xref: /linux/net/sched/sch_taprio.c (revision 87c9c16317882dd6dbbc07e349bc3223e14f3244)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <net/netlink.h>
22 #include <net/pkt_sched.h>
23 #include <net/pkt_cls.h>
24 #include <net/sch_generic.h>
25 #include <net/sock.h>
26 #include <net/tcp.h>
27 
28 static LIST_HEAD(taprio_list);
29 static DEFINE_SPINLOCK(taprio_list_lock);
30 
31 #define TAPRIO_ALL_GATES_OPEN -1
32 
33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
35 #define TAPRIO_FLAGS_INVALID U32_MAX
36 
37 struct sched_entry {
38 	struct list_head list;
39 
40 	/* The instant that this entry "closes" and the next one
41 	 * should open, the qdisc will make some effort so that no
42 	 * packet leaves after this time.
43 	 */
44 	ktime_t close_time;
45 	ktime_t next_txtime;
46 	atomic_t budget;
47 	int index;
48 	u32 gate_mask;
49 	u32 interval;
50 	u8 command;
51 };
52 
53 struct sched_gate_list {
54 	struct rcu_head rcu;
55 	struct list_head entries;
56 	size_t num_entries;
57 	ktime_t cycle_close_time;
58 	s64 cycle_time;
59 	s64 cycle_time_extension;
60 	s64 base_time;
61 };
62 
63 struct taprio_sched {
64 	struct Qdisc **qdiscs;
65 	struct Qdisc *root;
66 	u32 flags;
67 	enum tk_offsets tk_offset;
68 	int clockid;
69 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
70 				    * speeds it's sub-nanoseconds per byte
71 				    */
72 
73 	/* Protects the update side of the RCU protected current_entry */
74 	spinlock_t current_entry_lock;
75 	struct sched_entry __rcu *current_entry;
76 	struct sched_gate_list __rcu *oper_sched;
77 	struct sched_gate_list __rcu *admin_sched;
78 	struct hrtimer advance_timer;
79 	struct list_head taprio_list;
80 	struct sk_buff *(*dequeue)(struct Qdisc *sch);
81 	struct sk_buff *(*peek)(struct Qdisc *sch);
82 	u32 txtime_delay;
83 };
84 
85 struct __tc_taprio_qopt_offload {
86 	refcount_t users;
87 	struct tc_taprio_qopt_offload offload;
88 };
89 
90 static ktime_t sched_base_time(const struct sched_gate_list *sched)
91 {
92 	if (!sched)
93 		return KTIME_MAX;
94 
95 	return ns_to_ktime(sched->base_time);
96 }
97 
98 static ktime_t taprio_get_time(struct taprio_sched *q)
99 {
100 	ktime_t mono = ktime_get();
101 
102 	switch (q->tk_offset) {
103 	case TK_OFFS_MAX:
104 		return mono;
105 	default:
106 		return ktime_mono_to_any(mono, q->tk_offset);
107 	}
108 
109 	return KTIME_MAX;
110 }
111 
112 static void taprio_free_sched_cb(struct rcu_head *head)
113 {
114 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
115 	struct sched_entry *entry, *n;
116 
117 	if (!sched)
118 		return;
119 
120 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
121 		list_del(&entry->list);
122 		kfree(entry);
123 	}
124 
125 	kfree(sched);
126 }
127 
128 static void switch_schedules(struct taprio_sched *q,
129 			     struct sched_gate_list **admin,
130 			     struct sched_gate_list **oper)
131 {
132 	rcu_assign_pointer(q->oper_sched, *admin);
133 	rcu_assign_pointer(q->admin_sched, NULL);
134 
135 	if (*oper)
136 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
137 
138 	*oper = *admin;
139 	*admin = NULL;
140 }
141 
142 /* Get how much time has been already elapsed in the current cycle. */
143 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
144 {
145 	ktime_t time_since_sched_start;
146 	s32 time_elapsed;
147 
148 	time_since_sched_start = ktime_sub(time, sched->base_time);
149 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
150 
151 	return time_elapsed;
152 }
153 
154 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
155 				     struct sched_gate_list *admin,
156 				     struct sched_entry *entry,
157 				     ktime_t intv_start)
158 {
159 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
160 	ktime_t intv_end, cycle_ext_end, cycle_end;
161 
162 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
163 	intv_end = ktime_add_ns(intv_start, entry->interval);
164 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
165 
166 	if (ktime_before(intv_end, cycle_end))
167 		return intv_end;
168 	else if (admin && admin != sched &&
169 		 ktime_after(admin->base_time, cycle_end) &&
170 		 ktime_before(admin->base_time, cycle_ext_end))
171 		return admin->base_time;
172 	else
173 		return cycle_end;
174 }
175 
176 static int length_to_duration(struct taprio_sched *q, int len)
177 {
178 	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
179 }
180 
181 /* Returns the entry corresponding to next available interval. If
182  * validate_interval is set, it only validates whether the timestamp occurs
183  * when the gate corresponding to the skb's traffic class is open.
184  */
185 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
186 						  struct Qdisc *sch,
187 						  struct sched_gate_list *sched,
188 						  struct sched_gate_list *admin,
189 						  ktime_t time,
190 						  ktime_t *interval_start,
191 						  ktime_t *interval_end,
192 						  bool validate_interval)
193 {
194 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
195 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
196 	struct sched_entry *entry = NULL, *entry_found = NULL;
197 	struct taprio_sched *q = qdisc_priv(sch);
198 	struct net_device *dev = qdisc_dev(sch);
199 	bool entry_available = false;
200 	s32 cycle_elapsed;
201 	int tc, n;
202 
203 	tc = netdev_get_prio_tc_map(dev, skb->priority);
204 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
205 
206 	*interval_start = 0;
207 	*interval_end = 0;
208 
209 	if (!sched)
210 		return NULL;
211 
212 	cycle = sched->cycle_time;
213 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
214 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
215 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
216 
217 	list_for_each_entry(entry, &sched->entries, list) {
218 		curr_intv_start = curr_intv_end;
219 		curr_intv_end = get_interval_end_time(sched, admin, entry,
220 						      curr_intv_start);
221 
222 		if (ktime_after(curr_intv_start, cycle_end))
223 			break;
224 
225 		if (!(entry->gate_mask & BIT(tc)) ||
226 		    packet_transmit_time > entry->interval)
227 			continue;
228 
229 		txtime = entry->next_txtime;
230 
231 		if (ktime_before(txtime, time) || validate_interval) {
232 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
233 			if ((ktime_before(curr_intv_start, time) &&
234 			     ktime_before(transmit_end_time, curr_intv_end)) ||
235 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
236 				entry_found = entry;
237 				*interval_start = curr_intv_start;
238 				*interval_end = curr_intv_end;
239 				break;
240 			} else if (!entry_available && !validate_interval) {
241 				/* Here, we are just trying to find out the
242 				 * first available interval in the next cycle.
