port field. */
632 	port = ntohs(addr->v4.sin_port);
633 
634 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
635 				 " port: %d state:%d\n",
636 				 asoc,
637 				 addr,
638 				 port,
639 				 peer_state);
640 
641 	/* Set the port if it has not been set yet.  */
642 	if (0 == asoc->peer.port)
643 		asoc->peer.port = port;
644 
645 	/* Check to see if this is a duplicate. */
646 	peer = sctp_assoc_lookup_paddr(asoc, addr);
647 	if (peer) {
648 		/* An UNKNOWN state is only set on transports added by
649 		 * user in sctp_connectx() call.  Such transports should be
650 		 * considered CONFIRMED per RFC 4960, Section 5.4.
651 		 */
652 		if (peer->state == SCTP_UNKNOWN) {
653 			peer->state = SCTP_ACTIVE;
654 		}
655 		return peer;
656 	}
657 
658 	peer = sctp_transport_new(addr, gfp);
659 	if (!peer)
660 		return NULL;
661 
662 	sctp_transport_set_owner(peer, asoc);
663 
664 	/* Initialize the peer's heartbeat interval based on the
665 	 * association configured value.
666 	 */
667 	peer->hbinterval = asoc->hbinterval;
668 
669 	/* Set the path max_retrans.  */
670 	peer->pathmaxrxt = asoc->pathmaxrxt;
671 
672 	/* Initialize the peer's SACK delay timeout based on the
673 	 * association configured value.
674 	 */
675 	peer->sackdelay = asoc->sackdelay;
676 	peer->sackfreq = asoc->sackfreq;
677 
678 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
679 	 * based on association setting.
680 	 */
681 	peer->param_flags = asoc->param_flags;
682 
683 	sctp_transport_route(peer, NULL, sp);
684 
685 	/* Initialize the pmtu of the transport. */
686 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
687 		if (asoc->pathmtu)
688 			peer->pathmtu = asoc->pathmtu;
689 		else
690 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
691 	}
692 
693 	/* If this is the first transport addr on this association,
694 	 * initialize the association PMTU to the peer's PMTU.
695 	 * If not and the current association PMTU is higher than the new
696 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
697 	 */
698 	if (asoc->pathmtu)
699 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
700 	else
701 		asoc->pathmtu = peer->pathmtu;
702 
703 	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
704 			  "%d\n", asoc, asoc->pathmtu);
705 	peer->pmtu_pending = 0;
706 
707 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
708 
709 	/* The asoc->peer.port might not be meaningful yet, but
710 	 * initialize the packet structure anyway.
711 	 */
712 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
713 			 asoc->peer.port);
714 
715 	/* 7.2.1 Slow-Start
716 	 *
717 	 * o The initial cwnd before DATA transmission or after a sufficiently
718 	 *   long idle period MUST be set to
719 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
720 	 *
721 	 * o The initial value of ssthresh MAY be arbitrarily high
722 	 *   (for example, implementations MAY use the size of the
723 	 *   receiver advertised window).
724 	 */
725 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
726 
727 	/* At this point, we may not have the receiver's advertised window,
728 	 * so initialize ssthresh to the default value and it will be set
729 	 * later when we process the INIT.
