1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/ethtool.h> 10 #include <linux/types.h> 11 #include <linux/slab.h> 12 #include <linux/kernel.h> 13 #include <linux/string.h> 14 #include <linux/list.h> 15 #include <linux/errno.h> 16 #include <linux/skbuff.h> 17 #include <linux/math64.h> 18 #include <linux/module.h> 19 #include <linux/spinlock.h> 20 #include <linux/rcupdate.h> 21 #include <linux/time.h> 22 #include <net/netlink.h> 23 #include <net/pkt_sched.h> 24 #include <net/pkt_cls.h> 25 #include <net/sch_generic.h> 26 #include <net/sock.h> 27 #include <net/tcp.h> 28 29 static LIST_HEAD(taprio_list); 30 static DEFINE_SPINLOCK(taprio_list_lock); 31 32 #define TAPRIO_ALL_GATES_OPEN -1 33 34 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 35 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 36 #define TAPRIO_FLAGS_INVALID U32_MAX 37 38 struct sched_entry { 39 struct list_head list; 40 41 /* The instant that this entry "closes" and the next one 42 * should open, the qdisc will make some effort so that no 43 * packet leaves after this time. 44 */ 45 ktime_t close_time; 46 ktime_t next_txtime; 47 atomic_t budget; 48 int index; 49 u32 gate_mask; 50 u32 interval; 51 u8 command; 52 }; 53 54 struct sched_gate_list { 55 struct rcu_head rcu; 56 struct list_head entries; 57 size_t num_entries; 58 ktime_t cycle_close_time; 59 s64 cycle_time; 60 s64 cycle_time_extension; 61 s64 base_time; 62 }; 63 64 struct taprio_sched { 65 struct Qdisc **qdiscs; 66 struct Qdisc *root; 67 u32 flags; 68 enum tk_offsets tk_offset; 69 int clockid; 70 bool offloaded; 71 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 72 * speeds it's sub-nanoseconds per byte 73 */ 74 75 /* Protects the update side of the RCU protected current_entry */ 76 spinlock_t current_entry_lock; 77 struct sched_entry __rcu *current_entry; 78 struct sched_gate_list __rcu *oper_sched; 79 struct sched_gate_list __rcu *admin_sched; 80 struct hrtimer advance_timer; 81 struct list_head taprio_list; 82 struct sk_buff *(*dequeue)(struct Qdisc *sch); 83 struct sk_buff *(*peek)(struct Qdisc *sch); 84 u32 txtime_delay; 85 }; 86 87 struct __tc_taprio_qopt_offload { 88 refcount_t users; 89 struct tc_taprio_qopt_offload offload; 90 }; 91 92 static ktime_t sched_base_time(const struct sched_gate_list *sched) 93 { 94 if (!sched) 95 return KTIME_MAX; 96 97 return ns_to_ktime(sched->base_time); 98 } 99 100 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) 101 { 102 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ 103 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); 104 105 switch (tk_offset) { 106 case TK_OFFS_MAX: 107 return mono; 108 default: 109 return ktime_mono_to_any(mono, tk_offset); 110 } 111 } 112 113 static ktime_t taprio_get_time(const struct taprio_sched *q) 114 { 115 return taprio_mono_to_any(q, ktime_get()); 116 } 117 118 static void taprio_free_sched_cb(struct rcu_head *head) 119 { 120 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 121 struct sched_entry *entry, *n; 122 123 list_for_each_entry_safe(entry, n, &sched->entries, list) { 124 list_del(&entry->list); 125 kfree(entry); 126 } 127 128 kfree(sched); 129 } 130 131 static void switch_schedules(struct taprio_sched *q, 132 struct sched_gate_list **admin, 133 struct sched_gate_list **oper) 134 { 135 rcu_assign_pointer(q->oper_sched, *admin); 136 rcu_assign_pointer(q->admin_sched, NULL); 137 138 if (*oper) 139 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 140 141 *oper = *admin; 142 *admin = NULL; 143 } 144 145 /* Get how much time has been already elapsed in the current cycle. */ 146 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 147 { 148 ktime_t time_since_sched_start; 149 s32 time_elapsed; 150 151 time_since_sched_start = ktime_sub(time, sched->base_time); 152 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 153 154 return time_elapsed; 155 } 156 157 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 158 struct sched_gate_list *admin, 159 struct sched_entry *entry, 160 ktime_t intv_start) 161 { 162 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 163 ktime_t intv_end, cycle_ext_end, cycle_end; 164 165 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 166 intv_end = ktime_add_ns(intv_start, entry->interval); 167 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 168 169 if (ktime_before(intv_end, cycle_end)) 170 return intv_end; 171 else if (admin && admin != sched && 172 ktime_after(admin->base_time, cycle_end) && 173 ktime_before(admin->base_time, cycle_ext_end)) 174 return admin->base_time; 175 else 176 return cycle_end; 177 } 178 179 static int length_to_duration(struct taprio_sched *q, int len) 180 { 181 return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC); 182 } 183 184 /* Returns the entry corresponding to next available interval. If 185 * validate_interval is set, it only validates whether the timestamp occurs 186 * when the gate corresponding to the skb's traffic class is open. 187 */ 188 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 189 struct Qdisc *sch, 190 struct sched_gate_list *sched, 191 struct sched_gate_list *admin, 192 ktime_t time, 193 ktime_t *interval_start, 194 ktime_t *interval_end, 195 bool validate_interval) 196 { 197 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 198 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 199 struct sched_entry *entry = NULL, *entry_found = NULL; 200 struct taprio_sched *q = qdisc_priv(sch); 201 struct net_device *dev = qdisc_dev(sch); 202 bool entry_available = false; 203 s32 cycle_elapsed; 204 int tc, n; 205 206 tc = netdev_get_prio_tc_map(dev, skb->priority); 207 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 208 209 *interval_start = 0; 210 *interval_end = 0; 211 212 if (!sched) 213 return NULL; 214 215 cycle = sched->cycle_time; 216 cycle_elapsed = get_cycle_time_elapsed(sched, time); 217 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 218 cycle_end = ktime_add_ns(curr_intv_end, cycle); 219 220 list_for_each_entry(entry, &sched->entries, list) { 221 curr_intv_start = curr_intv_end; 222 curr_intv_end = get_interval_end_time(sched, admin, entry, 223 curr_intv_start); 224 225 if (ktime_after(curr_intv_start, cycle_end)) 226 break; 227 228 if (!(entry->gate_mask & BIT(tc)) || 229 packet_transmit_time > entry->interval) 230 continue; 231 232 txtime = entry->next_txtime; 233 234 if (ktime_before(txtime, time) || validate_interval) { 235 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 236 if ((ktime_before(curr_intv_start, time) && 237 ktime_before(transmit_end_time, curr_intv_end)) || 238 (ktime_after(curr_intv_start, time) && !validate_interval)) { 239 entry_found = entry; 240 *interval_start = curr_intv_start; 241 *interval_end = curr_intv_end; 242 break; 243 } else if (!entry_available && !validate_interval) { 244 /* Here, we are just trying to find out the 245 * first available interval in the next cycle. 