1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel reference Implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * The SCTP reference implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * The SCTP reference implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/poll.h> 54 #include <linux/init.h> 55 #include <linux/sched.h> 56 57 #include <linux/slab.h> 58 #include <linux/in.h> 59 #include <net/ipv6.h> 60 #include <net/sctp/sctp.h> 61 #include <net/sctp/sm.h> 62 63 /* Forward declarations for internal functions. */ 64 static void sctp_assoc_bh_rcv(struct sctp_association *asoc); 65 66 67 /* 1st Level Abstractions. */ 68 69 /* Initialize a new association from provided memory. */ 70 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 71 const struct sctp_endpoint *ep, 72 const struct sock *sk, 73 sctp_scope_t scope, 74 unsigned int __nocast gfp) 75 { 76 struct sctp_sock *sp; 77 int i; 78 79 /* Retrieve the SCTP per socket area. */ 80 sp = sctp_sk((struct sock *)sk); 81 82 /* Init all variables to a known value. */ 83 memset(asoc, 0, sizeof(struct sctp_association)); 84 85 /* Discarding const is appropriate here. */ 86 asoc->ep = (struct sctp_endpoint *)ep; 87 sctp_endpoint_hold(asoc->ep); 88 89 /* Hold the sock. */ 90 asoc->base.sk = (struct sock *)sk; 91 sock_hold(asoc->base.sk); 92 93 /* Initialize the common base substructure. */ 94 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 95 96 /* Initialize the object handling fields. */ 97 atomic_set(&asoc->base.refcnt, 1); 98 asoc->base.dead = 0; 99 asoc->base.malloced = 0; 100 101 /* Initialize the bind addr area. */ 102 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 103 rwlock_init(&asoc->base.addr_lock); 104 105 asoc->state = SCTP_STATE_CLOSED; 106 107 /* Set these values from the socket values, a conversion between 108 * millsecons to seconds/microseconds must also be done. 109 */ 110 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 111 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 112 * 1000; 113 asoc->pmtu = 0; 114 asoc->frag_point = 0; 115 116 /* Set the association max_retrans and RTO values from the 117 * socket values. 118 */ 119 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 120 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 121 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 122 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 123 124 asoc->overall_error_count = 0; 125 126 /* Initialize the maximum mumber of new data packets that can be sent 127 * in a burst. 128 */ 129 asoc->max_burst = sctp_max_burst; 130 131 /* Copy things from the endpoint. */ 132 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 133 asoc->timeouts[i] = ep->timeouts[i]; 134 init_timer(&asoc->timers[i]); 135 asoc->timers[i].function = sctp_timer_events[i]; 136 asoc->timers[i].data = (unsigned long) asoc; 137 } 138 139 /* Pull default initialization values from the sock options. 140 * Note: This assumes that the values have already been 141 * validated in the sock. 142 */ 143 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 144 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 145 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 146 147 asoc->max_init_timeo = 148 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 149 150 /* Allocate storage for the ssnmap after the inbound and outbound 151 * streams have been negotiated during Init. 152 */ 153 asoc->ssnmap = NULL; 154 155 /* Set the local window size for receive. 156 * This is also the rcvbuf space per association. 157 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 158 * 1500 bytes in one SCTP packet. 159 */ 160 if (sk->sk_rcvbuf < SCTP_DEFAULT_MINWINDOW) 161 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 162 else 163 asoc->rwnd = sk->sk_rcvbuf; 164 165 asoc->a_rwnd = asoc->rwnd; 166 167 asoc->rwnd_over = 0; 168 169 /* Use my own max window until I learn something better. */ 170 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 171 172 /* Set the sndbuf size for transmit. */ 173 asoc->sndbuf_used = 0; 174 175 init_waitqueue_head(&asoc->wait); 176 177 asoc->c.my_vtag = sctp_generate_tag(ep); 178 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 179 asoc->c.peer_vtag = 0; 180 asoc->c.my_ttag = 0; 181 asoc->c.peer_ttag = 0; 182 asoc->c.my_port = ep->base.bind_addr.port; 183 184 asoc->c.initial_tsn = sctp_generate_tsn(ep); 185 186 asoc->next_tsn = asoc->c.initial_tsn; 187 188 asoc->ctsn_ack_point = asoc->next_tsn - 1; 189 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 190 asoc->highest_sacked = asoc->ctsn_ack_point; 191 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 192 asoc->unack_data = 0; 193 194 /* ADDIP Section 4.1 Asconf Chunk Procedures 195 * 196 * When an endpoint has an ASCONF signaled change to be sent to the 197 * remote endpoint it should do the following: 198 * ... 