730 	 */
731 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
732 
733 	peer->partial_bytes_acked = 0;
734 	peer->flight_size = 0;
735 
736 	/* Set the transport's RTO.initial value */
737 	peer->rto = asoc->rto_initial;
738 
739 	/* Set the peer's active state. */
740 	peer->state = peer_state;
741 
742 	/* Attach the remote transport to our asoc.  */
743 	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
744 	asoc->peer.transport_count++;
745 
746 	/* If we do not yet have a primary path, set one.  */
747 	if (!asoc->peer.primary_path) {
748 		sctp_assoc_set_primary(asoc, peer);
749 		asoc->peer.retran_path = peer;
750 	}
751 
752 	if (asoc->peer.active_path == asoc->peer.retran_path) {
753 		asoc->peer.retran_path = peer;
754 	}
755 
756 	return peer;
757 }
758 
759 /* Delete a transport address from an association.  */
760 void sctp_assoc_del_peer(struct sctp_association *asoc,
761 			 const union sctp_addr *addr)
762 {
763 	struct list_head	*pos;
764 	struct list_head	*temp;
765 	struct sctp_transport	*transport;
766 
767 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
768 		transport = list_entry(pos, struct sctp_transport, transports);
769 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
770 			/* Do book keeping for removing the peer and free it. */
771 			sctp_assoc_rm_peer(asoc, transport);
772 			break;
773 		}
774 	}
775 }
776 
777 /* Lookup a transport by address. */
778 struct sctp_transport *sctp_assoc_lookup_paddr(
779 					const struct sctp_association *asoc,
780 					const union sctp_addr *address)
781 {
782 	struct sctp_transport *t;
783 
784 	/* Cycle through all transports searching for a peer address. */
785 
786 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
787 			transports) {
788 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
789 			return t;
790 	}
791 
792 	return NULL;
793 }
794 
795 /* Remove all transports except a give one */
796 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
797 				     struct sctp_transport *primary)
798 {
799 	struct sctp_transport	*temp;
800 	struct sctp_transport	*t;
801 
802 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
803 				 transports) {
804 		/* if the current transport is not the primary one, delete it */
805 		if (t != primary)
806 			sctp_assoc_rm_peer(asoc, t);
807 	}
808 
809 	return;
810 }
811 
812 /* Engage in transport control operations.
813  * Mark the transport up or down and send a notification to the user.
814  * Select and update the new active and retran paths.
815  */
816 void sctp_assoc_control_transport(struct sctp_association *asoc,
817 				  struct sctp_transport *transport,
818 				  sctp_transport_cmd_t command,
819 				  sctp_sn_error_t error)
820 {
821 	struct sctp_transport *t = NULL;
822 	struct sctp_transport *first;
823 	struct sctp_transport *second;
824 	struct sctp_ulpevent *event;
825 	struct sockaddr_storage addr;
826 	int spc_state = 0;
827 
828 	/* Record the transition on the transport.  */
829 	switch (command) {
830 	case SCTP_TRANSPORT_UP:
831 		/* If we are moving from UNCONFIRMED state due
832 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
833 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
834 		 */
835 		if (SCTP_UNCONFIRMED == transport->state &&
836 		    SCTP_HEARTBEAT_SUCCESS == error)
837 			spc_state = SCTP_ADDR_CONFIRMED;
838 		else
839 			spc_state = SCTP_ADDR_AVAILABLE;
840 		transport->state = SCTP_ACTIVE;
841 		break;
842 
843 	case SCTP_TRANSPORT_DOWN:
844 		/* If the transport was never confirmed, do not transition it
845 		 * to inactive state.  Also, release the cached route since
846 		 * there may be a better route next time.
847 		 */
848 		if (transport->state != SCTP_UNCONFIRMED)
849 			transport->state = SCTP_INACTIVE;
850 		else {
851 			dst_release(transport->dst);
852 			transport->dst = NULL;
853 		}
854 
855 		spc_state = SCTP_ADDR_UNREACHABLE;
856 		break;
857 
858 	default:
859 		return;
860 	}
861 
862 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
863 	 * user.
864 	 */
865 	memset(&addr, 0, sizeof(struct sockaddr_storage));
866 	memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
867 	event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
868 				0, spc_state, error, GFP_ATOMIC);
869 	if (event)
870 		sctp_ulpq_tail_event(&asoc->ulpq, event);
871 
872 	/* Select new active and retran paths. */
873 
874 	/* Look for the two most recently used active transports.
875 	 *
876 	 * This code produces the wrong ordering whenever jiffies
877 	 * rolls over, but we still get usable transports, so we don't
878 	 * worry about it.