246 */ 247 entry_available = true; 248 entry_found = entry; 249 *interval_start = ktime_add_ns(curr_intv_start, cycle); 250 *interval_end = ktime_add_ns(curr_intv_end, cycle); 251 } 252 } else if (ktime_before(txtime, earliest_txtime) && 253 !entry_available) { 254 earliest_txtime = txtime; 255 entry_found = entry; 256 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 257 *interval_start = ktime_add(curr_intv_start, n * cycle); 258 *interval_end = ktime_add(curr_intv_end, n * cycle); 259 } 260 } 261 262 return entry_found; 263 } 264 265 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 266 { 267 struct taprio_sched *q = qdisc_priv(sch); 268 struct sched_gate_list *sched, *admin; 269 ktime_t interval_start, interval_end; 270 struct sched_entry *entry; 271 272 rcu_read_lock(); 273 sched = rcu_dereference(q->oper_sched); 274 admin = rcu_dereference(q->admin_sched); 275 276 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 277 &interval_start, &interval_end, true); 278 rcu_read_unlock(); 279 280 return entry; 281 } 282 283 static bool taprio_flags_valid(u32 flags) 284 { 285 /* Make sure no other flag bits are set. */ 286 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 287 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 288 return false; 289 /* txtime-assist and full offload are mutually exclusive */ 290 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 291 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 292 return false; 293 return true; 294 } 295 296 /* This returns the tstamp value set by TCP in terms of the set clock. */ 297 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 298 { 299 unsigned int offset = skb_network_offset(skb); 300 const struct ipv6hdr *ipv6h; 301 const struct iphdr *iph; 302 struct ipv6hdr _ipv6h; 303 304 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 305 if (!ipv6h) 306 return 0; 307 308 if (ipv6h->version == 4) { 309 iph = (struct iphdr *)ipv6h; 310 offset += iph->ihl * 4; 311 312 /* special-case 6in4 tunnelling, as that is a common way to get 313 * v6 connectivity in the home 314 */ 315 if (iph->protocol == IPPROTO_IPV6) { 316 ipv6h = skb_header_pointer(skb, offset, 317 sizeof(_ipv6h), &_ipv6h); 318 319 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 320 return 0; 321 } else if (iph->protocol != IPPROTO_TCP) { 322 return 0; 323 } 324 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 325 return 0; 326 } 327 328 return taprio_mono_to_any(q, skb->skb_mstamp_ns); 329 } 330 331 /* There are a few scenarios where we will have to modify the txtime from 332 * what is read from next_txtime in sched_entry. They are: 333 * 1. If txtime is in the past, 334 * a. The gate for the traffic class is currently open and packet can be 335 * transmitted before it closes, schedule the packet right away. 336 * b. If the gate corresponding to the traffic class is going to open later 337 * in the cycle, set the txtime of packet to the interval start. 338 * 2. If txtime is in the future, there are packets corresponding to the 339 * current traffic class waiting to be transmitted. So, the following 340 * possibilities exist: 341 * a. We can transmit the packet before the window containing the txtime 342 * closes. 343 * b. The window might close before the transmission can be completed 344 * successfully. So, schedule the packet in the next open window. 345 */ 346 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 347 { 348 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 349 struct taprio_sched *q = qdisc_priv(sch); 350 struct sched_gate_list *sched, *admin; 351 ktime_t minimum_time, now, txtime; 352 int len, packet_transmit_time; 353 struct sched_entry *entry; 354 bool sched_changed; 355 356 now = taprio_get_time(q); 357 minimum_time = ktime_add_ns(now, q->txtime_delay); 358 359 tcp_tstamp = get_tcp_tstamp(q, skb); 360 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 361 362 rcu_read_lock(); 363 admin = rcu_dereference(q->admin_sched); 364 sched = rcu_dereference(q->oper_sched); 365 if (admin && ktime_after(minimum_time, admin->base_time)) 366 switch_schedules(q, &admin, &sched); 367 368 /* Until the schedule starts, all the queues are open */ 369 if (!sched || ktime_before(minimum_time, sched->base_time)) { 370 txtime = minimum_time; 371 goto done; 372 } 373 374 len = qdisc_pkt_len(skb); 375 packet_transmit_time = length_to_duration(q, len); 376 377 do { 378 sched_changed = false; 379 380 entry = find_entry_to_transmit(skb, sch, sched, admin, 381 minimum_time, 382 &interval_start, &interval_end, 383 false); 384 if (!entry) { 385 txtime = 0; 386 goto done; 387 } 388 389 txtime = entry->next_txtime; 390 txtime = max_t(ktime_t, txtime, minimum_time); 391 txtime = max_t(ktime_t, txtime, interval_start); 392 393 if (admin && admin != sched && 394 ktime_after(txtime, admin->base_time)) { 395 sched = admin; 396 sched_changed = true; 397 continue; 398 } 399 400 transmit_end_time = ktime_add(txtime, packet_transmit_time); 401 minimum_time = transmit_end_time; 402 403 /* Update the txtime of current entry to the next time it's 404 * interval starts. 405 */ 406 if (ktime_after(transmit_end_time, interval_end)) 407 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 408 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 409 410 entry->next_txtime = transmit_end_time; 411 412 done: 413 rcu_read_unlock(); 414 return txtime; 415 } 416 417 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, 418 struct Qdisc *child, struct sk_buff **to_free) 419 { 420 struct taprio_sched *q = qdisc_priv(sch); 421 422 /* sk_flags are only safe to use on full sockets. */ 423 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { 424 if (!is_valid_interval(skb, sch)) 425 return qdisc_drop(skb, sch, to_free); 426 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 427 skb->tstamp = get_packet_txtime(skb, sch); 428 if (!skb->tstamp) 429 return qdisc_drop(skb, sch, to_free); 430 } 431 432 qdisc_qstats_backlog_inc(sch, skb); 433 sch->q.qlen++; 434 435 return qdisc_enqueue(skb, child, to_free); 436 } 437 438 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 439 struct sk_buff **to_free) 440 { 441 struct taprio_sched *q = qdisc_priv(sch); 442 struct Qdisc *child; 443 int queue; 444 445 if (unlikely(FULL_OFFLOAD_IS_ENABLED(q->flags))) { 446 WARN_ONCE(1, "Trying to enqueue skb into the root of a taprio qdisc configured with full offload\n"); 447 return qdisc_drop(skb, sch, to_free); 448 } 449 450 queue = skb_get_queue_mapping(skb); 451 452 child = q->qdiscs[queue]; 453 if (unlikely(!child)) 454 return qdisc_drop(skb, sch, to_free); 455 456 /* Large packets might not be transmitted when the transmission duration 457 * exceeds any configured interval. Therefore, segment the skb into 458 * smaller chunks. Skip it for the full offload case, as the driver 459 * and/or the hardware is expected to handle this. 460 */ 461 if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) { 462 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); 463 netdev_features_t features = netif_skb_features(skb); 464 struct sk_buff *segs, *nskb; 465 int ret; 466 467 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 468 if (IS_ERR_OR_NULL(segs)) 469 return qdisc_drop(skb, sch, to_free); 470 471 skb_list_walk_safe(segs, segs, nskb) { 472 skb_mark_not_on_list(segs); 473 qdisc_skb_cb(segs)->pkt_len = segs->len; 474 slen += segs->len; 475 476 ret = taprio_enqueue_one(segs, sch, child, to_free); 477 if (ret != NET_XMIT_SUCCESS) { 478 if (net_xmit_drop_count(ret)) 479 qdisc_qstats_drop(sch); 480 } else { 481 numsegs++; 482 } 483 } 484 485 if (numsegs > 1) 486 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); 487 consume_skb(skb); 488 489 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 490 } 491 492 return taprio_enqueue_one(skb, sch, child, to_free); 493 } 494 495 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch) 496 { 497 struct taprio_sched *q = qdisc_priv(sch); 498 struct net_device *dev = qdisc_dev(sch); 499 struct sched_entry *entry; 500 struct sk_buff *skb; 501 u32 gate_mask; 502 int i; 503 504 rcu_read_lock(); 505 entry = rcu_dereference(q->current_entry); 506 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 507 rcu_read_unlock(); 508 509 if (!gate_mask) 510 return NULL; 511 512 for (i = 0; i < dev->num_tx_queues; i++) { 513 struct Qdisc *child = q->qdiscs[i]; 514 int prio; 515 u8 tc; 516 517 if (unlikely(!child)) 518 continue; 519 520 skb = child->ops->peek(child); 521 if (!skb) 522 continue; 523 524 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 525 return skb; 526 527 prio = skb->priority; 528 tc = netdev_get_prio_tc_map(dev, prio); 529 530 if (!(gate_mask & BIT(tc))) 531 continue; 532 533 return skb; 534 } 535 536 return NULL; 537 } 538 539 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch) 540 { 541 WARN_ONCE(1, "Trying to peek into the root of a taprio qdisc configured with full offload\n"); 542 543 return NULL; 544 } 545 546 static struct sk_buff *taprio_peek(struct Qdisc *sch) 547 { 548 struct taprio_sched *q = qdisc_priv(sch); 549 550 return q->peek(sch); 551 } 552 553 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry) 554 { 555 atomic_set(&entry->budget, 556 div64_u64((u64)entry->interval * PSEC_PER_NSEC, 557 atomic64_read(&q->picos_per_byte))); 558 } 559 560 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch) 561 { 562 struct taprio_sched *q = qdisc_priv(sch); 563 struct net_device *dev = qdisc_dev(sch); 564 struct sk_buff *skb = NULL; 565 struct sched_entry *entry; 566 u32 gate_mask; 567 int i; 568 569 rcu_read_lock(); 570 entry = rcu_dereference(q->current_entry); 571 /* if there's no entry, it means that the schedule didn't 572 * start yet, so force all gates to be open, this is in 573 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 574 * "AdminGateStates" 575 */ 576 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 577 578 if (!gate_mask) 579 goto done; 580 581 for (i = 0; i < dev->num_tx_queues; i++) { 582 struct Qdisc *child = q->qdiscs[i]; 583 ktime_t guard; 584 int prio; 585 int len; 586 u8 tc; 587 588 if (unlikely(!child)) 589 continue; 590 591 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 592 skb = child->ops->dequeue(child); 593 if (!skb) 594 continue; 595 goto skb_found; 596 } 597 598 skb = child->ops->peek(child); 599 if (!skb) 600 continue; 601 602 prio = skb->priority; 603 tc = netdev_get_prio_tc_map(dev, prio); 604 605 if (!(gate_mask & BIT(tc))) { 606 skb = NULL; 607 continue; 608 } 609 610 len = qdisc_pkt_len(skb); 611 guard = ktime_add_ns(taprio_get_time(q), 612 length_to_duration(q, len)); 613 614 /* In the case that there's no gate entry, there's no 615 * guard band ... 616 */ 617 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 618 ktime_after(guard, entry->close_time)) { 619 skb = NULL; 620 continue; 621 } 622 623 /* ... and no budget. */ 624 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 625 atomic_sub_return(len, &entry->budget) < 0) { 626 skb = NULL; 627 continue; 628 } 629 630 skb = child->ops->dequeue(child); 631 if (unlikely(!skb)) 632 goto done; 633 634 skb_found: 635 qdisc_bstats_update(sch, skb); 636 qdisc_qstats_backlog_dec(sch, skb); 637 sch->q.qlen--; 638 639 goto done; 640 } 641 642 done: 643 rcu_read_unlock(); 644 645 return skb; 646 } 647 648 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch) 649 { 650 WARN_ONCE(1, "Trying to dequeue from the root of a taprio qdisc configured with full offload\n"); 651 652 return NULL; 653 } 654 655 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 656 { 657 struct taprio_sched *q = qdisc_priv(sch); 658 659 return q->dequeue(sch); 660 } 661 662 static bool should_restart_cycle(const struct sched_gate_list *oper, 663 const struct sched_entry *entry) 664 { 665 if (list_is_last(&entry->list, &oper->entries)) 666 return true; 667 668 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0) 669 return true; 670 671 return false; 672 } 673 674 static bool should_change_schedules(const struct sched_gate_list *admin, 675 const struct sched_gate_list *oper, 676 ktime_t close_time) 677 { 678 ktime_t next_base_time, extension_time; 679 680 if (!admin) 681 return false; 682 683 next_base_time = sched_base_time(admin); 684 685 /* This is the simple case, the close_time would fall after 686 * the next schedule base_time. 687 */ 688 if (ktime_compare(next_base_time, close_time) <= 0) 689 return true; 690 691 /* This is the cycle_time_extension case, if the close_time 692 * plus the amount that can be extended would fall after the 693 * next schedule base_time, we can extend the current schedule 694 * for that amount. 695 */ 696 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension); 697 698 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 699 * how precisely the extension should be made. So after 700 * conformance testing, this logic may change. 701 */ 702 if (ktime_compare(next_base_time, extension_time) <= 0) 703 return true; 704 705 return false; 706 } 707 708 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 709 { 710 struct taprio_sched *q = container_of(timer, struct taprio_sched, 711 advance_timer); 712 struct sched_gate_list *oper, *admin; 713 struct sched_entry *entry, *next; 714 struct Qdisc *sch = q->root; 715 ktime_t close_time; 716 717 spin_lock(&q->current_entry_lock); 718 entry = rcu_dereference_protected(q->current_entry, 719 lockdep_is_held(&q->current_entry_lock)); 720 oper = rcu_dereference_protected(q->oper_sched, 721 lockdep_is_held(&q->current_entry_lock)); 722 admin = rcu_dereference_protected(q->admin_sched, 723 lockdep_is_held(&q->current_entry_lock)); 724 725 if (!oper) 726 switch_schedules(q, &admin, &oper); 727 728 /* This can happen in two cases: 1. this is the very first run 729 * of this function (i.e. we weren't running any schedule 730 * previously); 2. The previous schedule just ended. The first 731 * entry of all schedules are pre-calculated during the 732 * schedule initialization. 