1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/ethtool.h> 10 #include <linux/types.h> 11 #include <linux/slab.h> 12 #include <linux/kernel.h> 13 #include <linux/string.h> 14 #include <linux/list.h> 15 #include <linux/errno.h> 16 #include <linux/skbuff.h> 17 #include <linux/math64.h> 18 #include <linux/module.h> 19 #include <linux/spinlock.h> 20 #include <linux/rcupdate.h> 21 #include <net/netlink.h> 22 #include <net/pkt_sched.h> 23 #include <net/pkt_cls.h> 24 #include <net/sch_generic.h> 25 #include <net/sock.h> 26 #include <net/tcp.h> 27 28 static LIST_HEAD(taprio_list); 29 static DEFINE_SPINLOCK(taprio_list_lock); 30 31 #define TAPRIO_ALL_GATES_OPEN -1 32 33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 35 #define TAPRIO_FLAGS_INVALID U32_MAX 36 37 struct sched_entry { 38 struct list_head list; 39 40 /* The instant that this entry "closes" and the next one 41 * should open, the qdisc will make some effort so that no 42 * packet leaves after this time. 43 */ 44 ktime_t close_time; 45 ktime_t next_txtime; 46 atomic_t budget; 47 int index; 48 u32 gate_mask; 49 u32 interval; 50 u8 command; 51 }; 52 53 struct sched_gate_list { 54 struct rcu_head rcu; 55 struct list_head entries; 56 size_t num_entries; 57 ktime_t cycle_close_time; 58 s64 cycle_time; 59 s64 cycle_time_extension; 60 s64 base_time; 61 }; 62 63 struct taprio_sched { 64 struct Qdisc **qdiscs; 65 struct Qdisc *root; 66 u32 flags; 67 enum tk_offsets tk_offset; 68 int clockid; 69 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 70 * speeds it's sub-nanoseconds per byte 71 */ 72 73 /* Protects the update side of the RCU protected current_entry */ 74 spinlock_t current_entry_lock; 75 struct sched_entry __rcu *current_entry; 76 struct sched_gate_list __rcu *oper_sched; 77 struct sched_gate_list __rcu *admin_sched; 78 struct hrtimer advance_timer; 79 struct list_head taprio_list; 80 struct sk_buff *(*dequeue)(struct Qdisc *sch); 81 struct sk_buff *(*peek)(struct Qdisc *sch); 82 u32 txtime_delay; 83 }; 84 85 struct __tc_taprio_qopt_offload { 86 refcount_t users; 87 struct tc_taprio_qopt_offload offload; 88 }; 89 90 static ktime_t sched_base_time(const struct sched_gate_list *sched) 91 { 92 if (!sched) 93 return KTIME_MAX; 94 95 return ns_to_ktime(sched->base_time); 96 } 97 98 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) 99 { 100 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ 101 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); 102 103 switch (tk_offset) { 104 case TK_OFFS_MAX: 105 return mono; 106 default: 107 return ktime_mono_to_any(mono, tk_offset); 108 } 109 } 110 111 static ktime_t taprio_get_time(const struct taprio_sched *q) 112 { 113 return taprio_mono_to_any(q, ktime_get()); 114 } 115 116 static void taprio_free_sched_cb(struct rcu_head *head) 117 { 118 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 119 struct sched_entry *entry, *n; 120 121 list_for_each_entry_safe(entry, n, &sched->entries, list) { 122 list_del(&entry->list); 123 kfree(entry); 124 } 125 126 kfree(sched); 127 } 128 129 static void switch_schedules(struct taprio_sched *q, 130 struct sched_gate_list **admin, 131 struct sched_gate_list **oper) 132 { 133 rcu_assign_pointer(q->oper_sched, *admin); 134 rcu_assign_pointer(q->admin_sched, NULL); 135 136 if (*oper) 137 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 138 139 *oper = *admin; 140 *admin = NULL; 141 } 142 143 /* Get how much time has been already elapsed in the current cycle. */ 144 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 145 { 146 ktime_t time_since_sched_start; 147 s32 time_elapsed; 148 149 time_since_sched_start = ktime_sub(time, sched->base_time); 150 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 151 152 return time_elapsed; 153 } 154 155 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 156 struct sched_gate_list *admin, 157 struct sched_entry *entry, 158 ktime_t intv_start) 159 { 160 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 161 ktime_t intv_end, cycle_ext_end, cycle_end; 162 163 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 164 intv_end = ktime_add_ns(intv_start, entry->interval); 165 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 166 167 if (ktime_before(intv_end, cycle_end)) 168 return intv_end; 169 else if (admin && admin != sched && 170 ktime_after(admin->base_time, cycle_end) && 171 ktime_before(admin->base_time, cycle_ext_end)) 172 return admin->base_time; 173 else 174 return cycle_end; 175 } 176 177 static int length_to_duration(struct taprio_sched *q, int len) 178 { 179 return div_u64(len * atomic64_read(&q->picos_per_byte), 1000); 180 } 181 182 /* Returns the entry corresponding to next available interval. If 183 * validate_interval is set, it only validates whether the timestamp occurs 184 * when the gate corresponding to the skb's traffic class is open. 185 */ 186 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 187 struct Qdisc *sch, 188 struct sched_gate_list *sched, 189 struct sched_gate_list *admin, 190 ktime_t time, 191 ktime_t *interval_start, 192 ktime_t *interval_end, 193 bool validate_interval) 194 { 195 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 196 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 197 struct sched_entry *entry = NULL, *entry_found = NULL; 198 struct taprio_sched *q = qdisc_priv(sch); 199 struct net_device *dev = qdisc_dev(sch); 200 bool entry_available = false; 201 s32 cycle_elapsed; 202 int tc, n; 203 204 tc = netdev_get_prio_tc_map(dev, skb->priority); 205 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 206 207 *interval_start = 0; 208 *interval_end = 0; 209 210 if (!sched) 211 return NULL; 212 213 cycle = sched->cycle_time; 214 cycle_elapsed = get_cycle_time_elapsed(sched, time); 215 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 216 cycle_end = ktime_add_ns(curr_intv_end, cycle); 217 218 list_for_each_entry(entry, &sched->entries, list) { 219 curr_intv_start = curr_intv_end; 220 curr_intv_end = get_interval_end_time(sched, admin, entry, 221 curr_intv_start); 222 223 if (ktime_after(curr_intv_start, cycle_end)) 224 break; 225 226 if (!(entry->gate_mask & BIT(tc)) || 227 packet_transmit_time > entry->interval) 228 continue; 229 230 txtime = entry->next_txtime; 231 232 if (ktime_before(txtime, time) || validate_interval) { 233 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 234 if ((ktime_before(curr_intv_start, time) && 235 ktime_before(transmit_end_time, curr_intv_end)) || 236 (ktime_after(curr_intv_start, time) && !validate_interval)) { 237 entry_found = entry; 238 *interval_start = curr_intv_start; 239 *interval_end = curr_intv_end; 240 break; 241 } else if (!entry_available && !validate_interval) { 242 /* Here, we are just trying to find out the 243 * first available interval in the next cycle. 