xref: /linux/net/sched/sch_taprio.c (revision 061834624c87282c6d9d8c5395aaff4380e5e1fc)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <linux/time.h>
22 #include <net/netlink.h>
23 #include <net/pkt_sched.h>
24 #include <net/pkt_cls.h>
25 #include <net/sch_generic.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 
29 static LIST_HEAD(taprio_list);
30 static DEFINE_SPINLOCK(taprio_list_lock);
31 
32 #define TAPRIO_ALL_GATES_OPEN -1
33 
34 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
35 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
36 #define TAPRIO_FLAGS_INVALID U32_MAX
37 
38 struct sched_entry {
39 	struct list_head list;
40 
41 	/* The instant that this entry "closes" and the next one
42 	 * should open, the qdisc will make some effort so that no
43 	 * packet leaves after this time.
44 	 */
45 	ktime_t close_time;
46 	ktime_t next_txtime;
47 	atomic_t budget;
48 	int index;
49 	u32 gate_mask;
50 	u32 interval;
51 	u8 command;
52 };
53 
54 struct sched_gate_list {
55 	struct rcu_head rcu;
56 	struct list_head entries;
57 	size_t num_entries;
58 	ktime_t cycle_close_time;
59 	s64 cycle_time;
60 	s64 cycle_time_extension;
61 	s64 base_time;
62 };
63 
64 struct taprio_sched {
65 	struct Qdisc **qdiscs;
66 	struct Qdisc *root;
67 	u32 flags;
68 	enum tk_offsets tk_offset;
69 	int clockid;
70 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
71 				    * speeds it's sub-nanoseconds per byte
72 				    */
73 
74 	/* Protects the update side of the RCU protected current_entry */
75 	spinlock_t current_entry_lock;
76 	struct sched_entry __rcu *current_entry;
77 	struct sched_gate_list __rcu *oper_sched;
78 	struct sched_gate_list __rcu *admin_sched;
79 	struct hrtimer advance_timer;
80 	struct list_head taprio_list;
81 	struct sk_buff *(*dequeue)(struct Qdisc *sch);
82 	struct sk_buff *(*peek)(struct Qdisc *sch);
83 	u32 txtime_delay;
84 };
85 
86 struct __tc_taprio_qopt_offload {
87 	refcount_t users;
88 	struct tc_taprio_qopt_offload offload;
89 };
90 
91 static ktime_t sched_base_time(const struct sched_gate_list *sched)
92 {
93 	if (!sched)
94 		return KTIME_MAX;
95 
96 	return ns_to_ktime(sched->base_time);
97 }
98 
99 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
100 {
101 	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
102 	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
103 
104 	switch (tk_offset) {
105 	case TK_OFFS_MAX:
106 		return mono;
107 	default:
108 		return ktime_mono_to_any(mono, tk_offset);
109 	}
110 }
111 
112 static ktime_t taprio_get_time(const struct taprio_sched *q)
113 {
114 	return taprio_mono_to_any(q, ktime_get());
115 }
116 
117 static void taprio_free_sched_cb(struct rcu_head *head)
118 {
119 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
120 	struct sched_entry *entry, *n;
121 
122 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
123 		list_del(&entry->list);
124 		kfree(entry);
125 	}
126 
127 	kfree(sched);
128 }
129 
130 static void switch_schedules(struct taprio_sched *q,
131 			     struct sched_gate_list **admin,
132 			     struct sched_gate_list **oper)
133 {
134 	rcu_assign_pointer(q->oper_sched, *admin);
135 	rcu_assign_pointer(q->admin_sched, NULL);
136 
137 	if (*oper)
138 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
139 
140 	*oper = *admin;
141 	*admin = NULL;
142 }
143 
144 /* Get how much time has been already elapsed in the current cycle. */
145 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
146 {
147 	ktime_t time_since_sched_start;
148 	s32 time_elapsed;
149 
150 	time_since_sched_start = ktime_sub(time, sched->base_time);
151 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
152 
153 	return time_elapsed;
154 }
155 
156 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
157 				     struct sched_gate_list *admin,
158 				     struct sched_entry *entry,
159 				     ktime_t intv_start)
160 {
161 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
162 	ktime_t intv_end, cycle_ext_end, cycle_end;
163 
164 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
165 	intv_end = ktime_add_ns(intv_start, entry->interval);
166 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
167 
168 	if (ktime_before(intv_end, cycle_end))
169 		return intv_end;
170 	else if (admin && admin != sched &&
171 		 ktime_after(admin->base_time, cycle_end) &&
172 		 ktime_before(admin->base_time, cycle_ext_end))
173 		return admin->base_time;
174 	else
175 		return cycle_end;
176 }
177 
178 static int length_to_duration(struct taprio_sched *q, int len)
179 {
180 	return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
181 }
182 
183 /* Returns the entry corresponding to next available interval. If
184  * validate_interval is set, it only validates whether the timestamp occurs
185  * when the gate corresponding to the skb's traffic class is open.