199 * A2) a serial number should be assigned to the chunk. The serial 200 * number SHOULD be a monotonically increasing number. The serial 201 * numbers SHOULD be initialized at the start of the 202 * association to the same value as the initial TSN. 203 */ 204 asoc->addip_serial = asoc->c.initial_tsn; 205 206 INIT_LIST_HEAD(&asoc->addip_chunk_list); 207 208 /* Make an empty list of remote transport addresses. */ 209 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 210 asoc->peer.transport_count = 0; 211 212 /* RFC 2960 5.1 Normal Establishment of an Association 213 * 214 * After the reception of the first data chunk in an 215 * association the endpoint must immediately respond with a 216 * sack to acknowledge the data chunk. Subsequent 217 * acknowledgements should be done as described in Section 218 * 6.2. 219 * 220 * [We implement this by telling a new association that it 221 * already received one packet.] 222 */ 223 asoc->peer.sack_needed = 1; 224 225 /* Assume that the peer recongizes ASCONF until reported otherwise 226 * via an ERROR chunk. 227 */ 228 asoc->peer.asconf_capable = 1; 229 230 /* Create an input queue. */ 231 sctp_inq_init(&asoc->base.inqueue); 232 sctp_inq_set_th_handler(&asoc->base.inqueue, 233 (void (*)(void *))sctp_assoc_bh_rcv, 234 asoc); 235 236 /* Create an output queue. */ 237 sctp_outq_init(asoc, &asoc->outqueue); 238 239 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 240 goto fail_init; 241 242 /* Set up the tsn tracking. */ 243 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0); 244 245 asoc->need_ecne = 0; 246 247 asoc->assoc_id = 0; 248 249 /* Assume that peer would support both address types unless we are 250 * told otherwise. 251 */ 252 asoc->peer.ipv4_address = 1; 253 asoc->peer.ipv6_address = 1; 254 INIT_LIST_HEAD(&asoc->asocs); 255 256 asoc->autoclose = sp->autoclose; 257 258 asoc->default_stream = sp->default_stream; 259 asoc->default_ppid = sp->default_ppid; 260 asoc->default_flags = sp->default_flags; 261 asoc->default_context = sp->default_context; 262 asoc->default_timetolive = sp->default_timetolive; 263 264 return asoc; 265 266 fail_init: 267 sctp_endpoint_put(asoc->ep); 268 sock_put(asoc->base.sk); 269 return NULL; 270 } 271 272 /* Allocate and initialize a new association */ 273 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 274 const struct sock *sk, 275 sctp_scope_t scope, 276 unsigned int __nocast gfp) 277 { 278 struct sctp_association *asoc; 279 280 asoc = t_new(struct sctp_association, gfp); 281 if (!asoc) 282 goto fail; 283 284 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 285 goto fail_init; 286 287 asoc->base.malloced = 1; 288 SCTP_DBG_OBJCNT_INC(assoc); 289 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 290 291 return asoc; 292 293 fail_init: 294 kfree(asoc); 295 fail: 296 return NULL; 297 } 298 299 /* Free this association if possible. There may still be users, so 300 * the actual deallocation may be delayed. 301 */ 302 void sctp_association_free(struct sctp_association *asoc) 303 { 304 struct sock *sk = asoc->base.sk; 305 struct sctp_transport *transport; 306 struct list_head *pos, *temp; 307 int i; 308 309 list_del(&asoc->asocs); 310 311 /* Decrement the backlog value for a TCP-style listening socket. */ 312 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 313 sk->sk_ack_backlog--; 314 315 /* Mark as dead, so other users can know this structure is 316 * going away. 317 */ 318 asoc->base.dead = 1; 319 320 /* Dispose of any data lying around in the outqueue. */ 321 sctp_outq_free(&asoc->outqueue); 322 323 /* Dispose of any pending messages for the upper layer. */ 324 sctp_ulpq_free(&asoc->ulpq); 325 326 /* Dispose of any pending chunks on the inqueue. */ 327 sctp_inq_free(&asoc->base.inqueue); 328 329 /* Free ssnmap storage. */ 330 sctp_ssnmap_free(asoc->ssnmap); 331 332 /* Clean up the bound address list. */ 333 sctp_bind_addr_free(&asoc->base.bind_addr); 334 335 /* Do we need to go through all of our timers and 336 * delete them? To be safe we will try to delete all, but we 337 * should be able to go through and make a guess based 338 * on our state. 