xref: /linux/net/sched/sch_taprio.c (revision 9052e9c95d908d6c3d7570aadc8898e1d871c8bb)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <net/netlink.h>
22 #include <net/pkt_sched.h>
23 #include <net/pkt_cls.h>
24 #include <net/sch_generic.h>
25 #include <net/sock.h>
26 #include <net/tcp.h>
27 
28 static LIST_HEAD(taprio_list);
29 static DEFINE_SPINLOCK(taprio_list_lock);
30 
31 #define TAPRIO_ALL_GATES_OPEN -1
32 
33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
35 #define TAPRIO_FLAGS_INVALID U32_MAX
36 
37 struct sched_entry {
38 	struct list_head list;
39 
40 	/* The instant that this entry "closes" and the next one
41 	 * should open, the qdisc will make some effort so that no
42 	 * packet leaves after this time.
43 	 */
44 	ktime_t close_time;
45 	ktime_t next_txtime;
46 	atomic_t budget;
47 	int index;
48 	u32 gate_mask;
49 	u32 interval;
50 	u8 command;
51 };
52 
53 struct sched_gate_list {
54 	struct rcu_head rcu;
55 	struct list_head entries;
56 	size_t num_entries;
57 	ktime_t cycle_close_time;
58 	s64 cycle_time;
59 	s64 cycle_time_extension;
60 	s64 base_time;
61 };
62 
63 struct taprio_sched {
64 	struct Qdisc **qdiscs;
65 	struct Qdisc *root;
66 	u32 flags;
67 	enum tk_offsets tk_offset;
68 	int clockid;
69 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
70 				    * speeds it's sub-nanoseconds per byte
71 				    */
72 
73 	/* Protects the update side of the RCU protected current_entry */
74 	spinlock_t current_entry_lock;
75 	struct sched_entry __rcu *current_entry;
76 	struct sched_gate_list __rcu *oper_sched;
77 	struct sched_gate_list __rcu *admin_sched;
78 	struct hrtimer advance_timer;
79 	struct list_head taprio_list;
80 	struct sk_buff *(*dequeue)(struct Qdisc *sch);
81 	struct sk_buff *(*peek)(struct Qdisc *sch);
82 	u32 txtime_delay;
83 };
84 
85 struct __tc_taprio_qopt_offload {
86 	refcount_t users;
87 	struct tc_taprio_qopt_offload offload;
88 };
89 
90 static ktime_t sched_base_time(const struct sched_gate_list *sched)
91 {
92 	if (!sched)
93 		return KTIME_MAX;
94 
95 	return ns_to_ktime(sched->base_time);
96 }
97 
98 static ktime_t taprio_get_time(struct taprio_sched *q)
99 {
100 	ktime_t mono = ktime_get();
101 
102 	switch (q->tk_offset) {
103 	case TK_OFFS_MAX:
104 		return mono;
105 	default:
106 		return ktime_mono_to_any(mono, q->tk_offset);
107 	}
108 
109 	return KTIME_MAX;
110 }
111 
112 static void taprio_free_sched_cb(struct rcu_head *head)
113 {
114 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
115 	struct sched_entry *entry, *n;
116 
117 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
118 		list_del(&entry->list);
119 		kfree(entry);
120 	}
121 
122 	kfree(sched);
123 }
124 
125 static void switch_schedules(struct taprio_sched *q,
126 			     struct sched_gate_list **admin,
127 			     struct sched_gate_list **oper)
128 {
129 	rcu_assign_pointer(q->oper_sched, *admin);
130 	rcu_assign_pointer(q->admin_sched, NULL);
131 
132 	if (*oper)
133 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
134 
135 	*oper = *admin;
136 	*admin = NULL;
137 }
138 
139 /* Get how much time has been already elapsed in the current cycle. */
140 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
141 {
142 	ktime_t time_since_sched_start;
143 	s32 time_elapsed;
144 
145 	time_since_sched_start = ktime_sub(time, sched->base_time);
146 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
147 
148 	return time_elapsed;
149 }
150 
151 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
152 				     struct sched_gate_list *admin,
153 				     struct sched_entry *entry,
154 				     ktime_t intv_start)
155 {
156 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
157 	ktime_t intv_end, cycle_ext_end, cycle_end;
158 
159 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
160 	intv_end = ktime_add_ns(intv_start, entry->interval);
161 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
162 
163 	if (ktime_before(intv_end, cycle_end))
164 		return intv_end;
165 	else if (admin && admin != sched &&
166 		 ktime_after(admin->base_time, cycle_end) &&
167 		 ktime_before(admin->base_time, cycle_ext_end))
168 		return admin->base_time;
169 	else
170 		return cycle_end;
171 }
172 
173 static int length_to_duration(struct taprio_sched *q, int len)
174 {
175 	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
176 }
177 
178 /* Returns the entry corresponding to next available interval. If
179  * validate_interval is set, it only validates whether the timestamp occurs
180  * when the gate corresponding to the skb's traffic class is open.
181  */
182 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
183 						  struct Qdisc *sch,
184 						  struct sched_gate_list *sched,
185 						  struct sched_gate_list *admin,
186 						  ktime_t time,
187 						  ktime_t *interval_start,
188 						  ktime_t *interval_end,
189 						  bool validate_interval)
190 {
191 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
192 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
193 	struct sched_entry *entry = NULL, *entry_found = NULL;
194 	struct taprio_sched *q = qdisc_priv(sch);
195 	struct net_device *dev = qdisc_dev(sch);
196 	bool entry_available = false;
197 	s32 cycle_elapsed;
198 	int tc, n;
199 
200 	tc = netdev_get_prio_tc_map(dev, skb->priority);
201 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
202 
203 	*interval_start = 0;
204 	*interval_end = 0;
205 
206 	if (!sched)
207 		return NULL;
208 
209 	cycle = sched->cycle_time;
210 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
211 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
212 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
213 
214 	list_for_each_entry(entry, &sched->entries, list) {
215 		curr_intv_start = curr_intv_end;
216 		curr_intv_end = get_interval_end_time(sched, admin, entry,
217 						      curr_intv_start);
218 
219 		if (ktime_after(curr_intv_start, cycle_end))
220 			break;
221 
222 		if (!(entry->gate_mask & BIT(tc)) ||
223 		    packet_transmit_time > entry->interval)
224 			continue;
225 
226 		txtime = entry->next_txtime;
227 
228 		if (ktime_before(txtime, time) || validate_interval) {
229 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
230 			if ((ktime_before(curr_intv_start, time) &&
231 			     ktime_before(transmit_end_time, curr_intv_end)) ||
232 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
233 				entry_found = entry;
234 				*interval_start = curr_intv_start;
235 				*interval_end = curr_intv_end;
236 				break;
237 			} else if (!entry_available && !validate_interval) {
238 				/* Here, we are just trying to find out the
239 				 * first available interval in the next cycle.
