1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/ethtool.h> 10 #include <linux/types.h> 11 #include <linux/slab.h> 12 #include <linux/kernel.h> 13 #include <linux/string.h> 14 #include <linux/list.h> 15 #include <linux/errno.h> 16 #include <linux/skbuff.h> 17 #include <linux/math64.h> 18 #include <linux/module.h> 19 #include <linux/spinlock.h> 20 #include <linux/rcupdate.h> 21 #include <net/netlink.h> 22 #include <net/pkt_sched.h> 23 #include <net/pkt_cls.h> 24 #include <net/sch_generic.h> 25 #include <net/sock.h> 26 #include <net/tcp.h> 27 28 static LIST_HEAD(taprio_list); 29 static DEFINE_SPINLOCK(taprio_list_lock); 30 31 #define TAPRIO_ALL_GATES_OPEN -1 32 33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 35 #define TAPRIO_FLAGS_INVALID U32_MAX 36 37 struct sched_entry { 38 struct list_head list; 39 40 /* The instant that this entry "closes" and the next one 41 * should open, the qdisc will make some effort so that no 42 * packet leaves after this time. 43 */ 44 ktime_t close_time; 45 ktime_t next_txtime; 46 atomic_t budget; 47 int index; 48 u32 gate_mask; 49 u32 interval; 50 u8 command; 51 }; 52 53 struct sched_gate_list { 54 struct rcu_head rcu; 55 struct list_head entries; 56 size_t num_entries; 57 ktime_t cycle_close_time; 58 s64 cycle_time; 59 s64 cycle_time_extension; 60 s64 base_time; 61 }; 62 63 struct taprio_sched { 64 struct Qdisc **qdiscs; 65 struct Qdisc *root; 66 u32 flags; 67 enum tk_offsets tk_offset; 68 int clockid; 69 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 70 * speeds it's sub-nanoseconds per byte 71 */ 72 73 /* Protects the update side of the RCU protected current_entry */ 74 spinlock_t current_entry_lock; 75 struct sched_entry __rcu *current_entry; 76 struct sched_gate_list __rcu *oper_sched; 77 struct sched_gate_list __rcu *admin_sched; 78 struct hrtimer advance_timer; 79 struct list_head taprio_list; 80 struct sk_buff *(*dequeue)(struct Qdisc *sch); 81 struct sk_buff *(*peek)(struct Qdisc *sch); 82 u32 txtime_delay; 83 }; 84 85 struct __tc_taprio_qopt_offload { 86 refcount_t users; 87 struct tc_taprio_qopt_offload offload; 88 }; 89 90 static ktime_t sched_base_time(const struct sched_gate_list *sched) 91 { 92 if (!sched) 93 return KTIME_MAX; 94 95 return ns_to_ktime(sched->base_time); 96 } 97 98 static ktime_t taprio_get_time(struct taprio_sched *q) 99 { 100 ktime_t mono = ktime_get(); 101 102 switch (q->tk_offset) { 103 case TK_OFFS_MAX: 104 return mono; 105 default: 106 return ktime_mono_to_any(mono, q->tk_offset); 107 } 108 109 return KTIME_MAX; 110 } 111 112 static void taprio_free_sched_cb(struct rcu_head *head) 113 { 114 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 115 struct sched_entry *entry, *n; 116 117 if (!sched) 118 return; 119 120 list_for_each_entry_safe(entry, n, &sched->entries, list) { 121 list_del(&entry->list); 122 kfree(entry); 123 } 124 125 kfree(sched); 126 } 127 128 static void switch_schedules(struct taprio_sched *q, 129 struct sched_gate_list **admin, 130 struct sched_gate_list **oper) 131 { 132 rcu_assign_pointer(q->oper_sched, *admin); 133 rcu_assign_pointer(q->admin_sched, NULL); 134 135 if (*oper) 136 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 137 138 *oper = *admin; 139 *admin = NULL; 140 } 141 142 /* Get how much time has been already elapsed in the current cycle. */ 143 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 144 { 145 ktime_t time_since_sched_start; 146 s32 time_elapsed; 147 148 time_since_sched_start = ktime_sub(time, sched->base_time); 149 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 150 151 return time_elapsed; 152 } 153 154 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 155 struct sched_gate_list *admin, 156 struct sched_entry *entry, 157 ktime_t intv_start) 158 { 159 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 160 ktime_t intv_end, cycle_ext_end, cycle_end; 161 162 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 163 intv_end = ktime_add_ns(intv_start, entry->interval); 164 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 165 166 if (ktime_before(intv_end, cycle_end)) 167 return intv_end; 168 else if (admin && admin != sched && 169 ktime_after(admin->base_time, cycle_end) && 170 ktime_before(admin->base_time, cycle_ext_end)) 171 return admin->base_time; 172 else 173 return cycle_end; 174 } 175 176 static int length_to_duration(struct taprio_sched *q, int len) 177 { 178 return div_u64(len * atomic64_read(&q->picos_per_byte), 1000); 179 } 180 181 /* Returns the entry corresponding to next available interval. If 182 * validate_interval is set, it only validates whether the timestamp occurs 183 * when the gate corresponding to the skb's traffic class is open. 184 */ 185 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 186 struct Qdisc *sch, 187 struct sched_gate_list *sched, 188 struct sched_gate_list *admin, 189 ktime_t time, 190 ktime_t *interval_start, 191 ktime_t *interval_end, 192 bool validate_interval) 193 { 194 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 195 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 196 struct sched_entry *entry = NULL, *entry_found = NULL; 197 struct taprio_sched *q = qdisc_priv(sch); 198 struct net_device *dev = qdisc_dev(sch); 199 bool entry_available = false; 200 s32 cycle_elapsed; 201 int tc, n; 202 203 tc = netdev_get_prio_tc_map(dev, skb->priority); 204 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 205 206 *interval_start = 0; 207 *interval_end = 0; 208 209 if (!sched) 210 return NULL; 211 212 cycle = sched->cycle_time; 213 cycle_elapsed = get_cycle_time_elapsed(sched, time); 214 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 215 cycle_end = ktime_add_ns(curr_intv_end, cycle); 216 217 list_for_each_entry(entry, &sched->entries, list) { 218 curr_intv_start = curr_intv_end; 219 curr_intv_end = get_interval_end_time(sched, admin, entry, 220 curr_intv_start); 221 222 if (ktime_after(curr_intv_start, cycle_end)) 223 break; 224 225 if (!(entry->gate_mask & BIT(tc)) || 226 packet_transmit_time > entry->interval) 227 continue; 228 229 txtime = entry->next_txtime; 230 231 if (ktime_before(txtime, time) || validate_interval) { 232 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 233 if ((ktime_before(curr_intv_start, time) && 234 ktime_before(transmit_end_time, curr_intv_end)) || 235 (ktime_after(curr_intv_start, time) && !validate_interval)) { 236 entry_found = entry; 237 *interval_start = curr_intv_start; 238 *interval_end = curr_intv_end; 239 break; 240 } else if (!entry_available && !validate_interval) { 241 /* Here, we are just trying to find out the 242 * first available interval in the next cycle. 