879 	 */
880 	first = NULL; second = NULL;
881 
882 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
883 			transports) {
884 
885 		if ((t->state == SCTP_INACTIVE) ||
886 		    (t->state == SCTP_UNCONFIRMED))
887 			continue;
888 		if (!first || t->last_time_heard > first->last_time_heard) {
889 			second = first;
890 			first = t;
891 		}
892 		if (!second || t->last_time_heard > second->last_time_heard)
893 			second = t;
894 	}
895 
896 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
897 	 *
898 	 * By default, an endpoint should always transmit to the
899 	 * primary path, unless the SCTP user explicitly specifies the
900 	 * destination transport address (and possibly source
901 	 * transport address) to use.
902 	 *
903 	 * [If the primary is active but not most recent, bump the most
904 	 * recently used transport.]
905 	 */
906 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
907 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
908 	    first != asoc->peer.primary_path) {
909 		second = first;
910 		first = asoc->peer.primary_path;
911 	}
912 
913 	/* If we failed to find a usable transport, just camp on the
914 	 * primary, even if it is inactive.
915 	 */
916 	if (!first) {
917 		first = asoc->peer.primary_path;
918 		second = asoc->peer.primary_path;
919 	}
920 
921 	/* Set the active and retran transports.  */
922 	asoc->peer.active_path = first;
923 	asoc->peer.retran_path = second;
924 }
925 
926 /* Hold a reference to an association. */
927 void sctp_association_hold(struct sctp_association *asoc)
928 {
929 	atomic_inc(&asoc->base.refcnt);
930 }
931 
932 /* Release a reference to an association and cleanup
933  * if there are no more references.
934  */
935 void sctp_association_put(struct sctp_association *asoc)
936 {
937 	if (atomic_dec_and_test(&asoc->base.refcnt))
938 		sctp_association_destroy(asoc);
939 }
940 
941 /* Allocate the next TSN, Transmission Sequence Number, for the given
942  * association.
943  */
944 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
945 {
946 	/* From Section 1.6 Serial Number Arithmetic:
947 	 * Transmission Sequence Numbers wrap around when they reach
948 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
949 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
950 	 */
951 	__u32 retval = asoc->next_tsn;
952 	asoc->next_tsn++;
953 	asoc->unack_data++;
954 
955 	return retval;
956 }
957 
958 /* Compare two addresses to see if they match.  Wildcard addresses
959  * only match themselves.
960  */
961 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
962 			const union sctp_addr *ss2)
963 {
964 	struct sctp_af *af;
965 
966 	af = sctp_get_af_specific(ss1->sa.sa_family);
967 	if (unlikely(!af))
968 		return 0;
969 
970 	return af->cmp_addr(ss1, ss2);
971 }
972 
973 /* Return an ecne chunk to get prepended to a packet.
974  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
975  * No we don't, but we could/should.
976  */
977 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
978 {
979 	struct sctp_chunk *chunk;
980 
981 	/* Send ECNE if needed.
982 	 * Not being able to allocate a chunk here is not deadly.
983 	 */
984 	if (asoc->need_ecne)
985 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
986 	else
987 		chunk = NULL;
988 
989 	return chunk;
990 }
991 
992 /*
993  * Find which transport this TSN was sent on.
994  */
995 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
996 					     __u32 tsn)
997 {
998 	struct sctp_transport *active;
999 	struct sctp_transport *match;
1000 	struct sctp_transport *transport;
1001 	struct sctp_chunk *chunk;
1002 	__be32 key = htonl(tsn);
1003 
1004 	match = NULL;
1005 
1006 	/*
1007 	 * FIXME: In general, find a more efficient data structure for
1008 	 * searching.
1009 	 */
1010 
1011 	/*
1012 	 * The general strategy is to search each transport's transmitted
1013 	 * list.   Return which transport this TSN lives on.