240 				 */
241 				entry_available = true;
242 				entry_found = entry;
243 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
244 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
245 			}
246 		} else if (ktime_before(txtime, earliest_txtime) &&
247 			   !entry_available) {
248 			earliest_txtime = txtime;
249 			entry_found = entry;
250 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
251 			*interval_start = ktime_add(curr_intv_start, n * cycle);
252 			*interval_end = ktime_add(curr_intv_end, n * cycle);
253 		}
254 	}
255 
256 	return entry_found;
257 }
258 
259 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
260 {
261 	struct taprio_sched *q = qdisc_priv(sch);
262 	struct sched_gate_list *sched, *admin;
263 	ktime_t interval_start, interval_end;
264 	struct sched_entry *entry;
265 
266 	rcu_read_lock();
267 	sched = rcu_dereference(q->oper_sched);
268 	admin = rcu_dereference(q->admin_sched);
269 
270 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
271 				       &interval_start, &interval_end, true);
272 	rcu_read_unlock();
273 
274 	return entry;
275 }
276 
277 static bool taprio_flags_valid(u32 flags)
278 {
279 	/* Make sure no other flag bits are set. */
280 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
281 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
282 		return false;
283 	/* txtime-assist and full offload are mutually exclusive */
284 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
285 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
286 		return false;
287 	return true;
288 }
289 
290 /* This returns the tstamp value set by TCP in terms of the set clock. */
291 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
292 {
293 	unsigned int offset = skb_network_offset(skb);
294 	const struct ipv6hdr *ipv6h;
295 	const struct iphdr *iph;
296 	struct ipv6hdr _ipv6h;
297 
298 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
299 	if (!ipv6h)
300 		return 0;
301 
302 	if (ipv6h->version == 4) {
303 		iph = (struct iphdr *)ipv6h;
304 		offset += iph->ihl * 4;
305 
306 		/* special-case 6in4 tunnelling, as that is a common way to get
307 		 * v6 connectivity in the home
308 		 */
309 		if (iph->protocol == IPPROTO_IPV6) {
310 			ipv6h = skb_header_pointer(skb, offset,
311 						   sizeof(_ipv6h), &_ipv6h);
312 
313 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
314 				return 0;
315 		} else if (iph->protocol != IPPROTO_TCP) {
316 			return 0;
317 		}
318 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
319 		return 0;
320 	}
321 
322 	return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
323 }
324 
325 /* There are a few scenarios where we will have to modify the txtime from
326  * what is read from next_txtime in sched_entry. They are:
327  * 1. If txtime is in the past,
328  *    a. The gate for the traffic class is currently open and packet can be
329  *       transmitted before it closes, schedule the packet right away.
330  *    b. If the gate corresponding to the traffic class is going to open later
331  *       in the cycle, set the txtime of packet to the interval start.
332  * 2. If txtime is in the future, there are packets corresponding to the
333  *    current traffic class waiting to be transmitted. So, the following
334  *    possibilities exist:
335  *    a. We can transmit the packet before the window containing the txtime
336  *       closes.
337  *    b. The window might close before the transmission can be completed
338  *       successfully. So, schedule the packet in the next open window.
339  */
340 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
341 {
342 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
343 	struct taprio_sched *q = qdisc_priv(sch);
344 	struct sched_gate_list *sched, *admin;
345 	ktime_t minimum_time, now, txtime;
346 	int len, packet_transmit_time;
347 	struct sched_entry *entry;
348 	bool sched_changed;
349 
350 	now = taprio_get_time(q);
351 	minimum_time = ktime_add_ns(now, q->txtime_delay);
352 
353 	tcp_tstamp = get_tcp_tstamp(q, skb);
354 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
355 
356 	rcu_read_lock();
357 	admin = rcu_dereference(q->admin_sched);
358 	sched = rcu_dereference(q->oper_sched);
359 	if (admin && ktime_after(minimum_time, admin->base_time))
360 		switch_schedules(q, &admin, &sched);
361 
362 	/* Until the schedule starts, all the queues are open */
363 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
364 		txtime = minimum_time;
365 		goto done;
366 	}
367 
368 	len = qdisc_pkt_len(skb);
369 	packet_transmit_time = length_to_duration(q, len);
370 
371 	do {
372 		sched_changed = false;
373 
374 		entry = find_entry_to_transmit(skb, sch, sched, admin,
375 					       minimum_time,
376 					       &interval_start, &interval_end,
377 					       false);
378 		if (!entry) {
379 			txtime = 0;
380 			goto done;
381 		}
382 
383 		txtime = entry->next_txtime;
384 		txtime = max_t(ktime_t, txtime, minimum_time);
385 		txtime = max_t(ktime_t, txtime, interval_start);
386 
387 		if (admin && admin != sched &&
388 		    ktime_after(txtime, admin->base_time)) {
389 			sched = admin;
390 			sched_changed = true;
391 			continue;
392 		}
393 
394 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
395 		minimum_time = transmit_end_time;
396 
397 		/* Update the txtime of current entry to the next time it's
398 		 * interval starts.
399 		 */
400 		if (ktime_after(transmit_end_time, interval_end))
401 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
402 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
403 
404 	entry->next_txtime = transmit_end_time;
405 
406 done:
407 	rcu_read_unlock();
408 	return txtime;
409 }
410 
411 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
412 			      struct Qdisc *child, struct sk_buff **to_free)
413 {
414 	struct taprio_sched *q = qdisc_priv(sch);
415 
416 	if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
417 		if (!is_valid_interval(skb, sch))
418 			return qdisc_drop(skb, sch, to_free);
419 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
420 		skb->tstamp = get_packet_txtime(skb, sch);
421 		if (!skb->tstamp)
422 			return qdisc_drop(skb, sch, to_free);
423 	}
424 
425 	qdisc_qstats_backlog_inc(sch, skb);
426 	sch->q.qlen++;
427 
428 	return qdisc_enqueue(skb, child, to_free);
429 }
430 
431 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
432 			  struct sk_buff **to_free)
433 {
434 	struct taprio_sched *q = qdisc_priv(sch);
435 	struct Qdisc *child;
436 	int queue;
437 
438 	if (unlikely(FULL_OFFLOAD_IS_ENABLED(q->flags))) {
439 		WARN_ONCE(1, "Trying to enqueue skb into the root of a taprio qdisc configured with full offload\n");
440 		return qdisc_drop(skb, sch, to_free);
441 	}
442 
443 	queue = skb_get_queue_mapping(skb);
444 
445 	child = q->qdiscs[queue];
446 	if (unlikely(!child))
447 		return qdisc_drop(skb, sch, to_free);
448 
449 	/* Large packets might not be transmitted when the transmission duration
450 	 * exceeds any configured interval. Therefore, segment the skb into
451 	 * smaller chunks. Skip it for the full offload case, as the driver
452 	 * and/or the hardware is expected to handle this.