243 */ 244 entry_available = true; 245 entry_found = entry; 246 *interval_start = ktime_add_ns(curr_intv_start, cycle); 247 *interval_end = ktime_add_ns(curr_intv_end, cycle); 248 } 249 } else if (ktime_before(txtime, earliest_txtime) && 250 !entry_available) { 251 earliest_txtime = txtime; 252 entry_found = entry; 253 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 254 *interval_start = ktime_add(curr_intv_start, n * cycle); 255 *interval_end = ktime_add(curr_intv_end, n * cycle); 256 } 257 } 258 259 return entry_found; 260 } 261 262 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 263 { 264 struct taprio_sched *q = qdisc_priv(sch); 265 struct sched_gate_list *sched, *admin; 266 ktime_t interval_start, interval_end; 267 struct sched_entry *entry; 268 269 rcu_read_lock(); 270 sched = rcu_dereference(q->oper_sched); 271 admin = rcu_dereference(q->admin_sched); 272 273 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 274 &interval_start, &interval_end, true); 275 rcu_read_unlock(); 276 277 return entry; 278 } 279 280 static bool taprio_flags_valid(u32 flags) 281 { 282 /* Make sure no other flag bits are set. */ 283 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 284 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 285 return false; 286 /* txtime-assist and full offload are mutually exclusive */ 287 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 288 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 289 return false; 290 return true; 291 } 292 293 /* This returns the tstamp value set by TCP in terms of the set clock. */ 294 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 295 { 296 unsigned int offset = skb_network_offset(skb); 297 const struct ipv6hdr *ipv6h; 298 const struct iphdr *iph; 299 struct ipv6hdr _ipv6h; 300 301 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 302 if (!ipv6h) 303 return 0; 304 305 if (ipv6h->version == 4) { 306 iph = (struct iphdr *)ipv6h; 307 offset += iph->ihl * 4; 308 309 /* special-case 6in4 tunnelling, as that is a common way to get 310 * v6 connectivity in the home 311 */ 312 if (iph->protocol == IPPROTO_IPV6) { 313 ipv6h = skb_header_pointer(skb, offset, 314 sizeof(_ipv6h), &_ipv6h); 315 316 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 317 return 0; 318 } else if (iph->protocol != IPPROTO_TCP) { 319 return 0; 320 } 321 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 322 return 0; 323 } 324 325 return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset); 326 } 327 328 /* There are a few scenarios where we will have to modify the txtime from 329 * what is read from next_txtime in sched_entry. They are: 330 * 1. If txtime is in the past, 331 * a. The gate for the traffic class is currently open and packet can be 332 * transmitted before it closes, schedule the packet right away. 333 * b. If the gate corresponding to the traffic class is going to open later 334 * in the cycle, set the txtime of packet to the interval start. 335 * 2. If txtime is in the future, there are packets corresponding to the 336 * current traffic class waiting to be transmitted. So, the following 337 * possibilities exist: 338 * a. We can transmit the packet before the window containing the txtime 339 * closes. 340 * b. The window might close before the transmission can be completed 341 * successfully. So, schedule the packet in the next open window. 342 */ 343 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 344 { 345 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 346 struct taprio_sched *q = qdisc_priv(sch); 347 struct sched_gate_list *sched, *admin; 348 ktime_t minimum_time, now, txtime; 349 int len, packet_transmit_time; 350 struct sched_entry *entry; 351 bool sched_changed; 352 353 now = taprio_get_time(q); 354 minimum_time = ktime_add_ns(now, q->txtime_delay); 355 356 tcp_tstamp = get_tcp_tstamp(q, skb); 357 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 358 359 rcu_read_lock(); 360 admin = rcu_dereference(q->admin_sched); 361 sched = rcu_dereference(q->oper_sched); 362 if (admin && ktime_after(minimum_time, admin->base_time)) 363 switch_schedules(q, &admin, &sched); 364 365 /* Until the schedule starts, all the queues are open */ 366 if (!sched || ktime_before(minimum_time, sched->base_time)) { 367 txtime = minimum_time; 368 goto done; 369 } 370 371 len = qdisc_pkt_len(skb); 372 packet_transmit_time = length_to_duration(q, len); 373 374 do { 375 sched_changed = false; 376 377 entry = find_entry_to_transmit(skb, sch, sched, admin, 378 minimum_time, 379 &interval_start, &interval_end, 380 false); 381 if (!entry) { 382 txtime = 0; 383 goto done; 384 } 385 386 txtime = entry->next_txtime; 387 txtime = max_t(ktime_t, txtime, minimum_time); 388 txtime = max_t(ktime_t, txtime, interval_start); 389 390 if (admin && admin != sched && 391 ktime_after(txtime, admin->base_time)) { 392 sched = admin; 393 sched_changed = true; 394 continue; 395 } 396 397 transmit_end_time = ktime_add(txtime, packet_transmit_time); 398 minimum_time = transmit_end_time; 399 400 /* Update the txtime of current entry to the next time it's 401 * interval starts. 402 */ 403 if (ktime_after(transmit_end_time, interval_end)) 404 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 405 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 406 407 entry->next_txtime = transmit_end_time; 408 409 done: 410 rcu_read_unlock(); 411 return txtime; 412 } 413 414 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, 415 struct Qdisc *child, struct sk_buff **to_free) 416 { 417 struct taprio_sched *q = qdisc_priv(sch); 418 419 if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) { 420 if (!is_valid_interval(skb, sch)) 421 return qdisc_drop(skb, sch, to_free); 422 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 423 skb->tstamp = get_packet_txtime(skb, sch); 424 if (!skb->tstamp) 425 return qdisc_drop(skb, sch, to_free); 426 } 427 428 qdisc_qstats_backlog_inc(sch, skb); 429 sch->q.qlen++; 430 431 return qdisc_enqueue(skb, child, to_free); 432 } 433 434 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 435 struct sk_buff **to_free) 436 { 437 struct taprio_sched *q = qdisc_priv(sch); 438 struct Qdisc *child; 439 int queue; 440 441 queue = skb_get_queue_mapping(skb); 442 443 child = q->qdiscs[queue]; 444 if (unlikely(!child)) 445 return qdisc_drop(skb, sch, to_free); 446 447 /* Large packets might not be transmitted when the transmission duration 448 * exceeds any configured interval. Therefore, segment the skb into 449 * smaller chunks. Skip it for the full offload case, as the driver 450 * and/or the hardware is expected to handle this. 451 */ 452 if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) { 453 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); 454 netdev_features_t features = netif_skb_features(skb); 455 struct sk_buff *segs, *nskb; 456 int ret; 457 458 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 459 if (IS_ERR_OR_NULL(segs)) 460 return qdisc_drop(skb, sch, to_free); 461 462 skb_list_walk_safe(segs, segs, nskb) { 463 skb_mark_not_on_list(segs); 464 qdisc_skb_cb(segs)->pkt_len = segs->len; 465 slen += segs->len; 466 467 ret = taprio_enqueue_one(segs, sch, child, to_free); 468 if (ret != NET_XMIT_SUCCESS) { 469 if (net_xmit_drop_count(ret)) 470 qdisc_qstats_drop(sch); 471 } else { 472 numsegs++; 473 } 474 } 475 476 if (numsegs > 1) 477 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); 478 consume_skb(skb); 479 480 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 481 } 482 483 return taprio_enqueue_one(skb, sch, child, to_free); 484 } 485 486 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch) 487 { 488 struct taprio_sched *q = qdisc_priv(sch); 489 struct net_device *dev = qdisc_dev(sch); 490 struct sched_entry *entry; 491 struct sk_buff *skb; 492 u32 gate_mask; 493 int i; 494 495 rcu_read_lock(); 496 entry = rcu_dereference(q->current_entry); 497 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 498 rcu_read_unlock(); 499 500 if (!gate_mask) 501 return NULL; 502 503 for (i = 0; i < dev->num_tx_queues; i++) { 504 struct Qdisc *child = q->qdiscs[i]; 505 int prio; 506 u8 tc; 507 508 if (unlikely(!child)) 509 continue; 510 511 skb = child->ops->peek(child); 512 if (!skb) 513 continue; 514 515 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 516 return skb; 517 518 prio = skb->priority; 519 tc = netdev_get_prio_tc_map(dev, prio); 520 521 if (!