339 */ 340 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 341 if (timer_pending(&asoc->timers[i]) && 342 del_timer(&asoc->timers[i])) 343 sctp_association_put(asoc); 344 } 345 346 /* Free peer's cached cookie. */ 347 if (asoc->peer.cookie) { 348 kfree(asoc->peer.cookie); 349 } 350 351 /* Release the transport structures. */ 352 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 353 transport = list_entry(pos, struct sctp_transport, transports); 354 list_del(pos); 355 sctp_transport_free(transport); 356 } 357 358 asoc->peer.transport_count = 0; 359 360 /* Free any cached ASCONF_ACK chunk. */ 361 if (asoc->addip_last_asconf_ack) 362 sctp_chunk_free(asoc->addip_last_asconf_ack); 363 364 /* Free any cached ASCONF chunk. */ 365 if (asoc->addip_last_asconf) 366 sctp_chunk_free(asoc->addip_last_asconf); 367 368 sctp_association_put(asoc); 369 } 370 371 /* Cleanup and free up an association. */ 372 static void sctp_association_destroy(struct sctp_association *asoc) 373 { 374 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 375 376 sctp_endpoint_put(asoc->ep); 377 sock_put(asoc->base.sk); 378 379 if (asoc->assoc_id != 0) { 380 spin_lock_bh(&sctp_assocs_id_lock); 381 idr_remove(&sctp_assocs_id, asoc->assoc_id); 382 spin_unlock_bh(&sctp_assocs_id_lock); 383 } 384 385 if (asoc->base.malloced) { 386 kfree(asoc); 387 SCTP_DBG_OBJCNT_DEC(assoc); 388 } 389 } 390 391 /* Change the primary destination address for the peer. */ 392 void sctp_assoc_set_primary(struct sctp_association *asoc, 393 struct sctp_transport *transport) 394 { 395 asoc->peer.primary_path = transport; 396 397 /* Set a default msg_name for events. */ 398 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 399 sizeof(union sctp_addr)); 400 401 /* If the primary path is changing, assume that the 402 * user wants to use this new path. 403 */ 404 if (transport->state != SCTP_INACTIVE) 405 asoc->peer.active_path = transport; 406 407 /* 408 * SFR-CACC algorithm: 409 * Upon the receipt of a request to change the primary 410 * destination address, on the data structure for the new 411 * primary destination, the sender MUST do the following: 412 * 413 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 414 * to this destination address earlier. The sender MUST set 415 * CYCLING_CHANGEOVER to indicate that this switch is a 416 * double switch to the same destination address. 417 */ 418 if (transport->cacc.changeover_active) 419 transport->cacc.cycling_changeover = 1; 420 421 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 422 * a changeover has occurred. 423 */ 424 transport->cacc.changeover_active = 1; 425 426 /* 3) The sender MUST store the next TSN to be sent in 427 * next_tsn_at_change. 428 */ 429 transport->cacc.next_tsn_at_change = asoc->next_tsn; 430 } 431 432 /* Remove a transport from an association. */ 433 void sctp_assoc_rm_peer(struct sctp_association *asoc, 434 struct sctp_transport *peer) 435 { 436 struct list_head *pos; 437 struct sctp_transport *transport; 438 439 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 440 " port: %d\n", 441 asoc, 442 (&peer->ipaddr), 443 peer->ipaddr.v4.sin_port); 444 445 /* If we are to remove the current retran_path, update it 446 * to the next peer before removing this peer from the list. 447 */ 448 if (asoc->peer.retran_path == peer) 449 sctp_assoc_update_retran_path(asoc); 450 451 /* Remove this peer from the list. */ 452 list_del(&peer->transports); 453 454 /* Get the first transport of asoc. */ 455 pos = asoc->peer.transport_addr_list.next; 456 transport = list_entry(pos, struct sctp_transport, transports); 457 458 /* Update any entries that match the peer to be deleted. */ 459 if (asoc->peer.primary_path == peer) 460 sctp_assoc_set_primary(asoc, transport); 461 if (asoc->peer.active_path == peer) 462 asoc->peer.active_path = transport; 463 if (asoc->peer.last_data_from == peer) 464 asoc->peer.last_data_from = transport; 465 466 /* If we remove the transport an INIT was last sent to, set it to 467 * NULL. Combined with the update of the retran path above, this 468 * will cause the next INIT to be sent to the next available 469 * transport, maintaining the cycle. 470 */ 471 if (asoc->init_last_sent_to == peer) 472 asoc->init_last_sent_to = NULL; 473 474 asoc->peer.transport_count--; 475 476 sctp_transport_free(peer); 477 } 478 479 /* Add a transport address to an association. */ 480 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 481 const union sctp_addr *addr, 482 const unsigned int __nocast gfp, 483 const int peer_state) 484 { 485 struct sctp_transport *peer; 486 struct sctp_sock *sp; 487 unsigned short port; 488 489 sp = sctp_sk(asoc->base.sk); 490 491 /* AF_INET and AF_INET6 share common port field. */ 492 port = addr->v4.sin_port; 493 494 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 495 " port: %d state:%s\n", 496 asoc, 497 addr, 498 addr->v4.sin_port, 499 peer_state == SCTP_UNKNOWN?"UNKNOWN":"ACTIVE"); 