xref: /linux/net/sched/sch_tbf.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * net/sched/sch_tbf.c	Token Bucket Filter queue.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10  *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11  *						 original idea by Martin Devera
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
24 
25 
26 /*	Simple Token Bucket Filter.
27 	=======================================
28 
29 	SOURCE.
30 	-------
31 
32 	None.
33 
34 	Description.
35 	------------
36 
37 	A data flow obeys TBF with rate R and depth B, if for any
38 	time interval t_i...t_f the number of transmitted bits
39 	does not exceed B + R*(t_f-t_i).
40 
41 	Packetized version of this definition:
42 	The sequence of packets of sizes s_i served at moments t_i
43 	obeys TBF, if for any i<=k:
44 
45 	s_i+....+s_k <= B + R*(t_k - t_i)
46 
47 	Algorithm.
48 	----------
49 
50 	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
51 
52 	N(t+delta) = min{B/R, N(t) + delta}
53 
54 	If the first packet in queue has length S, it may be
55 	transmitted only at the time t_* when S/R <= N(t_*),
56 	and in this case N(t) jumps:
57 
58 	N(t_* + 0) = N(t_* - 0) - S/R.
59 
60 
61 
62 	Actually, QoS requires two TBF to be applied to a data stream.
63 	One of them controls steady state burst size, another
64 	one with rate P (peak rate) and depth M (equal to link MTU)
65 	limits bursts at a smaller time scale.
66 
67 	It is easy to see that P>R, and B>M. If P is infinity, this double
68 	TBF is equivalent to a single one.
69 
70 	When TBF works in reshaping mode, latency is estimated as:
71 
72 	lat = max ((L-B)/R, (L-M)/P)
73 
74 
75 	NOTES.
76 	------
77 
78 	If TBF throttles, it starts a watchdog timer, which will wake it up
79 	when it is ready to transmit.
80 	Note that the minimal timer resolution is 1/HZ.
81 	If no new packets arrive during this period,
82 	or if the device is not awaken by EOI for some previous packet,
83 	TBF can stop its activity for 1/HZ.
84 
85 
86 	This means, that with depth B, the maximal rate is
87 
88 	R_crit = B*HZ
89 
90 	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
91 
92 	Note that the peak rate TBF is much more tough: with MTU 1500
93 	P_crit = 150Kbytes/sec. So, if you need greater peak
94 	rates, use alpha with HZ=1000 :-)
95 
96 	With classful TBF, limit is just kept for backwards compatibility.
97 	It is passed to the default bfifo qdisc - if the inner qdisc is
98 	changed the limit is not effective anymore.
99 */
100 
101 struct tbf_sched_data {
102 /* Parameters */
103 	u32		limit;		/* Maximal length of backlog: bytes */
104 	u32		max_size;
105 	s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
106 	s64		mtu;
107 	struct psched_ratecfg rate;
108 	struct psched_ratecfg peak;
109 
110 /* Variables */
111 	s64	tokens;			/* Current number of B tokens */
112 	s64	ptokens;		/* Current number of P tokens */
113 	s64	t_c;			/* Time check-point */
114 	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
115 	struct qdisc_watchdog watchdog;	/* Watchdog timer */
116 };
117 
118 
119 /* Time to Length, convert time in ns to length in bytes
120  * to determinate how many bytes can be sent in given time.