(gate_mask & BIT(tc))) 522 continue; 523 524 return skb; 525 } 526 527 return NULL; 528 } 529 530 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch) 531 { 532 struct taprio_sched *q = qdisc_priv(sch); 533 struct net_device *dev = qdisc_dev(sch); 534 struct sk_buff *skb; 535 int i; 536 537 for (i = 0; i < dev->num_tx_queues; i++) { 538 struct Qdisc *child = q->qdiscs[i]; 539 540 if (unlikely(!child)) 541 continue; 542 543 skb = child->ops->peek(child); 544 if (!skb) 545 continue; 546 547 return skb; 548 } 549 550 return NULL; 551 } 552 553 static struct sk_buff *taprio_peek(struct Qdisc *sch) 554 { 555 struct taprio_sched *q = qdisc_priv(sch); 556 557 return q->peek(sch); 558 } 559 560 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry) 561 { 562 atomic_set(&entry->budget, 563 div64_u64((u64)entry->interval * 1000, 564 atomic64_read(&q->picos_per_byte))); 565 } 566 567 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch) 568 { 569 struct taprio_sched *q = qdisc_priv(sch); 570 struct net_device *dev = qdisc_dev(sch); 571 struct sk_buff *skb = NULL; 572 struct sched_entry *entry; 573 u32 gate_mask; 574 int i; 575 576 rcu_read_lock(); 577 entry = rcu_dereference(q->current_entry); 578 /* if there's no entry, it means that the schedule didn't 579 * start yet, so force all gates to be open, this is in 580 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 581 * "AdminGateSates" 582 */ 583 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 584 585 if (!gate_mask) 586 goto done; 587 588 for (i = 0; i < dev->num_tx_queues; i++) { 589 struct Qdisc *child = q->qdiscs[i]; 590 ktime_t guard; 591 int prio; 592 int len; 593 u8 tc; 594 595 if (unlikely(!child)) 596 continue; 597 598 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 599 skb = child->ops->dequeue(child); 600 if (!skb) 601 continue; 602 goto skb_found; 603 } 604 605 skb = child->ops->peek(child); 606 if (!skb) 607 continue; 608 609 prio = skb->priority; 610 tc = netdev_get_prio_tc_map(dev, prio); 611 612 if (!(gate_mask & BIT(tc))) { 613 skb = NULL; 614 continue; 615 } 616 617 len = qdisc_pkt_len(skb); 618 guard = ktime_add_ns(taprio_get_time(q), 619 length_to_duration(q, len)); 620 621 /* In the case that there's no gate entry, there's no 622 * guard band ... 623 */ 624 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 625 ktime_after(guard, entry->close_time)) { 626 skb = NULL; 627 continue; 628 } 629 630 /* ... and no budget. */ 631 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 632 atomic_sub_return(len, &entry->budget) < 0) { 633 skb = NULL; 634 continue; 635 } 636 637 skb = child->ops->dequeue(child); 638 if (unlikely(!skb)) 639 goto done; 640 641 skb_found: 642 qdisc_bstats_update(sch, skb); 643 qdisc_qstats_backlog_dec(sch, skb); 644 sch->q.qlen--; 645 646 goto done; 647 } 648 649 done: 650 rcu_read_unlock(); 651 652 return skb; 653 } 654 655 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch) 656 { 657 struct taprio_sched *q = qdisc_priv(sch); 658 struct net_device *dev = qdisc_dev(sch); 659 struct sk_buff *skb; 660 int i; 661 662 for (i = 0; i < dev->num_tx_queues; i++) { 663 struct Qdisc *child = q->qdiscs[i]; 664 665 if (unlikely(!child)) 666 continue; 667 668 skb = child->ops->dequeue(child); 669 if (unlikely(!skb)) 670 continue; 671 672 qdisc_bstats_update(sch, skb); 673 qdisc_qstats_backlog_dec(sch, skb); 674 sch->q.qlen--; 675 676 return skb; 677 } 678 679 return NULL; 680 } 681 682 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 683 { 684 struct taprio_sched *q = qdisc_priv(sch); 685 686 return q->dequeue(sch); 687 } 688 689 static bool should_restart_cycle(const struct sched_gate_list *oper, 690 const struct sched_entry *entry) 691 { 692 if (list_is_last(&entry->list, &oper->entries)) 693 return true; 694 695 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0) 696 return true; 697 698 return false; 699 } 700 701 static bool should_change_schedules(const struct sched_gate_list *admin, 702 const struct sched_gate_list *oper, 703 ktime_t close_time) 704 { 705 ktime_t next_base_time, extension_time; 706 707 if (!admin) 708 return false; 709 710 next_base_time = sched_base_time(admin); 711 712 /* This is the simple case, the close_time would fall after 713 * the next schedule base_time. 714 */ 715 if (ktime_compare(next_base_time, close_time) <= 0) 716 return true; 717 718 /* This is the cycle_time_extension case, if the close_time 719 * plus the amount that can be extended would fall after the 720 * next schedule base_time, we can extend the current schedule 721 * for that amount. 722 */ 723 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension); 724 725 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 726 * how precisely the extension should be made. So after 727 * conformance testing, this logic may change. 728 */ 729 if (ktime_compare(next_base_time, extension_time) <= 0) 730 return true; 731 732 return false; 733 } 734 735 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 736 { 737 struct taprio_sched *q = container_of(timer, struct taprio_sched, 738 advance_timer); 739 struct sched_gate_list *oper, *admin; 740 struct sched_entry *entry, *next; 741 struct Qdisc *sch = q->root; 742 ktime_t close_time; 743 744 spin_lock(&q->current_entry_lock); 745 entry = rcu_dereference_protected(q->current_entry, 746 lockdep_is_held(&q->current_entry_lock)); 747 oper = rcu_dereference_protected(q->oper_sched, 748 lockdep_is_held(&q->current_entry_lock)); 749 admin = rcu_dereference_protected(q->admin_sched, 750 lockdep_is_held(&q->current_entry_lock)); 751 752 if (!oper) 753 switch_schedules(q, &admin, &oper); 754 755 /* This can happen in two cases: 1. this is the very first run 756 * of this function (i.e. we weren't running any schedule 757 * previously); 2. The previous schedule just ended. The first 758 * entry of all schedules are pre-calculated during the 759 * schedule initialization. 