500 501 /* Set the port if it has not been set yet. */ 502 if (0 == asoc->peer.port) 503 asoc->peer.port = port; 504 505 /* Check to see if this is a duplicate. */ 506 peer = sctp_assoc_lookup_paddr(asoc, addr); 507 if (peer) { 508 if (peer_state == SCTP_ACTIVE && 509 peer->state == SCTP_UNKNOWN) 510 peer->state = SCTP_ACTIVE; 511 return peer; 512 } 513 514 peer = sctp_transport_new(addr, gfp); 515 if (!peer) 516 return NULL; 517 518 sctp_transport_set_owner(peer, asoc); 519 520 /* Initialize the pmtu of the transport. */ 521 sctp_transport_pmtu(peer); 522 523 /* If this is the first transport addr on this association, 524 * initialize the association PMTU to the peer's PMTU. 525 * If not and the current association PMTU is higher than the new 526 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 527 */ 528 if (asoc->pmtu) 529 asoc->pmtu = min_t(int, peer->pmtu, asoc->pmtu); 530 else 531 asoc->pmtu = peer->pmtu; 532 533 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 534 "%d\n", asoc, asoc->pmtu); 535 536 asoc->frag_point = sctp_frag_point(sp, asoc->pmtu); 537 538 /* The asoc->peer.port might not be meaningful yet, but 539 * initialize the packet structure anyway. 540 */ 541 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 542 asoc->peer.port); 543 544 /* 7.2.1 Slow-Start 545 * 546 * o The initial cwnd before DATA transmission or after a sufficiently 547 * long idle period MUST be set to 548 * min(4*MTU, max(2*MTU, 4380 bytes)) 549 * 550 * o The initial value of ssthresh MAY be arbitrarily high 551 * (for example, implementations MAY use the size of the 552 * receiver advertised window). 553 */ 554 peer->cwnd = min(4*asoc->pmtu, max_t(__u32, 2*asoc->pmtu, 4380)); 555 556 /* At this point, we may not have the receiver's advertised window, 557 * so initialize ssthresh to the default value and it will be set 558 * later when we process the INIT. 559 */ 560 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 561 562 peer->partial_bytes_acked = 0; 563 peer->flight_size = 0; 564 565 /* By default, enable heartbeat for peer address. */ 566 peer->hb_allowed = 1; 567 568 /* Initialize the peer's heartbeat interval based on the 569 * sock configured value. 570 */ 571 peer->hb_interval = msecs_to_jiffies(sp->paddrparam.spp_hbinterval); 572 573 /* Set the path max_retrans. */ 574 peer->max_retrans = sp->paddrparam.spp_pathmaxrxt; 575 576 /* Set the transport's RTO.initial value */ 577 peer->rto = asoc->rto_initial; 578 579 /* Set the peer's active state. */ 580 peer->state = peer_state; 581 582 /* Attach the remote transport to our asoc. */ 583 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 584 asoc->peer.transport_count++; 585 586 /* If we do not yet have a primary path, set one. */ 587 if (!asoc->peer.primary_path) { 588 sctp_assoc_set_primary(asoc, peer); 589 asoc->peer.retran_path = peer; 590 } 591 592 if (asoc->peer.active_path == asoc->peer.retran_path) { 593 asoc->peer.retran_path = peer; 594 } 595 596 return peer; 597 } 598 599 /* Delete a transport address from an association. */ 600 void sctp_assoc_del_peer(struct sctp_association *asoc, 601 const union sctp_addr *addr) 602 { 603 struct list_head *pos; 604 struct list_head *temp; 605 struct sctp_transport *transport; 606 607 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 608 transport = list_entry(pos, struct sctp_transport, transports); 609 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 610 /* Do book keeping for removing the peer and free it. */ 611 sctp_assoc_rm_peer(asoc, transport); 612 break; 613 } 614 } 615 } 616 617 /* Lookup a transport by address. */ 618 struct sctp_transport *sctp_assoc_lookup_paddr( 619 const struct sctp_association *asoc, 620 const union sctp_addr *address) 621 { 622 struct sctp_transport *t; 623 struct list_head *pos; 624 625 /* Cycle through all transports searching for a peer address. */ 626 627 list_for_each(pos, &asoc->peer.transport_addr_list) { 628 t = list_entry(pos, struct sctp_transport, transports); 629 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 630 return t; 631 } 632 633 return NULL; 634 } 635 636 /* Engage in transport control operations. 637 * Mark the transport up or down and send a notification to the user. 638 * Select and update the new active and retran paths. 