244 */ 245 entry_available = true; 246 entry_found = entry; 247 *interval_start = ktime_add_ns(curr_intv_start, cycle); 248 *interval_end = ktime_add_ns(curr_intv_end, cycle); 249 } 250 } else if (ktime_before(txtime, earliest_txtime) && 251 !entry_available) { 252 earliest_txtime = txtime; 253 entry_found = entry; 254 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 255 *interval_start = ktime_add(curr_intv_start, n * cycle); 256 *interval_end = ktime_add(curr_intv_end, n * cycle); 257 } 258 } 259 260 return entry_found; 261 } 262 263 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 264 { 265 struct taprio_sched *q = qdisc_priv(sch); 266 struct sched_gate_list *sched, *admin; 267 ktime_t interval_start, interval_end; 268 struct sched_entry *entry; 269 270 rcu_read_lock(); 271 sched = rcu_dereference(q->oper_sched); 272 admin = rcu_dereference(q->admin_sched); 273 274 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 275 &interval_start, &interval_end, true); 276 rcu_read_unlock(); 277 278 return entry; 279 } 280 281 static bool taprio_flags_valid(u32 flags) 282 { 283 /* Make sure no other flag bits are set. */ 284 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 285 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 286 return false; 287 /* txtime-assist and full offload are mutually exclusive */ 288 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 289 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 290 return false; 291 return true; 292 } 293 294 /* This returns the tstamp value set by TCP in terms of the set clock. */ 295 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 296 { 297 unsigned int offset = skb_network_offset(skb); 298 const struct ipv6hdr *ipv6h; 299 const struct iphdr *iph; 300 struct ipv6hdr _ipv6h; 301 302 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 303 if (!ipv6h) 304 return 0; 305 306 if (ipv6h->version == 4) { 307 iph = (struct iphdr *)ipv6h; 308 offset += iph->ihl * 4; 309 310 /* special-case 6in4 tunnelling, as that is a common way to get 311 * v6 connectivity in the home 312 */ 313 if (iph->protocol == IPPROTO_IPV6) { 314 ipv6h = skb_header_pointer(skb, offset, 315 sizeof(_ipv6h), &_ipv6h); 316 317 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 318 return 0; 319 } else if (iph->protocol != IPPROTO_TCP) { 320 return 0; 321 } 322 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 323 return 0; 324 } 325 326 return taprio_mono_to_any(q, skb->skb_mstamp_ns); 327 } 328 329 /* There are a few scenarios where we will have to modify the txtime from 330 * what is read from next_txtime in sched_entry. They are: 331 * 1. If txtime is in the past, 332 * a. The gate for the traffic class is currently open and packet can be 333 * transmitted before it closes, schedule the packet right away. 334 * b. If the gate corresponding to the traffic class is going to open later 335 * in the cycle, set the txtime of packet to the interval start. 336 * 2. If txtime is in the future, there are packets corresponding to the 337 * current traffic class waiting to be transmitted. So, the following 338 * possibilities exist: 339 * a. We can transmit the packet before the window containing the txtime 340 * closes. 341 * b. The window might close before the transmission can be completed 342 * successfully. So, schedule the packet in the next open window. 343 */ 344 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 345 { 346 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 347 struct taprio_sched *q = qdisc_priv(sch); 348 struct sched_gate_list *sched, *admin; 349 ktime_t minimum_time, now, txtime; 350 int len, packet_transmit_time; 351 struct sched_entry *entry; 352 bool sched_changed; 353 354 now = taprio_get_time(q); 355 minimum_time = ktime_add_ns(now, q->txtime_delay); 356 357 tcp_tstamp = get_tcp_tstamp(q, skb); 358 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 359 360 rcu_read_lock(); 361 admin = rcu_dereference(q->admin_sched); 362 sched = rcu_dereference(q->oper_sched); 363 if (admin && ktime_after(minimum_time, admin->base_time)) 364 switch_schedules(q, &admin, &sched); 365 366 /* Until the schedule starts, all the queues are open */ 367 if (!sched || ktime_before(minimum_time, sched->base_time)) { 368 txtime = minimum_time; 369 goto done; 370 } 371 372 len = qdisc_pkt_len(skb); 373 packet_transmit_time = length_to_duration(q, len); 374 375 do { 376 sched_changed = false; 377 378 entry = find_entry_to_transmit(skb, sch, sched, admin, 379 minimum_time, 380 &interval_start, &interval_end, 381 false); 382 if (!entry) { 383 txtime = 0; 384 goto done; 385 } 386 387 txtime = entry->next_txtime; 388 txtime = max_t(ktime_t, txtime, minimum_time); 389 txtime = max_t(ktime_t, txtime, interval_start); 390 391 if (admin && admin != sched && 392 ktime_after(txtime, admin->base_time)) { 393 sched = admin; 394 sched_changed = true; 395 continue; 396 } 397 398 transmit_end_time = ktime_add(txtime, packet_transmit_time); 399 minimum_time = transmit_end_time; 400 401 /* Update the txtime of current entry to the next time it's 402 * interval starts. 403 */ 404 if (ktime_after(transmit_end_time, interval_end)) 405 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 406 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 407 408 entry->next_txtime = transmit_end_time; 409 410 done: 411 rcu_read_unlock(); 412 return txtime; 413 } 414 415 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, 416 struct Qdisc *child, struct sk_buff **to_free) 417 { 418 struct taprio_sched *q = qdisc_priv(sch); 419 420 if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) { 421 if (!is_valid_interval(skb, sch)) 422 return qdisc_drop(skb, sch, to_free); 423 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 424 skb->tstamp = get_packet_txtime(skb, sch); 425 if (!skb->tstamp) 426 return qdisc_drop(skb, sch, to_free); 427 } 428 429 qdisc_qstats_backlog_inc(sch, skb); 430 sch->q.qlen++; 431 432 return qdisc_enqueue(skb, child, to_free); 433 } 434 435 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 436 struct sk_buff **to_free) 437 { 438 struct taprio_sched *q = qdisc_priv(sch); 439 struct Qdisc *child; 440 int queue; 441 442 if (unlikely(FULL_OFFLOAD_IS_ENABLED(q->flags))) { 443 WARN_ONCE(1, "Trying to enqueue skb into the root of a taprio qdisc configured with full offload\n"); 444 return qdisc_drop(skb, sch, to_free); 445 } 446 447 queue = skb_get_queue_mapping(skb); 448 449 child = q->qdiscs[queue]; 450 if (unlikely(!child)) 451 return qdisc_drop(skb, sch, to_free); 452 453 /* Large packets might not be transmitted when the transmission duration 454 * exceeds any configured interval. Therefore, segment the skb into 455 * smaller chunks. Skip it for the full offload case, as the driver 456 * and/or the hardware is expected to handle this. 457 */ 458 if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) { 459 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); 460 netdev_features_t features = netif_skb_features(skb); 461 struct sk_buff *segs, *nskb; 462 int ret; 463 464 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 465 if (IS_ERR_OR_NULL(segs)) 466 return qdisc_drop(skb, sch, to_free); 467 468 skb_list_walk_safe(segs, segs, nskb) { 469 skb_mark_not_on_list(segs); 470 qdisc_skb_cb(segs)->pkt_len = segs->len; 471 slen += segs->len; 472 473 ret = taprio_enqueue_one(segs, sch, child, to_free); 474 if (ret != NET_XMIT_SUCCESS) { 475 if (net_xmit_drop_count(ret)) 476 qdisc_qstats_drop(sch); 477 } else { 478 numsegs++; 479 } 480 } 481 482 if (numsegs > 1) 483 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); 484 consume_skb(skb); 485 486 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 487 } 488 489 return taprio_enqueue_one(skb, sch, child, to_free); 490 } 491 492 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch) 493 { 494 struct taprio_sched *q = qdisc_priv(sch); 495 struct net_device *dev = qdisc_dev(sch); 496 struct sched_entry *entry; 497 struct sk_buff *skb; 498 u32 gate_mask; 499 int i; 500 501 rcu_read_lock(); 502 entry = rcu_dereference(q->current_entry); 503 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 504 rcu_read_unlock(); 505 506 if (!gate_mask) 507 return NULL; 508 509 for (i = 0; i < dev->num_tx_queues; i++) { 510 struct Qdisc *child = q->qdiscs[i]; 511 int prio; 512 u8 tc; 513 514 if (unlikely(!child)) 515 continue; 516 517 skb = child->ops->peek(child); 518 if (!skb) 519 continue; 520 521 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 522 return skb; 523 524 prio = skb->priority; 525 tc = netdev_get_prio_tc_map(dev, prio); 526 527 if (!