733 */ 734 if (unlikely(!entry || entry->close_time == oper->base_time)) { 735 next = list_first_entry(&oper->entries, struct sched_entry, 736 list); 737 close_time = next->close_time; 738 goto first_run; 739 } 740 741 if (should_restart_cycle(oper, entry)) { 742 next = list_first_entry(&oper->entries, struct sched_entry, 743 list); 744 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time, 745 oper->cycle_time); 746 } else { 747 next = list_next_entry(entry, list); 748 } 749 750 close_time = ktime_add_ns(entry->close_time, next->interval); 751 close_time = min_t(ktime_t, close_time, oper->cycle_close_time); 752 753 if (should_change_schedules(admin, oper, close_time)) { 754 /* Set things so the next time this runs, the new 755 * schedule runs. 756 */ 757 close_time = sched_base_time(admin); 758 switch_schedules(q, &admin, &oper); 759 } 760 761 next->close_time = close_time; 762 taprio_set_budget(q, next); 763 764 first_run: 765 rcu_assign_pointer(q->current_entry, next); 766 spin_unlock(&q->current_entry_lock); 767 768 hrtimer_set_expires(&q->advance_timer, close_time); 769 770 rcu_read_lock(); 771 __netif_schedule(sch); 772 rcu_read_unlock(); 773 774 return HRTIMER_RESTART; 775 } 776 777 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 778 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 779 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 780 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 781 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 782 }; 783 784 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 785 [TCA_TAPRIO_ATTR_PRIOMAP] = { 786 .len = sizeof(struct tc_mqprio_qopt) 787 }, 788 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 789 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 790 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 791 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 792 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, 793 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 794 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 795 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 796 }; 797 798 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 799 struct sched_entry *entry, 800 struct netlink_ext_ack *extack) 801 { 802 int min_duration = length_to_duration(q, ETH_ZLEN); 803 u32 interval = 0; 804 805 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 806 entry->command = nla_get_u8( 807 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 808 809 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 810 entry->gate_mask = nla_get_u32( 811 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 812 813 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 814 interval = nla_get_u32( 815 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 816 817 /* The interval should allow at least the minimum ethernet 818 * frame to go out. 819 */ 820 if (interval < min_duration) { 821 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 822 return -EINVAL; 823 } 824 825 entry->interval = interval; 826 827 return 0; 828 } 829 830 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 831 struct sched_entry *entry, int index, 832 struct netlink_ext_ack *extack) 833 { 834 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 835 int err; 836 837 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 838 entry_policy, NULL); 839 if (err < 0) { 840 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 841 return -EINVAL; 842 } 843 844 entry->index = index; 845 846 return fill_sched_entry(q, tb, entry, extack); 847 } 848 849 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 850 struct sched_gate_list *sched, 851 struct netlink_ext_ack *extack) 852 { 853 struct nlattr *n; 854 int err, rem; 855 int i = 0; 856 857 if (!list) 858 return -EINVAL; 859 860 nla_for_each_nested(n, list, rem) { 861 struct sched_entry *entry; 862 863 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 864 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 865 continue; 866 } 867 868 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 869 if (!entry) { 870 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 871 return -ENOMEM; 872 } 873 874 err = parse_sched_entry(q, n, entry, i, extack); 875 if (err < 0) { 876 kfree(entry); 877 return err; 878 } 879 880 list_add_tail(&entry->list, &sched->entries); 881 i++; 882 } 883 884 sched->num_entries = i; 885 886 return i; 887 } 888 889 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 890 struct sched_gate_list *new, 891 struct netlink_ext_ack *extack) 892 { 893 int err = 0; 894 895 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 896 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 897 return -ENOTSUPP; 898 } 899 900 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 901 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 902 903 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 904 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 905 906 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 907 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 908 909 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 910 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 911 new, extack); 912 if (err < 0) 913 return err; 914 915 if (!new->cycle_time) { 916 struct sched_entry *entry; 917 ktime_t cycle = 0; 918 919 list_for_each_entry(entry, &new->entries, list) 920 cycle = ktime_add_ns(cycle, entry->interval); 921 922 if (!cycle) { 923 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0"); 924 return -EINVAL; 925 } 926 927 new->cycle_time = cycle; 928 } 929 930 return 0; 931 } 932 933 static int taprio_parse_mqprio_opt(struct net_device *dev, 934 struct tc_mqprio_qopt *qopt, 935 struct netlink_ext_ack *extack, 936 u32 taprio_flags) 937 { 938 int i, j; 939 940 if (!qopt && !dev->num_tc) { 941 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 942 return -EINVAL; 943 } 944 945 /* If num_tc is already set, it means that the user already 946 * configured the mqprio part 947 */ 948 if (dev->num_tc) 949 return 0; 950 951 /* Verify num_tc is not out of max range */ 952 if (qopt->num_tc > TC_MAX_QUEUE) { 953 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); 954 return -EINVAL; 955 } 956 957 /* taprio imposes that traffic classes map 1:n to tx queues */ 958 if (qopt->num_tc > dev->num_tx_queues) { 959 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 960 return -EINVAL; 961 } 962 963 /* Verify priority mapping uses valid tcs */ 964 for (i = 0; i <= TC_BITMASK; i++) { 965 if (qopt->prio_tc_map[i] >= qopt->num_tc) { 966 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); 967 return -EINVAL; 968 } 969 } 970 971 for (i = 0; i < qopt->num_tc; i++) { 972 unsigned int last = qopt->offset[i] + qopt->count[i]; 973 974 /* Verify the queue count is in tx range being equal to the 975 * real_num_tx_queues indicates the last queue is in use. 976 */ 977 if (qopt->offset[i] >= dev->num_tx_queues || 978 !qopt->count[i] || 979 last > dev->real_num_tx_queues) { 980 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping"); 981 return -EINVAL; 982 } 983 984 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) 985 continue; 986 987 /* Verify that the offset and counts do not overlap */ 988 for (j = i + 1; j < qopt->num_tc; j++) { 989 if (last > qopt->offset[j]) { 990 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping"); 991 return -EINVAL; 992 } 993 } 994 } 995 996 return 0; 997 } 998 999 static int taprio_get_start_time(struct Qdisc *sch, 1000 struct sched_gate_list *sched, 1001 ktime_t *start) 1002 { 1003 struct taprio_sched *q = qdisc_priv(sch); 1004 ktime_t now, base, cycle; 1005 s64 n; 1006 1007 base = sched_base_time(sched); 1008 now = taprio_get_time(q); 1009 1010 if (ktime_after(base, now)) { 1011 *start = base; 1012 return 0; 1013 } 1014 1015 cycle = sched->cycle_time; 1016 1017 /* The qdisc is expected to have at least one sched_entry. Moreover, 1018 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 1019 * something went really wrong. In that case, we should warn about this 1020 * inconsistent state and return error. 