760 */ 761 if (unlikely(!entry || entry->close_time == oper->base_time)) { 762 next = list_first_entry(&oper->entries, struct sched_entry, 763 list); 764 close_time = next->close_time; 765 goto first_run; 766 } 767 768 if (should_restart_cycle(oper, entry)) { 769 next = list_first_entry(&oper->entries, struct sched_entry, 770 list); 771 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time, 772 oper->cycle_time); 773 } else { 774 next = list_next_entry(entry, list); 775 } 776 777 close_time = ktime_add_ns(entry->close_time, next->interval); 778 close_time = min_t(ktime_t, close_time, oper->cycle_close_time); 779 780 if (should_change_schedules(admin, oper, close_time)) { 781 /* Set things so the next time this runs, the new 782 * schedule runs. 783 */ 784 close_time = sched_base_time(admin); 785 switch_schedules(q, &admin, &oper); 786 } 787 788 next->close_time = close_time; 789 taprio_set_budget(q, next); 790 791 first_run: 792 rcu_assign_pointer(q->current_entry, next); 793 spin_unlock(&q->current_entry_lock); 794 795 hrtimer_set_expires(&q->advance_timer, close_time); 796 797 rcu_read_lock(); 798 __netif_schedule(sch); 799 rcu_read_unlock(); 800 801 return HRTIMER_RESTART; 802 } 803 804 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 805 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 806 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 807 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 808 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 809 }; 810 811 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 812 [TCA_TAPRIO_ATTR_PRIOMAP] = { 813 .len = sizeof(struct tc_mqprio_qopt) 814 }, 815 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 816 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 817 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 818 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 819 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, 820 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 821 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 822 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 823 }; 824 825 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 826 struct sched_entry *entry, 827 struct netlink_ext_ack *extack) 828 { 829 int min_duration = length_to_duration(q, ETH_ZLEN); 830 u32 interval = 0; 831 832 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 833 entry->command = nla_get_u8( 834 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 835 836 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 837 entry->gate_mask = nla_get_u32( 838 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 839 840 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 841 interval = nla_get_u32( 842 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 843 844 /* The interval should allow at least the minimum ethernet 845 * frame to go out. 846 */ 847 if (interval < min_duration) { 848 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 849 return -EINVAL; 850 } 851 852 entry->interval = interval; 853 854 return 0; 855 } 856 857 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 858 struct sched_entry *entry, int index, 859 struct netlink_ext_ack *extack) 860 { 861 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 862 int err; 863 864 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 865 entry_policy, NULL); 866 if (err < 0) { 867 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 868 return -EINVAL; 869 } 870 871 entry->index = index; 872 873 return fill_sched_entry(q, tb, entry, extack); 874 } 875 876 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 877 struct sched_gate_list *sched, 878 struct netlink_ext_ack *extack) 879 { 880 struct nlattr *n; 881 int err, rem; 882 int i = 0; 883 884 if (!list) 885 return -EINVAL; 886 887 nla_for_each_nested(n, list, rem) { 888 struct sched_entry *entry; 889 890 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 891 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 892 continue; 893 } 894 895 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 896 if (!entry) { 897 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 898 return -ENOMEM; 899 } 900 901 err = parse_sched_entry(q, n, entry, i, extack); 902 if (err < 0) { 903 kfree(entry); 904 return err; 905 } 906 907 list_add_tail(&entry->list, &sched->entries); 908 i++; 909 } 910 911 sched->num_entries = i; 912 913 return i; 914 } 915 916 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 917 struct sched_gate_list *new, 918 struct netlink_ext_ack *extack) 919 { 920 int err = 0; 921 922 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 923 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 924 return -ENOTSUPP; 925 } 926 927 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 928 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 929 930 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 931 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 932 933 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 934 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 935 936 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 937 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 938 new, extack); 939 if (err < 0) 940 return err; 941 942 if (!new->cycle_time) { 943 struct sched_entry *entry; 944 ktime_t cycle = 0; 945 946 list_for_each_entry(entry, &new->entries, list) 947 cycle = ktime_add_ns(cycle, entry->interval); 948 949 if (!cycle) { 950 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0"); 951 return -EINVAL; 952 } 953 954 new->cycle_time = cycle; 955 } 956 957 return 0; 958 } 959 960 static int taprio_parse_mqprio_opt(struct net_device *dev, 961 struct tc_mqprio_qopt *qopt, 962 struct netlink_ext_ack *extack, 963 u32 taprio_flags) 964 { 965 int i, j; 966 967 if (!qopt && !dev->num_tc) { 968 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 969 return -EINVAL; 970 } 971 972 /* If num_tc is already set, it means that the user already 973 * configured the mqprio part 974 */ 975 if (dev->num_tc) 976 return 0; 977 978 /* Verify num_tc is not out of max range */ 979 if (qopt->num_tc > TC_MAX_QUEUE) { 980 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); 981 return -EINVAL; 982 } 983 984 /* taprio imposes that traffic classes map 1:n to tx queues */ 985 if (qopt->num_tc > dev->num_tx_queues) { 986 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 987 return -EINVAL; 988 } 989 990 /* Verify priority mapping uses valid tcs */ 991 for (i = 0; i <= TC_BITMASK; i++) { 992 if (qopt->prio_tc_map[i] >= qopt->num_tc) { 993 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); 994 return -EINVAL; 995 } 996 } 997 998 for (i = 0; i < qopt->num_tc; i++) { 999 unsigned int last = qopt->offset[i] + qopt->count[i]; 1000 1001 /* Verify the queue count is in tx range being equal to the 1002 * real_num_tx_queues indicates the last queue is in use. 1003 */ 1004 if (qopt->offset[i] >= dev->num_tx_queues || 1005 !qopt->count[i] || 1006 last > dev->real_num_tx_queues) { 1007 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping"); 1008 return -EINVAL; 1009 } 1010 1011 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) 1012 continue; 1013 1014 /* Verify that the offset and counts do not overlap */ 1015 for (j = i + 1; j < qopt->num_tc; j++) { 1016 if (last > qopt->offset[j]) { 1017 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping"); 1018 return -EINVAL; 1019 } 1020 } 1021 } 1022 1023 return 0; 1024 } 1025 1026 static int taprio_get_start_time(struct Qdisc *sch, 1027 struct sched_gate_list *sched, 1028 ktime_t *start) 1029 { 1030 struct taprio_sched *q = qdisc_priv(sch); 1031 ktime_t now, base, cycle; 1032 s64 n; 1033 1034 base = sched_base_time(sched); 1035 now = taprio_get_time(q); 1036 1037 if (ktime_after(base, now)) { 1038 *start = base; 1039 return 0; 1040 } 1041 1042 cycle = sched->cycle_time; 1043 1044 /* The qdisc is expected to have at least one sched_entry. Moreover, 1045 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 1046 * something went really wrong. In that case, we should warn about this 1047 * inconsistent state and return error. 