1014 	 *
1015 	 * Let's be hopeful and check the active_path first.
1016 	 * Another optimization would be to know if there is only one
1017 	 * outbound path and not have to look for the TSN at all.
1018 	 *
1019 	 */
1020 
1021 	active = asoc->peer.active_path;
1022 
1023 	list_for_each_entry(chunk, &active->transmitted,
1024 			transmitted_list) {
1025 
1026 		if (key == chunk->subh.data_hdr->tsn) {
1027 			match = active;
1028 			goto out;
1029 		}
1030 	}
1031 
1032 	/* If not found, go search all the other transports. */
1033 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1034 			transports) {
1035 
1036 		if (transport == active)
1037 			break;
1038 		list_for_each_entry(chunk, &transport->transmitted,
1039 				transmitted_list) {
1040 			if (key == chunk->subh.data_hdr->tsn) {
1041 				match = transport;
1042 				goto out;
1043 			}
1044 		}
1045 	}
1046 out:
1047 	return match;
1048 }
1049 
1050 /* Is this the association we are looking for? */
1051 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1052 					   const union sctp_addr *laddr,
1053 					   const union sctp_addr *paddr)
1054 {
1055 	struct sctp_transport *transport;
1056 
1057 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1058 	    (htons(asoc->peer.port) == paddr->v4.sin_port)) {
1059 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1060 		if (!transport)
1061 			goto out;
1062 
1063 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1064 					 sctp_sk(asoc->base.sk)))
1065 			goto out;
1066 	}
1067 	transport = NULL;
1068 
1069 out:
1070 	return transport;
1071 }
1072 
1073 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1074 static void sctp_assoc_bh_rcv(struct work_struct *work)
1075 {
1076 	struct sctp_association *asoc =
1077 		container_of(work, struct sctp_association,
1078 			     base.inqueue.immediate);
1079 	struct sctp_endpoint *ep;
1080 	struct sctp_chunk *chunk;
1081 	struct sock *sk;
1082 	struct sctp_inq *inqueue;
1083 	int state;
1084 	sctp_subtype_t subtype;
1085 	int error = 0;
1086 
1087 	/* The association should be held so we should be safe. */
1088 	ep = asoc->ep;
1089 	sk = asoc->base.sk;
1090 
1091 	inqueue = &asoc->base.inqueue;
1092 	sctp_association_hold(asoc);
1093 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1094 		state = asoc->state;
1095 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1096 
1097 		/* SCTP-AUTH, Section 6.3:
1098 		 *    The receiver has a list of chunk types which it expects
1099 		 *    to be received only after an AUTH-chunk.  This list has
1100 		 *    been sent to the peer during the association setup.  It
1101 		 *    MUST silently discard these chunks if they are not placed
1102 		 *    after an AUTH chunk in the packet.
1103 		 */
1104 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1105 			continue;
1106 
1107 		/* Remember where the last DATA chunk came from so we
1108 		 * know where to send the SACK.
1109 		 */
1110 		if (sctp_chunk_is_data(chunk))
1111 			asoc->peer.last_data_from = chunk->transport;
1112 		else
1113 			SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
1114 
1115 		if (chunk->transport)
1116 			chunk->transport->last_time_heard = jiffies;
1117 
1118 		/* Run through the state machine. */
1119 		error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1120 				   state, ep, asoc, chunk, GFP_ATOMIC);
1121 
1122 		/* Check to see if the association is freed in response to
1123 		 * the incoming chunk.  If so, get out of the while loop.
1124 		 */
1125 		if (asoc->base.dead)
1126 			break;
1127 
1128 		/* If there is an error on chunk, discard this packet. */
1129 		if (error && chunk)
1130 			chunk->pdiscard = 1;
1131 	}
1132 	sctp_association_put(asoc);
1133 }
1134 
1135 /* This routine moves an association from its old sk to a new sk.  */
1136 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1137 {
1138 	struct sctp_sock *newsp = sctp_sk(newsk);
1139 	struct sock *oldsk = assoc->base.sk;
1140 
1141 	/* Delete the association from the old endpoint's list of
1142 	 * associations.