243 				 */
244 				entry_available = true;
245 				entry_found = entry;
246 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
247 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
248 			}
249 		} else if (ktime_before(txtime, earliest_txtime) &&
250 			   !entry_available) {
251 			earliest_txtime = txtime;
252 			entry_found = entry;
253 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
254 			*interval_start = ktime_add(curr_intv_start, n * cycle);
255 			*interval_end = ktime_add(curr_intv_end, n * cycle);
256 		}
257 	}
258 
259 	return entry_found;
260 }
261 
262 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
263 {
264 	struct taprio_sched *q = qdisc_priv(sch);
265 	struct sched_gate_list *sched, *admin;
266 	ktime_t interval_start, interval_end;
267 	struct sched_entry *entry;
268 
269 	rcu_read_lock();
270 	sched = rcu_dereference(q->oper_sched);
271 	admin = rcu_dereference(q->admin_sched);
272 
273 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
274 				       &interval_start, &interval_end, true);
275 	rcu_read_unlock();
276 
277 	return entry;
278 }
279 
280 static bool taprio_flags_valid(u32 flags)
281 {
282 	/* Make sure no other flag bits are set. */
283 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
284 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
285 		return false;
286 	/* txtime-assist and full offload are mutually exclusive */
287 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
288 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
289 		return false;
290 	return true;
291 }
292 
293 /* This returns the tstamp value set by TCP in terms of the set clock. */
294 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
295 {
296 	unsigned int offset = skb_network_offset(skb);
297 	const struct ipv6hdr *ipv6h;
298 	const struct iphdr *iph;
299 	struct ipv6hdr _ipv6h;
300 
301 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
302 	if (!ipv6h)
303 		return 0;
304 
305 	if (ipv6h->version == 4) {
306 		iph = (struct iphdr *)ipv6h;
307 		offset += iph->ihl * 4;
308 
309 		/* special-case 6in4 tunnelling, as that is a common way to get
310 		 * v6 connectivity in the home
311 		 */
312 		if (iph->protocol == IPPROTO_IPV6) {
313 			ipv6h = skb_header_pointer(skb, offset,
314 						   sizeof(_ipv6h), &_ipv6h);
315 
316 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
317 				return 0;
318 		} else if (iph->protocol != IPPROTO_TCP) {
319 			return 0;
320 		}
321 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
322 		return 0;
323 	}
324 
325 	return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
326 }
327 
328 /* There are a few scenarios where we will have to modify the txtime from
329  * what is read from next_txtime in sched_entry. They are:
330  * 1. If txtime is in the past,
331  *    a. The gate for the traffic class is currently open and packet can be
332  *       transmitted before it closes, schedule the packet right away.
333  *    b. If the gate corresponding to the traffic class is going to open later
334  *       in the cycle, set the txtime of packet to the interval start.
335  * 2. If txtime is in the future, there are packets corresponding to the
336  *    current traffic class waiting to be transmitted. So, the following
337  *    possibilities exist:
338  *    a. We can transmit the packet before the window containing the txtime
339  *       closes.
340  *    b. The window might close before the transmission can be completed
341  *       successfully. So, schedule the packet in the next open window.
342  */
343 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
344 {
345 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
346 	struct taprio_sched *q = qdisc_priv(sch);
347 	struct sched_gate_list *sched, *admin;
348 	ktime_t minimum_time, now, txtime;
349 	int len, packet_transmit_time;
350 	struct sched_entry *entry;
351 	bool sched_changed;
352 
353 	now = taprio_get_time(q);
354 	minimum_time = ktime_add_ns(now, q->txtime_delay);
355 
356 	tcp_tstamp = get_tcp_tstamp(q, skb);
357 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
358 
359 	rcu_read_lock();
360 	admin = rcu_dereference(q->admin_sched);
361 	sched = rcu_dereference(q->oper_sched);
362 	if (admin && ktime_after(minimum_time, admin->base_time))
363 		switch_schedules(q, &admin, &sched);
364 
365 	/* Until the schedule starts, all the queues are open */
366 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
367 		txtime = minimum_time;
368 		goto done;
369 	}
370 
371 	len = qdisc_pkt_len(skb);
372 	packet_transmit_time = length_to_duration(q, len);
373 
374 	do {
375 		sched_changed = false;
376 
377 		entry = find_entry_to_transmit(skb, sch, sched, admin,
378 					       minimum_time,
379 					       &interval_start, &interval_end,
380 					       false);
381 		if (!entry) {
382 			txtime = 0;
383 			goto done;
384 		}
385 
386 		txtime = entry->next_txtime;
387 		txtime = max_t(ktime_t, txtime, minimum_time);
388 		txtime = max_t(ktime_t, txtime, interval_start);
389 
390 		if (admin && admin != sched &&
391 		    ktime_after(txtime, admin->base_time)) {
392 			sched = admin;
393 			sched_changed = true;
394 			continue;
395 		}
396 
397 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
398 		minimum_time = transmit_end_time;
399 
400 		/* Update the txtime of current entry to the next time it's
401 		 * interval starts.
402 		 */
403 		if (ktime_after(transmit_end_time, interval_end))
404 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
405 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
406 
407 	entry->next_txtime = transmit_end_time;
408 
409 done:
410 	rcu_read_unlock();
411 	return txtime;
412 }
413 
414 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
415 			      struct Qdisc *child, struct sk_buff **to_free)
416 {
417 	struct taprio_sched *q = qdisc_priv(sch);
418 
419 	if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
420 		if (!is_valid_interval(skb, sch))
421 			return qdisc_drop(skb, sch, to_free);
422 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
423 		skb->tstamp = get_packet_txtime(skb, sch);
424 		if (!skb->tstamp)
425 			return qdisc_drop(skb, sch, to_free);
426 	}
427 
428 	qdisc_qstats_backlog_inc(sch, skb);
429 	sch->q.qlen++;
430 
431 	return qdisc_enqueue(skb, child, to_free);
432 }
433 
434 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
435 			  struct sk_buff **to_free)
436 {
437 	struct taprio_sched *q = qdisc_priv(sch);
438 	struct Qdisc *child;
439 	int queue;
440 
441 	queue = skb_get_queue_mapping(skb);
442 
443 	child = q->qdiscs[queue];
444 	if (unlikely(!child))
445 		return qdisc_drop(skb, sch, to_free);
446 
447 	/* Large packets might not be transmitted when the transmission duration
448 	 * exceeds any configured interval. Therefore, segment the skb into
449 	 * smaller chunks. Skip it for the full offload case, as the driver
450 	 * and/or the hardware is expected to handle this.