(gate_mask & BIT(tc))) 528 continue; 529 530 return skb; 531 } 532 533 return NULL; 534 } 535 536 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch) 537 { 538 WARN_ONCE(1, "Trying to peek into the root of a taprio qdisc configured with full offload\n"); 539 540 return NULL; 541 } 542 543 static struct sk_buff *taprio_peek(struct Qdisc *sch) 544 { 545 struct taprio_sched *q = qdisc_priv(sch); 546 547 return q->peek(sch); 548 } 549 550 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry) 551 { 552 atomic_set(&entry->budget, 553 div64_u64((u64)entry->interval * 1000, 554 atomic64_read(&q->picos_per_byte))); 555 } 556 557 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch) 558 { 559 struct taprio_sched *q = qdisc_priv(sch); 560 struct net_device *dev = qdisc_dev(sch); 561 struct sk_buff *skb = NULL; 562 struct sched_entry *entry; 563 u32 gate_mask; 564 int i; 565 566 rcu_read_lock(); 567 entry = rcu_dereference(q->current_entry); 568 /* if there's no entry, it means that the schedule didn't 569 * start yet, so force all gates to be open, this is in 570 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 571 * "AdminGateStates" 572 */ 573 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 574 575 if (!gate_mask) 576 goto done; 577 578 for (i = 0; i < dev->num_tx_queues; i++) { 579 struct Qdisc *child = q->qdiscs[i]; 580 ktime_t guard; 581 int prio; 582 int len; 583 u8 tc; 584 585 if (unlikely(!child)) 586 continue; 587 588 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 589 skb = child->ops->dequeue(child); 590 if (!skb) 591 continue; 592 goto skb_found; 593 } 594 595 skb = child->ops->peek(child); 596 if (!skb) 597 continue; 598 599 prio = skb->priority; 600 tc = netdev_get_prio_tc_map(dev, prio); 601 602 if (!(gate_mask & BIT(tc))) { 603 skb = NULL; 604 continue; 605 } 606 607 len = qdisc_pkt_len(skb); 608 guard = ktime_add_ns(taprio_get_time(q), 609 length_to_duration(q, len)); 610 611 /* In the case that there's no gate entry, there's no 612 * guard band ... 613 */ 614 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 615 ktime_after(guard, entry->close_time)) { 616 skb = NULL; 617 continue; 618 } 619 620 /* ... and no budget. */ 621 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 622 atomic_sub_return(len, &entry->budget) < 0) { 623 skb = NULL; 624 continue; 625 } 626 627 skb = child->ops->dequeue(child); 628 if (unlikely(!skb)) 629 goto done; 630 631 skb_found: 632 qdisc_bstats_update(sch, skb); 633 qdisc_qstats_backlog_dec(sch, skb); 634 sch->q.qlen--; 635 636 goto done; 637 } 638 639 done: 640 rcu_read_unlock(); 641 642 return skb; 643 } 644 645 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch) 646 { 647 WARN_ONCE(1, "Trying to dequeue from the root of a taprio qdisc configured with full offload\n"); 648 649 return NULL; 650 } 651 652 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 653 { 654 struct taprio_sched *q = qdisc_priv(sch); 655 656 return q->dequeue(sch); 657 } 658 659 static bool should_restart_cycle(const struct sched_gate_list *oper, 660 const struct sched_entry *entry) 661 { 662 if (list_is_last(&entry->list, &oper->entries)) 663 return true; 664 665 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0) 666 return true; 667 668 return false; 669 } 670 671 static bool should_change_schedules(const struct sched_gate_list *admin, 672 const struct sched_gate_list *oper, 673 ktime_t close_time) 674 { 675 ktime_t next_base_time, extension_time; 676 677 if (!admin) 678 return false; 679 680 next_base_time = sched_base_time(admin); 681 682 /* This is the simple case, the close_time would fall after 683 * the next schedule base_time. 684 */ 685 if (ktime_compare(next_base_time, close_time) <= 0) 686 return true; 687 688 /* This is the cycle_time_extension case, if the close_time 689 * plus the amount that can be extended would fall after the 690 * next schedule base_time, we can extend the current schedule 691 * for that amount. 692 */ 693 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension); 694 695 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 696 * how precisely the extension should be made. So after 697 * conformance testing, this logic may change. 698 */ 699 if (ktime_compare(next_base_time, extension_time) <= 0) 700 return true; 701 702 return false; 703 } 704 705 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 706 { 707 struct taprio_sched *q = container_of(timer, struct taprio_sched, 708 advance_timer); 709 struct sched_gate_list *oper, *admin; 710 struct sched_entry *entry, *next; 711 struct Qdisc *sch = q->root; 712 ktime_t close_time; 713 714 spin_lock(&q->current_entry_lock); 715 entry = rcu_dereference_protected(q->current_entry, 716 lockdep_is_held(&q->current_entry_lock)); 717 oper = rcu_dereference_protected(q->oper_sched, 718 lockdep_is_held(&q->current_entry_lock)); 719 admin = rcu_dereference_protected(q->admin_sched, 720 lockdep_is_held(&q->current_entry_lock)); 721 722 if (!oper) 723 switch_schedules(q, &admin, &oper); 724 725 /* This can happen in two cases: 1. this is the very first run 726 * of this function (i.e. we weren't running any schedule 727 * previously); 2. The previous schedule just ended. The first 728 * entry of all schedules are pre-calculated during the 729 * schedule initialization. 