639 */ 640 void sctp_assoc_control_transport(struct sctp_association *asoc, 641 struct sctp_transport *transport, 642 sctp_transport_cmd_t command, 643 sctp_sn_error_t error) 644 { 645 struct sctp_transport *t = NULL; 646 struct sctp_transport *first; 647 struct sctp_transport *second; 648 struct sctp_ulpevent *event; 649 struct list_head *pos; 650 int spc_state = 0; 651 652 /* Record the transition on the transport. */ 653 switch (command) { 654 case SCTP_TRANSPORT_UP: 655 transport->state = SCTP_ACTIVE; 656 spc_state = SCTP_ADDR_AVAILABLE; 657 break; 658 659 case SCTP_TRANSPORT_DOWN: 660 transport->state = SCTP_INACTIVE; 661 spc_state = SCTP_ADDR_UNREACHABLE; 662 break; 663 664 default: 665 return; 666 }; 667 668 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 669 * user. 670 */ 671 event = sctp_ulpevent_make_peer_addr_change(asoc, 672 (struct sockaddr_storage *) &transport->ipaddr, 673 0, spc_state, error, GFP_ATOMIC); 674 if (event) 675 sctp_ulpq_tail_event(&asoc->ulpq, event); 676 677 /* Select new active and retran paths. */ 678 679 /* Look for the two most recently used active transports. 680 * 681 * This code produces the wrong ordering whenever jiffies 682 * rolls over, but we still get usable transports, so we don't 683 * worry about it. 684 */ 685 first = NULL; second = NULL; 686 687 list_for_each(pos, &asoc->peer.transport_addr_list) { 688 t = list_entry(pos, struct sctp_transport, transports); 689 690 if (t->state == SCTP_INACTIVE) 691 continue; 692 if (!first || t->last_time_heard > first->last_time_heard) { 693 second = first; 694 first = t; 695 } 696 if (!second || t->last_time_heard > second->last_time_heard) 697 second = t; 698 } 699 700 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 701 * 702 * By default, an endpoint should always transmit to the 703 * primary path, unless the SCTP user explicitly specifies the 704 * destination transport address (and possibly source 705 * transport address) to use. 706 * 707 * [If the primary is active but not most recent, bump the most 708 * recently used transport.] 709 */ 710 if (asoc->peer.primary_path->state != SCTP_INACTIVE && 711 first != asoc->peer.primary_path) { 712 second = first; 713 first = asoc->peer.primary_path; 714 } 715 716 /* If we failed to find a usable transport, just camp on the 717 * primary, even if it is inactive. 718 */ 719 if (!first) { 720 first = asoc->peer.primary_path; 721 second = asoc->peer.primary_path; 722 } 723 724 /* Set the active and retran transports. */ 725 asoc->peer.active_path = first; 726 asoc->peer.retran_path = second; 727 } 728 729 /* Hold a reference to an association. */ 730 void sctp_association_hold(struct sctp_association *asoc) 731 { 732 atomic_inc(&asoc->base.refcnt); 733 } 734 735 /* Release a reference to an association and cleanup 736 * if there are no more references. 737 */ 738 void sctp_association_put(struct sctp_association *asoc) 739 { 740 if (atomic_dec_and_test(&asoc->base.refcnt)) 741 sctp_association_destroy(asoc); 742 } 743 744 /* Allocate the next TSN, Transmission Sequence Number, for the given 745 * association. 746 */ 747 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 748 { 749 /* From Section 1.6 Serial Number Arithmetic: 750 * Transmission Sequence Numbers wrap around when they reach 751 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 752 * after transmitting TSN = 2*32 - 1 is TSN = 0. 753 */ 754 __u32 retval = asoc->next_tsn; 755 asoc->next_tsn++; 756 asoc->unack_data++; 757 758 return retval; 759 } 760 761 /* Compare two addresses to see if they match. Wildcard addresses 762 * only match themselves. 763 */ 764 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 765 const union sctp_addr *ss2) 766 { 767 struct sctp_af *af; 768 769 af = sctp_get_af_specific(ss1->sa.sa_family); 770 if (unlikely(!af)) 771 return 0; 772 773 return af->cmp_addr(ss1, ss2); 774 } 775 776 /* Return an ecne chunk to get prepended to a packet. 777 * Note: We are sly and return a shared, prealloced chunk. FIXME: 778 * No we don't, but we could/should. 779 */ 780 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 781 { 782 struct sctp_chunk *chunk; 783 784 /* Send ECNE if needed. 785 * Not being able to allocate a chunk here is not deadly. 786 */ 787 if (asoc->need_ecne) 788 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 789 else 790 chunk = NULL; 791 792 return chunk; 793 } 794 795 /* 796 * Find which transport this TSN was sent on. 797 */ 798 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 799 __u32 tsn) 800 { 801 struct sctp_transport *active; 802 struct sctp_transport *match; 803 struct list_head *entry, *pos; 804 struct sctp_transport *transport; 805 struct sctp_chunk *chunk; 806 __u32 key = htonl(tsn); 807 808 match = NULL; 809 810 /* 811 * FIXME: In general, find a more efficient data structure for 812 * searching. 813 */ 814 815 /* 816 * The general strategy is to search each transport's transmitted 817 * list. Return which transport this TSN lives on. 818 * 819 * Let's be hopeful and check the active_path first. 