121  */
122 static u64 psched_ns_t2l(const struct psched_ratecfg *r,
123 			 u64 time_in_ns)
124 {
125 	/* The formula is :
126 	 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
127 	 */
128 	u64 len = time_in_ns * r->rate_bytes_ps;
129 
130 	do_div(len, NSEC_PER_SEC);
131 
132 	if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
133 		do_div(len, 53);
134 		len = len * 48;
135 	}
136 
137 	if (len > r->overhead)
138 		len -= r->overhead;
139 	else
140 		len = 0;
141 
142 	return len;
143 }
144 
145 /*
146  * Return length of individual segments of a gso packet,
147  * including all headers (MAC, IP, TCP/UDP)
148  */
149 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
150 {
151 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
152 	return hdr_len + skb_gso_transport_seglen(skb);
153 }
154 
155 /* GSO packet is too big, segment it so that tbf can transmit
156  * each segment in time
157  */
158 static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch)
159 {
160 	struct tbf_sched_data *q = qdisc_priv(sch);
161 	struct sk_buff *segs, *nskb;
162 	netdev_features_t features = netif_skb_features(skb);
163 	unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
164 	int ret, nb;
165 
166 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
167 
168 	if (IS_ERR_OR_NULL(segs))
169 		return qdisc_reshape_fail(skb, sch);
170 
171 	nb = 0;
172 	while (segs) {
173 		nskb = segs->next;
174 		segs->next = NULL;
175 		qdisc_skb_cb(segs)->pkt_len = segs->len;
176 		len += segs->len;
177 		ret = qdisc_enqueue(segs, q->qdisc);
178 		if (ret != NET_XMIT_SUCCESS) {
179 			if (net_xmit_drop_count(ret))
180 				qdisc_qstats_drop(sch);
181 		} else {
182 			nb++;
183 		}
184 		segs = nskb;
185 	}
186 	sch->q.qlen += nb;
187 	if (nb > 1)
188 		qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
189 	consume_skb(skb);
190 	return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
191 }
192 
193 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
194 {
195 	struct tbf_sched_data *q = qdisc_priv(sch);
196 	int ret;
197 
198 	if (qdisc_pkt_len(skb) > q->max_size) {
199 		if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size)
200 			return tbf_segment(skb, sch);
201 		return qdisc_reshape_fail(skb, sch);
202 	}
203 	ret = qdisc_enqueue(skb, q->qdisc);
204 	if (ret != NET_XMIT_SUCCESS) {
205 		if (net_xmit_drop_count(ret))
206 			qdisc_qstats_drop(sch);
207 		return ret;
208 	}
209 
210 	qdisc_qstats_backlog_inc(sch, skb);
211 	sch->q.qlen++;
212 	return NET_XMIT_SUCCESS;
213 }
214 
215 static unsigned int tbf_drop(struct Qdisc *sch)
216 {
217 	struct tbf_sched_data *q = qdisc_priv(sch);
218 	unsigned int len = 0;
219 
220 	if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
221 		sch->qstats.backlog -= len;
222 		sch->q.qlen--;
223 		qdisc_qstats_drop(sch);
224 	}
225 	return len;
226 }
227 
228 static bool tbf_peak_present(const struct tbf_sched_data *q)
229 {
230 	return q->peak.rate_bytes_ps;
231 }
232 
233 static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
234 {
235 	struct tbf_sched_data *q = qdisc_priv(sch);
236 	struct sk_buff *skb;
237 
238 	skb = q->qdisc->ops->peek(q->qdisc);
239 
240 	if (skb) {
241 		s64 now;
242 		s64 toks;
243 		s64 ptoks = 0;
244 		unsigned int len = qdisc_pkt_len(skb);
245 
246 		now = ktime_get_ns();
247 		toks = min_t(s64, now - q->t_c, q->buffer);
248 
249 		if (tbf_peak_present(q)) {
250 			ptoks = toks + q->ptokens;
251 			if (ptoks > q->mtu)
252 				ptoks = q->mtu;
253 			ptoks -= (s64) psched_l2t_ns(&q->peak, len);
254 		}
255 		toks += q->tokens;
256 		if (toks > q->buffer)
257 			toks = q->buffer;
258 		toks -= (s64) psched_l2t_ns(&q->rate, len);
259 
260 		if ((toks|ptoks) >= 0) {
261 			skb = qdisc_dequeue_peeked(q->qdisc);
262 			if (unlikely(!skb))
263 				return NULL;
264 
265 			q->t_c = now;
266 			q->tokens = toks;
267 			q->ptokens = ptoks;
268 			qdisc_qstats_backlog_dec(sch, skb);
269 			sch->q.qlen--;
270 			qdisc_unthrottled(sch);
271 			qdisc_bstats_update(sch, skb);
272 			return skb;
273 		}
274 
275 		qdisc_watchdog_schedule_ns(&q->watchdog,
276 					   now + max_t(long, -toks, -ptoks),
277 					   true);
278 
279 		/* Maybe we have a shorter packet in the queue,
280 		   which can be sent now. It sounds cool,
281 		   but, however, this is wrong in principle.
282 		   We MUST NOT reorder packets under these circumstances.
283 
284 		   Really, if we split the flow into independent
285 		   subflows, it would be a very good solution.