186  */
187 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
188 						  struct Qdisc *sch,
189 						  struct sched_gate_list *sched,
190 						  struct sched_gate_list *admin,
191 						  ktime_t time,
192 						  ktime_t *interval_start,
193 						  ktime_t *interval_end,
194 						  bool validate_interval)
195 {
196 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
197 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
198 	struct sched_entry *entry = NULL, *entry_found = NULL;
199 	struct taprio_sched *q = qdisc_priv(sch);
200 	struct net_device *dev = qdisc_dev(sch);
201 	bool entry_available = false;
202 	s32 cycle_elapsed;
203 	int tc, n;
204 
205 	tc = netdev_get_prio_tc_map(dev, skb->priority);
206 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
207 
208 	*interval_start = 0;
209 	*interval_end = 0;
210 
211 	if (!sched)
212 		return NULL;
213 
214 	cycle = sched->cycle_time;
215 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
216 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
217 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
218 
219 	list_for_each_entry(entry, &sched->entries, list) {
220 		curr_intv_start = curr_intv_end;
221 		curr_intv_end = get_interval_end_time(sched, admin, entry,
222 						      curr_intv_start);
223 
224 		if (ktime_after(curr_intv_start, cycle_end))
225 			break;
226 
227 		if (!(entry->gate_mask & BIT(tc)) ||
228 		    packet_transmit_time > entry->interval)
229 			continue;
230 
231 		txtime = entry->next_txtime;
232 
233 		if (ktime_before(txtime, time) || validate_interval) {
234 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
235 			if ((ktime_before(curr_intv_start, time) &&
236 			     ktime_before(transmit_end_time, curr_intv_end)) ||
237 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
238 				entry_found = entry;
239 				*interval_start = curr_intv_start;
240 				*interval_end = curr_intv_end;
241 				break;
242 			} else if (!entry_available && !validate_interval) {
243 				/* Here, we are just trying to find out the
244 				 * first available interval in the next cycle.
245 				 */
246 				entry_available = true;
247 				entry_found = entry;
248 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
249 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
250 			}
251 		} else if (ktime_before(txtime, earliest_txtime) &&
252 			   !entry_available) {
253 			earliest_txtime = txtime;
254 			entry_found = entry;
255 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
256 			*interval_start = ktime_add(curr_intv_start, n * cycle);
257 			*interval_end = ktime_add(curr_intv_end, n * cycle);
258 		}
259 	}
260 
261 	return entry_found;
262 }
263 
264 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
265 {
266 	struct taprio_sched *q = qdisc_priv(sch);
267 	struct sched_gate_list *sched, *admin;
268 	ktime_t interval_start, interval_end;
269 	struct sched_entry *entry;
270 
271 	rcu_read_lock();
272 	sched = rcu_dereference(q->oper_sched);
273 	admin = rcu_dereference(q->admin_sched);
274 
275 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
276 				       &interval_start, &interval_end, true);
277 	rcu_read_unlock();
278 
279 	return entry;
280 }
281 
282 static bool taprio_flags_valid(u32 flags)
283 {
284 	/* Make sure no other flag bits are set. */
285 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
286 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
287 		return false;
288 	/* txtime-assist and full offload are mutually exclusive */
289 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
290 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
291 		return false;
292 	return true;
293 }
294 
295 /* This returns the tstamp value set by TCP in terms of the set clock. */
296 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
297 {
298 	unsigned int offset = skb_network_offset(skb);
299 	const struct ipv6hdr *ipv6h;
300 	const struct iphdr *iph;
301 	struct ipv6hdr _ipv6h;
302 
303 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
304 	if (!ipv6h)
305 		return 0;
306 
307 	if (ipv6h->version == 4) {
308 		iph = (struct iphdr *)ipv6h;
309 		offset += iph->ihl * 4;
310 
311 		/* special-case 6in4 tunnelling, as that is a common way to get
312 		 * v6 connectivity in the home
313 		 */
314 		if (iph->protocol == IPPROTO_IPV6) {
315 			ipv6h = skb_header_pointer(skb, offset,
316 						   sizeof(_ipv6h), &_ipv6h);
317 
318 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
319 				return 0;
320 		} else if (iph->protocol != IPPROTO_TCP) {
321 			return 0;
322 		}
323 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
324 		return 0;
325 	}
326 
327 	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
328 }
329 
330 /* There are a few scenarios where we will have to modify the txtime from
331  * what is read from next_txtime in sched_entry. They are:
332  * 1. If txtime is in the past,
333  *    a. The gate for the traffic class is currently open and packet can be
334  *       transmitted before it closes, schedule the packet right away.