451 	 */
452 	if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) {
453 		unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
454 		netdev_features_t features = netif_skb_features(skb);
455 		struct sk_buff *segs, *nskb;
456 		int ret;
457 
458 		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
459 		if (IS_ERR_OR_NULL(segs))
460 			return qdisc_drop(skb, sch, to_free);
461 
462 		skb_list_walk_safe(segs, segs, nskb) {
463 			skb_mark_not_on_list(segs);
464 			qdisc_skb_cb(segs)->pkt_len = segs->len;
465 			slen += segs->len;
466 
467 			ret = taprio_enqueue_one(segs, sch, child, to_free);
468 			if (ret != NET_XMIT_SUCCESS) {
469 				if (net_xmit_drop_count(ret))
470 					qdisc_qstats_drop(sch);
471 			} else {
472 				numsegs++;
473 			}
474 		}
475 
476 		if (numsegs > 1)
477 			qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
478 		consume_skb(skb);
479 
480 		return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
481 	}
482 
483 	return taprio_enqueue_one(skb, sch, child, to_free);
484 }
485 
486 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
487 {
488 	struct taprio_sched *q = qdisc_priv(sch);
489 	struct net_device *dev = qdisc_dev(sch);
490 	struct sched_entry *entry;
491 	struct sk_buff *skb;
492 	u32 gate_mask;
493 	int i;
494 
495 	rcu_read_lock();
496 	entry = rcu_dereference(q->current_entry);
497 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
498 	rcu_read_unlock();
499 
500 	if (!gate_mask)
501 		return NULL;
502 
503 	for (i = 0; i < dev->num_tx_queues; i++) {
504 		struct Qdisc *child = q->qdiscs[i];
505 		int prio;
506 		u8 tc;
507 
508 		if (unlikely(!child))
509 			continue;
510 
511 		skb = child->ops->peek(child);
512 		if (!skb)
513 			continue;
514 
515 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
516 			return skb;
517 
518 		prio = skb->priority;
519 		tc = netdev_get_prio_tc_map(dev, prio);
520 
521 		if (!(gate_mask & BIT(tc)))
522 			continue;
523 
524 		return skb;
525 	}
526 
527 	return NULL;
528 }
529 
530 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
531 {
532 	struct taprio_sched *q = qdisc_priv(sch);
533 	struct net_device *dev = qdisc_dev(sch);
534 	struct sk_buff *skb;
535 	int i;
536 
537 	for (i = 0; i < dev->num_tx_queues; i++) {
538 		struct Qdisc *child = q->qdiscs[i];
539 
540 		if (unlikely(!child))
541 			continue;
542 
543 		skb = child->ops->peek(child);
544 		if (!skb)
545 			continue;
546 
547 		return skb;
548 	}
549 
550 	return NULL;
551 }
552 
553 static struct sk_buff *taprio_peek(struct Qdisc *sch)
554 {
555 	struct taprio_sched *q = qdisc_priv(sch);
556 
557 	return q->peek(sch);
558 }
559 
560 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
561 {
562 	atomic_set(&entry->budget,
563 		   div64_u64((u64)entry->interval * 1000,
564 			     atomic64_read(&q->picos_per_byte)));
565 }
566 
567 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
568 {
569 	struct taprio_sched *q = qdisc_priv(sch);
570 	struct net_device *dev = qdisc_dev(sch);
571 	struct sk_buff *skb = NULL;
572 	struct sched_entry *entry;
573 	u32 gate_mask;
574 	int i;
575 
576 	rcu_read_lock();
577 	entry = rcu_dereference(q->current_entry);
578 	/* if there's no entry, it means that the schedule didn't
579 	 * start yet, so force all gates to be open, this is in
580 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
581 	 * "AdminGateSates"
582 	 */
583 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
584 
585 	if (!gate_mask)
586 		goto done;
587 
588 	for (i = 0; i < dev->num_tx_queues; i++) {
589 		struct Qdisc *child = q->qdiscs[i];
590 		ktime_t guard;
591 		int prio;
592 		int len;
593 		u8 tc;
594 
595 		if (unlikely(!child))
596 			continue;
597 
598 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
599 			skb = child->ops->dequeue(child);
600 			if (!skb)
601 				continue;
602 			goto skb_found;
603 		}
604 
605 		skb = child->ops->peek(child);
606 		if (!skb)
607 			continue;
608 
609 		prio = skb->priority;
610 		tc = netdev_get_prio_tc_map(dev, prio);
611 
612 		if (!(gate_mask & BIT(tc))) {
613 			skb = NULL;
614 			continue;
615 		}
616 
617 		len = qdisc_pkt_len(skb);
618 		guard = ktime_add_ns(taprio_get_time(q),
619 				     length_to_duration(q, len));
620 
621 		/* In the case that there's no gate entry, there's no
622 		 * guard band ...
623 		 */
624 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
625 		    ktime_after(guard, entry->close_time)) {
626 			skb = NULL;
627 			continue;
628 		}
629 
630 		/* ... and no budget. */
631 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
632 		    atomic_sub_return(len, &entry->budget) < 0) {
633 			skb = NULL;
634 			continue;
635 		}
636 
637 		skb = child->ops->dequeue(child);
638 		if (unlikely(!skb))
639 			goto done;
640 
641 skb_found:
642 		qdisc_bstats_update(sch, skb);
643 		qdisc_qstats_backlog_dec(sch, skb);
644 		sch->q.qlen--;
645 
646 		goto done;
647 	}
648 
649 done:
650 	rcu_read_unlock();
651 
652 	return skb;
653 }
654 
655 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
656 {
657 	struct taprio_sched *q = qdisc_priv(sch);
658 	struct net_device *dev = qdisc_dev(sch);
659 	struct sk_buff *skb;
660 	int i;
661 
662 	for (i = 0; i < dev->num_tx_queues; i++) {
663 		struct Qdisc *child = q->qdiscs[i];
664 
665 		if (unlikely(!child))
666 			continue;
667 
668 		skb = child->ops->dequeue(child);
669 		if (unlikely(!skb))
670 			continue;
671 
672 		qdisc_bstats_update(sch, skb);
673 		qdisc_qstats_backlog_dec(sch, skb);
674 		sch->q.qlen--;
675 
676 		return skb;
677 	}
678 
679 	return NULL;
680 }
681 
682 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
683 {
684 	struct taprio_sched *q = qdisc_priv(sch);
685 
686 	return q->dequeue(sch);
687 }
688 
689 static bool should_restart_cycle(const struct sched_gate_list *oper,
690 				 const struct sched_entry *entry)
691 {
692 	if (list_is_last(&entry->list, &oper->entries))
693 		return true;
694 
695 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
696 		return true;
697 
698 	return false;
699 }
700 
701 static bool should_change_schedules(const struct sched_gate_list *admin,
702 				    const struct sched_gate_list *oper,
703 				    ktime_t close_time)
704 {
705 	ktime_t next_base_time, extension_time;
706 
707 	if (!admin)
708 		return false;
709 
710 	next_base_time = sched_base_time(admin);
711 
712 	/* This is the simple case, the close_time would fall after
713 	 * the next schedule base_time.
714 	 */
715 	if (ktime_compare(next_base_time, close_time) <= 0)
716 		return true;
717 
718 	/* This is the cycle_time_extension case, if the close_time
719 	 * plus the amount that can be extended would fall after the
720 	 * next schedule base_time, we can extend the current schedule
721 	 * for that amount.
722 	 */
723 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
724 
725 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
726 	 * how precisely the extension should be made. So after
727 	 * conformance testing, this logic may change.
728 	 */
729 	if (ktime_compare(next_base_time, extension_time) <= 0)
730 		return true;
731 
732 	return false;
733 }
734 
735 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
736 {
737 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
738 					      advance_timer);
739 	struct sched_gate_list *oper, *admin;
740 	struct sched_entry *entry, *next;
741 	struct Qdisc *sch = q->root;
742 	ktime_t close_time;
743 
744 	spin_lock(&q->current_entry_lock);
745 	entry = rcu_dereference_protected(q->current_entry,
746 					  lockdep_is_held(&q->current_entry_lock));
747 	oper = rcu_dereference_protected(q->oper_sched,
748 					 lockdep_is_held(&q->current_entry_lock));
749 	admin = rcu_dereference_protected(q->admin_sched,
750 					  lockdep_is_held(&q->current_entry_lock));
751 
752 	if (!oper)
753 		switch_schedules(q, &admin, &oper);
754 
755 	/* This can happen in two cases: 1. this is the very first run
756 	 * of this function (i.e. we weren't running any schedule
757 	 * previously); 2. The previous schedule just ended. The first
758 	 * entry of all schedules are pre-calculated during the
759 	 * schedule initialization.
