1 /* 2 * net/sched/sch_tbf.c Token Bucket Filter queue. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs - 11 * original idea by Martin Devera 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/kernel.h> 18 #include <linux/string.h> 19 #include <linux/errno.h> 20 #include <linux/skbuff.h> 21 #include <net/netlink.h> 22 #include <net/pkt_sched.h> 23 24 25 /* Simple Token Bucket Filter. 26 ======================================= 27 28 SOURCE. 29 ------- 30 31 None. 32 33 Description. 34 ------------ 35 36 A data flow obeys TBF with rate R and depth B, if for any 37 time interval t_i...t_f the number of transmitted bits 38 does not exceed B + R*(t_f-t_i). 39 40 Packetized version of this definition: 41 The sequence of packets of sizes s_i served at moments t_i 42 obeys TBF, if for any i<=k: 43 44 s_i+....+s_k <= B + R*(t_k - t_i) 45 46 Algorithm. 47 ---------- 48 49 Let N(t_i) be B/R initially and N(t) grow continuously with time as: 50 51 N(t+delta) = min{B/R, N(t) + delta} 52 53 If the first packet in queue has length S, it may be 54 transmitted only at the time t_* when S/R <= N(t_*), 55 and in this case N(t) jumps: 56 57 N(t_* + 0) = N(t_* - 0) - S/R. 58 59 60 61 Actually, QoS requires two TBF to be applied to a data stream. 62 One of them controls steady state burst size, another 63 one with rate P (peak rate) and depth M (equal to link MTU) 64 limits bursts at a smaller time scale. 65 66 It is easy to see that P>R, and B>M. If P is infinity, this double 67 TBF is equivalent to a single one. 68 69 When TBF works in reshaping mode, latency is estimated as: 70 71 lat = max ((L-B)/R, (L-M)/P) 72 73 74 NOTES. 75 ------ 76 77 If TBF throttles, it starts a watchdog timer, which will wake it up 78 when it is ready to transmit. 79 Note that the minimal timer resolution is 1/HZ. 80 If no new packets arrive during this period, 81 or if the device is not awaken by EOI for some previous packet, 82 TBF can stop its activity for 1/HZ. 83 84 85 This means, that with depth B, the maximal rate is 86 87 R_crit = B*HZ 88 89 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes. 90 91 Note that the peak rate TBF is much more tough: with MTU 1500 92 P_crit = 150Kbytes/sec. So, if you need greater peak 93 rates, use alpha with HZ=1000 :-) 94 95 With classful TBF, limit is just kept for backwards compatibility. 96 It is passed to the default bfifo qdisc - if the inner qdisc is 97 changed the limit is not effective anymore. 98 */ 99 100 struct tbf_sched_data 101 { 102 /* Parameters */ 103 u32 limit; /* Maximal length of backlog: bytes */ 104 u32 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */ 105 u32 mtu; 106 u32 max_size; 107 struct qdisc_rate_table *R_tab; 108 struct qdisc_rate_table *P_tab; 109 110 /* Variables */ 111 long tokens; /* Current number of B tokens */ 112 long ptokens; /* Current number of P tokens */ 113 psched_time_t t_c; /* Time check-point */ 114 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */ 115 struct qdisc_watchdog watchdog; /* Watchdog timer */ 116 }; 117 118 #define L2T(q,L) qdisc_l2t((q)->R_tab,L) 119 #define L2T_P(q,L) qdisc_l2t((q)->P_tab,L) 120 121 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc* sch) 122 { 123 struct tbf_sched_data *q = qdisc_priv(sch); 124 int ret; 125 126 if (qdisc_pkt_len(skb) > q->max_size) 127 return qdisc_reshape_fail(skb, sch); 128 129 ret = qdisc_enqueue(skb, q->qdisc); 130 if (ret != 0) { 131 if (net_xmit_drop_count(ret)) 132 sch->qstats.drops++; 133 return ret; 134 } 135 136 sch->q.qlen++; 137 sch->bstats.bytes += qdisc_pkt_len(skb); 138 sch->bstats.packets++; 139 return 0; 140 } 141 142 static unsigned int tbf_drop(struct Qdisc* sch) 143 { 144 struct tbf_sched_data *q = qdisc_priv(sch); 145 unsigned int len = 0; 146 147 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) { 148 sch->q.qlen--; 149 sch->qstats.drops++; 150 } 151 return len; 152 } 153 154 static struct sk_buff *tbf_dequeue(struct Qdisc* sch) 155 { 156 struct tbf_sched_data *q = qdisc_priv(sch); 157 struct sk_buff *skb; 158 159 skb = q->qdisc->ops->peek(q->qdisc); 160 161 if (skb) { 162 psched_time_t now; 163 long toks; 164 long ptoks = 0; 165 unsigned int len = qdisc_pkt_len(skb); 166 167 now = psched_get_time(); 168 toks = psched_tdiff_bounded(now, q->t_c, q->buffer); 169 170 if (q->P_tab) { 171 ptoks = toks + q->ptokens; 172 if (ptoks > (long)q->mtu) 173 ptoks = q->mtu; 174 ptoks -= L2T_P(q, len); 175 } 176 toks += q->tokens; 177 if (toks > (long)q->buffer) 178 toks = q->buffer; 179 toks -= L2T(q, len); 180 181 if ((toks|ptoks) >= 0) { 182 skb = qdisc_dequeue_peeked(q->qdisc); 183 if (unlikely(!skb)) 184 return NULL; 185 186 q->t_c = now; 187 q->tokens = toks; 188 q->ptokens = ptoks; 189 sch->q.qlen--; 190 sch->flags &= ~TCQ_F_THROTTLED; 191 return skb; 192 } 193 194 qdisc_watchdog_schedule(&q->watchdog, 195 now + max_t(long, -toks, -ptoks)); 196 197 /* Maybe we have a shorter packet in the queue, 198 which can be sent now. It sounds cool, 199 but, however, this is wrong in principle. 200 We MUST NOT reorder packets under these circumstances. 201 202 Really, if we split the flow into independent 203 subflows, it would be a very good solution. 204 This is the main idea of all FQ algorithms 205 (cf. CSZ, HPFQ, HFSC) 206 */ 207 208 sch->qstats.overlimits++; 209 } 210 return NULL; 211 } 212 213 static void tbf_reset(struct Qdisc* sch) 214 { 215 struct tbf_sched_data *q = qdisc_priv(sch); 216 217 qdisc_reset(q->qdisc); 218 sch->q.qlen = 0; 219 q->t_c = psched_get_time(); 220 q->tokens = q->buffer; 221 q->ptokens = q->mtu; 222 qdisc_watchdog_cancel(&q->watchdog); 223 } 224 225 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = { 226 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) }, 227 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, 228 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, 229 }; 230 231 static int tbf_change(struct Qdisc* sch, struct nlattr *opt) 232 { 233 int err; 234 struct tbf_sched_data *q = qdisc_priv(sch); 235 struct nlattr *tb[TCA_TBF_PTAB + 1]; 236 struct tc_tbf_qopt *qopt; 237 struct qdisc_rate_table *rtab = NULL; 238 struct qdisc_rate_table *ptab = NULL; 239 struct Qdisc *child = NULL; 240 int max_size,n; 241 242 err = nla_parse_nested(tb, TCA_TBF_PTAB, opt, tbf_policy); 243 if (err < 0) 244 return err; 245 246 err = -EINVAL; 247 if (tb[TCA_TBF_PARMS] == NULL) 248 goto done; 249 250 qopt = nla_data(tb[TCA_TBF_PARMS]); 251 rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB]); 252 if (rtab == NULL) 253 goto done; 254 255 if (qopt->peakrate.rate) { 256 if (qopt->peakrate.rate > qopt->rate.rate) 257 ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB]); 258 if (ptab == NULL) 259 goto done; 260 } 261 262 for (n = 0; n < 256; n++) 263 if (rtab->data[n] > qopt->buffer) break; 264 max_size = (n << qopt->rate.cell_log)-1; 265 if (ptab) { 266 int size; 267 268 for (n = 0; n < 256; n++) 269 if (ptab->data[n] > qopt->mtu) break; 270 size = (n << qopt->peakrate.cell_log)-1; 271 if (size < max_size) max_size = size; 272 } 273 if (max_size < 0) 274 goto done; 275 276 if (qopt->limit > 0) { 277 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit); 278 if (IS_ERR(child)) { 279 err = PTR_ERR(child); 280 goto done; 281 } 282 } 283 284 sch_tree_lock(sch); 285 if (child) { 286 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen); 287 qdisc_destroy(q->qdisc); 288 q->qdisc = child; 289 } 290 q->limit = qopt->limit; 291 q->mtu = qopt->mtu; 292 q->max_size = max_size; 293 q->buffer = qopt->buffer; 294 q->tokens = q->buffer; 295 q->ptokens = q->mtu; 296 297 swap(q->R_tab, rtab); 298 swap(q->P_tab, ptab); 299 300 sch_tree_unlock(sch); 301 err = 0; 302 done: 303 if (rtab) 304 qdisc_put_rtab(rtab); 305 if (ptab) 306 qdisc_put_rtab(ptab); 307 return err; 308 } 309 310 static int tbf_init(struct Qdisc* sch, struct nlattr *opt) 311 { 312 struct tbf_sched_data *q = qdisc_priv(sch); 313 314 if (opt == NULL) 315 return -EINVAL; 316 317 q->t_c = psched_get_time(); 318 qdisc_watchdog_init(&q->watchdog, sch); 319 q->qdisc = &noop_qdisc; 320 321 return tbf_change(sch, opt); 322 } 323 324 static void tbf_destroy(struct Qdisc *sch) 325 { 326 struct tbf_sched_data *q = qdisc_priv(sch); 327 328 qdisc_watchdog_cancel(&q->watchdog); 329 330 if (q->P_tab) 331 qdisc_put_rtab(q->P_tab); 332 if (q->R_tab) 333 qdisc_put_rtab(q->R_tab); 334 335 qdisc_destroy(q->qdisc); 336 } 337 338 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb) 339 { 340 struct tbf_sched_data *q = qdisc_priv(sch); 341 struct nlattr *nest; 342 struct tc_tbf_qopt opt; 343 344 nest = nla_nest_start(skb, TCA_OPTIONS); 345 if (nest == NULL) 346 goto nla_put_failure; 347 348 opt.limit = q->limit; 349 opt.rate = q->R_tab->rate; 350 if (q->P_tab) 351 opt.peakrate = q->P_tab->rate; 352 else 353 memset(&opt.peakrate, 0, sizeof(opt.peakrate)); 354 opt.mtu = q->mtu; 355 opt.buffer = q->buffer; 356 NLA_PUT(skb, TCA_TBF_PARMS, sizeof(opt), &opt); 357 358 nla_nest_end(skb, nest); 359 return skb->len; 360 361 nla_put_failure: 362 nla_nest_cancel(skb, nest); 363 return -1; 364 } 365 366 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl, 367 struct sk_buff *skb, struct tcmsg *tcm) 368 { 369 struct tbf_sched_data *q = qdisc_priv(sch); 370 371 if (cl != 1) /* only one class */ 372 return -ENOENT; 373 374 tcm->tcm_handle |= TC_H_MIN(1); 375 tcm->tcm_info = q->qdisc->handle; 376 377 return 0; 378 } 379 380 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 381 struct Qdisc **old) 382 { 383 struct tbf_sched_data *q = qdisc_priv(sch); 384 385 if (new == NULL) 386 new = &noop_qdisc; 387 388 sch_tree_lock(sch); 389 *old = q->qdisc; 390 q->qdisc = new; 391 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen); 392 qdisc_reset(*old); 393 sch_tree_unlock(sch); 394 395 return 0; 396 } 397 398 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg) 399 { 400 struct tbf_sched_data *q = qdisc_priv(sch); 401 return q->qdisc; 402 } 403 404 static unsigned long tbf_get(struct Qdisc *sch, u32 classid) 405 { 406 return 1; 407 } 408 409 static void tbf_put(struct Qdisc *sch, unsigned long arg) 410 { 411 } 412 413 static int tbf_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 414 struct nlattr **tca, unsigned long *arg) 415 { 416 return -ENOSYS; 417 } 418 419 static int tbf_delete(struct Qdisc *sch, unsigned long arg) 420 { 421 return -ENOSYS; 422 } 423 424 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker) 425 { 426 if (!walker->stop) { 427 if (walker->count >= walker->skip) 428 if (walker->fn(sch, 1, walker) < 0) { 429 walker->stop = 1; 430 return; 431 } 432 walker->count++; 433 } 434 } 435 436 static struct tcf_proto **tbf_find_tcf(struct Qdisc *sch, unsigned long cl) 437 { 438 return NULL; 439 } 440 441 static const struct Qdisc_class_ops tbf_class_ops = 442 { 443 .graft = tbf_graft, 444 .leaf = tbf_leaf, 445 .get = tbf_get, 446 .put = tbf_put, 447 .change = tbf_change_class, 448 .delete = tbf_delete, 449 .walk = tbf_walk, 450 .tcf_chain = tbf_find_tcf, 451 .dump = tbf_dump_class, 452 }; 453 454 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = { 455 .next = NULL, 456 .cl_ops = &tbf_class_ops, 457 .id = "tbf", 458 .priv_size = sizeof(struct tbf_sched_data), 459 .enqueue = tbf_enqueue, 460 .dequeue = tbf_dequeue, 461 .peek = qdisc_peek_dequeued, 462 .drop = tbf_drop, 463 .init = tbf_init, 464 .reset = tbf_reset, 465 .destroy = tbf_destroy, 466 .change = tbf_change, 467 .dump = tbf_dump, 468 .owner = THIS_MODULE, 469 }; 470 471 static int __init tbf_module_init(void) 472 { 473 return register_qdisc(&tbf_qdisc_ops); 474 } 475 476 static void __exit tbf_module_exit(void) 477 { 478 unregister_qdisc(&tbf_qdisc_ops); 479 } 480 module_init(tbf_module_init) 481 module_exit(tbf_module_exit) 482 MODULE_LICENSE("GPL"); 483