453 	 */
454 	if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) {
455 		unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
456 		netdev_features_t features = netif_skb_features(skb);
457 		struct sk_buff *segs, *nskb;
458 		int ret;
459 
460 		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
461 		if (IS_ERR_OR_NULL(segs))
462 			return qdisc_drop(skb, sch, to_free);
463 
464 		skb_list_walk_safe(segs, segs, nskb) {
465 			skb_mark_not_on_list(segs);
466 			qdisc_skb_cb(segs)->pkt_len = segs->len;
467 			slen += segs->len;
468 
469 			ret = taprio_enqueue_one(segs, sch, child, to_free);
470 			if (ret != NET_XMIT_SUCCESS) {
471 				if (net_xmit_drop_count(ret))
472 					qdisc_qstats_drop(sch);
473 			} else {
474 				numsegs++;
475 			}
476 		}
477 
478 		if (numsegs > 1)
479 			qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
480 		consume_skb(skb);
481 
482 		return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
483 	}
484 
485 	return taprio_enqueue_one(skb, sch, child, to_free);
486 }
487 
488 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
489 {
490 	struct taprio_sched *q = qdisc_priv(sch);
491 	struct net_device *dev = qdisc_dev(sch);
492 	struct sched_entry *entry;
493 	struct sk_buff *skb;
494 	u32 gate_mask;
495 	int i;
496 
497 	rcu_read_lock();
498 	entry = rcu_dereference(q->current_entry);
499 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
500 	rcu_read_unlock();
501 
502 	if (!gate_mask)
503 		return NULL;
504 
505 	for (i = 0; i < dev->num_tx_queues; i++) {
506 		struct Qdisc *child = q->qdiscs[i];
507 		int prio;
508 		u8 tc;
509 
510 		if (unlikely(!child))
511 			continue;
512 
513 		skb = child->ops->peek(child);
514 		if (!skb)
515 			continue;
516 
517 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
518 			return skb;
519 
520 		prio = skb->priority;
521 		tc = netdev_get_prio_tc_map(dev, prio);
522 
523 		if (!(gate_mask & BIT(tc)))
524 			continue;
525 
526 		return skb;
527 	}
528 
529 	return NULL;
530 }
531 
532 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
533 {
534 	WARN_ONCE(1, "Trying to peek into the root of a taprio qdisc configured with full offload\n");
535 
536 	return NULL;
537 }
538 
539 static struct sk_buff *taprio_peek(struct Qdisc *sch)
540 {
541 	struct taprio_sched *q = qdisc_priv(sch);
542 
543 	return q->peek(sch);
544 }
545 
546 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
547 {
548 	atomic_set(&entry->budget,
549 		   div64_u64((u64)entry->interval * 1000,
550 			     atomic64_read(&q->picos_per_byte)));
551 }
552 
553 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
554 {
555 	struct taprio_sched *q = qdisc_priv(sch);
556 	struct net_device *dev = qdisc_dev(sch);
557 	struct sk_buff *skb = NULL;
558 	struct sched_entry *entry;
559 	u32 gate_mask;
560 	int i;
561 
562 	rcu_read_lock();
563 	entry = rcu_dereference(q->current_entry);
564 	/* if there's no entry, it means that the schedule didn't
565 	 * start yet, so force all gates to be open, this is in
566 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
567 	 * "AdminGateStates"
568 	 */
569 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
570 
571 	if (!gate_mask)
572 		goto done;
573 
574 	for (i = 0; i < dev->num_tx_queues; i++) {
575 		struct Qdisc *child = q->qdiscs[i];
576 		ktime_t guard;
577 		int prio;
578 		int len;
579 		u8 tc;
580 
581 		if (unlikely(!child))
582 			continue;
583 
584 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
585 			skb = child->ops->dequeue(child);
586 			if (!skb)
587 				continue;
588 			goto skb_found;
589 		}
590 
591 		skb = child->ops->peek(child);
592 		if (!skb)
593 			continue;
594 
595 		prio = skb->priority;
596 		tc = netdev_get_prio_tc_map(dev, prio);
597 
598 		if (!(gate_mask & BIT(tc))) {
599 			skb = NULL;
600 			continue;
601 		}
602 
603 		len = qdisc_pkt_len(skb);
604 		guard = ktime_add_ns(taprio_get_time(q),
605 				     length_to_duration(q, len));
606 
607 		/* In the case that there's no gate entry, there's no
608 		 * guard band ...
609 		 */
610 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
611 		    ktime_after(guard, entry->close_time)) {
612 			skb = NULL;
613 			continue;
614 		}
615 
616 		/* ... and no budget. */
617 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
618 		    atomic_sub_return(len, &entry->budget) < 0) {
619 			skb = NULL;
620 			continue;
621 		}
622 
623 		skb = child->ops->dequeue(child);
624 		if (unlikely(!skb))
625 			goto done;
626 
627 skb_found:
628 		qdisc_bstats_update(sch, skb);
629 		qdisc_qstats_backlog_dec(sch, skb);
630 		sch->q.qlen--;
631 
632 		goto done;
633 	}
634 
635 done:
636 	rcu_read_unlock();
637 
638 	return skb;
639 }
640 
641 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
642 {
643 	WARN_ONCE(1, "Trying to dequeue from the root of a taprio qdisc configured with full offload\n");
644 
645 	return NULL;
646 }
647 
648 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
649 {
650 	struct taprio_sched *q = qdisc_priv(sch);
651 
652 	return q->dequeue(sch);
653 }
654 
655 static bool should_restart_cycle(const struct sched_gate_list *oper,
656 				 const struct sched_entry *entry)
657 {
658 	if (list_is_last(&entry->list, &oper->entries))
659 		return true;
660 
661 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
662 		return true;
663 
664 	return false;
665 }
666 
667 static bool should_change_schedules(const struct sched_gate_list *admin,
668 				    const struct sched_gate_list *oper,
669 				    ktime_t close_time)
670 {
671 	ktime_t next_base_time, extension_time;
672 
673 	if (!admin)
674 		return false;
675 
676 	next_base_time = sched_base_time(admin);
677 
678 	/* This is the simple case, the close_time would fall after
679 	 * the next schedule base_time.
680 	 */
681 	if (ktime_compare(next_base_time, close_time) <= 0)
682 		return true;
683 
684 	/* This is the cycle_time_extension case, if the close_time
685 	 * plus the amount that can be extended would fall after the
686 	 * next schedule base_time, we can extend the current schedule
687 	 * for that amount.
688 	 */
689 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
690 
691 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
692 	 * how precisely the extension should be made. So after
693 	 * conformance testing, this logic may change.
694 	 */
695 	if (ktime_compare(next_base_time, extension_time) <= 0)
696 		return true;
697 
698 	return false;
699 }
700 
701 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
702 {
703 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
704 					      advance_timer);
705 	struct sched_gate_list *oper, *admin;
706 	struct sched_entry *entry, *next;
707 	struct Qdisc *sch = q->root;
708 	ktime_t close_time;
709 
710 	spin_lock(&q->current_entry_lock);
711 	entry = rcu_dereference_protected(q->current_entry,
712 					  lockdep_is_held(&q->current_entry_lock));
713 	oper = rcu_dereference_protected(q->oper_sched,
714 					 lockdep_is_held(&q->current_entry_lock));
715 	admin = rcu_dereference_protected(q->admin_sched,
716 					  lockdep_is_held(&q->current_entry_lock));
717 
718 	if (!oper)
719 		switch_schedules(q, &admin, &oper);
720 
721 	/* This can happen in two cases: 1. this is the very first run
722 	 * of this function (i.e. we weren't running any schedule
723 	 * previously); 2. The previous schedule just ended. The first
724 	 * entry of all schedules are pre-calculated during the
725 	 * schedule initialization.
726 	 */
727 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
728 		next = list_first_entry(&oper->entries, struct sched_entry,
729 					list);
730 		close_time = next->close_time;
731 		goto first_run;
732 	}
733 
734 	if (should_restart_cycle(oper, entry)) {
735 		next = list_first_entry(&oper->entries, struct sched_entry,
736 					list);
737 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
738 						      oper->cycle_time);
739 	} else {
740 		next = list_next_entry(entry, list);
741 	}
742 
743 	close_time = ktime_add_ns(entry->close_time, next->interval);
744 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
745 
746 	if (should_change_schedules(admin, oper, close_time)) {
747 		/* Set things so the next time this runs, the new
748 		 * schedule runs.