760 	 */
761 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
762 		next = list_first_entry(&oper->entries, struct sched_entry,
763 					list);
764 		close_time = next->close_time;
765 		goto first_run;
766 	}
767 
768 	if (should_restart_cycle(oper, entry)) {
769 		next = list_first_entry(&oper->entries, struct sched_entry,
770 					list);
771 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
772 						      oper->cycle_time);
773 	} else {
774 		next = list_next_entry(entry, list);
775 	}
776 
777 	close_time = ktime_add_ns(entry->close_time, next->interval);
778 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
779 
780 	if (should_change_schedules(admin, oper, close_time)) {
781 		/* Set things so the next time this runs, the new
782 		 * schedule runs.
783 		 */
784 		close_time = sched_base_time(admin);
785 		switch_schedules(q, &admin, &oper);
786 	}
787 
788 	next->close_time = close_time;
789 	taprio_set_budget(q, next);
790 
791 first_run:
792 	rcu_assign_pointer(q->current_entry, next);
793 	spin_unlock(&q->current_entry_lock);
794 
795 	hrtimer_set_expires(&q->advance_timer, close_time);
796 
797 	rcu_read_lock();
798 	__netif_schedule(sch);
799 	rcu_read_unlock();
800 
801 	return HRTIMER_RESTART;
802 }
803 
804 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
805 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
806 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
807 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
808 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
809 };
810 
811 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
812 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
813 		.len = sizeof(struct tc_mqprio_qopt)
814 	},
815 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
816 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
817 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
818 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
819 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
820 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
821 	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
822 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
823 };
824 
825 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
826 			    struct sched_entry *entry,
827 			    struct netlink_ext_ack *extack)
828 {
829 	int min_duration = length_to_duration(q, ETH_ZLEN);
830 	u32 interval = 0;
831 
832 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
833 		entry->command = nla_get_u8(
834 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
835 
836 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
837 		entry->gate_mask = nla_get_u32(
838 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
839 
840 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
841 		interval = nla_get_u32(
842 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
843 
844 	/* The interval should allow at least the minimum ethernet
845 	 * frame to go out.
846 	 */
847 	if (interval < min_duration) {
848 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
849 		return -EINVAL;
850 	}
851 
852 	entry->interval = interval;
853 
854 	return 0;
855 }
856 
857 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
858 			     struct sched_entry *entry, int index,
859 			     struct netlink_ext_ack *extack)
860 {
861 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
862 	int err;
863 
864 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
865 					  entry_policy, NULL);
866 	if (err < 0) {
867 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
868 		return -EINVAL;
869 	}
870 
871 	entry->index = index;
872 
873 	return fill_sched_entry(q, tb, entry, extack);
874 }
875 
876 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
877 			    struct sched_gate_list *sched,
878 			    struct netlink_ext_ack *extack)
879 {
880 	struct nlattr *n;
881 	int err, rem;
882 	int i = 0;
883 
884 	if (!list)
885 		return -EINVAL;
886 
887 	nla_for_each_nested(n, list, rem) {
888 		struct sched_entry *entry;
889 
890 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
891 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
892 			continue;
893 		}
894 
895 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
896 		if (!entry) {
897 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
898 			return -ENOMEM;
899 		}
900 
901 		err = parse_sched_entry(q, n, entry, i, extack);
902 		if (err < 0) {
903 			kfree(entry);
904 			return err;
905 		}
906 
907 		list_add_tail(&entry->list, &sched->entries);
908 		i++;
909 	}
910 
911 	sched->num_entries = i;
912 
913 	return i;
914 }
915 
916 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
917 				 struct sched_gate_list *new,
918 				 struct netlink_ext_ack *extack)
919 {
920 	int err = 0;
921 
922 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
923 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
924 		return -ENOTSUPP;
925 	}
926 
927 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
928 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
929 
930 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
931 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
932 
933 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
934 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
935 
936 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
937 		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
938 				       new, extack);
939 	if (err < 0)
940 		return err;
941 
942 	if (!new->cycle_time) {
943 		struct sched_entry *entry;
944 		ktime_t cycle = 0;
945 
946 		list_for_each_entry(entry, &new->entries, list)
947 			cycle = ktime_add_ns(cycle, entry->interval);
948 
949 		if (!cycle) {
950 			NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
951 			return -EINVAL;
952 		}
953 
954 		new->cycle_time = cycle;
955 	}
956 
957 	return 0;
958 }
959 
960 static int taprio_parse_mqprio_opt(struct net_device *dev,
961 				   struct tc_mqprio_qopt *qopt,
962 				   struct netlink_ext_ack *extack,
963 				   u32 taprio_flags)
964 {
965 	int i, j;
966 
967 	if (!qopt && !dev->num_tc) {
968 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
969 		return -EINVAL;
970 	}
971 
972 	/* If num_tc is already set, it means that the user already
973 	 * configured the mqprio part
974 	 */
975 	if (dev->num_tc)
976 		return 0;
977 
978 	/* Verify num_tc is not out of max range */
979 	if (qopt->num_tc > TC_MAX_QUEUE) {
980 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
981 		return -EINVAL;
982 	}
983 
984 	/* taprio imposes that traffic classes map 1:n to tx queues */
985 	if (qopt->num_tc > dev->num_tx_queues) {
986 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
987 		return -EINVAL;
988 	}
989 
990 	/* Verify priority mapping uses valid tcs */
991 	for (i = 0; i <= TC_BITMASK; i++) {
992 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
993 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
994 			return -EINVAL;
995 		}
996 	}
997 
998 	for (i = 0; i < qopt->num_tc; i++) {
999 		unsigned int last = qopt->offset[i] + qopt->count[i];
1000 
1001 		/* Verify the queue count is in tx range being equal to the
1002 		 * real_num_tx_queues indicates the last queue is in use.
1003 		 */
1004 		if (qopt->offset[i] >= dev->num_tx_queues ||
1005 		    !qopt->count[i] ||
1006 		    last > dev->real_num_tx_queues) {
1007 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
1008 			return -EINVAL;
1009 		}
1010 
1011 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
1012 			continue;
1013 
1014 		/* Verify that the offset and counts do not overlap */
1015 		for (j = i + 1; j < qopt->num_tc; j++) {
1016 			if (last > qopt->offset[j]) {
1017 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
1018 				return -EINVAL;
1019 			}
1020 		}
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 static int taprio_get_start_time(struct Qdisc *sch,
1027 				 struct sched_gate_list *sched,
1028 				 ktime_t *start)
1029 {
1030 	struct taprio_sched *q = qdisc_priv(sch);
1031 	ktime_t now, base, cycle;
1032 	s64 n;
1033 
1034 	base = sched_base_time(sched);
1035 	now = taprio_get_time(q);
1036 
1037 	if (ktime_after(base, now)) {
1038 		*start = base;
1039 		return 0;
1040 	}
1041 
1042 	cycle = sched->cycle_time;
1043 
1044 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1045 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1046 	 * something went really wrong. In that case, we should warn about this
1047 	 * inconsistent state and return error.
1048 	 */
1049 	if (WARN_ON(!cycle))
1050 		return -EFAULT;
1051 
1052 	/* Schedule the start time for the beginning of the next
1053 	 * cycle.