1143 	 */
1144 	list_del_init(&assoc->asocs);
1145 
1146 	/* Decrement the backlog value for a TCP-style socket. */
1147 	if (sctp_style(oldsk, TCP))
1148 		oldsk->sk_ack_backlog--;
1149 
1150 	/* Release references to the old endpoint and the sock.  */
1151 	sctp_endpoint_put(assoc->ep);
1152 	sock_put(assoc->base.sk);
1153 
1154 	/* Get a reference to the new endpoint.  */
1155 	assoc->ep = newsp->ep;
1156 	sctp_endpoint_hold(assoc->ep);
1157 
1158 	/* Get a reference to the new sock.  */
1159 	assoc->base.sk = newsk;
1160 	sock_hold(assoc->base.sk);
1161 
1162 	/* Add the association to the new endpoint's list of associations.  */
1163 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1164 }
1165 
1166 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1167 void sctp_assoc_update(struct sctp_association *asoc,
1168 		       struct sctp_association *new)
1169 {
1170 	struct sctp_transport *trans;
1171 	struct list_head *pos, *temp;
1172 
1173 	/* Copy in new parameters of peer. */
1174 	asoc->c = new->c;
1175 	asoc->peer.rwnd = new->peer.rwnd;
1176 	asoc->peer.sack_needed = new->peer.sack_needed;
1177 	asoc->peer.i = new->peer.i;
1178 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1179 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1180 
1181 	/* Remove any peer addresses not present in the new association. */
1182 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1183 		trans = list_entry(pos, struct sctp_transport, transports);
1184 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr))
1185 			sctp_assoc_del_peer(asoc, &trans->ipaddr);
1186 
1187 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1188 			sctp_transport_reset(trans);
1189 	}
1190 
1191 	/* If the case is A (association restart), use
1192 	 * initial_tsn as next_tsn. If the case is B, use
1193 	 * current next_tsn in case data sent to peer
1194 	 * has been discarded and needs retransmission.
1195 	 */
1196 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1197 		asoc->next_tsn = new->next_tsn;
1198 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1199 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1200 
1201 		/* Reinitialize SSN for both local streams
1202 		 * and peer's streams.
1203 		 */
1204 		sctp_ssnmap_clear(asoc->ssnmap);
1205 
1206 		/* Flush the ULP reassembly and ordered queue.
1207 		 * Any data there will now be stale and will
1208 		 * cause problems.
1209 		 */
1210 		sctp_ulpq_flush(&asoc->ulpq);
1211 
1212 		/* reset the overall association error count so
1213 		 * that the restarted association doesn't get torn
1214 		 * down on the next retransmission timer.
1215 		 */
1216 		asoc->overall_error_count = 0;
1217 
1218 	} else {
1219 		/* Add any peer addresses from the new association. */
1220 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1221 				transports) {
1222 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1223 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1224 						    GFP_ATOMIC, trans->state);
1225 		}
1226 
1227 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1228 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1229 		if (!asoc->ssnmap) {
1230 			/* Move the ssnmap. */
1231 			asoc->ssnmap = new->ssnmap;
1232 			new->ssnmap = NULL;
1233 		}
1234 
1235 		if (!asoc->assoc_id) {
1236 			/* get a new association id since we don't have one
1237 			 * yet.
1238 			 */
1239 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1240 		}
1241 	}
1242 
1243 	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1244 	 * and also move the association shared keys over
1245 	 */
1246 	kfree(asoc->peer.peer_random);
1247 	asoc->peer.peer_random = new->peer.peer_random;
1248 	new->peer.peer_random = NULL;
1249 
1250 	kfree(asoc->peer.peer_chunks);
1251 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1252 	new->peer.peer_chunks = NULL;
1253 
1254 	kfree(asoc->peer.peer_hmacs);
1255 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1256 	new->peer.peer_hmacs = NULL;
1257 
1258 	sctp_auth_key_put(asoc->asoc_shared_key);
1259 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1260 }
1261 
1262 /* Update the retran path for sending a retransmitted packet.