749 		 */
750 		close_time = sched_base_time(admin);
751 		switch_schedules(q, &admin, &oper);
752 	}
753 
754 	next->close_time = close_time;
755 	taprio_set_budget(q, next);
756 
757 first_run:
758 	rcu_assign_pointer(q->current_entry, next);
759 	spin_unlock(&q->current_entry_lock);
760 
761 	hrtimer_set_expires(&q->advance_timer, close_time);
762 
763 	rcu_read_lock();
764 	__netif_schedule(sch);
765 	rcu_read_unlock();
766 
767 	return HRTIMER_RESTART;
768 }
769 
770 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
771 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
772 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
773 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
774 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
775 };
776 
777 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
778 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
779 		.len = sizeof(struct tc_mqprio_qopt)
780 	},
781 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
782 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
783 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
784 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
785 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
786 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
787 	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
788 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
789 };
790 
791 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
792 			    struct sched_entry *entry,
793 			    struct netlink_ext_ack *extack)
794 {
795 	int min_duration = length_to_duration(q, ETH_ZLEN);
796 	u32 interval = 0;
797 
798 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
799 		entry->command = nla_get_u8(
800 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
801 
802 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
803 		entry->gate_mask = nla_get_u32(
804 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
805 
806 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
807 		interval = nla_get_u32(
808 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
809 
810 	/* The interval should allow at least the minimum ethernet
811 	 * frame to go out.
812 	 */
813 	if (interval < min_duration) {
814 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
815 		return -EINVAL;
816 	}
817 
818 	entry->interval = interval;
819 
820 	return 0;
821 }
822 
823 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
824 			     struct sched_entry *entry, int index,
825 			     struct netlink_ext_ack *extack)
826 {
827 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
828 	int err;
829 
830 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
831 					  entry_policy, NULL);
832 	if (err < 0) {
833 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
834 		return -EINVAL;
835 	}
836 
837 	entry->index = index;
838 
839 	return fill_sched_entry(q, tb, entry, extack);
840 }
841 
842 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
843 			    struct sched_gate_list *sched,
844 			    struct netlink_ext_ack *extack)
845 {
846 	struct nlattr *n;
847 	int err, rem;
848 	int i = 0;
849 
850 	if (!list)
851 		return -EINVAL;
852 
853 	nla_for_each_nested(n, list, rem) {
854 		struct sched_entry *entry;
855 
856 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
857 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
858 			continue;
859 		}
860 
861 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
862 		if (!entry) {
863 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
864 			return -ENOMEM;
865 		}
866 
867 		err = parse_sched_entry(q, n, entry, i, extack);
868 		if (err < 0) {
869 			kfree(entry);
870 			return err;
871 		}
872 
873 		list_add_tail(&entry->list, &sched->entries);
874 		i++;
875 	}
876 
877 	sched->num_entries = i;
878 
879 	return i;
880 }
881 
882 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
883 				 struct sched_gate_list *new,
884 				 struct netlink_ext_ack *extack)
885 {
886 	int err = 0;
887 
888 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
889 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
890 		return -ENOTSUPP;
891 	}
892 
893 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
894 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
895 
896 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
897 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
898 
899 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
900 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
901 
902 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
903 		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
904 				       new, extack);
905 	if (err < 0)
906 		return err;
907 
908 	if (!new->cycle_time) {
909 		struct sched_entry *entry;
910 		ktime_t cycle = 0;
911 
912 		list_for_each_entry(entry, &new->entries, list)
913 			cycle = ktime_add_ns(cycle, entry->interval);
914 
915 		if (!cycle) {
916 			NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
917 			return -EINVAL;
918 		}
919 
920 		new->cycle_time = cycle;
921 	}
922 
923 	return 0;
924 }
925 
926 static int taprio_parse_mqprio_opt(struct net_device *dev,
927 				   struct tc_mqprio_qopt *qopt,
928 				   struct netlink_ext_ack *extack,
929 				   u32 taprio_flags)
930 {
931 	int i, j;
932 
933 	if (!qopt && !dev->num_tc) {
934 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
935 		return -EINVAL;
936 	}
937 
938 	/* If num_tc is already set, it means that the user already
939 	 * configured the mqprio part
940 	 */
941 	if (dev->num_tc)
942 		return 0;
943 
944 	/* Verify num_tc is not out of max range */
945 	if (qopt->num_tc > TC_MAX_QUEUE) {
946 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
947 		return -EINVAL;
948 	}
949 
950 	/* taprio imposes that traffic classes map 1:n to tx queues */
951 	if (qopt->num_tc > dev->num_tx_queues) {
952 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
953 		return -EINVAL;
954 	}
955 
956 	/* Verify priority mapping uses valid tcs */
957 	for (i = 0; i <= TC_BITMASK; i++) {
958 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
959 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
960 			return -EINVAL;
961 		}
962 	}
963 
964 	for (i = 0; i < qopt->num_tc; i++) {
965 		unsigned int last = qopt->offset[i] + qopt->count[i];
966 
967 		/* Verify the queue count is in tx range being equal to the
968 		 * real_num_tx_queues indicates the last queue is in use.
969 		 */
970 		if (qopt->offset[i] >= dev->num_tx_queues ||
971 		    !qopt->count[i] ||
972 		    last > dev->real_num_tx_queues) {
973 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
974 			return -EINVAL;
975 		}
976 
977 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
978 			continue;
979 
980 		/* Verify that the offset and counts do not overlap */
981 		for (j = i + 1; j < qopt->num_tc; j++) {
982 			if (last > qopt->offset[j]) {
983 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
984 				return -EINVAL;
985 			}
986 		}
987 	}
988 
989 	return 0;
990 }
991 
992 static int taprio_get_start_time(struct Qdisc *sch,
993 				 struct sched_gate_list *sched,
994 				 ktime_t *start)
995 {
996 	struct taprio_sched *q = qdisc_priv(sch);
997 	ktime_t now, base, cycle;
998 	s64 n;
999 
1000 	base = sched_base_time(sched);
1001 	now = taprio_get_time(q);
1002 
1003 	if (ktime_after(base, now)) {
1004 		*start = base;
1005 		return 0;
1006 	}
1007 
1008 	cycle = sched->cycle_time;
1009 
1010 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1011 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1012 	 * something went really wrong. In that case, we should warn about this
1013 	 * inconsistent state and return error.
1014 	 */
1015 	if (WARN_ON(!cycle))
1016 		return -EFAULT;
1017 
1018 	/* Schedule the start time for the beginning of the next
1019 	 * cycle.
1020 	 */
1021 	n = div64_s64(ktime_sub_ns(now, base), cycle);
1022 	*start = ktime_add_ns(base, (n + 1) * cycle);
1023 	return 0;
1024 }
1025 
1026 static void setup_first_close_time(struct taprio_sched *q,
1027 				   struct sched_gate_list *sched, ktime_t base)
1028 {
1029 	struct sched_entry *first;
1030 	ktime_t cycle;
1031 
1032 	first = list_first_entry(&sched->entries,
1033 				 struct sched_entry, list);
1034 
1035 	cycle = sched->cycle_time;
1036 
1037 	/* FIXME: find a better place to do this */
1038 	sched->cycle_close_time = ktime_add_ns(base, cycle);
1039 
1040 	first->close_time = ktime_add_ns(base, first->interval);
1041 	taprio_set_budget(q, first);
1042 	rcu_assign_pointer(q->current_entry, NULL);
1043 }
1044 
1045 static void taprio_start_sched(struct Qdisc *sch,
1046 			       ktime_t start, struct sched_gate_list *new)
1047 {
1048 	struct taprio_sched *q = qdisc_priv(sch);
1049 	ktime_t expires;
1050 
1051 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1052 		return;
1053 
1054 	expires = hrtimer_get_expires(&q->advance_timer);
1055 	if (expires == 0)
1056 		expires = KTIME_MAX;
1057 
1058 	/* If the new schedule starts before the next expiration, we
1059 	 * reprogram it to the earliest one, so we change the admin
1060 	 * schedule to the operational one at the right time.