730 */ 731 if (unlikely(!entry || entry->close_time == oper->base_time)) { 732 next = list_first_entry(&oper->entries, struct sched_entry, 733 list); 734 close_time = next->close_time; 735 goto first_run; 736 } 737 738 if (should_restart_cycle(oper, entry)) { 739 next = list_first_entry(&oper->entries, struct sched_entry, 740 list); 741 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time, 742 oper->cycle_time); 743 } else { 744 next = list_next_entry(entry, list); 745 } 746 747 close_time = ktime_add_ns(entry->close_time, next->interval); 748 close_time = min_t(ktime_t, close_time, oper->cycle_close_time); 749 750 if (should_change_schedules(admin, oper, close_time)) { 751 /* Set things so the next time this runs, the new 752 * schedule runs. 753 */ 754 close_time = sched_base_time(admin); 755 switch_schedules(q, &admin, &oper); 756 } 757 758 next->close_time = close_time; 759 taprio_set_budget(q, next); 760 761 first_run: 762 rcu_assign_pointer(q->current_entry, next); 763 spin_unlock(&q->current_entry_lock); 764 765 hrtimer_set_expires(&q->advance_timer, close_time); 766 767 rcu_read_lock(); 768 __netif_schedule(sch); 769 rcu_read_unlock(); 770 771 return HRTIMER_RESTART; 772 } 773 774 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 775 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 776 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 777 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 778 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 779 }; 780 781 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 782 [TCA_TAPRIO_ATTR_PRIOMAP] = { 783 .len = sizeof(struct tc_mqprio_qopt) 784 }, 785 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 786 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 787 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 788 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 789 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, 790 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 791 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 792 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 793 }; 794 795 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 796 struct sched_entry *entry, 797 struct netlink_ext_ack *extack) 798 { 799 int min_duration = length_to_duration(q, ETH_ZLEN); 800 u32 interval = 0; 801 802 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 803 entry->command = nla_get_u8( 804 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 805 806 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 807 entry->gate_mask = nla_get_u32( 808 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 809 810 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 811 interval = nla_get_u32( 812 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 813 814 /* The interval should allow at least the minimum ethernet 815 * frame to go out. 816 */ 817 if (interval < min_duration) { 818 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 819 return -EINVAL; 820 } 821 822 entry->interval = interval; 823 824 return 0; 825 } 826 827 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 828 struct sched_entry *entry, int index, 829 struct netlink_ext_ack *extack) 830 { 831 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 832 int err; 833 834 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 835 entry_policy, NULL); 836 if (err < 0) { 837 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 838 return -EINVAL; 839 } 840 841 entry->index = index; 842 843 return fill_sched_entry(q, tb, entry, extack); 844 } 845 846 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 847 struct sched_gate_list *sched, 848 struct netlink_ext_ack *extack) 849 { 850 struct nlattr *n; 851 int err, rem; 852 int i = 0; 853 854 if (!list) 855 return -EINVAL; 856 857 nla_for_each_nested(n, list, rem) { 858 struct sched_entry *entry; 859 860 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 861 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 862 continue; 863 } 864 865 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 866 if (!entry) { 867 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 868 return -ENOMEM; 869 } 870 871 err = parse_sched_entry(q, n, entry, i, extack); 872 if (err < 0) { 873 kfree(entry); 874 return err; 875 } 876 877 list_add_tail(&entry->list, &sched->entries); 878 i++; 879 } 880 881 sched->num_entries = i; 882 883 return i; 884 } 885 886 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 887 struct sched_gate_list *new, 888 struct netlink_ext_ack *extack) 889 { 890 int err = 0; 891 892 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 893 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 894 return -ENOTSUPP; 895 } 896 897 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 898 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 899 900 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 901 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 902 903 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 904 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 905 906 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 907 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 908 new, extack); 909 if (err < 0) 910 return err; 911 912 if (!new->cycle_time) { 913 struct sched_entry *entry; 914 ktime_t cycle = 0; 915 916 list_for_each_entry(entry, &new->entries, list) 917 cycle = ktime_add_ns(cycle, entry->interval); 918 919 if (!cycle) { 920 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0"); 921 return -EINVAL; 922 } 923 924 new->cycle_time = cycle; 925 } 926 927 return 0; 928 } 929 930 static int taprio_parse_mqprio_opt(struct net_device *dev, 931 struct tc_mqprio_qopt *qopt, 932 struct netlink_ext_ack *extack, 933 u32 taprio_flags) 934 { 935 int i, j; 936 937 if (!qopt && !dev->num_tc) { 938 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 939 return -EINVAL; 940 } 941 942 /* If num_tc is already set, it means that the user already 943 * configured the mqprio part 944 */ 945 if (dev->num_tc) 946 return 0; 947 948 /* Verify num_tc is not out of max range */ 949 if (qopt->num_tc > TC_MAX_QUEUE) { 950 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); 951 return -EINVAL; 952 } 953 954 /* taprio imposes that traffic classes map 1:n to tx queues */ 955 if (qopt->num_tc > dev->num_tx_queues) { 956 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 957 return -EINVAL; 958 } 959 960 /* Verify priority mapping uses valid tcs */ 961 for (i = 0; i <= TC_BITMASK; i++) { 962 if (qopt->prio_tc_map[i] >= qopt->num_tc) { 963 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); 964 return -EINVAL; 965 } 966 } 967 968 for (i = 0; i < qopt->num_tc; i++) { 969 unsigned int last = qopt->offset[i] + qopt->count[i]; 970 971 /* Verify the queue count is in tx range being equal to the 972 * real_num_tx_queues indicates the last queue is in use. 973 */ 974 if (qopt->offset[i] >= dev->num_tx_queues || 975 !qopt->count[i] || 976 last > dev->real_num_tx_queues) { 977 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping"); 978 return -EINVAL; 979 } 980 981 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) 982 continue; 983 984 /* Verify that the offset and counts do not overlap */ 985 for (j = i + 1; j < qopt->num_tc; j++) { 986 if (last > qopt->offset[j]) { 987 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping"); 988 return -EINVAL; 989 } 990 } 991 } 992 993 return 0; 994 } 995 996 static int taprio_get_start_time(struct Qdisc *sch, 997 struct sched_gate_list *sched, 998 ktime_t *start) 999 { 1000 struct taprio_sched *q = qdisc_priv(sch); 1001 ktime_t now, base, cycle; 1002 s64 n; 1003 1004 base = sched_base_time(sched); 1005 now = taprio_get_time(q); 1006 1007 if (ktime_after(base, now)) { 1008 *start = base; 1009 return 0; 1010 } 1011 1012 cycle = sched->cycle_time; 1013 1014 /* The qdisc is expected to have at least one sched_entry. Moreover, 1015 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 1016 * something went really wrong. In that case, we should warn about this 1017 * inconsistent state and return error. 