286 		   This is the main idea of all FQ algorithms
287 		   (cf. CSZ, HPFQ, HFSC)
288 		 */
289 
290 		qdisc_qstats_overlimit(sch);
291 	}
292 	return NULL;
293 }
294 
295 static void tbf_reset(struct Qdisc *sch)
296 {
297 	struct tbf_sched_data *q = qdisc_priv(sch);
298 
299 	qdisc_reset(q->qdisc);
300 	sch->qstats.backlog = 0;
301 	sch->q.qlen = 0;
302 	q->t_c = ktime_get_ns();
303 	q->tokens = q->buffer;
304 	q->ptokens = q->mtu;
305 	qdisc_watchdog_cancel(&q->watchdog);
306 }
307 
308 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
309 	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
310 	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
311 	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
312 	[TCA_TBF_RATE64]	= { .type = NLA_U64 },
313 	[TCA_TBF_PRATE64]	= { .type = NLA_U64 },
314 	[TCA_TBF_BURST] = { .type = NLA_U32 },
315 	[TCA_TBF_PBURST] = { .type = NLA_U32 },
316 };
317 
318 static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
319 {
320 	int err;
321 	struct tbf_sched_data *q = qdisc_priv(sch);
322 	struct nlattr *tb[TCA_TBF_MAX + 1];
323 	struct tc_tbf_qopt *qopt;
324 	struct Qdisc *child = NULL;
325 	struct psched_ratecfg rate;
326 	struct psched_ratecfg peak;
327 	u64 max_size;
328 	s64 buffer, mtu;
329 	u64 rate64 = 0, prate64 = 0;
330 
331 	err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy);
332 	if (err < 0)
333 		return err;
334 
335 	err = -EINVAL;
336 	if (tb[TCA_TBF_PARMS] == NULL)
337 		goto done;
338 
339 	qopt = nla_data(tb[TCA_TBF_PARMS]);
340 	if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
341 		qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
342 					      tb[TCA_TBF_RTAB]));
343 
344 	if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
345 			qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
346 						      tb[TCA_TBF_PTAB]));
347 
348 	buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
349 	mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
350 
351 	if (tb[TCA_TBF_RATE64])
352 		rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
353 	psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
354 
355 	if (tb[TCA_TBF_BURST]) {
356 		max_size = nla_get_u32(tb[TCA_TBF_BURST]);
357 		buffer = psched_l2t_ns(&rate, max_size);
358 	} else {
359 		max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
360 	}
361 
362 	if (qopt->peakrate.rate) {
363 		if (tb[TCA_TBF_PRATE64])
364 			prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
365 		psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
366 		if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
367 			pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
368 					peak.rate_bytes_ps, rate.rate_bytes_ps);
369 			err = -EINVAL;
370 			goto done;
371 		}
372 
373 		if (tb[TCA_TBF_PBURST]) {
374 			u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
375 			max_size = min_t(u32, max_size, pburst);
376 			mtu = psched_l2t_ns(&peak, pburst);
377 		} else {
378 			max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
379 		}
380 	} else {
381 		memset(&peak, 0, sizeof(peak));
382 	}
383 
384 	if (max_size < psched_mtu(qdisc_dev(sch)))
385 		pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
386 				    max_size, qdisc_dev(sch)->name,
387 				    psched_mtu(qdisc_dev(sch)));
388 
389 	if (!max_size) {
390 		err = -EINVAL;
391 		goto done;
392 	}
393 
394 	if (q->qdisc != &noop_qdisc) {
395 		err = fifo_set_limit(q->qdisc, qopt->limit);
396 		if (err)
397 			goto done;
398 	} else if (qopt->limit > 0) {
399 		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
400 		if (IS_ERR(child)) {
401 			err = PTR_ERR(child);
402 			goto done;
403 		}
404 	}
405 
406 	sch_tree_lock(sch);
407 	if (child) {
408 		qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
409 					  q->qdisc->qstats.backlog);
410 		qdisc_destroy(q->qdisc);
411 		q->qdisc = child;
412 	}
413 	q->limit = qopt->limit;
414 	if (tb[TCA_TBF_PBURST])
415 		q->mtu = mtu;
416 	else
417 		q->mtu = PSCHED_TICKS2NS(qopt->mtu);
418 	q->max_size = max_size;
419 	if (tb[TCA_TBF_BURST])
420 		q->buffer = buffer;
421 	else
422 		q->buffer = PSCHED_TICKS2NS(qopt->buffer);