1021 */ 1022 if (WARN_ON(!cycle)) 1023 return -EFAULT; 1024 1025 /* Schedule the start time for the beginning of the next 1026 * cycle. 1027 */ 1028 n = div64_s64(ktime_sub_ns(now, base), cycle); 1029 *start = ktime_add_ns(base, (n + 1) * cycle); 1030 return 0; 1031 } 1032 1033 static void setup_first_close_time(struct taprio_sched *q, 1034 struct sched_gate_list *sched, ktime_t base) 1035 { 1036 struct sched_entry *first; 1037 ktime_t cycle; 1038 1039 first = list_first_entry(&sched->entries, 1040 struct sched_entry, list); 1041 1042 cycle = sched->cycle_time; 1043 1044 /* FIXME: find a better place to do this */ 1045 sched->cycle_close_time = ktime_add_ns(base, cycle); 1046 1047 first->close_time = ktime_add_ns(base, first->interval); 1048 taprio_set_budget(q, first); 1049 rcu_assign_pointer(q->current_entry, NULL); 1050 } 1051 1052 static void taprio_start_sched(struct Qdisc *sch, 1053 ktime_t start, struct sched_gate_list *new) 1054 { 1055 struct taprio_sched *q = qdisc_priv(sch); 1056 ktime_t expires; 1057 1058 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1059 return; 1060 1061 expires = hrtimer_get_expires(&q->advance_timer); 1062 if (expires == 0) 1063 expires = KTIME_MAX; 1064 1065 /* If the new schedule starts before the next expiration, we 1066 * reprogram it to the earliest one, so we change the admin 1067 * schedule to the operational one at the right time. 1068 */ 1069 start = min_t(ktime_t, start, expires); 1070 1071 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1072 } 1073 1074 static void taprio_set_picos_per_byte(struct net_device *dev, 1075 struct taprio_sched *q) 1076 { 1077 struct ethtool_link_ksettings ecmd; 1078 int speed = SPEED_10; 1079 int picos_per_byte; 1080 int err; 1081 1082 err = __ethtool_get_link_ksettings(dev, &ecmd); 1083 if (err < 0) 1084 goto skip; 1085 1086 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1087 speed = ecmd.base.speed; 1088 1089 skip: 1090 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1091 1092 atomic64_set(&q->picos_per_byte, picos_per_byte); 1093 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1094 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1095 ecmd.base.speed); 1096 } 1097 1098 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1099 void *ptr) 1100 { 1101 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1102 struct net_device *qdev; 1103 struct taprio_sched *q; 1104 bool found = false; 1105 1106 ASSERT_RTNL(); 1107 1108 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1109 return NOTIFY_DONE; 1110 1111 spin_lock(&taprio_list_lock); 1112 list_for_each_entry(q, &taprio_list, taprio_list) { 1113 qdev = qdisc_dev(q->root); 1114 if (qdev == dev) { 1115 found = true; 1116 break; 1117 } 1118 } 1119 spin_unlock(&taprio_list_lock); 1120 1121 if (found) 1122 taprio_set_picos_per_byte(dev, q); 1123 1124 return NOTIFY_DONE; 1125 } 1126 1127 static void setup_txtime(struct taprio_sched *q, 1128 struct sched_gate_list *sched, ktime_t base) 1129 { 1130 struct sched_entry *entry; 1131 u32 interval = 0; 1132 1133 list_for_each_entry(entry, &sched->entries, list) { 1134 entry->next_txtime = ktime_add_ns(base, interval); 1135 interval += entry->interval; 1136 } 1137 } 1138 1139 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1140 { 1141 struct __tc_taprio_qopt_offload *__offload; 1142 1143 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1144 GFP_KERNEL); 1145 if (!__offload) 1146 return NULL; 1147 1148 refcount_set(&__offload->users, 1); 1149 1150 return &__offload->offload; 1151 } 1152 1153 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1154 *offload) 1155 { 1156 struct __tc_taprio_qopt_offload *__offload; 1157 1158 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1159 offload); 1160 1161 refcount_inc(&__offload->users); 1162 1163 return offload; 1164 } 1165 EXPORT_SYMBOL_GPL(taprio_offload_get); 1166 1167 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1168 { 1169 struct __tc_taprio_qopt_offload *__offload; 1170 1171 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1172 offload); 1173 1174 if (!refcount_dec_and_test(&__offload->users)) 1175 return; 1176 1177 kfree(__offload); 1178 } 1179 EXPORT_SYMBOL_GPL(taprio_offload_free); 1180 1181 /* The function will only serve to keep the pointers to the "oper" and "admin" 1182 * schedules valid in relation to their base times, so when calling dump() the 1183 * users looks at the right schedules. 1184 * When using full offload, the admin configuration is promoted to oper at the 1185 * base_time in the PHC time domain. But because the system time is not 1186 * necessarily in sync with that, we can't just trigger a hrtimer to call 1187 * switch_schedules at the right hardware time. 1188 * At the moment we call this by hand right away from taprio, but in the future 1189 * it will be useful to create a mechanism for drivers to notify taprio of the 1190 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1191 * This is left as TODO. 1192 */ 1193 static void taprio_offload_config_changed(struct taprio_sched *q) 1194 { 1195 struct sched_gate_list *oper, *admin; 1196 1197 spin_lock(&q->current_entry_lock); 1198 1199 oper = rcu_dereference_protected(q->oper_sched, 1200 lockdep_is_held(&q->current_entry_lock)); 1201 admin = rcu_dereference_protected(q->admin_sched, 1202 lockdep_is_held(&q->current_entry_lock)); 1203 1204 switch_schedules(q, &admin, &oper); 1205 1206 spin_unlock(&q->current_entry_lock); 1207 } 1208 1209 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1210 { 1211 u32 i, queue_mask = 0; 1212 1213 for (i = 0; i < dev->num_tc; i++) { 1214 u32 offset, count; 1215 1216 if (!(tc_mask & BIT(i))) 1217 continue; 1218 1219 offset = dev->tc_to_txq[i].offset; 1220 count = dev->tc_to_txq[i].count; 1221 1222 queue_mask |= GENMASK(offset + count - 1, offset); 1223 } 1224 1225 return queue_mask; 1226 } 1227 1228 static void taprio_sched_to_offload(struct net_device *dev, 1229 struct sched_gate_list *sched, 1230 struct tc_taprio_qopt_offload *offload) 1231 { 1232 struct sched_entry *entry; 1233 int i = 0; 1234 1235 offload->base_time = sched->base_time; 1236 offload->cycle_time = sched->cycle_time; 1237 offload->cycle_time_extension = sched->cycle_time_extension; 1238 1239 list_for_each_entry(entry, &sched->entries, list) { 1240 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1241 1242 e->command = entry->command; 1243 e->interval = entry->interval; 1244 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask); 1245 1246 i++; 1247 } 1248 1249 offload->num_entries = i; 1250 } 1251 1252 static int taprio_enable_offload(struct net_device *dev, 1253 struct taprio_sched *q, 1254 struct sched_gate_list *sched, 1255 struct netlink_ext_ack *extack) 1256 { 1257 const struct net_device_ops *ops = dev->netdev_ops; 1258 struct tc_taprio_qopt_offload *offload; 1259 int err = 0; 1260 1261 if (!ops->ndo_setup_tc) { 1262 NL_SET_ERR_MSG(extack, 1263 "Device does not support taprio offload"); 1264 return -EOPNOTSUPP; 