1054 	 */
1055 	n = div64_s64(ktime_sub_ns(now, base), cycle);
1056 	*start = ktime_add_ns(base, (n + 1) * cycle);
1057 	return 0;
1058 }
1059 
1060 static void setup_first_close_time(struct taprio_sched *q,
1061 				   struct sched_gate_list *sched, ktime_t base)
1062 {
1063 	struct sched_entry *first;
1064 	ktime_t cycle;
1065 
1066 	first = list_first_entry(&sched->entries,
1067 				 struct sched_entry, list);
1068 
1069 	cycle = sched->cycle_time;
1070 
1071 	/* FIXME: find a better place to do this */
1072 	sched->cycle_close_time = ktime_add_ns(base, cycle);
1073 
1074 	first->close_time = ktime_add_ns(base, first->interval);
1075 	taprio_set_budget(q, first);
1076 	rcu_assign_pointer(q->current_entry, NULL);
1077 }
1078 
1079 static void taprio_start_sched(struct Qdisc *sch,
1080 			       ktime_t start, struct sched_gate_list *new)
1081 {
1082 	struct taprio_sched *q = qdisc_priv(sch);
1083 	ktime_t expires;
1084 
1085 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1086 		return;
1087 
1088 	expires = hrtimer_get_expires(&q->advance_timer);
1089 	if (expires == 0)
1090 		expires = KTIME_MAX;
1091 
1092 	/* If the new schedule starts before the next expiration, we
1093 	 * reprogram it to the earliest one, so we change the admin
1094 	 * schedule to the operational one at the right time.
1095 	 */
1096 	start = min_t(ktime_t, start, expires);
1097 
1098 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1099 }
1100 
1101 static void taprio_set_picos_per_byte(struct net_device *dev,
1102 				      struct taprio_sched *q)
1103 {
1104 	struct ethtool_link_ksettings ecmd;
1105 	int speed = SPEED_10;
1106 	int picos_per_byte;
1107 	int err;
1108 
1109 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1110 	if (err < 0)
1111 		goto skip;
1112 
1113 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1114 		speed = ecmd.base.speed;
1115 
1116 skip:
1117 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1118 
1119 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1120 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1121 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1122 		   ecmd.base.speed);
1123 }
1124 
1125 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1126 			       void *ptr)
1127 {
1128 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1129 	struct net_device *qdev;
1130 	struct taprio_sched *q;
1131 	bool found = false;
1132 
1133 	ASSERT_RTNL();
1134 
1135 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1136 		return NOTIFY_DONE;
1137 
1138 	spin_lock(&taprio_list_lock);
1139 	list_for_each_entry(q, &taprio_list, taprio_list) {
1140 		qdev = qdisc_dev(q->root);
1141 		if (qdev == dev) {
1142 			found = true;
1143 			break;
1144 		}
1145 	}
1146 	spin_unlock(&taprio_list_lock);
1147 
1148 	if (found)
1149 		taprio_set_picos_per_byte(dev, q);
1150 
1151 	return NOTIFY_DONE;
1152 }
1153 
1154 static void setup_txtime(struct taprio_sched *q,
1155 			 struct sched_gate_list *sched, ktime_t base)
1156 {
1157 	struct sched_entry *entry;
1158 	u32 interval = 0;
1159 
1160 	list_for_each_entry(entry, &sched->entries, list) {
1161 		entry->next_txtime = ktime_add_ns(base, interval);
1162 		interval += entry->interval;
1163 	}
1164 }
1165 
1166 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1167 {
1168 	struct __tc_taprio_qopt_offload *__offload;
1169 
1170 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1171 			    GFP_KERNEL);
1172 	if (!__offload)
1173 		return NULL;
1174 
1175 	refcount_set(&__offload->users, 1);
1176 
1177 	return &__offload->offload;
1178 }
1179 
1180 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1181 						  *offload)
1182 {
1183 	struct __tc_taprio_qopt_offload *__offload;
1184 
1185 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1186 				 offload);
1187 
1188 	refcount_inc(&__offload->users);
1189 
1190 	return offload;
1191 }
1192 EXPORT_SYMBOL_GPL(taprio_offload_get);
1193 
1194 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1195 {
1196 	struct __tc_taprio_qopt_offload *__offload;
1197 
1198 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1199 				 offload);
1200 
1201 	if (!refcount_dec_and_test(&__offload->users))
1202 		return;
1203 
1204 	kfree(__offload);
1205 }
1206 EXPORT_SYMBOL_GPL(taprio_offload_free);
1207 
1208 /* The function will only serve to keep the pointers to the "oper" and "admin"
1209  * schedules valid in relation to their base times, so when calling dump() the
1210  * users looks at the right schedules.
1211  * When using full offload, the admin configuration is promoted to oper at the
1212  * base_time in the PHC time domain.  But because the system time is not
1213  * necessarily in sync with that, we can't just trigger a hrtimer to call
1214  * switch_schedules at the right hardware time.
1215  * At the moment we call this by hand right away from taprio, but in the future
1216  * it will be useful to create a mechanism for drivers to notify taprio of the
1217  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1218  * This is left as TODO.
1219  */
1220 static void taprio_offload_config_changed(struct taprio_sched *q)
1221 {
1222 	struct sched_gate_list *oper, *admin;
1223 
1224 	spin_lock(&q->current_entry_lock);
1225 
1226 	oper = rcu_dereference_protected(q->oper_sched,
1227 					 lockdep_is_held(&q->current_entry_lock));
1228 	admin = rcu_dereference_protected(q->admin_sched,
1229 					  lockdep_is_held(&q->current_entry_lock));
1230 
1231 	switch_schedules(q, &admin, &oper);
1232 
1233 	spin_unlock(&q->current_entry_lock);
1234 }
1235 
1236 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1237 {
1238 	u32 i, queue_mask = 0;
1239 
1240 	for (i = 0; i < dev->num_tc; i++) {
1241 		u32 offset, count;
1242 
1243 		if (!(tc_mask & BIT(i)))
1244 			continue;
1245 
1246 		offset = dev->tc_to_txq[i].offset;
1247 		count = dev->tc_to_txq[i].count;
1248 
1249 		queue_mask |= GENMASK(offset + count - 1, offset);
1250 	}
1251 
1252 	return queue_mask;
1253 }
1254 
1255 static void taprio_sched_to_offload(struct net_device *dev,
1256 				    struct sched_gate_list *sched,
1257 				    struct tc_taprio_qopt_offload *offload)
1258 {
1259 	struct sched_entry *entry;
1260 	int i = 0;
1261 
1262 	offload->base_time = sched->base_time;
1263 	offload->cycle_time = sched->cycle_time;
1264 	offload->cycle_time_extension = sched->cycle_time_extension;
1265 
1266 	list_for_each_entry(entry, &sched->entries, list) {
1267 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1268 
1269 		e->command = entry->command;
1270 		e->interval = entry->interval;
1271 		e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1272 
1273 		i++;
1274 	}
1275 
1276 	offload->num_entries = i;
1277 }
1278 
1279 static int taprio_enable_offload(struct net_device *dev,
1280 				 struct taprio_sched *q,
1281 				 struct sched_gate_list *sched,
1282 				 struct netlink_ext_ack *extack)
1283 {
1284 	const struct net_device_ops *ops = dev->netdev_ops;
1285 	struct tc_taprio_qopt_offload *offload;
1286 	int err = 0;
1287 
1288 	if (!ops->ndo_setup_tc) {
1289 		NL_SET_ERR_MSG(extack,
1290 			       "Device does not support taprio offload");
1291 		return -EOPNOTSUPP;
1292 	}
1293 
1294 	offload = taprio_offload_alloc(sched->num_entries);
1295 	if (!offload) {
1296 		NL_SET_ERR_MSG(extack,
1297 			       "Not enough memory for enabling offload mode");
1298 		return -ENOMEM;
1299 	}
1300 	offload->enable = 1;
1301 	taprio_sched_to_offload(dev, sched, offload);
1302 
1303 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1304 	if (err < 0) {
1305 		NL_SET_ERR_MSG(extack,
1306 			       "Device failed to setup taprio offload");
1307 		goto done;
1308 	}
1309 
1310 done:
1311 	taprio_offload_free(offload);
1312 
1313 	return err;
1314 }
1315 
1316 static int taprio_disable_offload(struct net_device *dev,
1317 				  struct taprio_sched *q,
1318 				  struct netlink_ext_ack *extack)
1319 {
1320 	const struct net_device_ops *ops = dev->netdev_ops;
1321 	struct tc_taprio_qopt_offload *offload;
1322 	int err;
1323 
1324 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1325 		return 0;
1326 
1327 	if (!ops->ndo_setup_tc)
1328 		return -EOPNOTSUPP;
1329 
1330 	offload = taprio_offload_alloc(0);
1331 	if (!offload) {
1332 		NL_SET_ERR_MSG(extack,
1333 			       "Not enough memory to disable offload mode");
1334 		return -ENOMEM;
1335 	}
1336 	offload->enable = 0;
1337 
1338 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1339 	if (err < 0) {
1340 		NL_SET_ERR_MSG(extack,
1341 			       "Device failed to disable offload");
1342 		goto out;
1343 	}
1344 
1345 out:
1346 	taprio_offload_free(offload);
1347 
1348 	return err;
1349 }
1350 
1351 /* If full offload is enabled, the only possible clockid is the net device's
1352  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1353  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1354  * in sync with the specified clockid via a user space daemon such as phc2sys.