1048 */ 1049 if (WARN_ON(!cycle)) 1050 return -EFAULT; 1051 1052 /* Schedule the start time for the beginning of the next 1053 * cycle. 1054 */ 1055 n = div64_s64(ktime_sub_ns(now, base), cycle); 1056 *start = ktime_add_ns(base, (n + 1) * cycle); 1057 return 0; 1058 } 1059 1060 static void setup_first_close_time(struct taprio_sched *q, 1061 struct sched_gate_list *sched, ktime_t base) 1062 { 1063 struct sched_entry *first; 1064 ktime_t cycle; 1065 1066 first = list_first_entry(&sched->entries, 1067 struct sched_entry, list); 1068 1069 cycle = sched->cycle_time; 1070 1071 /* FIXME: find a better place to do this */ 1072 sched->cycle_close_time = ktime_add_ns(base, cycle); 1073 1074 first->close_time = ktime_add_ns(base, first->interval); 1075 taprio_set_budget(q, first); 1076 rcu_assign_pointer(q->current_entry, NULL); 1077 } 1078 1079 static void taprio_start_sched(struct Qdisc *sch, 1080 ktime_t start, struct sched_gate_list *new) 1081 { 1082 struct taprio_sched *q = qdisc_priv(sch); 1083 ktime_t expires; 1084 1085 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1086 return; 1087 1088 expires = hrtimer_get_expires(&q->advance_timer); 1089 if (expires == 0) 1090 expires = KTIME_MAX; 1091 1092 /* If the new schedule starts before the next expiration, we 1093 * reprogram it to the earliest one, so we change the admin 1094 * schedule to the operational one at the right time. 1095 */ 1096 start = min_t(ktime_t, start, expires); 1097 1098 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1099 } 1100 1101 static void taprio_set_picos_per_byte(struct net_device *dev, 1102 struct taprio_sched *q) 1103 { 1104 struct ethtool_link_ksettings ecmd; 1105 int speed = SPEED_10; 1106 int picos_per_byte; 1107 int err; 1108 1109 err = __ethtool_get_link_ksettings(dev, &ecmd); 1110 if (err < 0) 1111 goto skip; 1112 1113 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1114 speed = ecmd.base.speed; 1115 1116 skip: 1117 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1118 1119 atomic64_set(&q->picos_per_byte, picos_per_byte); 1120 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1121 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1122 ecmd.base.speed); 1123 } 1124 1125 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1126 void *ptr) 1127 { 1128 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1129 struct net_device *qdev; 1130 struct taprio_sched *q; 1131 bool found = false; 1132 1133 ASSERT_RTNL(); 1134 1135 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1136 return NOTIFY_DONE; 1137 1138 spin_lock(&taprio_list_lock); 1139 list_for_each_entry(q, &taprio_list, taprio_list) { 1140 qdev = qdisc_dev(q->root); 1141 if (qdev == dev) { 1142 found = true; 1143 break; 1144 } 1145 } 1146 spin_unlock(&taprio_list_lock); 1147 1148 if (found) 1149 taprio_set_picos_per_byte(dev, q); 1150 1151 return NOTIFY_DONE; 1152 } 1153 1154 static void setup_txtime(struct taprio_sched *q, 1155 struct sched_gate_list *sched, ktime_t base) 1156 { 1157 struct sched_entry *entry; 1158 u32 interval = 0; 1159 1160 list_for_each_entry(entry, &sched->entries, list) { 1161 entry->next_txtime = ktime_add_ns(base, interval); 1162 interval += entry->interval; 1163 } 1164 } 1165 1166 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1167 { 1168 struct __tc_taprio_qopt_offload *__offload; 1169 1170 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1171 GFP_KERNEL); 1172 if (!__offload) 1173 return NULL; 1174 1175 refcount_set(&__offload->users, 1); 1176 1177 return &__offload->offload; 1178 } 1179 1180 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1181 *offload) 1182 { 1183 struct __tc_taprio_qopt_offload *__offload; 1184 1185 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1186 offload); 1187 1188 refcount_inc(&__offload->users); 1189 1190 return offload; 1191 } 1192 EXPORT_SYMBOL_GPL(taprio_offload_get); 1193 1194 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1195 { 1196 struct __tc_taprio_qopt_offload *__offload; 1197 1198 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1199 offload); 1200 1201 if (!refcount_dec_and_test(&__offload->users)) 1202 return; 1203 1204 kfree(__offload); 1205 } 1206 EXPORT_SYMBOL_GPL(taprio_offload_free); 1207 1208 /* The function will only serve to keep the pointers to the "oper" and "admin" 1209 * schedules valid in relation to their base times, so when calling dump() the 1210 * users looks at the right schedules. 1211 * When using full offload, the admin configuration is promoted to oper at the 1212 * base_time in the PHC time domain. But because the system time is not 1213 * necessarily in sync with that, we can't just trigger a hrtimer to call 1214 * switch_schedules at the right hardware time. 1215 * At the moment we call this by hand right away from taprio, but in the future 1216 * it will be useful to create a mechanism for drivers to notify taprio of the 1217 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1218 * This is left as TODO. 1219 */ 1220 static void taprio_offload_config_changed(struct taprio_sched *q) 1221 { 1222 struct sched_gate_list *oper, *admin; 1223 1224 spin_lock(&q->current_entry_lock); 1225 1226 oper = rcu_dereference_protected(q->oper_sched, 1227 lockdep_is_held(&q->current_entry_lock)); 1228 admin = rcu_dereference_protected(q->admin_sched, 1229 lockdep_is_held(&q->current_entry_lock)); 1230 1231 switch_schedules(q, &admin, &oper); 1232 1233 spin_unlock(&q->current_entry_lock); 1234 } 1235 1236 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1237 { 1238 u32 i, queue_mask = 0; 1239 1240 for (i = 0; i < dev->num_tc; i++) { 1241 u32 offset, count; 1242 1243 if (!