1265 } 1266 1267 offload = taprio_offload_alloc(sched->num_entries); 1268 if (!offload) { 1269 NL_SET_ERR_MSG(extack, 1270 "Not enough memory for enabling offload mode"); 1271 return -ENOMEM; 1272 } 1273 offload->enable = 1; 1274 taprio_sched_to_offload(dev, sched, offload); 1275 1276 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1277 if (err < 0) { 1278 NL_SET_ERR_MSG(extack, 1279 "Device failed to setup taprio offload"); 1280 goto done; 1281 } 1282 1283 q->offloaded = true; 1284 1285 done: 1286 taprio_offload_free(offload); 1287 1288 return err; 1289 } 1290 1291 static int taprio_disable_offload(struct net_device *dev, 1292 struct taprio_sched *q, 1293 struct netlink_ext_ack *extack) 1294 { 1295 const struct net_device_ops *ops = dev->netdev_ops; 1296 struct tc_taprio_qopt_offload *offload; 1297 int err; 1298 1299 if (!q->offloaded) 1300 return 0; 1301 1302 offload = taprio_offload_alloc(0); 1303 if (!offload) { 1304 NL_SET_ERR_MSG(extack, 1305 "Not enough memory to disable offload mode"); 1306 return -ENOMEM; 1307 } 1308 offload->enable = 0; 1309 1310 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1311 if (err < 0) { 1312 NL_SET_ERR_MSG(extack, 1313 "Device failed to disable offload"); 1314 goto out; 1315 } 1316 1317 q->offloaded = false; 1318 1319 out: 1320 taprio_offload_free(offload); 1321 1322 return err; 1323 } 1324 1325 /* If full offload is enabled, the only possible clockid is the net device's 1326 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1327 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1328 * in sync with the specified clockid via a user space daemon such as phc2sys. 1329 * For both software taprio and txtime-assist, the clockid is used for the 1330 * hrtimer that advances the schedule and hence mandatory. 1331 */ 1332 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1333 struct netlink_ext_ack *extack) 1334 { 1335 struct taprio_sched *q = qdisc_priv(sch); 1336 struct net_device *dev = qdisc_dev(sch); 1337 int err = -EINVAL; 1338 1339 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1340 const struct ethtool_ops *ops = dev->ethtool_ops; 1341 struct ethtool_ts_info info = { 1342 .cmd = ETHTOOL_GET_TS_INFO, 1343 .phc_index = -1, 1344 }; 1345 1346 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1347 NL_SET_ERR_MSG(extack, 1348 "The 'clockid' cannot be specified for full offload"); 1349 goto out; 1350 } 1351 1352 if (ops && ops->get_ts_info) 1353 err = ops->get_ts_info(dev, &info); 1354 1355 if (err || info.phc_index < 0) { 1356 NL_SET_ERR_MSG(extack, 1357 "Device does not have a PTP clock"); 1358 err = -ENOTSUPP; 1359 goto out; 1360 } 1361 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1362 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1363 enum tk_offsets tk_offset; 1364 1365 /* We only support static clockids and we don't allow 1366 * for it to be modified after the first init. 1367 */ 1368 if (clockid < 0 || 1369 (q->clockid != -1 && q->clockid != clockid)) { 1370 NL_SET_ERR_MSG(extack, 1371 "Changing the 'clockid' of a running schedule is not supported"); 1372 err = -ENOTSUPP; 1373 goto out; 1374 } 1375 1376 switch (clockid) { 1377 case CLOCK_REALTIME: 1378 tk_offset = TK_OFFS_REAL; 1379 break; 1380 case CLOCK_MONOTONIC: 1381 tk_offset = TK_OFFS_MAX; 1382 break; 1383 case CLOCK_BOOTTIME: 1384 tk_offset = TK_OFFS_BOOT; 1385 break; 1386 case CLOCK_TAI: 1387 tk_offset = TK_OFFS_TAI; 1388 break; 1389 default: 1390 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1391 err = -EINVAL; 1392 goto out; 1393 } 1394 /* This pairs with READ_ONCE() in taprio_mono_to_any */ 1395 WRITE_ONCE(q->tk_offset, tk_offset); 1396 1397 q->clockid = clockid; 1398 } else { 1399 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1400 goto out; 1401 } 1402 1403 /* Everything went ok, return success. */ 1404 err = 0; 1405 1406 out: 1407 return err; 1408 } 1409 1410 static int taprio_mqprio_cmp(const struct net_device *dev, 1411 const struct tc_mqprio_qopt *mqprio) 1412 { 1413 int i; 1414 1415 if (!mqprio || mqprio->num_tc != dev->num_tc) 1416 return -1; 1417 1418 for (i = 0; i < mqprio->num_tc; i++) 1419 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1420 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1421 return -1; 1422 1423 for (i = 0; i <= TC_BITMASK; i++) 1424 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1425 return -1; 1426 1427 return 0; 1428 } 1429 1430 /* The semantics of the 'flags' argument in relation to 'change()' 1431 * requests, are interpreted following two rules (which are applied in 1432 * this order): (1) an omitted 'flags' argument is interpreted as 1433 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1434 * changed. 1435 */ 1436 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1437 struct netlink_ext_ack *extack) 1438 { 1439 u32 new = 0; 1440 1441 if (attr) 1442 new = nla_get_u32(attr); 1443 1444 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1445 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1446 return -EOPNOTSUPP; 1447 } 1448 1449 if (!taprio_flags_valid(new)) { 1450 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1451 return -EINVAL; 1452 } 1453 1454 return new; 1455 } 1456 1457 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1458 struct netlink_ext_ack *extack) 1459 { 1460 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1461 struct sched_gate_list *oper, *admin, *new_admin; 1462 struct taprio_sched *q = qdisc_priv(sch); 1463 struct net_device *dev = qdisc_dev(sch); 1464 struct tc_mqprio_qopt *mqprio = NULL; 1465 unsigned long flags; 1466 ktime_t start; 1467 int i, err; 1468 1469 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1470 taprio_policy, extack); 1471 if (err < 0) 1472 return err; 1473 1474 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1475 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1476 1477 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1478 q->flags, extack); 1479 if (err < 0) 1480 return err; 1481 1482 q->flags = err; 1483 1484 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1485 if (err < 0) 1486 return err; 1487 1488 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1489 if (!new_admin) { 1490 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1491 return -ENOMEM; 1492 } 1493 INIT_LIST_HEAD(&new_admin->entries); 1494 1495 rcu_read_lock(); 1496 oper = rcu_dereference(q->oper_sched); 1497 admin = rcu_dereference(q->admin_sched); 1498 rcu_read_unlock(); 1499 1500 /* no changes - no new mqprio settings */ 1501 if (!taprio_mqprio_cmp(dev, mqprio)) 1502 mqprio = NULL; 1503 1504 if (mqprio && (oper || admin)) { 1505 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1506 err = -ENOTSUPP; 1507 goto free_sched; 1508 } 1509 1510 err = parse_taprio_schedule(q, tb, new_admin, extack); 1511 if (err < 0) 1512 goto free_sched; 1513 1514 if (new_admin->num_entries == 0) { 1515 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1516 err = -EINVAL; 1517 goto free_sched; 1518 } 1519 1520 err = taprio_parse_clockid(sch, tb, extack); 1521 if (err < 0) 1522 goto free_sched; 1523 1524 taprio_set_picos_per_byte(dev, q); 1525 1526 if (mqprio) { 1527 err = netdev_set_num_tc(dev, mqprio->num_tc); 1528 if (err) 1529 goto free_sched; 1530 for (i = 0; i < mqprio->num_tc; i++) 1531 netdev_set_tc_queue(dev, i, 1532 mqprio->count[i], 1533 mqprio->offset[i]); 1534 1535 /* Always use supplied priority mappings */ 1536 for (i = 0; i <= TC_BITMASK; i++) 1537 netdev_set_prio_tc_map(dev, i, 1538 mqprio->prio_tc_map[i]); 1539 } 1540 1541 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1542 err = taprio_enable_offload(dev, q, new_admin, extack); 1543 else 1544 err = taprio_disable_offload(dev, q, extack); 1545 if (err) 1546 goto free_sched; 1547 1548 /* Protects against enqueue()/dequeue() */ 1549 spin_lock_bh(qdisc_lock(sch)); 1550 1551 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1552 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1553 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1554 err = -EINVAL; 1555 goto unlock; 1556 } 1557 1558 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1559 } 1560 1561 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1562 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1563 !hrtimer_active(&q->advance_timer)) { 1564 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1565 q->advance_timer.function = advance_sched; 1566 } 1567 1568 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1569 q->dequeue = taprio_dequeue_offload; 1570 q->peek = taprio_peek_offload; 1571 } else { 1572 /* Be sure to always keep the function pointers 1573 * in a consistent state. 1574 */ 1575 q->dequeue = taprio_dequeue_soft; 1576 q->peek = taprio_peek_soft; 1577 } 1578 1579 err = taprio_get_start_time(sch, new_admin, &start); 1580 if (err < 0) { 1581 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1582 goto unlock; 1583 } 1584 1585 setup_txtime(q, new_admin, start); 1586 1587 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1588 if (!oper) { 1589 rcu_assign_pointer(q->oper_sched, new_admin); 1590 err = 0; 1591 new_admin = NULL; 1592 goto unlock; 1593 } 1594 1595 rcu_assign_pointer(q->admin_sched, new_admin); 1596 if (admin) 1597 call_rcu(&admin->rcu, taprio_free_sched_cb); 1598 } else { 1599 setup_first_close_time(q, new_admin, start); 1600 1601 /* Protects against advance_sched() */ 1602 spin_lock_irqsave(&q->current_entry_lock, flags); 1603 1604 taprio_start_sched(sch, start, new_admin); 1605 1606 rcu_assign_pointer(q->admin_sched, new_admin); 1607 if (admin) 1608 call_rcu(&admin->rcu, taprio_free_sched_cb); 1609 1610 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1611 1612 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1613 taprio_offload_config_changed(q); 1614 } 1615 1616 new_admin = NULL; 1617 err = 0; 1618 1619 unlock: 1620 spin_unlock_bh(qdisc_lock(sch)); 1621 1622 free_sched: 1623 if (new_admin) 1624 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 1625 1626 return err; 1627 } 1628 1629 static void taprio_reset(struct Qdisc *sch) 1630 { 1631 struct taprio_sched *q = qdisc_priv(sch); 1632 struct net_device *dev = qdisc_dev(sch); 1633 int i; 1634 1635 hrtimer_cancel(&q->advance_timer); 1636 if (q->qdiscs) { 1637 for (i = 0; i < dev->num_tx_queues; i++) 1638 if (q->qdiscs[i]) 1639 qdisc_reset(q->qdiscs[i]); 1640 } 1641 sch->qstats.backlog = 0; 1642 sch->q.qlen = 0; 1643 } 1644 1645 static void taprio_destroy(struct Qdisc *sch) 1646 { 1647 struct taprio_sched *q = qdisc_priv(sch); 1648 struct net_device *dev = qdisc_dev(sch); 1649 unsigned int i; 1650 1651 spin_lock(&taprio_list_lock); 1652 list_del(&q->taprio_list); 1653 spin_unlock(&taprio_list_lock); 1654 1655 /* Note that taprio_reset() might not be called if an error 1656 * happens in qdisc_create(), after taprio_init() has been called. 1657 */ 1658 hrtimer_cancel(&q->advance_timer); 1659 1660 taprio_disable_offload(dev, q, NULL); 1661 1662 if (q->qdiscs) { 1663 for (i = 0; i < dev->num_tx_queues; i++) 1664 qdisc_put(q->qdiscs[i]); 1665 1666 kfree(q->qdiscs); 1667 } 1668 q->qdiscs = NULL; 1669 1670 netdev_reset_tc(dev); 1671 1672 if (q->oper_sched) 1673 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb); 1674 1675 if (q->admin_sched) 1676 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb); 1677 } 1678 1679 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 1680 struct netlink_ext_ack *extack) 1681 { 1682 struct taprio_sched *q = qdisc_priv(sch); 1683 struct net_device *dev = qdisc_dev(sch); 1684 int i; 1685 1686 spin_lock_init(&q->current_entry_lock); 1687 1688 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 1689 q->advance_timer.function = advance_sched; 1690 1691 q->dequeue = taprio_dequeue_soft; 1692 q->peek = taprio_peek_soft; 1693 1694 q->root = sch; 1695 1696 /* We only support static clockids. Use an invalid value as default 1697 * and get the valid one on taprio_change(). 1698 */ 1699 q->clockid = -1; 1700 q->flags = TAPRIO_FLAGS_INVALID; 1701 1702 spin_lock(&taprio_list_lock); 1703 list_add(&q->taprio_list, &taprio_list); 1704 spin_unlock(&taprio_list_lock); 1705 1706 if (sch->parent != TC_H_ROOT) 1707 return -EOPNOTSUPP; 1708 1709 if (!netif_is_multiqueue(dev)) 1710 return -EOPNOTSUPP; 1711 1712 /* pre-allocate qdisc, attachment can't fail */ 1713 q->qdiscs = kcalloc(dev->num_tx_queues, 1714 sizeof(q->qdiscs[0]), 1715 GFP_KERNEL); 1716 1717 if (!q->qdiscs) 1718 return -ENOMEM; 1719 1720 if (!opt) 1721 return -EINVAL; 1722 1723 for (i = 0; i < dev->num_tx_queues; i++) { 1724 struct netdev_queue *dev_queue; 1725 struct Qdisc *qdisc; 1726 1727 dev_queue = netdev_get_tx_queue(dev, i); 1728 qdisc = qdisc_create_dflt(dev_queue, 1729 &pfifo_qdisc_ops, 1730 TC_H_MAKE(TC_H_MAJ(sch->handle), 1731 TC_H_MIN(i + 1)), 1732 extack); 1733 if (!qdisc) 1734 return -ENOMEM; 1735 1736 if (i < dev->real_num_tx_queues) 1737 qdisc_hash_add(qdisc, false); 1738 1739 q->qdiscs[i] = qdisc; 1740 } 1741 1742 return taprio_change(sch, opt, extack); 1743 } 1744 1745 static void taprio_attach(struct Qdisc *sch) 1746 { 1747 struct taprio_sched *q = qdisc_priv(sch); 1748 struct net_device *dev = qdisc_dev(sch); 1749 unsigned int ntx; 1750 1751 /* Attach underlying qdisc */ 1752 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { 1753 struct Qdisc *qdisc = q->qdiscs[ntx]; 1754 struct Qdisc *old; 1755 1756 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1757 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1758 old = dev_graft_qdisc(qdisc->dev_queue, qdisc); 1759 } else { 1760 old = dev_graft_qdisc(qdisc->dev_queue, sch); 1761 qdisc_refcount_inc(sch); 1762 } 1763 if (old) 1764 qdisc_put(old); 1765 } 1766 1767 /* access to the child qdiscs is not needed in offload mode */ 1768 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1769 kfree(q->qdiscs); 1770 q->qdiscs = NULL; 1771 } 1772 } 1773 1774 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 1775 unsigned long cl) 1776 { 1777 struct net_device *dev = qdisc_dev(sch); 1778 unsigned long ntx = cl - 1; 1779 1780 if (ntx >= dev->num_tx_queues) 1781 return NULL; 1782 1783 return netdev_get_tx_queue(dev, ntx); 1784 } 1785 1786 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 1787 struct Qdisc *new, struct Qdisc **old, 1788 struct netlink_ext_ack *extack) 1789 { 1790 struct taprio_sched *q = qdisc_priv(sch); 1791 struct net_device *dev = qdisc_dev(sch); 1792 