1355  * For both software taprio and txtime-assist, the clockid is used for the
1356  * hrtimer that advances the schedule and hence mandatory.
1357  */
1358 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1359 				struct netlink_ext_ack *extack)
1360 {
1361 	struct taprio_sched *q = qdisc_priv(sch);
1362 	struct net_device *dev = qdisc_dev(sch);
1363 	int err = -EINVAL;
1364 
1365 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1366 		const struct ethtool_ops *ops = dev->ethtool_ops;
1367 		struct ethtool_ts_info info = {
1368 			.cmd = ETHTOOL_GET_TS_INFO,
1369 			.phc_index = -1,
1370 		};
1371 
1372 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1373 			NL_SET_ERR_MSG(extack,
1374 				       "The 'clockid' cannot be specified for full offload");
1375 			goto out;
1376 		}
1377 
1378 		if (ops && ops->get_ts_info)
1379 			err = ops->get_ts_info(dev, &info);
1380 
1381 		if (err || info.phc_index < 0) {
1382 			NL_SET_ERR_MSG(extack,
1383 				       "Device does not have a PTP clock");
1384 			err = -ENOTSUPP;
1385 			goto out;
1386 		}
1387 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1388 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1389 
1390 		/* We only support static clockids and we don't allow
1391 		 * for it to be modified after the first init.
1392 		 */
1393 		if (clockid < 0 ||
1394 		    (q->clockid != -1 && q->clockid != clockid)) {
1395 			NL_SET_ERR_MSG(extack,
1396 				       "Changing the 'clockid' of a running schedule is not supported");
1397 			err = -ENOTSUPP;
1398 			goto out;
1399 		}
1400 
1401 		switch (clockid) {
1402 		case CLOCK_REALTIME:
1403 			q->tk_offset = TK_OFFS_REAL;
1404 			break;
1405 		case CLOCK_MONOTONIC:
1406 			q->tk_offset = TK_OFFS_MAX;
1407 			break;
1408 		case CLOCK_BOOTTIME:
1409 			q->tk_offset = TK_OFFS_BOOT;
1410 			break;
1411 		case CLOCK_TAI:
1412 			q->tk_offset = TK_OFFS_TAI;
1413 			break;
1414 		default:
1415 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1416 			err = -EINVAL;
1417 			goto out;
1418 		}
1419 
1420 		q->clockid = clockid;
1421 	} else {
1422 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1423 		goto out;
1424 	}
1425 
1426 	/* Everything went ok, return success. */
1427 	err = 0;
1428 
1429 out:
1430 	return err;
1431 }
1432 
1433 static int taprio_mqprio_cmp(const struct net_device *dev,
1434 			     const struct tc_mqprio_qopt *mqprio)
1435 {
1436 	int i;
1437 
1438 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1439 		return -1;
1440 
1441 	for (i = 0; i < mqprio->num_tc; i++)
1442 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1443 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1444 			return -1;
1445 
1446 	for (i = 0; i <= TC_BITMASK; i++)
1447 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1448 			return -1;
1449 
1450 	return 0;
1451 }
1452 
1453 /* The semantics of the 'flags' argument in relation to 'change()'
1454  * requests, are interpreted following two rules (which are applied in
1455  * this order): (1) an omitted 'flags' argument is interpreted as
1456  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1457  * changed.
1458  */
1459 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1460 			    struct netlink_ext_ack *extack)
1461 {
1462 	u32 new = 0;
1463 
1464 	if (attr)
1465 		new = nla_get_u32(attr);
1466 
1467 	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1468 		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1469 		return -EOPNOTSUPP;
1470 	}
1471 
1472 	if (!taprio_flags_valid(new)) {
1473 		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1474 		return -EINVAL;
1475 	}
1476 
1477 	return new;
1478 }
1479 
1480 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1481 			 struct netlink_ext_ack *extack)
1482 {
1483 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1484 	struct sched_gate_list *oper, *admin, *new_admin;
1485 	struct taprio_sched *q = qdisc_priv(sch);
1486 	struct net_device *dev = qdisc_dev(sch);
1487 	struct tc_mqprio_qopt *mqprio = NULL;
1488 	unsigned long flags;
1489 	ktime_t start;
1490 	int i, err;
1491 
1492 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1493 					  taprio_policy, extack);
1494 	if (err < 0)
1495 		return err;
1496 
1497 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1498 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1499 
1500 	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1501 			       q->flags, extack);
1502 	if (err < 0)
1503 		return err;
1504 
1505 	q->flags = err;
1506 
1507 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1508 	if (err < 0)
1509 		return err;
1510 
1511 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1512 	if (!new_admin) {
1513 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1514 		return -ENOMEM;
1515 	}
1516 	INIT_LIST_HEAD(&new_admin->entries);
1517 
1518 	rcu_read_lock();
1519 	oper = rcu_dereference(q->oper_sched);
1520 	admin = rcu_dereference(q->admin_sched);
1521 	rcu_read_unlock();
1522 
1523 	/* no changes - no new mqprio settings */
1524 	if (!taprio_mqprio_cmp(dev, mqprio))
1525 		mqprio = NULL;
1526 
1527 	if (mqprio && (oper || admin)) {
1528 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1529 		err = -ENOTSUPP;
1530 		goto free_sched;
1531 	}
1532 
1533 	err = parse_taprio_schedule(q, tb, new_admin, extack);
1534 	if (err < 0)
1535 		goto free_sched;
1536 
1537 	if (new_admin->num_entries == 0) {
1538 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1539 		err = -EINVAL;
1540 		goto free_sched;
1541 	}
1542 
1543 	err = taprio_parse_clockid(sch, tb, extack);
1544 	if (err < 0)
1545 		goto free_sched;
1546 
1547 	taprio_set_picos_per_byte(dev, q);
1548 
1549 	if (mqprio) {
1550 		netdev_set_num_tc(dev, mqprio->num_tc);
1551 		for (i = 0; i < mqprio->num_tc; i++)
1552 			netdev_set_tc_queue(dev, i,
1553 					    mqprio->count[i],
1554 					    mqprio->offset[i]);
1555 
1556 		/* Always use supplied priority mappings */
1557 		for (i = 0; i <= TC_BITMASK; i++)
1558 			netdev_set_prio_tc_map(dev, i,
1559 					       mqprio->prio_tc_map[i]);
1560 	}
1561 
1562 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1563 		err = taprio_enable_offload(dev, q, new_admin, extack);
1564 	else
1565 		err = taprio_disable_offload(dev, q, extack);
1566 	if (err)
1567 		goto free_sched;
1568 
1569 	/* Protects against enqueue()/dequeue() */
1570 	spin_lock_bh(qdisc_lock(sch));
1571 
1572 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1573 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1574 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1575 			err = -EINVAL;
1576 			goto unlock;
1577 		}
1578 
1579 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1580 	}
1581 
1582 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1583 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1584 	    !hrtimer_active(&q->advance_timer)) {
1585 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1586 		q->advance_timer.function = advance_sched;
1587 	}
1588 
1589 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1590 		q->dequeue = taprio_dequeue_offload;
1591 		q->peek = taprio_peek_offload;
1592 	} else {
1593 		/* Be sure to always keep the function pointers
1594 		 * in a consistent state.