820 * Another optimization would be to know if there is only one 821 * outbound path and not have to look for the TSN at all. 822 * 823 */ 824 825 active = asoc->peer.active_path; 826 827 list_for_each(entry, &active->transmitted) { 828 chunk = list_entry(entry, struct sctp_chunk, transmitted_list); 829 830 if (key == chunk->subh.data_hdr->tsn) { 831 match = active; 832 goto out; 833 } 834 } 835 836 /* If not found, go search all the other transports. */ 837 list_for_each(pos, &asoc->peer.transport_addr_list) { 838 transport = list_entry(pos, struct sctp_transport, transports); 839 840 if (transport == active) 841 break; 842 list_for_each(entry, &transport->transmitted) { 843 chunk = list_entry(entry, struct sctp_chunk, 844 transmitted_list); 845 if (key == chunk->subh.data_hdr->tsn) { 846 match = transport; 847 goto out; 848 } 849 } 850 } 851 out: 852 return match; 853 } 854 855 /* Is this the association we are looking for? */ 856 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 857 const union sctp_addr *laddr, 858 const union sctp_addr *paddr) 859 { 860 struct sctp_transport *transport; 861 862 sctp_read_lock(&asoc->base.addr_lock); 863 864 if ((asoc->base.bind_addr.port == laddr->v4.sin_port) && 865 (asoc->peer.port == paddr->v4.sin_port)) { 866 transport = sctp_assoc_lookup_paddr(asoc, paddr); 867 if (!transport) 868 goto out; 869 870 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 871 sctp_sk(asoc->base.sk))) 872 goto out; 873 } 874 transport = NULL; 875 876 out: 877 sctp_read_unlock(&asoc->base.addr_lock); 878 return transport; 879 } 880 881 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 882 static void sctp_assoc_bh_rcv(struct sctp_association *asoc) 883 { 884 struct sctp_endpoint *ep; 885 struct sctp_chunk *chunk; 886 struct sock *sk; 887 struct sctp_inq *inqueue; 888 int state; 889 sctp_subtype_t subtype; 890 int error = 0; 891 892 /* The association should be held so we should be safe. */ 893 ep = asoc->ep; 894 sk = asoc->base.sk; 895 896 inqueue = &asoc->base.inqueue; 897 sctp_association_hold(asoc); 898 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 899 state = asoc->state; 900 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 901 902 /* Remember where the last DATA chunk came from so we 903 * know where to send the SACK. 904 */ 905 if (sctp_chunk_is_data(chunk)) 906 asoc->peer.last_data_from = chunk->transport; 907 else 908 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 909 910 if (chunk->transport) 911 chunk->transport->last_time_heard = jiffies; 912 913 /* Run through the state machine. */ 914 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 915 state, ep, asoc, chunk, GFP_ATOMIC); 916 917 /* Check to see if the association is freed in response to 918 * the incoming chunk. If so, get out of the while loop. 919 */ 920 if (asoc->base.dead) 921 break; 922 923 /* If there is an error on chunk, discard this packet. */ 924 if (error && chunk) 925 chunk->pdiscard = 1; 926 } 927 sctp_association_put(asoc); 928 } 929 930 /* This routine moves an association from its old sk to a new sk. */ 931 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 932 { 933 struct sctp_sock *newsp = sctp_sk(newsk); 934 struct sock *oldsk = assoc->base.sk; 935 936 /* Delete the association from the old endpoint's list of 937 * associations. 938 */ 939 list_del_init(&assoc->asocs); 940 941 /* Decrement the backlog value for a TCP-style socket. */ 942 if (sctp_style(oldsk, TCP)) 943 oldsk->sk_ack_backlog--; 944 945 /* Release references to the old endpoint and the sock. */ 946 sctp_endpoint_put(assoc->ep); 947 sock_put(assoc->base.sk); 948 949 /* Get a reference to the new endpoint. */ 950 assoc->ep = newsp->ep; 951 sctp_endpoint_hold(assoc->ep); 952 953 /* Get a reference to the new sock. */ 954 assoc->base.sk = newsk; 955 sock_hold(assoc->base.sk); 956 957 /* Add the association to the new endpoint's list of associations. */ 958 sctp_endpoint_add_asoc(newsp->ep, assoc); 959 } 960 961 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 962 void sctp_assoc_update(struct sctp_association *asoc, 963 struct sctp_association *new) 964 { 965 struct sctp_transport *trans; 966 struct list_head *pos, *temp; 967 968 /* Copy in new parameters of peer. */ 969 asoc->c = new->c; 970 asoc->peer.rwnd = new->peer.rwnd; 971 asoc->peer.sack_needed = new->peer.sack_needed; 972 asoc->peer.i = new->peer.i; 973 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 974 asoc->peer.i.initial_tsn); 975 976 /* Remove any peer addresses not present in the new association. */ 977 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 978 trans = list_entry(pos, struct sctp_transport, transports); 979 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) 980 sctp_assoc_del_peer(asoc, &trans->ipaddr); 981 } 982 983 /* If the case is A (association restart), use 984 * initial_tsn as next_tsn. If the case is B, use 985 * current next_tsn in case data sent to peer 986 * has been discarded and needs retransmission. 