(tc_mask & BIT(i))) 1244 continue; 1245 1246 offset = dev->tc_to_txq[i].offset; 1247 count = dev->tc_to_txq[i].count; 1248 1249 queue_mask |= GENMASK(offset + count - 1, offset); 1250 } 1251 1252 return queue_mask; 1253 } 1254 1255 static void taprio_sched_to_offload(struct net_device *dev, 1256 struct sched_gate_list *sched, 1257 struct tc_taprio_qopt_offload *offload) 1258 { 1259 struct sched_entry *entry; 1260 int i = 0; 1261 1262 offload->base_time = sched->base_time; 1263 offload->cycle_time = sched->cycle_time; 1264 offload->cycle_time_extension = sched->cycle_time_extension; 1265 1266 list_for_each_entry(entry, &sched->entries, list) { 1267 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1268 1269 e->command = entry->command; 1270 e->interval = entry->interval; 1271 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask); 1272 1273 i++; 1274 } 1275 1276 offload->num_entries = i; 1277 } 1278 1279 static int taprio_enable_offload(struct net_device *dev, 1280 struct taprio_sched *q, 1281 struct sched_gate_list *sched, 1282 struct netlink_ext_ack *extack) 1283 { 1284 const struct net_device_ops *ops = dev->netdev_ops; 1285 struct tc_taprio_qopt_offload *offload; 1286 int err = 0; 1287 1288 if (!ops->ndo_setup_tc) { 1289 NL_SET_ERR_MSG(extack, 1290 "Device does not support taprio offload"); 1291 return -EOPNOTSUPP; 1292 } 1293 1294 offload = taprio_offload_alloc(sched->num_entries); 1295 if (!offload) { 1296 NL_SET_ERR_MSG(extack, 1297 "Not enough memory for enabling offload mode"); 1298 return -ENOMEM; 1299 } 1300 offload->enable = 1; 1301 taprio_sched_to_offload(dev, sched, offload); 1302 1303 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1304 if (err < 0) { 1305 NL_SET_ERR_MSG(extack, 1306 "Device failed to setup taprio offload"); 1307 goto done; 1308 } 1309 1310 done: 1311 taprio_offload_free(offload); 1312 1313 return err; 1314 } 1315 1316 static int taprio_disable_offload(struct net_device *dev, 1317 struct taprio_sched *q, 1318 struct netlink_ext_ack *extack) 1319 { 1320 const struct net_device_ops *ops = dev->netdev_ops; 1321 struct tc_taprio_qopt_offload *offload; 1322 int err; 1323 1324 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) 1325 return 0; 1326 1327 if (!ops->ndo_setup_tc) 1328 return -EOPNOTSUPP; 1329 1330 offload = taprio_offload_alloc(0); 1331 if (!offload) { 1332 NL_SET_ERR_MSG(extack, 1333 "Not enough memory to disable offload mode"); 1334 return -ENOMEM; 1335 } 1336 offload->enable = 0; 1337 1338 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1339 if (err < 0) { 1340 NL_SET_ERR_MSG(extack, 1341 "Device failed to disable offload"); 1342 goto out; 1343 } 1344 1345 out: 1346 taprio_offload_free(offload); 1347 1348 return err; 1349 } 1350 1351 /* If full offload is enabled, the only possible clockid is the net device's 1352 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1353 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1354 * in sync with the specified clockid via a user space daemon such as phc2sys. 1355 * For both software taprio and txtime-assist, the clockid is used for the 1356 * hrtimer that advances the schedule and hence mandatory. 1357 */ 1358 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1359 struct netlink_ext_ack *extack) 1360 { 1361 struct taprio_sched *q = qdisc_priv(sch); 1362 struct net_device *dev = qdisc_dev(sch); 1363 int err = -EINVAL; 1364 1365 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1366 const struct ethtool_ops *ops = dev->ethtool_ops; 1367 struct ethtool_ts_info info = { 1368 .cmd = ETHTOOL_GET_TS_INFO, 1369 .phc_index = -1, 1370 }; 1371 1372 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1373 NL_SET_ERR_MSG(extack, 1374 "The 'clockid' cannot be specified for full offload"); 1375 goto out; 1376 } 1377 1378 if (ops && ops->get_ts_info) 1379 err = ops->get_ts_info(dev, &info); 1380 1381 if (err || info.phc_index < 0) { 1382 NL_SET_ERR_MSG(extack, 1383 "Device does not have a PTP clock"); 1384 err = -ENOTSUPP; 1385 goto out; 1386 } 1387 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1388 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1389 1390 /* We only support static clockids and we don't allow 1391 * for it to be modified after the first init. 1392 */ 1393 if (clockid < 0 || 1394 (q->clockid != -1 && q->clockid != clockid)) { 1395 NL_SET_ERR_MSG(extack, 1396 "Changing the 'clockid' of a running schedule is not supported"); 1397 err = -ENOTSUPP; 1398 goto out; 1399 } 1400 1401 switch (clockid) { 1402 case CLOCK_REALTIME: 1403 q->tk_offset = TK_OFFS_REAL; 1404 break; 1405 case CLOCK_MONOTONIC: 1406 q->tk_offset = TK_OFFS_MAX; 1407 break; 1408 case CLOCK_BOOTTIME: 1409 q->tk_offset = TK_OFFS_BOOT; 1410 break; 1411 case CLOCK_TAI: 1412 q->tk_offset = TK_OFFS_TAI; 1413 break; 1414 default: 1415 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1416 err = -EINVAL; 1417 goto out; 1418 } 1419 1420 q->clockid = clockid; 1421 } else { 1422 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1423 goto out; 1424 } 1425 1426 /* Everything went ok, return success. */ 1427 err = 0; 1428 1429 out: 1430 return err; 1431 } 1432 1433 static int taprio_mqprio_cmp(const struct net_device *dev, 1434 const struct tc_mqprio_qopt *mqprio) 1435 { 1436 int i; 1437 1438 if (!mqprio || mqprio->num_tc != dev->num_tc) 1439 return -1; 1440 1441 for (i = 0; i < mqprio->num_tc; i++) 1442 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1443 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1444 return -1; 1445 1446 for (i = 0; i <= TC_BITMASK; i++) 1447 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1448 return -1; 1449 1450 return 0; 1451 } 1452 1453 /* The semantics of the 'flags' argument in relation to 'change()' 1454 * requests, are interpreted following two rules (which are applied in 1455 * this order): (1) an omitted 'flags' argument is interpreted as 1456 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1457 * changed. 1458 */ 1459 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1460 struct netlink_ext_ack *extack) 1461 { 1462 u32 new = 0; 1463 1464 if (attr) 1465 new = nla_get_u32(attr); 1466 1467 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1468 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1469 return -EOPNOTSUPP; 1470 } 1471 1472 if (!taprio_flags_valid(new)) { 1473 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1474 return -EINVAL; 1475 } 1476 1477 return new; 1478 } 1479 1480 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1481 struct netlink_ext_ack *extack) 1482 { 1483 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1484 struct sched_gate_list *oper, *admin, *new_admin; 1485 struct taprio_sched *q = qdisc_priv(sch); 1486 struct net_device *dev = qdisc_dev(sch); 1487 struct tc_mqprio_qopt *mqprio = NULL; 1488 unsigned long flags; 1489 ktime_t start; 1490 int i, err; 1491 1492 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1493 taprio_policy, extack); 1494 if (err < 0) 1495 return err; 1496 1497 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1498 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1499 1500 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1501 q->flags, extack); 1502 if (err < 0) 1503 return err; 1504 1505 q->flags = err; 1506 1507 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1508 if (err < 0) 1509 return err; 1510 1511 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1512 if (!new_admin) { 1513 