1061 	 */
1062 	start = min_t(ktime_t, start, expires);
1063 
1064 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1065 }
1066 
1067 static void taprio_set_picos_per_byte(struct net_device *dev,
1068 				      struct taprio_sched *q)
1069 {
1070 	struct ethtool_link_ksettings ecmd;
1071 	int speed = SPEED_10;
1072 	int picos_per_byte;
1073 	int err;
1074 
1075 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1076 	if (err < 0)
1077 		goto skip;
1078 
1079 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1080 		speed = ecmd.base.speed;
1081 
1082 skip:
1083 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1084 
1085 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1086 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1087 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1088 		   ecmd.base.speed);
1089 }
1090 
1091 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1092 			       void *ptr)
1093 {
1094 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1095 	struct net_device *qdev;
1096 	struct taprio_sched *q;
1097 	bool found = false;
1098 
1099 	ASSERT_RTNL();
1100 
1101 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1102 		return NOTIFY_DONE;
1103 
1104 	spin_lock(&taprio_list_lock);
1105 	list_for_each_entry(q, &taprio_list, taprio_list) {
1106 		qdev = qdisc_dev(q->root);
1107 		if (qdev == dev) {
1108 			found = true;
1109 			break;
1110 		}
1111 	}
1112 	spin_unlock(&taprio_list_lock);
1113 
1114 	if (found)
1115 		taprio_set_picos_per_byte(dev, q);
1116 
1117 	return NOTIFY_DONE;
1118 }
1119 
1120 static void setup_txtime(struct taprio_sched *q,
1121 			 struct sched_gate_list *sched, ktime_t base)
1122 {
1123 	struct sched_entry *entry;
1124 	u32 interval = 0;
1125 
1126 	list_for_each_entry(entry, &sched->entries, list) {
1127 		entry->next_txtime = ktime_add_ns(base, interval);
1128 		interval += entry->interval;
1129 	}
1130 }
1131 
1132 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1133 {
1134 	struct __tc_taprio_qopt_offload *__offload;
1135 
1136 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1137 			    GFP_KERNEL);
1138 	if (!__offload)
1139 		return NULL;
1140 
1141 	refcount_set(&__offload->users, 1);
1142 
1143 	return &__offload->offload;
1144 }
1145 
1146 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1147 						  *offload)
1148 {
1149 	struct __tc_taprio_qopt_offload *__offload;
1150 
1151 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1152 				 offload);
1153 
1154 	refcount_inc(&__offload->users);
1155 
1156 	return offload;
1157 }
1158 EXPORT_SYMBOL_GPL(taprio_offload_get);
1159 
1160 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1161 {
1162 	struct __tc_taprio_qopt_offload *__offload;
1163 
1164 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1165 				 offload);
1166 
1167 	if (!refcount_dec_and_test(&__offload->users))
1168 		return;
1169 
1170 	kfree(__offload);
1171 }
1172 EXPORT_SYMBOL_GPL(taprio_offload_free);
1173 
1174 /* The function will only serve to keep the pointers to the "oper" and "admin"
1175  * schedules valid in relation to their base times, so when calling dump() the
1176  * users looks at the right schedules.
1177  * When using full offload, the admin configuration is promoted to oper at the
1178  * base_time in the PHC time domain.  But because the system time is not
1179  * necessarily in sync with that, we can't just trigger a hrtimer to call
1180  * switch_schedules at the right hardware time.
1181  * At the moment we call this by hand right away from taprio, but in the future
1182  * it will be useful to create a mechanism for drivers to notify taprio of the
1183  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1184  * This is left as TODO.
1185  */
1186 static void taprio_offload_config_changed(struct taprio_sched *q)
1187 {
1188 	struct sched_gate_list *oper, *admin;
1189 
1190 	spin_lock(&q->current_entry_lock);
1191 
1192 	oper = rcu_dereference_protected(q->oper_sched,
1193 					 lockdep_is_held(&q->current_entry_lock));
1194 	admin = rcu_dereference_protected(q->admin_sched,
1195 					  lockdep_is_held(&q->current_entry_lock));
1196 
1197 	switch_schedules(q, &admin, &oper);
1198 
1199 	spin_unlock(&q->current_entry_lock);
1200 }
1201 
1202 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1203 {
1204 	u32 i, queue_mask = 0;
1205 
1206 	for (i = 0; i < dev->num_tc; i++) {
1207 		u32 offset, count;
1208 
1209 		if (!(tc_mask & BIT(i)))
1210 			continue;
1211 
1212 		offset = dev->tc_to_txq[i].offset;
1213 		count = dev->tc_to_txq[i].count;
1214 
1215 		queue_mask |= GENMASK(offset + count - 1, offset);
1216 	}
1217 
1218 	return queue_mask;
1219 }
1220 
1221 static void taprio_sched_to_offload(struct net_device *dev,
1222 				    struct sched_gate_list *sched,
1223 				    struct tc_taprio_qopt_offload *offload)
1224 {
1225 	struct sched_entry *entry;
1226 	int i = 0;
1227 
1228 	offload->base_time = sched->base_time;
1229 	offload->cycle_time = sched->cycle_time;
1230 	offload->cycle_time_extension = sched->cycle_time_extension;
1231 
1232 	list_for_each_entry(entry, &sched->entries, list) {
1233 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1234 
1235 		e->command = entry->command;
1236 		e->interval = entry->interval;
1237 		e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1238 
1239 		i++;
1240 	}
1241 
1242 	offload->num_entries = i;
1243 }
1244 
1245 static int taprio_enable_offload(struct net_device *dev,
1246 				 struct taprio_sched *q,
1247 				 struct sched_gate_list *sched,
1248 				 struct netlink_ext_ack *extack)
1249 {
1250 	const struct net_device_ops *ops = dev->netdev_ops;
1251 	struct tc_taprio_qopt_offload *offload;
1252 	int err = 0;
1253 
1254 	if (!ops->ndo_setup_tc) {
1255 		NL_SET_ERR_MSG(extack,
1256 			       "Device does not support taprio offload");
1257 		return -EOPNOTSUPP;
1258 	}
1259 
1260 	offload = taprio_offload_alloc(sched->num_entries);
1261 	if (!offload) {
1262 		NL_SET_ERR_MSG(extack,
1263 			       "Not enough memory for enabling offload mode");
1264 		return -ENOMEM;
1265 	}
1266 	offload->enable = 1;
1267 	taprio_sched_to_offload(dev, sched, offload);
1268 
1269 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1270 	if (err < 0) {
1271 		NL_SET_ERR_MSG(extack,
1272 			       "Device failed to setup taprio offload");
1273 		goto done;
1274 	}
1275 
1276 done:
1277 	taprio_offload_free(offload);
1278 
1279 	return err;
1280 }
1281 
1282 static int taprio_disable_offload(struct net_device *dev,
1283 				  struct taprio_sched *q,
1284 				  struct netlink_ext_ack *extack)
1285 {
1286 	const struct net_device_ops *ops = dev->netdev_ops;
1287 	struct tc_taprio_qopt_offload *offload;
1288 	int err;
1289 
1290 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1291 		return 0;
1292 
1293 	if (!ops->ndo_setup_tc)
1294 		return -EOPNOTSUPP;
1295 
1296 	offload = taprio_offload_alloc(0);
1297 	if (!offload) {
1298 		NL_SET_ERR_MSG(extack,
1299 			       "Not enough memory to disable offload mode");
1300 		return -ENOMEM;
1301 	}
1302 	offload->enable = 0;
1303 
1304 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1305 	if (err < 0) {
1306 		NL_SET_ERR_MSG(extack,
1307 			       "Device failed to disable offload");
1308 		goto out;
1309 	}
1310 
1311 out:
1312 	taprio_offload_free(offload);
1313 
1314 	return err;
1315 }
1316 
1317 /* If full offload is enabled, the only possible clockid is the net device's
1318  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1319  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1320  * in sync with the specified clockid via a user space daemon such as phc2sys.