987 */ 988 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 989 asoc->next_tsn = new->next_tsn; 990 asoc->ctsn_ack_point = new->ctsn_ack_point; 991 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 992 993 /* Reinitialize SSN for both local streams 994 * and peer's streams. 995 */ 996 sctp_ssnmap_clear(asoc->ssnmap); 997 998 } else { 999 /* Add any peer addresses from the new association. */ 1000 list_for_each(pos, &new->peer.transport_addr_list) { 1001 trans = list_entry(pos, struct sctp_transport, 1002 transports); 1003 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1004 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1005 GFP_ATOMIC, SCTP_ACTIVE); 1006 } 1007 1008 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1009 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1010 if (!asoc->ssnmap) { 1011 /* Move the ssnmap. */ 1012 asoc->ssnmap = new->ssnmap; 1013 new->ssnmap = NULL; 1014 } 1015 } 1016 } 1017 1018 /* Update the retran path for sending a retransmitted packet. 1019 * Round-robin through the active transports, else round-robin 1020 * through the inactive transports as this is the next best thing 1021 * we can try. 1022 */ 1023 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1024 { 1025 struct sctp_transport *t, *next; 1026 struct list_head *head = &asoc->peer.transport_addr_list; 1027 struct list_head *pos; 1028 1029 /* Find the next transport in a round-robin fashion. */ 1030 t = asoc->peer.retran_path; 1031 pos = &t->transports; 1032 next = NULL; 1033 1034 while (1) { 1035 /* Skip the head. */ 1036 if (pos->next == head) 1037 pos = head->next; 1038 else 1039 pos = pos->next; 1040 1041 t = list_entry(pos, struct sctp_transport, transports); 1042 1043 /* Try to find an active transport. */ 1044 1045 if (t->state != SCTP_INACTIVE) { 1046 break; 1047 } else { 1048 /* Keep track of the next transport in case 1049 * we don't find any active transport. 1050 */ 1051 if (!next) 1052 next = t; 1053 } 1054 1055 /* We have exhausted the list, but didn't find any 1056 * other active transports. If so, use the next 1057 * transport. 1058 */ 1059 if (t == asoc->peer.retran_path) { 1060 t = next; 1061 break; 1062 } 1063 } 1064 1065 asoc->peer.retran_path = t; 1066 1067 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1068 " %p addr: ", 1069 " port: %d\n", 1070 asoc, 1071 (&t->ipaddr), 1072 t->ipaddr.v4.sin_port); 1073 } 1074 1075 /* Choose the transport for sending a INIT packet. */ 1076 struct sctp_transport *sctp_assoc_choose_init_transport( 1077 struct sctp_association *asoc) 1078 { 1079 struct sctp_transport *t; 1080 1081 /* Use the retran path. If the last INIT was sent over the 1082 * retran path, update the retran path and use it. 1083 */ 1084 if (!asoc->init_last_sent_to) { 1085 t = asoc->peer.active_path; 1086 } else { 1087 if (asoc->init_last_sent_to == asoc->peer.retran_path) 1088 sctp_assoc_update_retran_path(asoc); 1089 t = asoc->peer.retran_path; 1090 } 1091 1092 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1093 " %p addr: ", 1094 " port: %d\n", 1095 asoc, 1096 (&t->ipaddr), 1097 t->ipaddr.v4.sin_port); 1098 1099 return t; 1100 } 1101 1102 /* Choose the transport for sending a SHUTDOWN packet. */ 1103 struct sctp_transport *sctp_assoc_choose_shutdown_transport( 1104 struct sctp_association *asoc) 1105 { 1106 /* If this is the first time SHUTDOWN is sent, use the active path, 1107 * else use the retran path. If the last SHUTDOWN was sent over the 1108 * retran path, update the retran path and use it. 1109 */ 1110 if (!asoc->shutdown_last_sent_to) 1111 return asoc->peer.active_path; 1112 else { 1113 if (asoc->shutdown_last_sent_to == asoc->peer.retran_path) 1114 sctp_assoc_update_retran_path(asoc); 1115 return asoc->peer.retran_path; 1116 } 1117 1118 } 1119 1120 /* Update the association's pmtu and frag_point by going through all the 1121 * transports. This routine is called when a transport's PMTU has changed. 