1263  * Round-robin through the active transports, else round-robin
1264  * through the inactive transports as this is the next best thing
1265  * we can try.
1266  */
1267 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1268 {
1269 	struct sctp_transport *t, *next;
1270 	struct list_head *head = &asoc->peer.transport_addr_list;
1271 	struct list_head *pos;
1272 
1273 	if (asoc->peer.transport_count == 1)
1274 		return;
1275 
1276 	/* Find the next transport in a round-robin fashion. */
1277 	t = asoc->peer.retran_path;
1278 	pos = &t->transports;
1279 	next = NULL;
1280 
1281 	while (1) {
1282 		/* Skip the head. */
1283 		if (pos->next == head)
1284 			pos = head->next;
1285 		else
1286 			pos = pos->next;
1287 
1288 		t = list_entry(pos, struct sctp_transport, transports);
1289 
1290 		/* We have exhausted the list, but didn't find any
1291 		 * other active transports.  If so, use the next
1292 		 * transport.
1293 		 */
1294 		if (t == asoc->peer.retran_path) {
1295 			t = next;
1296 			break;
1297 		}
1298 
1299 		/* Try to find an active transport. */
1300 
1301 		if ((t->state == SCTP_ACTIVE) ||
1302 		    (t->state == SCTP_UNKNOWN)) {
1303 			break;
1304 		} else {
1305 			/* Keep track of the next transport in case
1306 			 * we don't find any active transport.
1307 			 */
1308 			if (!next)
1309 				next = t;
1310 		}
1311 	}
1312 
1313 	asoc->peer.retran_path = t;
1314 
1315 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1316 				 " %p addr: ",
1317 				 " port: %d\n",
1318 				 asoc,
1319 				 (&t->ipaddr),
1320 				 ntohs(t->ipaddr.v4.sin_port));
1321 }
1322 
1323 /* Choose the transport for sending retransmit packet.  */
1324 struct sctp_transport *sctp_assoc_choose_alter_transport(
1325 	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1326 {
1327 	/* If this is the first time packet is sent, use the active path,
1328 	 * else use the retran path. If the last packet was sent over the
1329 	 * retran path, update the retran path and use it.
1330 	 */
1331 	if (!last_sent_to)
1332 		return asoc->peer.active_path;
1333 	else {
1334 		if (last_sent_to == asoc->peer.retran_path)
1335 			sctp_assoc_update_retran_path(asoc);
1336 		return asoc->peer.retran_path;
1337 	}
1338 }
1339 
1340 /* Update the association's pmtu and frag_point by going through all the
1341  * transports. This routine is called when a transport's PMTU has changed.