1018 */ 1019 if (WARN_ON(!cycle)) 1020 return -EFAULT; 1021 1022 /* Schedule the start time for the beginning of the next 1023 * cycle. 1024 */ 1025 n = div64_s64(ktime_sub_ns(now, base), cycle); 1026 *start = ktime_add_ns(base, (n + 1) * cycle); 1027 return 0; 1028 } 1029 1030 static void setup_first_close_time(struct taprio_sched *q, 1031 struct sched_gate_list *sched, ktime_t base) 1032 { 1033 struct sched_entry *first; 1034 ktime_t cycle; 1035 1036 first = list_first_entry(&sched->entries, 1037 struct sched_entry, list); 1038 1039 cycle = sched->cycle_time; 1040 1041 /* FIXME: find a better place to do this */ 1042 sched->cycle_close_time = ktime_add_ns(base, cycle); 1043 1044 first->close_time = ktime_add_ns(base, first->interval); 1045 taprio_set_budget(q, first); 1046 rcu_assign_pointer(q->current_entry, NULL); 1047 } 1048 1049 static void taprio_start_sched(struct Qdisc *sch, 1050 ktime_t start, struct sched_gate_list *new) 1051 { 1052 struct taprio_sched *q = qdisc_priv(sch); 1053 ktime_t expires; 1054 1055 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1056 return; 1057 1058 expires = hrtimer_get_expires(&q->advance_timer); 1059 if (expires == 0) 1060 expires = KTIME_MAX; 1061 1062 /* If the new schedule starts before the next expiration, we 1063 * reprogram it to the earliest one, so we change the admin 1064 * schedule to the operational one at the right time. 1065 */ 1066 start = min_t(ktime_t, start, expires); 1067 1068 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1069 } 1070 1071 static void taprio_set_picos_per_byte(struct net_device *dev, 1072 struct taprio_sched *q) 1073 { 1074 struct ethtool_link_ksettings ecmd; 1075 int speed = SPEED_10; 1076 int picos_per_byte; 1077 int err; 1078 1079 err = __ethtool_get_link_ksettings(dev, &ecmd); 1080 if (err < 0) 1081 goto skip; 1082 1083 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1084 speed = ecmd.base.speed; 1085 1086 skip: 1087 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1088 1089 atomic64_set(&q->picos_per_byte, picos_per_byte); 1090 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1091 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1092 ecmd.base.speed); 1093 } 1094 1095 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1096 void *ptr) 1097 { 1098 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1099 struct net_device *qdev; 1100 struct taprio_sched *q; 1101 bool found = false; 1102 1103 ASSERT_RTNL(); 1104 1105 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1106 return NOTIFY_DONE; 1107 1108 spin_lock(&taprio_list_lock); 1109 list_for_each_entry(q, &taprio_list, taprio_list) { 1110 qdev = qdisc_dev(q->root); 1111 if (qdev == dev) { 1112 found = true; 1113 break; 1114 } 1115 } 1116 spin_unlock(&taprio_list_lock); 1117 1118 if (found) 1119 taprio_set_picos_per_byte(dev, q); 1120 1121 return NOTIFY_DONE; 1122 } 1123 1124 static void setup_txtime(struct taprio_sched *q, 1125 struct sched_gate_list *sched, ktime_t base) 1126 { 1127 struct sched_entry *entry; 1128 u32 interval = 0; 1129 1130 list_for_each_entry(entry, &sched->entries, list) { 1131 entry->next_txtime = ktime_add_ns(base, interval); 1132 interval += entry->interval; 1133 } 1134 } 1135 1136 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1137 { 1138 struct __tc_taprio_qopt_offload *__offload; 1139 1140 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1141 GFP_KERNEL); 1142 if (!__offload) 1143 return NULL; 1144 1145 refcount_set(&__offload->users, 1); 1146 1147 return &__offload->offload; 1148 } 1149 1150 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1151 *offload) 1152 { 1153 struct __tc_taprio_qopt_offload *__offload; 1154 1155 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1156 offload); 1157 1158 refcount_inc(&__offload->users); 1159 1160 return offload; 1161 } 1162 EXPORT_SYMBOL_GPL(taprio_offload_get); 1163 1164 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1165 { 1166 struct __tc_taprio_qopt_offload *__offload; 1167 1168 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1169 offload); 1170 1171 if (!refcount_dec_and_test(&__offload->users)) 1172 return; 1173 1174 kfree(__offload); 1175 } 1176 EXPORT_SYMBOL_GPL(taprio_offload_free); 1177 1178 /* The function will only serve to keep the pointers to the "oper" and "admin" 1179 * schedules valid in relation to their base times, so when calling dump() the 1180 * users looks at the right schedules. 1181 * When using full offload, the admin configuration is promoted to oper at the 1182 * base_time in the PHC time domain. But because the system time is not 1183 * necessarily in sync with that, we can't just trigger a hrtimer to call 1184 * switch_schedules at the right hardware time. 1185 * At the moment we call this by hand right away from taprio, but in the future 1186 * it will be useful to create a mechanism for drivers to notify taprio of the 1187 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1188 * This is left as TODO. 1189 */ 1190 static void taprio_offload_config_changed(struct taprio_sched *q) 1191 { 1192 struct sched_gate_list *oper, *admin; 1193 1194 spin_lock(&q->current_entry_lock); 1195 1196 oper = rcu_dereference_protected(q->oper_sched, 1197 lockdep_is_held(&q->current_entry_lock)); 1198 admin = rcu_dereference_protected(q->admin_sched, 1199 lockdep_is_held(&q->current_entry_lock)); 1200 1201 switch_schedules(q, &admin, &oper); 1202 1203 spin_unlock(&q->current_entry_lock); 1204 } 1205 1206 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1207 { 1208 u32 i, queue_mask = 0; 1209 1210 for (i = 0; i < dev->num_tc; i++) { 1211 u32 offset, count; 1212 1213 if (!(tc_mask & BIT(i))) 1214 continue; 1215 1216 offset = dev->tc_to_txq[i].offset; 1217 count = dev->tc_to_txq[i].count; 1218 1219 queue_mask |= GENMASK(offset + count - 1, offset); 1220 } 1221 1222 return queue_mask; 1223 } 1224 1225 static void taprio_sched_to_offload(struct net_device *dev, 1226 struct sched_gate_list *sched, 1227 struct tc_taprio_qopt_offload *offload) 1228 { 1229 struct sched_entry *entry; 1230 int i = 0; 1231 1232 offload->base_time = sched->base_time; 1233 offload->cycle_time = sched->cycle_time; 1234 offload->cycle_time_extension = sched->cycle_time_extension; 1235 1236 list_for_each_entry(entry, &sched->entries, list) { 1237 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1238 1239 e->command = entry->command; 1240 e->interval = entry->interval; 1241 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask); 1242 1243 i++; 1244 } 1245 1246 offload->num_entries = i; 1247 } 1248 1249 static int taprio_enable_offload(struct net_device *dev, 1250 struct taprio_sched *q, 1251 struct sched_gate_list *sched, 1252 struct netlink_ext_ack *extack) 1253 { 1254 const struct net_device_ops *ops = dev->netdev_ops; 1255 struct tc_taprio_qopt_offload *offload; 1256 int err = 0; 1257 1258 if (!ops->ndo_setup_tc) { 1259 NL_SET_ERR_MSG(extack, 1260 "Device does not support taprio offload"); 1261 return -EOPNOTSUPP; 1262 } 1263 1264 offload = taprio_offload_alloc(sched->num_entries); 1265 if (!offload) { 1266 NL_SET_ERR_MSG(extack, 1267 "Not enough memory for enabling offload mode"); 1268 return -ENOMEM; 1269 } 1270 offload->enable = 1; 1271 taprio_sched_to_offload(dev, sched, offload); 1272 1273 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1274 if (err < 0) { 1275 NL_SET_ERR_MSG(extack, 1276 "Device failed to setup taprio offload"); 1277 goto done; 1278 } 1279 1280 done: 1281 taprio_offload_free(offload); 1282 1283 return err; 1284 } 1285 1286 static int taprio_disable_offload(struct net_device *dev, 1287 struct taprio_sched *q, 1288 struct netlink_ext_ack *extack) 1289 { 1290 const struct net_device_ops *ops = dev->netdev_ops; 1291 struct tc_taprio_qopt_offload *offload; 1292 int err; 1293 1294 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) 1295 return 0; 1296 1297 if (!ops->ndo_setup_tc) 1298 return -EOPNOTSUPP; 1299 1300 offload = taprio_offload_alloc(0); 1301 if (!offload) { 1302 NL_SET_ERR_MSG(extack, 1303 "Not enough memory to disable offload mode"); 1304 return -ENOMEM; 1305 } 1306 offload->enable = 0; 1307 1308 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1309 if (err < 0) { 1310 NL_SET_ERR_MSG(extack, 1311 "Device failed to disable offload"); 1312 goto out; 1313 } 1314 1315 out: 1316 taprio_offload_free(offload); 1317 1318 return err; 1319 } 1320 1321 /* If full offload is enabled, the only possible clockid is the net device's 1322 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1323 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1324 * in sync with the specified clockid via a user space daemon such as phc2sys. 1325 * For both software taprio and txtime-assist, the clockid is used for the 1326 * hrtimer that advances the schedule and hence mandatory. 1327 */ 1328 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1329 struct netlink_ext_ack *extack) 1330 { 1331 struct taprio_sched *q = qdisc_priv(sch); 1332 struct net_device *dev = qdisc_dev(sch); 1333 int err = -EINVAL; 1334 1335 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1336 const struct ethtool_ops *ops = dev->ethtool_ops; 1337 struct ethtool_ts_info info = { 1338 .cmd = ETHTOOL_GET_TS_INFO, 1339 .phc_index = -1, 1340 }; 1341 1342 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1343 NL_SET_ERR_MSG(extack, 1344 "The 'clockid' cannot be specified for full offload"); 1345 goto out; 1346 } 1347 1348 if (ops && ops->get_ts_info) 1349 err = ops->get_ts_info(dev, &info); 1350 1351 if (err || info.phc_index < 0) { 1352 NL_SET_ERR_MSG(extack, 1353 "Device does not have a PTP clock"); 1354 err = -ENOTSUPP; 1355 goto out; 1356 } 1357 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1358 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1359 enum tk_offsets tk_offset; 1360 1361 /* We only support static clockids and we don't allow 1362 * for it to be modified after the first init. 1363 */ 1364 if (clockid < 0 || 1365 (q->clockid != -1 && q->clockid != clockid)) { 1366 NL_SET_ERR_MSG(extack, 1367 "Changing the 'clockid' of a running schedule is not supported"); 1368 err = -ENOTSUPP; 1369 goto out; 1370 } 1371 1372 switch (clockid) { 1373 case CLOCK_REALTIME: 1374 tk_offset = TK_OFFS_REAL; 1375 break; 1376 case CLOCK_MONOTONIC: 1377 tk_offset = TK_OFFS_MAX; 1378 break; 1379 case CLOCK_BOOTTIME: 1380 tk_offset = TK_OFFS_BOOT; 1381 break; 1382 case CLOCK_TAI: 1383 tk_offset = TK_OFFS_TAI; 1384 break; 1385 default: 1386 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1387 err = -EINVAL; 1388 goto out; 1389 } 1390 /* This pairs with READ_ONCE() in taprio_mono_to_any */ 1391 WRITE_ONCE(q->tk_offset, tk_offset); 1392 1393 q->clockid = clockid; 1394 } else { 1395 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1396 goto out; 1397 } 1398 1399 /* Everything went ok, return success. */ 1400 err = 0; 1401 1402 out: 1403 return err; 1404 } 1405 1406 static int taprio_mqprio_cmp(const struct net_device *dev, 1407 const struct tc_mqprio_qopt *mqprio) 1408 { 1409 int i; 1410 1411 if (!mqprio || mqprio->num_tc != dev->num_tc) 1412 return -1; 1413 1414 for (i = 0; i < mqprio->num_tc; i++) 1415 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1416 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1417 return -1; 1418 1419 for (i = 0; i <= TC_BITMASK; i++) 1420 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1421 return -1; 1422 1423 return 0; 1424 } 1425 1426 /* The semantics of the 'flags' argument in relation to 'change()' 1427 * requests, are interpreted following two rules (which are applied in 1428 * this order): (1) an omitted 'flags' argument is interpreted as 1429 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1430 * changed. 1431 */ 1432 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1433 struct netlink_ext_ack *extack) 1434 { 1435 u32 new = 0; 1436 1437 if (attr) 1438 new = nla_get_u32(attr); 1439 1440 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1441 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1442 return -EOPNOTSUPP; 1443 } 1444 1445 if (!taprio_flags_valid(new)) { 1446 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1447 return -EINVAL; 1448 } 1449 1450 return new; 1451 } 1452 1453 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1454 struct netlink_ext_ack *extack) 1455 { 1456 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1457 struct sched_gate_list *oper, *admin, *new_admin; 1458 struct taprio_sched *q = qdisc_priv(sch); 1459 struct net_device *dev = qdisc_dev(sch); 1460 struct tc_mqprio_qopt *mqprio = NULL; 1461 unsigned long flags; 1462 ktime_t start; 1463 int i, err; 1464 1465 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1466 taprio_policy, extack); 1467 if (err < 0) 1468 return err; 1469 1470 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1471 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1472 1473 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1474 q->flags, extack); 1475 if (err < 0) 1476 return err; 1477 1478 q->flags = err; 1479 1480 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1481 if (err < 0) 1482 return err; 1483 1484 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1485 if (!new_admin) { 1486 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1487 return -ENOMEM; 1488 } 1489 INIT_LIST_HEAD(&new_admin->entries); 1490 1491 rcu_read_lock(); 1492 oper = rcu_dereference(q->oper_sched); 1493 admin = rcu_dereference(q->admin_sched); 1494 rcu_read_unlock(); 1495 1496 /* no changes - no new mqprio settings */ 1497 if (!taprio_mqprio_cmp(dev, mqprio)) 1498 mqprio = NULL; 1499 1500 if (mqprio && (oper || admin)) { 1501 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1502 err = -ENOTSUPP; 1503 goto free_sched; 1504 } 1505 1506 err = parse_taprio_schedule(q, tb, new_admin, extack); 1507 if (err < 0) 1508 goto free_sched; 1509 1510 if (new_admin->num_entries == 0) { 1511 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1512 err = -EINVAL; 1513 goto free_sched; 1514 } 1515 1516 err = taprio_parse_clockid(sch, tb, extack); 1517 if (err < 0) 1518 goto free_sched; 1519 1520 taprio_set_picos_per_byte(dev, q); 1521 1522 if (mqprio) { 1523 err = netdev_set_num_tc(dev, mqprio->num_tc); 