1321  * For both software taprio and txtime-assist, the clockid is used for the
1322  * hrtimer that advances the schedule and hence mandatory.
1323  */
1324 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1325 				struct netlink_ext_ack *extack)
1326 {
1327 	struct taprio_sched *q = qdisc_priv(sch);
1328 	struct net_device *dev = qdisc_dev(sch);
1329 	int err = -EINVAL;
1330 
1331 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1332 		const struct ethtool_ops *ops = dev->ethtool_ops;
1333 		struct ethtool_ts_info info = {
1334 			.cmd = ETHTOOL_GET_TS_INFO,
1335 			.phc_index = -1,
1336 		};
1337 
1338 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1339 			NL_SET_ERR_MSG(extack,
1340 				       "The 'clockid' cannot be specified for full offload");
1341 			goto out;
1342 		}
1343 
1344 		if (ops && ops->get_ts_info)
1345 			err = ops->get_ts_info(dev, &info);
1346 
1347 		if (err || info.phc_index < 0) {
1348 			NL_SET_ERR_MSG(extack,
1349 				       "Device does not have a PTP clock");
1350 			err = -ENOTSUPP;
1351 			goto out;
1352 		}
1353 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1354 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1355 
1356 		/* We only support static clockids and we don't allow
1357 		 * for it to be modified after the first init.
1358 		 */
1359 		if (clockid < 0 ||
1360 		    (q->clockid != -1 && q->clockid != clockid)) {
1361 			NL_SET_ERR_MSG(extack,
1362 				       "Changing the 'clockid' of a running schedule is not supported");
1363 			err = -ENOTSUPP;
1364 			goto out;
1365 		}
1366 
1367 		switch (clockid) {
1368 		case CLOCK_REALTIME:
1369 			q->tk_offset = TK_OFFS_REAL;
1370 			break;
1371 		case CLOCK_MONOTONIC:
1372 			q->tk_offset = TK_OFFS_MAX;
1373 			break;
1374 		case CLOCK_BOOTTIME:
1375 			q->tk_offset = TK_OFFS_BOOT;
1376 			break;
1377 		case CLOCK_TAI:
1378 			q->tk_offset = TK_OFFS_TAI;
1379 			break;
1380 		default:
1381 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1382 			err = -EINVAL;
1383 			goto out;
1384 		}
1385 
1386 		q->clockid = clockid;
1387 	} else {
1388 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1389 		goto out;
1390 	}
1391 
1392 	/* Everything went ok, return success. */
1393 	err = 0;
1394 
1395 out:
1396 	return err;
1397 }
1398 
1399 static int taprio_mqprio_cmp(const struct net_device *dev,
1400 			     const struct tc_mqprio_qopt *mqprio)
1401 {
1402 	int i;
1403 
1404 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1405 		return -1;
1406 
1407 	for (i = 0; i < mqprio->num_tc; i++)
1408 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1409 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1410 			return -1;
1411 
1412 	for (i = 0; i <= TC_BITMASK; i++)
1413 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1414 			return -1;
1415 
1416 	return 0;
1417 }
1418 
1419 /* The semantics of the 'flags' argument in relation to 'change()'
1420  * requests, are interpreted following two rules (which are applied in
1421  * this order): (1) an omitted 'flags' argument is interpreted as
1422  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1423  * changed.
1424  */
1425 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1426 			    struct netlink_ext_ack *extack)
1427 {
1428 	u32 new = 0;
1429 
1430 	if (attr)
1431 		new = nla_get_u32(attr);
1432 
1433 	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1434 		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1435 		return -EOPNOTSUPP;
1436 	}
1437 
1438 	if (!taprio_flags_valid(new)) {
1439 		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1440 		return -EINVAL;
1441 	}
1442 
1443 	return new;
1444 }
1445 
1446 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1447 			 struct netlink_ext_ack *extack)
1448 {
1449 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1450 	struct sched_gate_list *oper, *admin, *new_admin;
1451 	struct taprio_sched *q = qdisc_priv(sch);
1452 	struct net_device *dev = qdisc_dev(sch);
1453 	struct tc_mqprio_qopt *mqprio = NULL;
1454 	unsigned long flags;
1455 	ktime_t start;
1456 	int i, err;
1457 
1458 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1459 					  taprio_policy, extack);
1460 	if (err < 0)
1461 		return err;
1462 
1463 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1464 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1465 
1466 	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1467 			       q->flags, extack);
1468 	if (err < 0)
1469 		return err;
1470 
1471 	q->flags = err;
1472 
1473 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1474 	if (err < 0)
1475 		return err;
1476 
1477 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1478 	if (!new_admin) {
1479 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1480 		return -ENOMEM;
1481 	}
1482 	INIT_LIST_HEAD(&new_admin->entries);
1483 
1484 	rcu_read_lock();
1485 	oper = rcu_dereference(q->oper_sched);
1486 	admin = rcu_dereference(q->admin_sched);
1487 	rcu_read_unlock();
1488 
1489 	/* no changes - no new mqprio settings */
1490 	if (!taprio_mqprio_cmp(dev, mqprio))
1491 		mqprio = NULL;
1492 
1493 	if (mqprio && (oper || admin)) {
1494 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1495 		err = -ENOTSUPP;
1496 		goto free_sched;
1497 	}
1498 
1499 	err = parse_taprio_schedule(q, tb, new_admin, extack);
1500 	if (err < 0)
1501 		goto free_sched;
1502 
1503 	if (new_admin->num_entries == 0) {
1504 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1505 		err = -EINVAL;
1506 		goto free_sched;
1507 	}
1508 
1509 	err = taprio_parse_clockid(sch, tb, extack);
1510 	if (err < 0)
1511 		goto free_sched;
1512 
1513 	taprio_set_picos_per_byte(dev, q);
1514 
1515 	if (mqprio) {
1516 		err = netdev_set_num_tc(dev, mqprio->num_tc);
1517 		if (err)
1518 			goto free_sched;
1519 		for (i = 0; i < mqprio->num_tc; i++)
1520 			netdev_set_tc_queue(dev, i,
1521 					    mqprio->count[i],
1522 					    mqprio->offset[i]);
1523 
1524 		/* Always use supplied priority mappings */
1525 		for (i = 0; i <= TC_BITMASK; i++)
1526 			netdev_set_prio_tc_map(dev, i,
1527 					       mqprio->prio_tc_map[i]);
1528 	}
1529 
1530 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1531 		err = taprio_enable_offload(dev, q, new_admin, extack);
1532 	else
1533 		err = taprio_disable_offload(dev, q, extack);
1534 	if (err)
1535 		goto free_sched;
1536 
1537 	/* Protects against enqueue()/dequeue() */
1538 	spin_lock_bh(qdisc_lock(sch));
1539 
1540 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1541 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1542 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1543 			err = -EINVAL;
1544 			goto unlock;
1545 		}
1546 
1547 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1548 	}
1549 
1550 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1551 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1552 	    !hrtimer_active(&q->advance_timer)) {
1553 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1554 		q->advance_timer.function = advance_sched;
1555 	}
1556 
1557 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1558 		q->dequeue = taprio_dequeue_offload;
1559 		q->peek = taprio_peek_offload;
1560 	} else {
1561 		/* Be sure to always keep the function pointers
1562 		 * in a consistent state.