1342  */
1343 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1344 {
1345 	struct sctp_transport *t;
1346 	__u32 pmtu = 0;
1347 
1348 	if (!asoc)
1349 		return;
1350 
1351 	/* Get the lowest pmtu of all the transports. */
1352 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1353 				transports) {
1354 		if (t->pmtu_pending && t->dst) {
1355 			sctp_transport_update_pmtu(t, dst_mtu(t->dst));
1356 			t->pmtu_pending = 0;
1357 		}
1358 		if (!pmtu || (t->pathmtu < pmtu))
1359 			pmtu = t->pathmtu;
1360 	}
1361 
1362 	if (pmtu) {
1363 		asoc->pathmtu = pmtu;
1364 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1365 	}
1366 
1367 	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1368 			  __func__, asoc, asoc->pathmtu, asoc->frag_point);
1369 }
1370 
1371 /* Should we send a SACK to update our peer? */
1372 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1373 {
1374 	switch (asoc->state) {
1375 	case SCTP_STATE_ESTABLISHED:
1376 	case SCTP_STATE_SHUTDOWN_PENDING:
1377 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1378 	case SCTP_STATE_SHUTDOWN_SENT:
1379 		if ((asoc->rwnd > asoc->a_rwnd) &&
1380 		    ((asoc->rwnd - asoc->a_rwnd) >=
1381 		     min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu)))
1382 			return 1;
1383 		break;
1384 	default:
1385 		break;
1386 	}
1387 	return 0;
1388 }
1389 
1390 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1391 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1392 {
1393 	struct sctp_chunk *sack;
1394 	struct timer_list *timer;
1395 
1396 	if (asoc->rwnd_over) {
1397 		if (asoc->rwnd_over >= len) {
1398 			asoc->rwnd_over -= len;
1399 		} else {
1400 			asoc->rwnd += (len - asoc->rwnd_over);
1401 			asoc->rwnd_over = 0;
1402 		}
1403 	} else {
1404 		asoc->rwnd += len;
1405 	}
1406 
1407 	/* If we had window pressure, start recovering it
1408 	 * once our rwnd had reached the accumulated pressure
1409 	 * threshold.  The idea is to recover slowly, but up
1410 	 * to the initial advertised window.
1411 	 */
1412 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1413 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1414 		asoc->rwnd += change;
1415 		asoc->rwnd_press -= change;
1416 	}
1417 
1418 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1419 			  "- %u\n", __func__, asoc, len, asoc->rwnd,
1420 			  asoc->rwnd_over, asoc->a_rwnd);
1421 
1422 	/* Send a window update SACK if the rwnd has increased by at least the
1423 	 * minimum of the association's PMTU and half of the receive buffer.
1424 	 * The algorithm used is similar to the one described in
1425 	 * Section 4.2.3.3 of RFC 1122.
1426 	 */
1427 	if (sctp_peer_needs_update(asoc)) {
1428 		asoc->a_rwnd = asoc->rwnd;
1429 		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1430 				  "rwnd: %u a_rwnd: %u\n", __func__,
1431 				  asoc, asoc->rwnd, asoc->a_rwnd);
1432 		sack = sctp_make_sack(asoc);
1433 		if (!sack)
1434 			return;
1435 
1436 		asoc->peer.sack_needed = 0;
1437 
1438 		sctp_outq_tail(&asoc->outqueue, sack);
1439 
1440 		/* Stop the SACK timer.  */
1441 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1442 		if (timer_pending(timer) && del_timer(timer))
1443 			sctp_association_put(asoc);
1444 	}
1445 }
1446 
1447 /* Decrease asoc's rwnd by len. */
1448 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1449 {
1450 	int rx_count;
1451 	int over = 0;
1452 
1453 	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1454 	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1455 
1456 	if (asoc->ep->rcvbuf_policy)
1457 		rx_count = atomic_read(&asoc->rmem_alloc);
1458 	else
1459 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1460 
1461 	/* If we've reached or overflowed our receive buffer, announce
1462 	 * a 0 rwnd if rwnd would still be positive.  Store the
1463 	 * the pottential pressure overflow so that the window can be restored
1464 	 * back to original value.
1465 	 */
1466 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1467 		over = 1;
1468 
1469 	if (asoc->rwnd >= len) {
1470 		asoc->rwnd -= len;
1471 		if (over) {
1472 			asoc->rwnd_press = asoc->rwnd;
1473 			asoc->rwnd = 0;
1474 		}
1475 	} else {
1476 		asoc->rwnd_over = len - asoc->rwnd;
1477 		asoc->rwnd = 0;
1478 	}
1479 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1480 			  __func__, asoc, len, asoc->rwnd,
1481 			  asoc->rwnd_over, asoc->rwnd_press);
1482 }
1483 
1484 /* Build the bind address list for the association based on info from the
1485  * local endpoint and the remote peer.