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1793 1794 if (!dev_queue) 1795 return -EINVAL; 1796 1797 if (dev->flags & IFF_UP) 1798 dev_deactivate(dev); 1799 1800 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1801 *old = dev_graft_qdisc(dev_queue, new); 1802 } else { 1803 *old = q->qdiscs[cl - 1]; 1804 q->qdiscs[cl - 1] = new; 1805 } 1806 1807 if (new) 1808 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1809 1810 if (dev->flags & IFF_UP) 1811 dev_activate(dev); 1812 1813 return 0; 1814 } 1815 1816 static int dump_entry(struct sk_buff *msg, 1817 const struct sched_entry *entry) 1818 { 1819 struct nlattr *item; 1820 1821 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 1822 if (!item) 1823 return -ENOSPC; 1824 1825 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 1826 goto nla_put_failure; 1827 1828 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 1829 goto nla_put_failure; 1830 1831 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 1832 entry->gate_mask)) 1833 goto nla_put_failure; 1834 1835 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 1836 entry->interval)) 1837 goto nla_put_failure; 1838 1839 return nla_nest_end(msg, item); 1840 1841 nla_put_failure: 1842 nla_nest_cancel(msg, item); 1843 return -1; 1844 } 1845 1846 static int dump_schedule(struct sk_buff *msg, 1847 const struct sched_gate_list *root) 1848 { 1849 struct nlattr *entry_list; 1850 struct sched_entry *entry; 1851 1852 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 1853 root->base_time, TCA_TAPRIO_PAD)) 1854 return -1; 1855 1856 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 1857 root->cycle_time, TCA_TAPRIO_PAD)) 1858 return -1; 1859 1860 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 1861 root->cycle_time_extension, TCA_TAPRIO_PAD)) 1862 return -1; 1863 1864 entry_list = nla_nest_start_noflag(msg, 1865 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 1866 if (!entry_list) 1867 goto error_nest; 1868 1869 list_for_each_entry(entry, &root->entries, list) { 1870 if (dump_entry(msg, entry) < 0) 1871 goto error_nest; 1872 } 1873 1874 nla_nest_end(msg, entry_list); 1875 return 0; 1876 1877 error_nest: 1878 nla_nest_cancel(msg, entry_list); 1879 return -1; 1880 } 1881 1882 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 1883 { 1884 struct taprio_sched *q = qdisc_priv(sch); 1885 struct net_device *dev = qdisc_dev(sch); 1886 struct sched_gate_list *oper, *admin; 1887 struct tc_mqprio_qopt opt = { 0 }; 1888 struct nlattr *nest, *sched_nest; 1889 unsigned int i; 1890 1891 rcu_read_lock(); 1892 oper = rcu_dereference(q->oper_sched); 1893 admin = rcu_dereference(q->admin_sched); 1894 1895 opt.num_tc = netdev_get_num_tc(dev); 1896 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map)); 1897 1898 for (i = 0; i < netdev_get_num_tc(dev); i++) { 1899 opt.count[i] = dev->tc_to_txq[i].count; 1900 opt.offset[i] = dev->tc_to_txq[i].offset; 1901 } 1902 1903 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1904 if (!nest) 1905 goto start_error; 1906 1907 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 1908 goto options_error; 1909 1910 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 1911 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 1912 goto options_error; 1913 1914 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 1915 goto options_error; 1916 1917 if (q->txtime_delay && 1918 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 1919 goto options_error; 1920 1921 if (oper && dump_schedule(skb, oper)) 1922 goto options_error; 1923 1924 if (!admin) 1925 goto done; 1926 1927 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 1928 if (!sched_nest) 1929 goto options_error; 1930 1931 if (dump_schedule(skb, admin)) 1932 goto admin_error; 1933 1934 nla_nest_end(skb, sched_nest); 1935 1936 done: 1937 rcu_read_unlock(); 1938 1939 return nla_nest_end(skb, nest); 1940 1941 admin_error: 1942 nla_nest_cancel(skb, sched_nest); 1943 1944 options_error: 1945 nla_nest_cancel(skb, nest); 1946 1947 start_error: 1948 rcu_read_unlock(); 1949 return -ENOSPC; 1950 } 1951 1952 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 1953 { 1954 struct taprio_sched *q = qdisc_priv(sch); 1955 struct net_device *dev = qdisc_dev(sch); 1956 unsigned int ntx = cl - 1; 1957 1958 if (ntx >= dev->num_tx_queues) 1959 return NULL; 1960 1961 return q->qdiscs[ntx]; 1962 } 1963 1964 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 1965 { 1966 unsigned int ntx = TC_H_MIN(classid); 1967 1968 if (!taprio_queue_get(sch, ntx)) 1969 return 0; 1970 return ntx; 1971 } 1972 1973 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 1974 struct sk_buff *skb, struct tcmsg *tcm) 1975 { 1976 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1977 1978 tcm->tcm_parent = TC_H_ROOT; 1979 tcm->tcm_handle |= TC_H_MIN(cl); 1980 tcm->tcm_info = dev_queue->qdisc_sleeping->handle; 1981 1982 return 0; 1983 } 1984 1985 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 1986 struct gnet_dump *d) 1987 __releases(d->lock) 1988 __acquires(d->lock) 1989 { 1990 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1991 1992 sch = dev_queue->qdisc_sleeping; 1993 if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 || 1994 qdisc_qstats_copy(d, sch) < 0) 1995 return -1; 1996 return 0; 1997 } 1998 1999 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 2000 { 2001 struct net_device *dev = qdisc_dev(sch); 2002 unsigned long ntx; 2003 2004 if (arg->stop) 2005 return; 2006 2007 arg->count = arg->skip; 2008 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 2009 if (arg->fn(sch, ntx + 1, arg) < 0) { 2010 arg->stop = 1; 2011 break; 2012 } 2013 arg->count++; 2014 } 2015 } 2016 2017 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 2018 struct tcmsg *tcm) 2019 { 2020 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 2021 } 2022 2023 static const struct Qdisc_class_ops taprio_class_ops = { 2024 .graft = taprio_graft, 2025 .leaf = taprio_leaf, 2026 .find = taprio_find, 2027 .walk = taprio_walk, 2028 .dump = taprio_dump_class, 2029 .dump_stats = taprio_dump_class_stats, 2030 .select_queue = taprio_select_queue, 2031 }; 2032 2033 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 2034 .cl_ops = &taprio_class_ops, 2035 .id = "taprio", 2036 .priv_size = sizeof(struct taprio_sched), 2037 .init = taprio_init, 2038 .change = taprio_change, 2039 .destroy = taprio_destroy, 2040 .reset = taprio_reset, 2041 .attach = taprio_attach, 2042 .peek = taprio_peek, 2043 .dequeue = taprio_dequeue, 2044 .enqueue = taprio_enqueue, 2045 .dump = taprio_dump, 2046 .owner = THIS_MODULE, 2047 }; 2048 2049 static struct notifier_block taprio_device_notifier = { 2050 .notifier_call = taprio_dev_notifier, 2051 }; 2052 2053 static int __init taprio_module_init(void) 2054 { 2055 int err = register_netdevice_notifier(&taprio_device_notifier); 2056 2057 if (err) 2058 return err; 2059 2060 return register_qdisc(&taprio_qdisc_ops); 2061 } 2062 2063 static void __exit taprio_module_exit(void) 2064 { 2065 unregister_qdisc(&taprio_qdisc_ops); 2066 unregister_netdevice_notifier(&taprio_device_notifier); 2067 } 2068 2069 module_init(taprio_module_init); 2070 module_exit(taprio_module_exit); 2071 MODULE_LICENSE("GPL"); 2072