1563 		 */
1564 		q->dequeue = taprio_dequeue_soft;
1565 		q->peek = taprio_peek_soft;
1566 	}
1567 
1568 	err = taprio_get_start_time(sch, new_admin, &start);
1569 	if (err < 0) {
1570 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1571 		goto unlock;
1572 	}
1573 
1574 	setup_txtime(q, new_admin, start);
1575 
1576 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1577 		if (!oper) {
1578 			rcu_assign_pointer(q->oper_sched, new_admin);
1579 			err = 0;
1580 			new_admin = NULL;
1581 			goto unlock;
1582 		}
1583 
1584 		rcu_assign_pointer(q->admin_sched, new_admin);
1585 		if (admin)
1586 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1587 	} else {
1588 		setup_first_close_time(q, new_admin, start);
1589 
1590 		/* Protects against advance_sched() */
1591 		spin_lock_irqsave(&q->current_entry_lock, flags);
1592 
1593 		taprio_start_sched(sch, start, new_admin);
1594 
1595 		rcu_assign_pointer(q->admin_sched, new_admin);
1596 		if (admin)
1597 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1598 
1599 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1600 
1601 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1602 			taprio_offload_config_changed(q);
1603 	}
1604 
1605 	new_admin = NULL;
1606 	err = 0;
1607 
1608 unlock:
1609 	spin_unlock_bh(qdisc_lock(sch));
1610 
1611 free_sched:
1612 	if (new_admin)
1613 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1614 
1615 	return err;
1616 }
1617 
1618 static void taprio_reset(struct Qdisc *sch)
1619 {
1620 	struct taprio_sched *q = qdisc_priv(sch);
1621 	struct net_device *dev = qdisc_dev(sch);
1622 	int i;
1623 
1624 	hrtimer_cancel(&q->advance_timer);
1625 	if (q->qdiscs) {
1626 		for (i = 0; i < dev->num_tx_queues; i++)
1627 			if (q->qdiscs[i])
1628 				qdisc_reset(q->qdiscs[i]);
1629 	}
1630 	sch->qstats.backlog = 0;
1631 	sch->q.qlen = 0;
1632 }
1633 
1634 static void taprio_destroy(struct Qdisc *sch)
1635 {
1636 	struct taprio_sched *q = qdisc_priv(sch);
1637 	struct net_device *dev = qdisc_dev(sch);
1638 	unsigned int i;
1639 
1640 	spin_lock(&taprio_list_lock);
1641 	list_del(&q->taprio_list);
1642 	spin_unlock(&taprio_list_lock);
1643 
1644 
1645 	taprio_disable_offload(dev, q, NULL);
1646 
1647 	if (q->qdiscs) {
1648 		for (i = 0; i < dev->num_tx_queues; i++)
1649 			qdisc_put(q->qdiscs[i]);
1650 
1651 		kfree(q->qdiscs);
1652 	}
1653 	q->qdiscs = NULL;
1654 
1655 	netdev_reset_tc(dev);
1656 
1657 	if (q->oper_sched)
1658 		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1659 
1660 	if (q->admin_sched)
1661 		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1662 }
1663 
1664 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1665 		       struct netlink_ext_ack *extack)
1666 {
1667 	struct taprio_sched *q = qdisc_priv(sch);
1668 	struct net_device *dev = qdisc_dev(sch);
1669 	int i;
1670 
1671 	spin_lock_init(&q->current_entry_lock);
1672 
1673 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1674 	q->advance_timer.function = advance_sched;
1675 
1676 	q->dequeue = taprio_dequeue_soft;
1677 	q->peek = taprio_peek_soft;
1678 
1679 	q->root = sch;
1680 
1681 	/* We only support static clockids. Use an invalid value as default
1682 	 * and get the valid one on taprio_change().
1683 	 */
1684 	q->clockid = -1;
1685 	q->flags = TAPRIO_FLAGS_INVALID;
1686 
1687 	spin_lock(&taprio_list_lock);
1688 	list_add(&q->taprio_list, &taprio_list);
1689 	spin_unlock(&taprio_list_lock);
1690 
1691 	if (sch->parent != TC_H_ROOT)
1692 		return -EOPNOTSUPP;
1693 
1694 	if (!netif_is_multiqueue(dev))
1695 		return -EOPNOTSUPP;
1696 
1697 	/* pre-allocate qdisc, attachment can't fail */
1698 	q->qdiscs = kcalloc(dev->num_tx_queues,
1699 			    sizeof(q->qdiscs[0]),
1700 			    GFP_KERNEL);
1701 
1702 	if (!q->qdiscs)
1703 		return -ENOMEM;
1704 
1705 	if (!opt)
1706 		return -EINVAL;
1707 
1708 	for (i = 0; i < dev->num_tx_queues; i++) {
1709 		struct netdev_queue *dev_queue;
1710 		struct Qdisc *qdisc;
1711 
1712 		dev_queue = netdev_get_tx_queue(dev, i);
1713 		qdisc = qdisc_create_dflt(dev_queue,
1714 					  &pfifo_qdisc_ops,
1715 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1716 						    TC_H_MIN(i + 1)),
1717 					  extack);
1718 		if (!qdisc)
1719 			return -ENOMEM;
1720 
1721 		if (i < dev->real_num_tx_queues)
1722 			qdisc_hash_add(qdisc, false);
1723 
1724 		q->qdiscs[i] = qdisc;
1725 	}
1726 
1727 	return taprio_change(sch, opt, extack);
1728 }
1729 
1730 static void taprio_attach(struct Qdisc *sch)
1731 {
1732 	struct taprio_sched *q = qdisc_priv(sch);
1733 	struct net_device *dev = qdisc_dev(sch);
1734 	unsigned int ntx;
1735 
1736 	/* Attach underlying qdisc */
1737 	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
1738 		struct Qdisc *qdisc = q->qdiscs[ntx];
1739 		struct Qdisc *old;
1740 
1741 		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1742 			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1743 			old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
1744 		} else {
1745 			old = dev_graft_qdisc(qdisc->dev_queue, sch);
1746 			qdisc_refcount_inc(sch);
1747 		}
1748 		if (old)
1749 			qdisc_put(old);
1750 	}
1751 
1752 	/* access to the child qdiscs is not needed in offload mode */
1753 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1754 		kfree(q->qdiscs);
1755 		q->qdiscs = NULL;
1756 	}
1757 }
1758 
1759 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1760 					     unsigned long cl)
1761 {
1762 	struct net_device *dev = qdisc_dev(sch);
1763 	unsigned long ntx = cl - 1;
1764 
1765 	if (ntx >= dev->num_tx_queues)
1766 		return NULL;
1767 
1768 	return netdev_get_tx_queue(dev, ntx);
1769 }
1770 
1771 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1772 			struct Qdisc *new, struct Qdisc **old,
1773 			struct netlink_ext_ack *extack)
1774 {
1775 	struct taprio_sched *q = qdisc_priv(sch);
1776 	struct net_device *dev = qdisc_dev(sch);
1777 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1778 
1779 	if (!dev_queue)
1780 		return -EINVAL;
1781 
1782 	if (dev->flags & IFF_UP)
1783 		dev_deactivate(dev);
1784 
1785 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1786 		*old = dev_graft_qdisc(dev_queue, new);
1787 	} else {
1788 		*old = q->qdiscs[cl - 1];
1789 		q->qdiscs[cl - 1] = new;
1790 	}
1791 
1792 	if (new)
1793 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1794 
1795 	if (dev->flags & IFF_UP)
1796 		dev_activate(dev);
1797 
1798 	return 0;
1799 }
1800 
1801 static int dump_entry(struct sk_buff *msg,
1802 		      const struct sched_entry *entry)
1803 {
1804 	struct nlattr *item;
1805 
1806 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1807 	if (!item)