1486  */
1487 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1488 				     gfp_t gfp)
1489 {
1490 	sctp_scope_t scope;
1491 	int flags;
1492 
1493 	/* Use scoping rules to determine the subset of addresses from
1494 	 * the endpoint.
1495 	 */
1496 	scope = sctp_scope(&asoc->peer.active_path->ipaddr);
1497 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1498 	if (asoc->peer.ipv4_address)
1499 		flags |= SCTP_ADDR4_PEERSUPP;
1500 	if (asoc->peer.ipv6_address)
1501 		flags |= SCTP_ADDR6_PEERSUPP;
1502 
1503 	return sctp_bind_addr_copy(&asoc->base.bind_addr,
1504 				   &asoc->ep->base.bind_addr,
1505 				   scope, gfp, flags);
1506 }
1507 
1508 /* Build the association's bind address list from the cookie.  */
1509 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1510 					 struct sctp_cookie *cookie,
1511 					 gfp_t gfp)
1512 {
1513 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1514 	int var_size3 = cookie->raw_addr_list_len;
1515 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1516 
1517 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1518 				      asoc->ep->base.bind_addr.port, gfp);
1519 }
1520 
1521 /* Lookup laddr in the bind address list of an association. */
1522 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1523 			    const union sctp_addr *laddr)
1524 {
1525 	int found = 0;
1526 
1527 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1528 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1529 				 sctp_sk(asoc->base.sk)))
1530 		found = 1;
1531 
1532 	return found;
1533 }
1534 
1535 /* Set an association id for a given association */
1536 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1537 {
1538 	int assoc_id;
1539 	int error = 0;
1540 
1541 	/* If the id is already assigned, keep it. */
1542 	if (asoc->assoc_id)
1543 		return error;
1544 retry:
1545 	if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1546 		return -ENOMEM;
1547 
1548 	spin_lock_bh(&sctp_assocs_id_lock);
1549 	error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1550 				    1, &assoc_id);
1551 	spin_unlock_bh(&sctp_assocs_id_lock);
1552 	if (error == -EAGAIN)
1553 		goto retry;
1554 	else if (error)
1555 		return error;
1556 
1557 	asoc->assoc_id = (sctp_assoc_t) assoc_id;
1558 	return error;
1559 }
1560 
1561 /* Free asconf_ack cache */
1562 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1563 {
1564 	struct sctp_chunk *ack;
1565 	struct sctp_chunk *tmp;
1566 
1567 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1568 				transmitted_list) {
1569 		list_del_init(&ack->transmitted_list);
1570 		sctp_chunk_free(ack);
1571 	}
1572 }
1573 
1574 /* Clean up the ASCONF_ACK queue */
1575 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1576 {
1577 	struct sctp_chunk *ack;
1578 	struct sctp_chunk *tmp;
1579 
1580 	/* We can remove all the entries from the queue upto
1581 	 * the "Peer-Sequence-Number".
1582 	 */
1583 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1584 				transmitted_list) {
1585 		if (ack->subh.addip_hdr->serial ==
1586 				htonl(asoc->peer.addip_serial))
1587 			break;
1588 
1589 		list_del_init(&ack->transmitted_list);
1590 		sctp_chunk_free(ack);
1591 	}
1592 }
1593 
1594 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1595 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1596 					const struct sctp_association *asoc,
1597 					__be32 serial)
1598 {
1599 	struct sctp_chunk *ack;
1600 
1601 	/* Walk through the list of cached ASCONF-ACKs and find the
1602 	 * ack chunk whose serial number matches that of the request.
1603 	 */
1604 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1605 		if (ack->subh.addip_hdr->serial == serial) {
1606 			sctp_chunk_hold(ack);
1607 			return ack;
1608 		}
1609 	}
1610 
1611 	return NULL;
1612 }
1613