1122 */ 1123 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1124 { 1125 struct sctp_transport *t; 1126 struct list_head *pos; 1127 __u32 pmtu = 0; 1128 1129 if (!asoc) 1130 return; 1131 1132 /* Get the lowest pmtu of all the transports. */ 1133 list_for_each(pos, &asoc->peer.transport_addr_list) { 1134 t = list_entry(pos, struct sctp_transport, transports); 1135 if (!pmtu || (t->pmtu < pmtu)) 1136 pmtu = t->pmtu; 1137 } 1138 1139 if (pmtu) { 1140 struct sctp_sock *sp = sctp_sk(asoc->base.sk); 1141 asoc->pmtu = pmtu; 1142 asoc->frag_point = sctp_frag_point(sp, pmtu); 1143 } 1144 1145 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1146 __FUNCTION__, asoc, asoc->pmtu, asoc->frag_point); 1147 } 1148 1149 /* Should we send a SACK to update our peer? */ 1150 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1151 { 1152 switch (asoc->state) { 1153 case SCTP_STATE_ESTABLISHED: 1154 case SCTP_STATE_SHUTDOWN_PENDING: 1155 case SCTP_STATE_SHUTDOWN_RECEIVED: 1156 case SCTP_STATE_SHUTDOWN_SENT: 1157 if ((asoc->rwnd > asoc->a_rwnd) && 1158 ((asoc->rwnd - asoc->a_rwnd) >= 1159 min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pmtu))) 1160 return 1; 1161 break; 1162 default: 1163 break; 1164 } 1165 return 0; 1166 } 1167 1168 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1169 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) 1170 { 1171 struct sctp_chunk *sack; 1172 struct timer_list *timer; 1173 1174 if (asoc->rwnd_over) { 1175 if (asoc->rwnd_over >= len) { 1176 asoc->rwnd_over -= len; 1177 } else { 1178 asoc->rwnd += (len - asoc->rwnd_over); 1179 asoc->rwnd_over = 0; 1180 } 1181 } else { 1182 asoc->rwnd += len; 1183 } 1184 1185 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1186 "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd, 1187 asoc->rwnd_over, asoc->a_rwnd); 1188 1189 /* Send a window update SACK if the rwnd has increased by at least the 1190 * minimum of the association's PMTU and half of the receive buffer. 1191 * The algorithm used is similar to the one described in 1192 * Section 4.2.3.3 of RFC 1122. 1193 */ 1194 if (sctp_peer_needs_update(asoc)) { 1195 asoc->a_rwnd = asoc->rwnd; 1196 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1197 "rwnd: %u a_rwnd: %u\n", __FUNCTION__, 1198 asoc, asoc->rwnd, asoc->a_rwnd); 1199 sack = sctp_make_sack(asoc); 1200 if (!sack) 1201 return; 1202 1203 asoc->peer.sack_needed = 0; 1204 1205 sctp_outq_tail(&asoc->outqueue, sack); 1206 1207 /* Stop the SACK timer. */ 1208 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1209 if (timer_pending(timer) && del_timer(timer)) 1210 sctp_association_put(asoc); 1211 } 1212 } 1213 1214 /* Decrease asoc's rwnd by len. */ 1215 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) 1216 { 1217 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1218 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1219 if (asoc->rwnd >= len) { 1220 asoc->rwnd -= len; 1221 } else { 1222 asoc->rwnd_over = len - asoc->rwnd; 1223 asoc->rwnd = 0; 1224 } 1225 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n", 1226 __FUNCTION__, asoc, len, asoc->rwnd, 1227 asoc->rwnd_over); 1228 } 1229 1230 /* Build the bind address list for the association based on info from the 1231 * local endpoint and the remote peer. 1232 */ 1233 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1234 unsigned int __nocast gfp) 1235 { 1236 sctp_scope_t scope; 1237 int flags; 1238 1239 /* Use scoping rules to determine the subset of addresses from 1240 * the endpoint. 1241 */ 1242 scope = sctp_scope(&asoc->peer.active_path->ipaddr); 1243 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1244 if (asoc->peer.ipv4_address) 1245 flags |= SCTP_ADDR4_PEERSUPP; 1246 if (asoc->peer.ipv6_address) 1247 flags |= SCTP_ADDR6_PEERSUPP; 1248 1249 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1250 &asoc->ep->base.bind_addr, 1251 scope, gfp, flags); 1252 } 1253 1254 /* Build the association's bind address list from the cookie. */ 1255 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1256 struct sctp_cookie *cookie, 1257 unsigned int __nocast gfp) 1258 { 1259 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1260 int var_size3 = cookie->raw_addr_list_len; 1261 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1262 1263 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1264 asoc->ep->base.bind_addr.port, gfp); 1265 } 1266 1267 /* Lookup laddr in the bind address list of an association. */ 1268 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1269 const union sctp_addr *laddr) 1270 { 1271 int found; 1272 1273 sctp_read_lock(&asoc->base.addr_lock); 1274 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1275 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1276 sctp_sk(asoc->base.sk))) { 1277 found = 1; 1278 goto out; 1279 } 1280 1281 found = 0; 1282 out: 1283 sctp_read_unlock(&asoc->base.addr_lock); 1284 return found; 1285 } 1286