1808 		return -ENOSPC;
1809 
1810 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1811 		goto nla_put_failure;
1812 
1813 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1814 		goto nla_put_failure;
1815 
1816 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1817 			entry->gate_mask))
1818 		goto nla_put_failure;
1819 
1820 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1821 			entry->interval))
1822 		goto nla_put_failure;
1823 
1824 	return nla_nest_end(msg, item);
1825 
1826 nla_put_failure:
1827 	nla_nest_cancel(msg, item);
1828 	return -1;
1829 }
1830 
1831 static int dump_schedule(struct sk_buff *msg,
1832 			 const struct sched_gate_list *root)
1833 {
1834 	struct nlattr *entry_list;
1835 	struct sched_entry *entry;
1836 
1837 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1838 			root->base_time, TCA_TAPRIO_PAD))
1839 		return -1;
1840 
1841 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1842 			root->cycle_time, TCA_TAPRIO_PAD))
1843 		return -1;
1844 
1845 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1846 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1847 		return -1;
1848 
1849 	entry_list = nla_nest_start_noflag(msg,
1850 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1851 	if (!entry_list)
1852 		goto error_nest;
1853 
1854 	list_for_each_entry(entry, &root->entries, list) {
1855 		if (dump_entry(msg, entry) < 0)
1856 			goto error_nest;
1857 	}
1858 
1859 	nla_nest_end(msg, entry_list);
1860 	return 0;
1861 
1862 error_nest:
1863 	nla_nest_cancel(msg, entry_list);
1864 	return -1;
1865 }
1866 
1867 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1868 {
1869 	struct taprio_sched *q = qdisc_priv(sch);
1870 	struct net_device *dev = qdisc_dev(sch);
1871 	struct sched_gate_list *oper, *admin;
1872 	struct tc_mqprio_qopt opt = { 0 };
1873 	struct nlattr *nest, *sched_nest;
1874 	unsigned int i;
1875 
1876 	rcu_read_lock();
1877 	oper = rcu_dereference(q->oper_sched);
1878 	admin = rcu_dereference(q->admin_sched);
1879 
1880 	opt.num_tc = netdev_get_num_tc(dev);
1881 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1882 
1883 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1884 		opt.count[i] = dev->tc_to_txq[i].count;
1885 		opt.offset[i] = dev->tc_to_txq[i].offset;
1886 	}
1887 
1888 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1889 	if (!nest)
1890 		goto start_error;
1891 
1892 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1893 		goto options_error;
1894 
1895 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1896 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1897 		goto options_error;
1898 
1899 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1900 		goto options_error;
1901 
1902 	if (q->txtime_delay &&
1903 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1904 		goto options_error;
1905 
1906 	if (oper && dump_schedule(skb, oper))
1907 		goto options_error;
1908 
1909 	if (!admin)
1910 		goto done;
1911 
1912 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1913 	if (!sched_nest)
1914 		goto options_error;
1915 
1916 	if (dump_schedule(skb, admin))
1917 		goto admin_error;
1918 
1919 	nla_nest_end(skb, sched_nest);
1920 
1921 done:
1922 	rcu_read_unlock();
1923 
1924 	return nla_nest_end(skb, nest);
1925 
1926 admin_error:
1927 	nla_nest_cancel(skb, sched_nest);
1928 
1929 options_error:
1930 	nla_nest_cancel(skb, nest);
1931 
1932 start_error:
1933 	rcu_read_unlock();
1934 	return -ENOSPC;
1935 }
1936 
1937 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1938 {
1939 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1940 
1941 	if (!dev_queue)
1942 		return NULL;
1943 
1944 	return dev_queue->qdisc_sleeping;
1945 }
1946 
1947 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1948 {
1949 	unsigned int ntx = TC_H_MIN(classid);
1950 
1951 	if (!taprio_queue_get(sch, ntx))
1952 		return 0;
1953 	return ntx;
1954 }
1955 
1956 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1957 			     struct sk_buff *skb, struct tcmsg *tcm)
1958 {
1959 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1960 
1961 	tcm->tcm_parent = TC_H_ROOT;
1962 	tcm->tcm_handle |= TC_H_MIN(cl);
1963 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1964 
1965 	return 0;
1966 }
1967 
1968 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1969 				   struct gnet_dump *d)
1970 	__releases(d->lock)
1971 	__acquires(d->lock)
1972 {
1973 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1974 
1975 	sch = dev_queue->qdisc_sleeping;
1976 	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1977 	    qdisc_qstats_copy(d, sch) < 0)
1978 		return -1;
1979 	return 0;
1980 }
1981 
1982 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1983 {
1984 	struct net_device *dev = qdisc_dev(sch);
1985 	unsigned long ntx;
1986 
1987 	if (arg->stop)
1988 		return;
1989 
1990 	arg->count = arg->skip;
1991 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1992 		if (arg->fn(sch, ntx + 1, arg) < 0) {
1993 			arg->stop = 1;
1994 			break;
1995 		}
1996 		arg->count++;
1997 	}
1998 }
1999 
2000 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2001 						struct tcmsg *tcm)
2002 {
2003 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2004 }
2005 
2006 static const struct Qdisc_class_ops taprio_class_ops = {
2007 	.graft		= taprio_graft,
2008 	.leaf		= taprio_leaf,
2009 	.find		= taprio_find,
2010 	.walk		= taprio_walk,
2011 	.dump		= taprio_dump_class,
2012 	.dump_stats	= taprio_dump_class_stats,
2013 	.select_queue	= taprio_select_queue,
2014 };
2015 
2016 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2017 	.cl_ops		= &taprio_class_ops,
2018 	.id		= "taprio",
2019 	.priv_size	= sizeof(struct taprio_sched),
2020 	.init		= taprio_init,
2021 	.change		= taprio_change,
2022 	.destroy	= taprio_destroy,
2023 	.reset		= taprio_reset,
2024 	.attach		= taprio_attach,
2025 	.peek		= taprio_peek,
2026 	.dequeue	= taprio_dequeue,
2027 	.enqueue	= taprio_enqueue,
2028 	.dump		= taprio_dump,
2029 	.owner		= THIS_MODULE,
2030 };
2031 
2032 static struct notifier_block taprio_device_notifier = {
2033 	.notifier_call = taprio_dev_notifier,
2034 };
2035 
2036 static int __init taprio_module_init(void)
2037 {
2038 	int err = register_netdevice_notifier(&taprio_device_notifier);
2039 
2040 	if (err)
2041 		return err;
2042 
2043 	return register_qdisc(&taprio_qdisc_ops);
2044 }
2045 
2046 static void __exit taprio_module_exit(void)
2047 {
2048 	unregister_qdisc(&taprio_qdisc_ops);
2049 	unregister_netdevice_notifier(&taprio_device_notifier);
2050 }
2051 
2052 module_init(taprio_module_init);
2053 module_exit(taprio_module_exit);
2054 MODULE_LICENSE("GPL");
2055