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1514 return -ENOMEM; 1515 } 1516 INIT_LIST_HEAD(&new_admin->entries); 1517 1518 rcu_read_lock(); 1519 oper = rcu_dereference(q->oper_sched); 1520 admin = rcu_dereference(q->admin_sched); 1521 rcu_read_unlock(); 1522 1523 /* no changes - no new mqprio settings */ 1524 if (!taprio_mqprio_cmp(dev, mqprio)) 1525 mqprio = NULL; 1526 1527 if (mqprio && (oper || admin)) { 1528 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1529 err = -ENOTSUPP; 1530 goto free_sched; 1531 } 1532 1533 err = parse_taprio_schedule(q, tb, new_admin, extack); 1534 if (err < 0) 1535 goto free_sched; 1536 1537 if (new_admin->num_entries == 0) { 1538 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1539 err = -EINVAL; 1540 goto free_sched; 1541 } 1542 1543 err = taprio_parse_clockid(sch, tb, extack); 1544 if (err < 0) 1545 goto free_sched; 1546 1547 taprio_set_picos_per_byte(dev, q); 1548 1549 if (mqprio) { 1550 netdev_set_num_tc(dev, mqprio->num_tc); 1551 for (i = 0; i < mqprio->num_tc; i++) 1552 netdev_set_tc_queue(dev, i, 1553 mqprio->count[i], 1554 mqprio->offset[i]); 1555 1556 /* Always use supplied priority mappings */ 1557 for (i = 0; i <= TC_BITMASK; i++) 1558 netdev_set_prio_tc_map(dev, i, 1559 mqprio->prio_tc_map[i]); 1560 } 1561 1562 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1563 err = taprio_enable_offload(dev, q, new_admin, extack); 1564 else 1565 err = taprio_disable_offload(dev, q, extack); 1566 if (err) 1567 goto free_sched; 1568 1569 /* Protects against enqueue()/dequeue() */ 1570 spin_lock_bh(qdisc_lock(sch)); 1571 1572 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1573 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1574 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1575 err = -EINVAL; 1576 goto unlock; 1577 } 1578 1579 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1580 } 1581 1582 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1583 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1584 !hrtimer_active(&q->advance_timer)) { 1585 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1586 q->advance_timer.function = advance_sched; 1587 } 1588 1589 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1590 q->dequeue = taprio_dequeue_offload; 1591 q->peek = taprio_peek_offload; 1592 } else { 1593 /* Be sure to always keep the function pointers 1594 * in a consistent state. 1595 */ 1596 q->dequeue = taprio_dequeue_soft; 1597 q->peek = taprio_peek_soft; 1598 } 1599 1600 err = taprio_get_start_time(sch, new_admin, &start); 1601 if (err < 0) { 1602 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1603 goto unlock; 1604 } 1605 1606 setup_txtime(q, new_admin, start); 1607 1608 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1609 if (!oper) { 1610 rcu_assign_pointer(q->oper_sched, new_admin); 1611 err = 0; 1612 new_admin = NULL; 1613 goto unlock; 1614 } 1615 1616 rcu_assign_pointer(q->admin_sched, new_admin); 1617 if (admin) 1618 call_rcu(&admin->rcu, taprio_free_sched_cb); 1619 } else { 1620 setup_first_close_time(q, new_admin, start); 1621 1622 /* Protects against advance_sched() */ 1623 spin_lock_irqsave(&q->current_entry_lock, flags); 1624 1625 taprio_start_sched(sch, start, new_admin); 1626 1627 rcu_assign_pointer(q->admin_sched, new_admin); 1628 if (admin) 1629 call_rcu(&admin->rcu, taprio_free_sched_cb); 1630 1631 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1632 1633 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1634 taprio_offload_config_changed(q); 1635 } 1636 1637 new_admin = NULL; 1638 err = 0; 1639 1640 unlock: 1641 spin_unlock_bh(qdisc_lock(sch)); 1642 1643 free_sched: 1644 if (new_admin) 1645 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 1646 1647 return err; 1648 } 1649 1650 static void taprio_reset(struct Qdisc *sch) 1651 { 1652 struct taprio_sched *q = qdisc_priv(sch); 1653 struct net_device *dev = qdisc_dev(sch); 1654 int i; 1655 1656 hrtimer_cancel(&q->advance_timer); 1657 if (q->qdiscs) { 1658 for (i = 0; i < dev->num_tx_queues; i++) 1659 if (q->qdiscs[i]) 1660 qdisc_reset(q->qdiscs[i]); 1661 } 1662 sch->qstats.backlog = 0; 1663 sch->q.qlen = 0; 1664 } 1665 1666 static void taprio_destroy(struct Qdisc *sch) 1667 { 1668 struct taprio_sched *q = qdisc_priv(sch); 1669 struct net_device *dev = qdisc_dev(sch); 1670 unsigned int i; 1671 1672 spin_lock(&taprio_list_lock); 1673 list_del(&q->taprio_list); 1674 spin_unlock(&taprio_list_lock); 1675 1676 1677 taprio_disable_offload(dev, q, NULL); 1678 1679 if (q->qdiscs) { 1680 for (i = 0; i < dev->num_tx_queues; i++) 1681 qdisc_put(q->qdiscs[i]); 1682 1683 kfree(q->qdiscs); 1684 } 1685 q->qdiscs = NULL; 1686 1687 netdev_reset_tc(dev); 1688 1689 if (q->oper_sched) 1690 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb); 1691 1692 if (q->admin_sched) 1693 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb); 1694 } 1695 1696 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 1697 struct netlink_ext_ack *extack) 1698 { 1699 struct taprio_sched *q = qdisc_priv(sch); 1700 struct net_device *dev = qdisc_dev(sch); 1701 int i; 1702 1703 spin_lock_init(&q->current_entry_lock); 1704 1705 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 1706 q->advance_timer.function = advance_sched; 1707 1708 q->dequeue = taprio_dequeue_soft; 1709 q->peek = taprio_peek_soft; 1710 1711 q->root = sch; 1712 1713 /* We only support static clockids. Use an invalid value as default 1714 * and get the valid one on taprio_change(). 1715 */ 1716 q->clockid = -1; 1717 q->flags = TAPRIO_FLAGS_INVALID; 1718 1719 spin_lock(&taprio_list_lock); 1720 list_add(&q->taprio_list, &taprio_list); 1721 spin_unlock(&taprio_list_lock); 1722 1723 if (sch->parent != TC_H_ROOT) 1724 return -EOPNOTSUPP; 1725 1726 if (!netif_is_multiqueue(dev)) 1727 return -EOPNOTSUPP; 1728 1729 /* pre-allocate qdisc, attachment can't fail */ 1730 q->qdiscs = kcalloc(dev->num_tx_queues, 1731 sizeof(q->qdiscs[0]), 1732 GFP_KERNEL); 1733 1734 if (!q->qdiscs) 1735 return -ENOMEM; 1736 1737 if (!opt) 1738 return -EINVAL; 1739 1740 for (i = 0; i < dev->num_tx_queues; i++) { 1741 struct netdev_queue *dev_queue; 1742 struct Qdisc *qdisc; 1743 1744 dev_queue = netdev_get_tx_queue(dev, i); 1745 qdisc = qdisc_create_dflt(dev_queue, 1746 &pfifo_qdisc_ops, 1747 TC_H_MAKE(TC_H_MAJ(sch->handle), 1748 TC_H_MIN(i + 1)), 1749 extack); 1750 if (!qdisc) 1751 return -ENOMEM; 1752 1753 if (i < dev->real_num_tx_queues) 1754 qdisc_hash_add(qdisc, false); 1755 1756 q->qdiscs[i] = qdisc; 1757 } 1758 1759 return taprio_change(sch, opt, extack); 1760 } 1761 1762 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 1763 unsigned long cl) 1764 { 1765 struct net_device *dev = qdisc_dev(sch); 1766 unsigned long ntx = cl - 1; 1767 1768 if (ntx >= dev->num_tx_queues) 1769 return NULL; 1770 1771 return netdev_get_tx_queue(dev, ntx); 1772 } 1773 1774 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 1775 struct Qdisc *new, struct Qdisc **old, 1776 struct netlink_ext_ack *extack) 1777 { 1778 struct taprio_sched *q = qdisc_priv(sch); 1779 