1524 if (err) 1525 goto free_sched; 1526 for (i = 0; i < mqprio->num_tc; i++) 1527 netdev_set_tc_queue(dev, i, 1528 mqprio->count[i], 1529 mqprio->offset[i]); 1530 1531 /* Always use supplied priority mappings */ 1532 for (i = 0; i <= TC_BITMASK; i++) 1533 netdev_set_prio_tc_map(dev, i, 1534 mqprio->prio_tc_map[i]); 1535 } 1536 1537 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1538 err = taprio_enable_offload(dev, q, new_admin, extack); 1539 else 1540 err = taprio_disable_offload(dev, q, extack); 1541 if (err) 1542 goto free_sched; 1543 1544 /* Protects against enqueue()/dequeue() */ 1545 spin_lock_bh(qdisc_lock(sch)); 1546 1547 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1548 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1549 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1550 err = -EINVAL; 1551 goto unlock; 1552 } 1553 1554 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1555 } 1556 1557 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1558 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1559 !hrtimer_active(&q->advance_timer)) { 1560 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1561 q->advance_timer.function = advance_sched; 1562 } 1563 1564 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1565 q->dequeue = taprio_dequeue_offload; 1566 q->peek = taprio_peek_offload; 1567 } else { 1568 /* Be sure to always keep the function pointers 1569 * in a consistent state. 1570 */ 1571 q->dequeue = taprio_dequeue_soft; 1572 q->peek = taprio_peek_soft; 1573 } 1574 1575 err = taprio_get_start_time(sch, new_admin, &start); 1576 if (err < 0) { 1577 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1578 goto unlock; 1579 } 1580 1581 setup_txtime(q, new_admin, start); 1582 1583 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1584 if (!oper) { 1585 rcu_assign_pointer(q->oper_sched, new_admin); 1586 err = 0; 1587 new_admin = NULL; 1588 goto unlock; 1589 } 1590 1591 rcu_assign_pointer(q->admin_sched, new_admin); 1592 if (admin) 1593 call_rcu(&admin->rcu, taprio_free_sched_cb); 1594 } else { 1595 setup_first_close_time(q, new_admin, start); 1596 1597 /* Protects against advance_sched() */ 1598 spin_lock_irqsave(&q->current_entry_lock, flags); 1599 1600 taprio_start_sched(sch, start, new_admin); 1601 1602 rcu_assign_pointer(q->admin_sched, new_admin); 1603 if (admin) 1604 call_rcu(&admin->rcu, taprio_free_sched_cb); 1605 1606 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1607 1608 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1609 taprio_offload_config_changed(q); 1610 } 1611 1612 new_admin = NULL; 1613 err = 0; 1614 1615 unlock: 1616 spin_unlock_bh(qdisc_lock(sch)); 1617 1618 free_sched: 1619 if (new_admin) 1620 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 1621 1622 return err; 1623 } 1624 1625 static void taprio_reset(struct Qdisc *sch) 1626 { 1627 struct taprio_sched *q = qdisc_priv(sch); 1628 struct net_device *dev = qdisc_dev(sch); 1629 int i; 1630 1631 hrtimer_cancel(&q->advance_timer); 1632 if (q->qdiscs) { 1633 for (i = 0; i < dev->num_tx_queues; i++) 1634 if (q->qdiscs[i]) 1635 qdisc_reset(q->qdiscs[i]); 1636 } 1637 sch->qstats.backlog = 0; 1638 sch->q.qlen = 0; 1639 } 1640 1641 static void taprio_destroy(struct Qdisc *sch) 1642 { 1643 struct taprio_sched *q = qdisc_priv(sch); 1644 struct net_device *dev = qdisc_dev(sch); 1645 unsigned int i; 1646 1647 spin_lock(&taprio_list_lock); 1648 list_del(&q->taprio_list); 1649 spin_unlock(&taprio_list_lock); 1650 1651 /* Note that taprio_reset() might not be called if an error 1652 * happens in qdisc_create(), after taprio_init() has been called. 1653 */ 1654 hrtimer_cancel(&q->advance_timer); 1655 1656 taprio_disable_offload(dev, q, NULL); 1657 1658 if (q->qdiscs) { 1659 for (i = 0; i < dev->num_tx_queues; i++) 1660 qdisc_put(q->qdiscs[i]); 1661 1662 kfree(q->qdiscs); 1663 } 1664 q->qdiscs = NULL; 1665 1666 netdev_reset_tc(dev); 1667 1668 if (q->oper_sched) 1669 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb); 1670 1671 if (q->admin_sched) 1672 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb); 1673 } 1674 1675 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 1676 struct netlink_ext_ack *extack) 1677 { 1678 struct taprio_sched *q = qdisc_priv(sch); 1679 struct net_device *dev = qdisc_dev(sch); 1680 int i; 1681 1682 spin_lock_init(&q->current_entry_lock); 1683 1684 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 1685 q->advance_timer.function = advance_sched; 1686 1687 q->dequeue = taprio_dequeue_soft; 1688 q->peek = taprio_peek_soft; 1689 1690 q->root = sch; 1691 1692 /* We only support static clockids. Use an invalid value as default 1693 * and get the valid one on taprio_change(). 1694 */ 1695 q->clockid = -1; 1696 q->flags = TAPRIO_FLAGS_INVALID; 1697 1698 spin_lock(&taprio_list_lock); 1699 list_add(&q->taprio_list, &taprio_list); 1700 spin_unlock(&taprio_list_lock); 1701 1702 if (sch->parent != TC_H_ROOT) 1703 return -EOPNOTSUPP; 1704 1705 if (!netif_is_multiqueue(dev)) 1706 return -EOPNOTSUPP; 1707 1708 /* pre-allocate qdisc, attachment can't fail */ 1709 q->qdiscs = kcalloc(dev->num_tx_queues, 1710 sizeof(q->qdiscs[0]), 1711 GFP_KERNEL); 1712 1713 if (!q->qdiscs) 1714 return -ENOMEM; 1715 1716 if (!opt) 1717 return -EINVAL; 1718 1719 for (i = 0; i < dev->num_tx_queues; i++) { 1720 struct netdev_queue *dev_queue; 1721 struct Qdisc *qdisc; 1722 1723 dev_queue = netdev_get_tx_queue(dev, i); 1724 qdisc = qdisc_create_dflt(dev_queue, 1725 &pfifo_qdisc_ops, 1726 TC_H_MAKE(TC_H_MAJ(sch->handle), 1727 TC_H_MIN(i + 1)), 1728 extack); 1729 if (!qdisc) 1730 return -ENOMEM; 1731 1732 if (i < dev->real_num_tx_queues) 1733 qdisc_hash_add(qdisc, false); 1734 1735 q->qdiscs[i] = qdisc; 1736 } 1737 1738 return taprio_change(sch, opt, extack); 1739 } 1740 1741 static void taprio_attach(struct Qdisc *sch) 1742 { 1743 struct taprio_sched *q = qdisc_priv(sch); 1744 struct net_device *dev = qdisc_dev(sch); 1745 unsigned int ntx; 1746 1747 /* Attach underlying qdisc */ 1748 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { 1749 struct Qdisc *qdisc = q->qdiscs[ntx]; 1750 struct Qdisc *old; 1751 1752 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1753 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1754 old = dev_graft_qdisc(qdisc->dev_queue, qdisc); 1755 } else { 1756 old = dev_graft_qdisc(qdisc->dev_queue, sch); 1757 qdisc_refcount_inc(sch); 1758 } 1759 if (old) 1760 qdisc_put(old); 1761 } 1762 1763 /* access to the child qdiscs is not needed in offload mode */ 1764 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1765 kfree(q->qdiscs); 1766 q->qdiscs = NULL; 1767 } 1768 } 1769 1770 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 1771 unsigned long cl) 1772 { 1773 struct net_device *dev = qdisc_dev(sch); 1774 unsigned long ntx = cl - 1; 1775 1776 if (ntx >= dev->num_tx_queues) 1777 return NULL; 1778 1779 return netdev_get_tx_queue(dev, ntx); 1780 } 1781 1782 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 1783 struct Qdisc *new, struct Qdisc **old, 1784 struct netlink_ext_ack *extack) 1785 { 1786 struct taprio_sched *q = qdisc_priv(sch); 1787 struct net_device *dev = qdisc_dev(sch); 1788 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1789 1790 if (!dev_queue) 1791 return -EINVAL; 1792 1793 if (dev->flags & IFF_UP) 1794 dev_deactivate(dev); 1795 1796 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1797 *old = dev_graft_qdisc(dev_queue, new); 1798 } else { 1799 *old = q->qdiscs[cl - 1]; 1800 q->qdiscs[cl - 1] = new; 1801 } 1802 1803 if (new) 1804 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1805 1806 if (dev->flags & IFF_UP) 1807 dev_activate(dev); 1808 1809 return 0; 1810 } 1811 1812 static int dump_entry(struct sk_buff *msg, 1813 const struct sched_entry *entry) 1814 { 1815 struct nlattr *item; 1816 1817 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 1818 if (!item) 1819 return -ENOSPC; 1820 1821 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 1822 goto nla_put_failure; 1823 1824 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 1825 goto nla_put_failure; 1826 1827 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 1828 entry->gate_mask)) 1829 goto nla_put_failure; 1830 1831 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 1832 entry->interval)) 1833 goto nla_put_failure; 1834 1835 return nla_nest_end(msg, item); 1836 1837 nla_put_failure: 1838 nla_nest_cancel(msg, item); 1839 return -1; 1840 } 1841 1842 static int dump_schedule(struct sk_buff *msg, 1843 const struct sched_gate_list *root) 1844 { 1845 struct nlattr *entry_list; 1846 struct sched_entry *entry; 1847 1848 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 1849 root->base_time, TCA_TAPRIO_PAD)) 1850 return -1; 1851 1852 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 1853 root->cycle_time, TCA_TAPRIO_PAD)) 1854 return -1; 1855 1856 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 1857 root->cycle_time_extension, TCA_TAPRIO_PAD)) 1858 return -1; 1859 1860 entry_list = nla_nest_start_noflag(msg, 1861 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 1862 if (!entry_list) 1863 goto error_nest; 1864 1865 list_for_each_entry(entry, &root->entries, list) { 1866 if (dump_entry(msg, entry) < 0) 1867 goto error_nest; 1868 } 1869 1870 nla_nest_end(msg, entry_list); 1871 return 0; 1872 1873 error_nest: 1874 nla_nest_cancel(msg, entry_list); 1875 return -1; 1876 } 1877 1878 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 1879 { 1880 struct taprio_sched *q = qdisc_priv(sch); 1881 struct net_device *dev = qdisc_dev(sch); 1882 struct sched_gate_list *oper, *admin; 1883 struct tc_mqprio_qopt opt = { 0 }; 1884 struct nlattr *nest, *sched_nest; 1885 unsigned int i; 1886 1887 rcu_read_lock(); 1888 oper = rcu_dereference(q->oper_sched); 1889 admin = rcu_dereference(q->admin_sched); 1890 1891 opt.num_tc = netdev_get_num_tc(dev); 1892 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map)); 1893 1894 for (i = 0; i < netdev_get_num_tc(dev); i++) { 1895 opt.count[i] = dev->tc_to_txq[i].count; 1896 opt.offset[i] = dev->tc_to_txq[i].offset; 1897 } 1898 1899 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1900 if (!nest) 1901 goto start_error; 1902 1903 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 1904 goto options_error; 1905 1906 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 1907 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 1908 goto options_error; 1909 1910 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 1911 goto options_error; 1912 1913 if (q->txtime_delay && 1914 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 1915 goto options_error; 1916 1917 if (oper && dump_schedule(skb, oper)) 1918 goto options_error; 1919 1920 if (!admin) 1921 goto done; 1922 1923 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 1924 if (!sched_nest) 1925 goto options_error; 1926 1927 if (dump_schedule(skb, admin)) 1928 goto admin_error; 1929 1930 nla_nest_end(skb, sched_nest); 1931 1932 done: 1933 rcu_read_unlock(); 1934 1935 return nla_nest_end(skb, nest); 1936 1937 admin_error: 1938 nla_nest_cancel(skb, sched_nest); 1939 1940 options_error: 1941 nla_nest_cancel(skb, nest); 1942 1943 start_error: 1944 rcu_read_unlock(); 1945 return -ENOSPC; 1946 } 1947 1948 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 1949 { 1950 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1951 1952 if (!dev_queue) 1953 return NULL; 1954 1955 return dev_queue->qdisc_sleeping; 1956 } 1957 1958 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 1959 { 1960 unsigned int ntx = TC_H_MIN(classid); 1961 1962 if (!taprio_queue_get(sch, ntx)) 1963 return 0; 1964 return ntx; 1965 } 1966 1967 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 1968 struct sk_buff *skb, struct tcmsg *tcm) 1969 { 1970 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1971 1972 tcm->tcm_parent = TC_H_ROOT; 1973 tcm->tcm_handle |= TC_H_MIN(cl); 1974 tcm->tcm_info = dev_queue->qdisc_sleeping->handle; 1975 1976 return 0; 1977 } 1978 1979 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 1980 struct gnet_dump *d) 1981 __releases(d->lock) 1982 __acquires(d->lock) 1983 { 1984 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1985 1986 sch = dev_queue->qdisc_sleeping; 1987 if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 || 1988 qdisc_qstats_copy(d, sch) < 0) 1989 return -1; 1990 return 0; 1991 } 1992 1993 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1994 { 1995 struct net_device *dev = qdisc_dev(sch); 1996 unsigned long ntx; 1997 1998 if (arg->stop) 1999 return; 2000 2001 arg->count = arg->skip; 2002 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 2003 if (arg->fn(sch, ntx + 1, arg) < 0) { 2004 arg->stop = 1; 2005 break; 2006 } 2007 arg->count++; 2008 } 2009 } 2010 2011 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 2012 struct tcmsg *tcm) 2013 { 2014 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 2015 } 2016 2017 static const struct Qdisc_class_ops taprio_class_ops = { 2018 .graft = taprio_graft, 2019 .leaf = taprio_leaf, 2020 .find = taprio_find, 2021 .walk = taprio_walk, 2022 .dump = taprio_dump_class, 2023 .dump_stats = taprio_dump_class_stats, 2024 .select_queue = taprio_select_queue, 2025 }; 2026 2027 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 2028 .cl_ops = &taprio_class_ops, 2029 .id = "taprio", 2030 .priv_size = sizeof(struct taprio_sched), 2031 .init = taprio_init, 2032 .change = taprio_change, 2033 .destroy = taprio_destroy, 2034 .reset = taprio_reset, 2035 .attach = taprio_attach, 2036 .peek = taprio_peek, 2037 .dequeue = taprio_dequeue, 2038 .enqueue = taprio_enqueue, 2039 .dump = taprio_dump, 2040 .owner = THIS_MODULE, 2041 }; 2042 2043 static struct notifier_block taprio_device_notifier = { 2044 .notifier_call = taprio_dev_notifier, 2045 }; 2046 2047 static int __init taprio_module_init(void) 2048 { 2049 int err = register_netdevice_notifier(&taprio_device_notifier); 2050 2051 if (err) 2052 return err; 2053 2054 return register_qdisc(&taprio_qdisc_ops); 2055 } 2056 2057 static void __exit taprio_module_exit(void) 2058 { 2059 unregister_qdisc(&taprio_qdisc_ops); 2060 unregister_netdevice_notifier(&taprio_device_notifier); 2061 } 2062 2063 module_init(taprio_module_init); 2064 module_exit(taprio_module_exit); 2065 MODULE_LICENSE("GPL"); 2066