1595 		 */
1596 		q->dequeue = taprio_dequeue_soft;
1597 		q->peek = taprio_peek_soft;
1598 	}
1599 
1600 	err = taprio_get_start_time(sch, new_admin, &start);
1601 	if (err < 0) {
1602 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1603 		goto unlock;
1604 	}
1605 
1606 	setup_txtime(q, new_admin, start);
1607 
1608 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1609 		if (!oper) {
1610 			rcu_assign_pointer(q->oper_sched, new_admin);
1611 			err = 0;
1612 			new_admin = NULL;
1613 			goto unlock;
1614 		}
1615 
1616 		rcu_assign_pointer(q->admin_sched, new_admin);
1617 		if (admin)
1618 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1619 	} else {
1620 		setup_first_close_time(q, new_admin, start);
1621 
1622 		/* Protects against advance_sched() */
1623 		spin_lock_irqsave(&q->current_entry_lock, flags);
1624 
1625 		taprio_start_sched(sch, start, new_admin);
1626 
1627 		rcu_assign_pointer(q->admin_sched, new_admin);
1628 		if (admin)
1629 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1630 
1631 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1632 
1633 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1634 			taprio_offload_config_changed(q);
1635 	}
1636 
1637 	new_admin = NULL;
1638 	err = 0;
1639 
1640 unlock:
1641 	spin_unlock_bh(qdisc_lock(sch));
1642 
1643 free_sched:
1644 	if (new_admin)
1645 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1646 
1647 	return err;
1648 }
1649 
1650 static void taprio_reset(struct Qdisc *sch)
1651 {
1652 	struct taprio_sched *q = qdisc_priv(sch);
1653 	struct net_device *dev = qdisc_dev(sch);
1654 	int i;
1655 
1656 	hrtimer_cancel(&q->advance_timer);
1657 	if (q->qdiscs) {
1658 		for (i = 0; i < dev->num_tx_queues; i++)
1659 			if (q->qdiscs[i])
1660 				qdisc_reset(q->qdiscs[i]);
1661 	}
1662 	sch->qstats.backlog = 0;
1663 	sch->q.qlen = 0;
1664 }
1665 
1666 static void taprio_destroy(struct Qdisc *sch)
1667 {
1668 	struct taprio_sched *q = qdisc_priv(sch);
1669 	struct net_device *dev = qdisc_dev(sch);
1670 	unsigned int i;
1671 
1672 	spin_lock(&taprio_list_lock);
1673 	list_del(&q->taprio_list);
1674 	spin_unlock(&taprio_list_lock);
1675 
1676 
1677 	taprio_disable_offload(dev, q, NULL);
1678 
1679 	if (q->qdiscs) {
1680 		for (i = 0; i < dev->num_tx_queues; i++)
1681 			qdisc_put(q->qdiscs[i]);
1682 
1683 		kfree(q->qdiscs);
1684 	}
1685 	q->qdiscs = NULL;
1686 
1687 	netdev_reset_tc(dev);
1688 
1689 	if (q->oper_sched)
1690 		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1691 
1692 	if (q->admin_sched)
1693 		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1694 }
1695 
1696 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1697 		       struct netlink_ext_ack *extack)
1698 {
1699 	struct taprio_sched *q = qdisc_priv(sch);
1700 	struct net_device *dev = qdisc_dev(sch);
1701 	int i;
1702 
1703 	spin_lock_init(&q->current_entry_lock);
1704 
1705 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1706 	q->advance_timer.function = advance_sched;
1707 
1708 	q->dequeue = taprio_dequeue_soft;
1709 	q->peek = taprio_peek_soft;
1710 
1711 	q->root = sch;
1712 
1713 	/* We only support static clockids. Use an invalid value as default
1714 	 * and get the valid one on taprio_change().
1715 	 */
1716 	q->clockid = -1;
1717 	q->flags = TAPRIO_FLAGS_INVALID;
1718 
1719 	spin_lock(&taprio_list_lock);
1720 	list_add(&q->taprio_list, &taprio_list);
1721 	spin_unlock(&taprio_list_lock);
1722 
1723 	if (sch->parent != TC_H_ROOT)
1724 		return -EOPNOTSUPP;
1725 
1726 	if (!netif_is_multiqueue(dev))
1727 		return -EOPNOTSUPP;
1728 
1729 	/* pre-allocate qdisc, attachment can't fail */
1730 	q->qdiscs = kcalloc(dev->num_tx_queues,
1731 			    sizeof(q->qdiscs[0]),
1732 			    GFP_KERNEL);
1733 
1734 	if (!q->qdiscs)
1735 		return -ENOMEM;
1736 
1737 	if (!opt)
1738 		return -EINVAL;
1739 
1740 	for (i = 0; i < dev->num_tx_queues; i++) {
1741 		struct netdev_queue *dev_queue;
1742 		struct Qdisc *qdisc;
1743 
1744 		dev_queue = netdev_get_tx_queue(dev, i);
1745 		qdisc = qdisc_create_dflt(dev_queue,
1746 					  &pfifo_qdisc_ops,
1747 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1748 						    TC_H_MIN(i + 1)),
1749 					  extack);
1750 		if (!qdisc)
1751 			return -ENOMEM;
1752 
1753 		if (i < dev->real_num_tx_queues)
1754 			qdisc_hash_add(qdisc, false);
1755 
1756 		q->qdiscs[i] = qdisc;
1757 	}
1758 
1759 	return taprio_change(sch, opt, extack);
1760 }
1761 
1762 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1763 					     unsigned long cl)
1764 {
1765 	struct net_device *dev = qdisc_dev(sch);
1766 	unsigned long ntx = cl - 1;
1767 
1768 	if (ntx >= dev->num_tx_queues)
1769 		return NULL;
1770 
1771 	return netdev_get_tx_queue(dev, ntx);
1772 }
1773 
1774 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1775 			struct Qdisc *new, struct Qdisc **old,
1776 			struct netlink_ext_ack *extack)
1777 {
1778 	struct taprio_sched *q = qdisc_priv(sch);
1779 	struct net_device *dev = qdisc_dev(sch);
1780 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1781 
1782 	if (!dev_queue)
1783 		return -EINVAL;
1784 
1785 	if (dev->flags & IFF_UP)
1786 		dev_deactivate(dev);
1787 
1788 	*old = q->qdiscs[cl - 1];
1789 	q->qdiscs[cl - 1] = new;
1790 
1791 	if (new)
1792 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1793 
1794 	if (dev->flags & IFF_UP)
1795 		dev_activate(dev);
1796 
1797 	return 0;
1798 }
1799 
1800 static int dump_entry(struct sk_buff *msg,
1801 		      const struct sched_entry *entry)
1802 {
1803 	struct nlattr *item;
1804 
1805 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1806 	if (!item)
1807 		return -ENOSPC;
1808 
1809 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1810 		goto nla_put_failure;
1811 
1812 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1813 		goto nla_put_failure;
1814 
1815 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1816 			entry->gate_mask))
1817 		goto nla_put_failure;
1818 
1819 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1820 			entry->interval))
1821 		goto nla_put_failure;
1822 
1823 	return nla_nest_end(msg, item);
1824 
1825 nla_put_failure:
1826 	nla_nest_cancel(msg, item);
1827 	return -1;
1828 }
1829 
1830 static int dump_schedule(struct sk_buff *msg,
1831 			 const struct sched_gate_list *root)
1832 {
1833 	struct nlattr *entry_list;
1834 	struct sched_entry *entry;
1835 
1836 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1837 			root->base_time, TCA_TAPRIO_PAD))
1838 		return -1;
1839 
1840 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1841 			root->cycle_time, TCA_TAPRIO_PAD))
1842 		return -1;
1843 
1844 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1845 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1846 		return -1;
1847 
1848 	entry_list = nla_nest_start_noflag(msg,
1849 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1850 	if (!entry_list)
1851 		goto error_nest;
1852 
1853 	list_for_each_entry(entry, &root->entries, list) {
1854 		if (dump_entry(msg, entry) < 0)
1855 			goto error_nest;
1856 	}
1857 
1858 	nla_nest_end(msg, entry_list);
1859 	return 0;
1860 
1861 error_nest:
1862 	nla_nest_cancel(msg, entry_list);
1863 	return -1;
1864 }
1865 
1866 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1867 {
1868 	struct taprio_sched *q = qdisc_priv(sch);
1869 	struct net_device *dev = qdisc_dev(sch);
1870 	struct sched_gate_list *oper, *admin;
1871 	struct tc_mqprio_qopt opt = { 0 };
1872 	struct nlattr *nest, *sched_nest;
1873 	unsigned int i;
1874 
1875 	rcu_read_lock();
1876 	oper = rcu_dereference(q->oper_sched);
1877 	admin = rcu_dereference(q->admin_sched);
1878 
1879 	opt.num_tc = netdev_get_num_tc(dev);
1880 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1881 
1882 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1883 		opt.count[i] = dev->tc_to_txq[i].count;
1884 		opt.offset[i] = dev->tc_to_txq[i].offset;
1885 	}
1886 
1887 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1888 	if (!nest)
1889 		goto start_error;
1890 
1891 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1892 		goto options_error;
1893 
1894 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1895 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1896 		goto options_error;
1897 
1898 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1899 		goto options_error;
1900 
1901 	if (q->txtime_delay &&
1902 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1903 		goto options_error;
1904 
1905 	if (oper && dump_schedule(skb, oper))
1906 		goto options_error;
1907 
1908 	if (!admin)
1909 		goto done;
1910 
1911 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1912 	if (!sched_nest)
1913 		goto options_error;
1914 
1915 	if (dump_schedule(skb, admin))
1916 		goto admin_error;
1917 
1918 	nla_nest_end(skb, sched_nest);
1919 
1920 done:
1921 	rcu_read_unlock();
1922 
1923 	return nla_nest_end(skb, nest);
1924 
1925 admin_error:
1926 	nla_nest_cancel(skb, sched_nest);
1927 
1928 options_error:
1929 	nla_nest_cancel(skb, nest);
1930 
1931 start_error:
1932 	rcu_read_unlock();
1933 	return -ENOSPC;
1934 }
1935 
1936 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1937 {
1938 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1939 
1940 	if (!dev_queue)
1941 		return NULL;
1942 
1943 	return dev_queue->qdisc_sleeping;
1944 }
1945 
1946 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1947 {
1948 	unsigned int ntx = TC_H_MIN(classid);
1949 
1950 	if (!taprio_queue_get(sch, ntx))
1951 		return 0;
1952 	return ntx;
1953 }
1954 
1955 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1956 			     struct sk_buff *skb, struct tcmsg *tcm)
1957 {
1958 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1959 
1960 	tcm->tcm_parent = TC_H_ROOT;
1961 	tcm->tcm_handle |= TC_H_MIN(cl);
1962 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1963 
1964 	return 0;
1965 }
1966 
1967 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1968 				   struct gnet_dump *d)
1969 	__releases(d->lock)
1970 	__acquires(d->lock)
1971 {
1972 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1973 
1974 	sch = dev_queue->qdisc_sleeping;
1975 	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1976 	    qdisc_qstats_copy(d, sch) < 0)
1977 		return -1;
1978 	return 0;
1979 }
1980 
1981 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1982 {
1983 	struct net_device *dev = qdisc_dev(sch);
1984 	unsigned long ntx;
1985 
1986 	if (arg->stop)
1987 		return;
1988 
1989 	arg->count = arg->skip;
1990 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1991 		if (arg->fn(sch, ntx + 1, arg) < 0) {
1992 			arg->stop = 1;
1993 			break;
1994 		}
1995 		arg->count++;
1996 	}
1997 }
1998 
1999 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2000 						struct tcmsg *tcm)
2001 {
2002 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2003 }
2004 
2005 static const struct Qdisc_class_ops taprio_class_ops = {
2006 	.graft		= taprio_graft,
2007 	.leaf		= taprio_leaf,
2008 	.find		= taprio_find,
2009 	.walk		= taprio_walk,
2010 	.dump		= taprio_dump_class,
2011 	.dump_stats	= taprio_dump_class_stats,
2012 	.select_queue	= taprio_select_queue,
2013 };
2014 
2015 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2016 	.cl_ops		= &taprio_class_ops,
2017 	.id		= "taprio",
2018 	.priv_size	= sizeof(struct taprio_sched),
2019 	.init		= taprio_init,
2020 	.change		= taprio_change,
2021 	.destroy	= taprio_destroy,
2022 	.reset		= taprio_reset,
2023 	.peek		= taprio_peek,
2024 	.dequeue	= taprio_dequeue,
2025 	.enqueue	= taprio_enqueue,
2026 	.dump		= taprio_dump,
2027 	.owner		= THIS_MODULE,
2028 };
2029 
2030 static struct notifier_block taprio_device_notifier = {
2031 	.notifier_call = taprio_dev_notifier,
2032 };
2033 
2034 static int __init taprio_module_init(void)
2035 {
2036 	int err = register_netdevice_notifier(&taprio_device_notifier);
2037 
2038 	if (err)
2039 		return err;
2040 
2041 	return register_qdisc(&taprio_qdisc_ops);
2042 }
2043 
2044 static void __exit taprio_module_exit(void)
2045 {
2046 	unregister_qdisc(&taprio_qdisc_ops);
2047 	unregister_netdevice_notifier(&taprio_device_notifier);
2048 }
2049 
2050 module_init(taprio_module_init);
2051 module_exit(taprio_module_exit);
2052 MODULE_LICENSE("GPL");
2053