struct net_device *dev = qdisc_dev(sch); 1780 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1781 1782 if (!dev_queue) 1783 return -EINVAL; 1784 1785 if (dev->flags & IFF_UP) 1786 dev_deactivate(dev); 1787 1788 *old = q->qdiscs[cl - 1]; 1789 q->qdiscs[cl - 1] = new; 1790 1791 if (new) 1792 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1793 1794 if (dev->flags & IFF_UP) 1795 dev_activate(dev); 1796 1797 return 0; 1798 } 1799 1800 static int dump_entry(struct sk_buff *msg, 1801 const struct sched_entry *entry) 1802 { 1803 struct nlattr *item; 1804 1805 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 1806 if (!item) 1807 return -ENOSPC; 1808 1809 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 1810 goto nla_put_failure; 1811 1812 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 1813 goto nla_put_failure; 1814 1815 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 1816 entry->gate_mask)) 1817 goto nla_put_failure; 1818 1819 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 1820 entry->interval)) 1821 goto nla_put_failure; 1822 1823 return nla_nest_end(msg, item); 1824 1825 nla_put_failure: 1826 nla_nest_cancel(msg, item); 1827 return -1; 1828 } 1829 1830 static int dump_schedule(struct sk_buff *msg, 1831 const struct sched_gate_list *root) 1832 { 1833 struct nlattr *entry_list; 1834 struct sched_entry *entry; 1835 1836 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 1837 root->base_time, TCA_TAPRIO_PAD)) 1838 return -1; 1839 1840 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 1841 root->cycle_time, TCA_TAPRIO_PAD)) 1842 return -1; 1843 1844 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 1845 root->cycle_time_extension, TCA_TAPRIO_PAD)) 1846 return -1; 1847 1848 entry_list = nla_nest_start_noflag(msg, 1849 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 1850 if (!entry_list) 1851 goto error_nest; 1852 1853 list_for_each_entry(entry, &root->entries, list) { 1854 if (dump_entry(msg, entry) < 0) 1855 goto error_nest; 1856 } 1857 1858 nla_nest_end(msg, entry_list); 1859 return 0; 1860 1861 error_nest: 1862 nla_nest_cancel(msg, entry_list); 1863 return -1; 1864 } 1865 1866 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 1867 { 1868 struct taprio_sched *q = qdisc_priv(sch); 1869 struct net_device *dev = qdisc_dev(sch); 1870 struct sched_gate_list *oper, *admin; 1871 struct tc_mqprio_qopt opt = { 0 }; 1872 struct nlattr *nest, *sched_nest; 1873 unsigned int i; 1874 1875 rcu_read_lock(); 1876 oper = rcu_dereference(q->oper_sched); 1877 admin = rcu_dereference(q->admin_sched); 1878 1879 opt.num_tc = netdev_get_num_tc(dev); 1880 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map)); 1881 1882 for (i = 0; i < netdev_get_num_tc(dev); i++) { 1883 opt.count[i] = dev->tc_to_txq[i].count; 1884 opt.offset[i] = dev->tc_to_txq[i].offset; 1885 } 1886 1887 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1888 if (!nest) 1889 goto start_error; 1890 1891 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 1892 goto options_error; 1893 1894 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 1895 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 1896 goto options_error; 1897 1898 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 1899 goto options_error; 1900 1901 if (q->txtime_delay && 1902 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 1903 goto options_error; 1904 1905 if (oper && dump_schedule(skb, oper)) 1906 goto options_error; 1907 1908 if (!admin) 1909 goto done; 1910 1911 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 1912 if (!sched_nest) 1913 goto options_error; 1914 1915 if (dump_schedule(skb, admin)) 1916 goto admin_error; 1917 1918 nla_nest_end(skb, sched_nest); 1919 1920 done: 1921 rcu_read_unlock(); 1922 1923 return nla_nest_end(skb, nest); 1924 1925 admin_error: 1926 nla_nest_cancel(skb, sched_nest); 1927 1928 options_error: 1929 nla_nest_cancel(skb, nest); 1930 1931 start_error: 1932 rcu_read_unlock(); 1933 return -ENOSPC; 1934 } 1935 1936 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 1937 { 1938 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1939 1940 if (!dev_queue) 1941 return NULL; 1942 1943 return dev_queue->qdisc_sleeping; 1944 } 1945 1946 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 1947 { 1948 unsigned int ntx = TC_H_MIN(classid); 1949 1950 if (!taprio_queue_get(sch, ntx)) 1951 return 0; 1952 return ntx; 1953 } 1954 1955 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 1956 struct sk_buff *skb, struct tcmsg *tcm) 1957 { 1958 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1959 1960 tcm->tcm_parent = TC_H_ROOT; 1961 tcm->tcm_handle |= TC_H_MIN(cl); 1962 tcm->tcm_info = dev_queue->qdisc_sleeping->handle; 1963 1964 return 0; 1965 } 1966 1967 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 1968 struct gnet_dump *d) 1969 __releases(d->lock) 1970 __acquires(d->lock) 1971 { 1972 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1973 1974 sch = dev_queue->qdisc_sleeping; 1975 if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 || 1976 qdisc_qstats_copy(d, sch) < 0) 1977 return -1; 1978 return 0; 1979 } 1980 1981 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1982 { 1983 struct net_device *dev = qdisc_dev(sch); 1984 unsigned long ntx; 1985 1986 if (arg->stop) 1987 return; 1988 1989 arg->count = arg->skip; 1990 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 1991 if (arg->fn(sch, ntx + 1, arg) < 0) { 1992 arg->stop = 1; 1993 break; 1994 } 1995 arg->count++; 1996 } 1997 } 1998 1999 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 2000 struct tcmsg *tcm) 2001 { 2002 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 2003 } 2004 2005 static const struct Qdisc_class_ops taprio_class_ops = { 2006 .graft = taprio_graft, 2007 .leaf = taprio_leaf, 2008 .find = taprio_find, 2009 .walk = taprio_walk, 2010 .dump = taprio_dump_class, 2011 .dump_stats = taprio_dump_class_stats, 2012 .select_queue = taprio_select_queue, 2013 }; 2014 2015 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 2016 .cl_ops = &taprio_class_ops, 2017 .id = "taprio", 2018 .priv_size = sizeof(struct taprio_sched), 2019 .init = taprio_init, 2020 .change = taprio_change, 2021 .destroy = taprio_destroy, 2022 .reset = taprio_reset, 2023 .peek = taprio_peek, 2024 .dequeue = taprio_dequeue, 2025 .enqueue = taprio_enqueue, 2026 .dump = taprio_dump, 2027 .owner = THIS_MODULE, 2028 }; 2029 2030 static struct notifier_block taprio_device_notifier = { 2031 .notifier_call = taprio_dev_notifier, 2032 }; 2033 2034 static int __init taprio_module_init(void) 2035 { 2036 int err = register_netdevice_notifier(&taprio_device_notifier); 2037 2038 if (err) 2039 return err; 2040 2041 return register_qdisc(&taprio_qdisc_ops); 2042 } 2043 2044 static void __exit taprio_module_exit(void) 2045 { 2046 unregister_qdisc(&taprio_qdisc_ops); 2047 unregister_netdevice_notifier(&taprio_device_notifier); 2048 } 2049 2050 module_init(taprio_module_init); 2051 module_exit(taprio_module_exit); 2052 MODULE_LICENSE("GPL"); 2053