423 	q->tokens = q->buffer;
424 	q->ptokens = q->mtu;
425 
426 	memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
427 	memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
428 
429 	sch_tree_unlock(sch);
430 	err = 0;
431 done:
432 	return err;
433 }
434 
435 static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
436 {
437 	struct tbf_sched_data *q = qdisc_priv(sch);
438 
439 	if (opt == NULL)
440 		return -EINVAL;
441 
442 	q->t_c = ktime_get_ns();
443 	qdisc_watchdog_init(&q->watchdog, sch);
444 	q->qdisc = &noop_qdisc;
445 
446 	return tbf_change(sch, opt);
447 }
448 
449 static void tbf_destroy(struct Qdisc *sch)
450 {
451 	struct tbf_sched_data *q = qdisc_priv(sch);
452 
453 	qdisc_watchdog_cancel(&q->watchdog);
454 	qdisc_destroy(q->qdisc);
455 }
456 
457 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
458 {
459 	struct tbf_sched_data *q = qdisc_priv(sch);
460 	struct nlattr *nest;
461 	struct tc_tbf_qopt opt;
462 
463 	sch->qstats.backlog = q->qdisc->qstats.backlog;
464 	nest = nla_nest_start(skb, TCA_OPTIONS);
465 	if (nest == NULL)
466 		goto nla_put_failure;
467 
468 	opt.limit = q->limit;
469 	psched_ratecfg_getrate(&opt.rate, &q->rate);
470 	if (tbf_peak_present(q))
471 		psched_ratecfg_getrate(&opt.peakrate, &q->peak);
472 	else
473 		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
474 	opt.mtu = PSCHED_NS2TICKS(q->mtu);
475 	opt.buffer = PSCHED_NS2TICKS(q->buffer);
476 	if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
477 		goto nla_put_failure;
478 	if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
479 	    nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
480 			      TCA_TBF_PAD))
481 		goto nla_put_failure;
482 	if (tbf_peak_present(q) &&
483 	    q->peak.rate_bytes_ps >= (1ULL << 32) &&
484 	    nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
485 			      TCA_TBF_PAD))
486 		goto nla_put_failure;
487 
488 	return nla_nest_end(skb, nest);
489 
490 nla_put_failure:
491 	nla_nest_cancel(skb, nest);
492 	return -1;
493 }
494 
495 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
496 			  struct sk_buff *skb, struct tcmsg *tcm)
497 {
498 	struct tbf_sched_data *q = qdisc_priv(sch);
499 
500 	tcm->tcm_handle |= TC_H_MIN(1);
501 	tcm->tcm_info = q->qdisc->handle;
502 
503 	return 0;
504 }
505 
506 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
507 		     struct Qdisc **old)
508 {
509 	struct tbf_sched_data *q = qdisc_priv(sch);
510 
511 	if (new == NULL)
512 		new = &noop_qdisc;
513 
514 	*old = qdisc_replace(sch, new, &q->qdisc);
515 	return 0;
516 }
517 
518 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
519 {
520 	struct tbf_sched_data *q = qdisc_priv(sch);
521 	return q->qdisc;
522 }
523 
524 static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
525 {
526 	return 1;
527 }
528 
529 static void tbf_put(struct Qdisc *sch, unsigned long arg)
530 {
531 }
532 
533 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
534 {
535 	if (!walker->stop) {
536 		if (walker->count >= walker->skip)
537 			if (walker->fn(sch, 1, walker) < 0) {
538 				walker->stop = 1;
539 				return;
540 			}
541 		walker->count++;
542 	}
543 }
544 
545 static const struct Qdisc_class_ops tbf_class_ops = {
546 	.graft		=	tbf_graft,
547 	.leaf		=	tbf_leaf,
548 	.get		=	tbf_get,
549 	.put		=	tbf_put,
550 	.walk		=	tbf_walk,
551 	.dump		=	tbf_dump_class,
552 };
553 
554 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
555 	.next		=	NULL,
556 	.cl_ops		=	&tbf_class_ops,
557 	.id		=	"tbf",
558 	.priv_size	=	sizeof(struct tbf_sched_data),
559 	.enqueue	=	tbf_enqueue,
560 	.dequeue	=	tbf_dequeue,
561 	.peek		=	qdisc_peek_dequeued,
562 	.drop		=	tbf_drop,
563 	.init		=	tbf_init,
564 	.reset		=	tbf_reset,
565 	.destroy	=	tbf_destroy,
566 	.change		=	tbf_change,
567 	.dump		=	tbf_dump,
568 	.owner		=	THIS_MODULE,
569 };
570 
571 static int __init tbf_module_init(void)
572 {
573 	return register_qdisc(&tbf_qdisc_ops);
574 }
575 
576 static void __exit tbf_module_exit(void)
577 {
578 	unregister_qdisc(&tbf_qdisc_ops);
579 }
580 module_init(tbf_module_init)
581 module_exit(tbf_module_exit)
582 MODULE_LICENSE("GPL");
583