335  *    b. If the gate corresponding to the traffic class is going to open later
336  *       in the cycle, set the txtime of packet to the interval start.
337  * 2. If txtime is in the future, there are packets corresponding to the
338  *    current traffic class waiting to be transmitted. So, the following
339  *    possibilities exist:
340  *    a. We can transmit the packet before the window containing the txtime
341  *       closes.
342  *    b. The window might close before the transmission can be completed
343  *       successfully. So, schedule the packet in the next open window.
344  */
345 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
346 {
347 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
348 	struct taprio_sched *q = qdisc_priv(sch);
349 	struct sched_gate_list *sched, *admin;
350 	ktime_t minimum_time, now, txtime;
351 	int len, packet_transmit_time;
352 	struct sched_entry *entry;
353 	bool sched_changed;
354 
355 	now = taprio_get_time(q);
356 	minimum_time = ktime_add_ns(now, q->txtime_delay);
357 
358 	tcp_tstamp = get_tcp_tstamp(q, skb);
359 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
360 
361 	rcu_read_lock();
362 	admin = rcu_dereference(q->admin_sched);
363 	sched = rcu_dereference(q->oper_sched);
364 	if (admin && ktime_after(minimum_time, admin->base_time))
365 		switch_schedules(q, &admin, &sched);
366 
367 	/* Until the schedule starts, all the queues are open */
368 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
369 		txtime = minimum_time;
370 		goto done;
371 	}
372 
373 	len = qdisc_pkt_len(skb);
374 	packet_transmit_time = length_to_duration(q, len);
375 
376 	do {
377 		sched_changed = false;
378 
379 		entry = find_entry_to_transmit(skb, sch, sched, admin,
380 					       minimum_time,
381 					       &interval_start, &interval_end,
382 					       false);
383 		if (!entry) {
384 			txtime = 0;
385 			goto done;
386 		}
387 
388 		txtime = entry->next_txtime;
389 		txtime = max_t(ktime_t, txtime, minimum_time);
390 		txtime = max_t(ktime_t, txtime, interval_start);
391 
392 		if (admin && admin != sched &&
393 		    ktime_after(txtime, admin->base_time)) {
394 			sched = admin;
395 			sched_changed = true;
396 			continue;
397 		}
398 
399 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
400 		minimum_time = transmit_end_time;
401 
402 		/* Update the txtime of current entry to the next time it's
403 		 * interval starts.
404 		 */
405 		if (ktime_after(transmit_end_time, interval_end))
406 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
407 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
408 
409 	entry->next_txtime = transmit_end_time;
410 
411 done:
412 	rcu_read_unlock();
413 	return txtime;
414 }
415 
416 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
417 			      struct Qdisc *child, struct sk_buff **to_free)
418 {
419 	struct taprio_sched *q = qdisc_priv(sch);
420 
421 	/* sk_flags are only safe to use on full sockets. */
422 	if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
423 		if (!is_valid_interval(skb, sch))
424 			return qdisc_drop(skb, sch, to_free);
425 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
426 		skb->tstamp = get_packet_txtime(skb, sch);
427 		if (!skb->tstamp)
428 			return qdisc_drop(skb, sch, to_free);
429 	}
430 
431 	qdisc_qstats_backlog_inc(sch, skb);
432 	sch->q.qlen++;
433 
434 	return qdisc_enqueue(skb, child, to_free);
435 }
436 
437 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
438 			  struct sk_buff **to_free)
439 {
440 	struct taprio_sched *q = qdisc_priv(sch);
441 	struct Qdisc *child;
442 	int queue;
443 
444 	if (unlikely(FULL_OFFLOAD_IS_ENABLED(q->flags))) {
445 		WARN_ONCE(1, "Trying to enqueue skb into the root of a taprio qdisc configured with full offload\n");
446 		return qdisc_drop(skb, sch, to_free);
447 	}
448 
449 	queue = skb_get_queue_mapping(skb);
450 
451 	child = q->qdiscs[queue];
452 	if (unlikely(!child))
453 		return qdisc_drop(skb, sch, to_free);
454 
455 	/* Large packets might not be transmitted when the transmission duration
456 	 * exceeds any configured interval. Therefore, segment the skb into
457 	 * smaller chunks. Skip it for the full offload case, as the driver
458 	 * and/or the hardware is expected to handle this.
459 	 */
460 	if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) {
461 		unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
462 		netdev_features_t features = netif_skb_features(skb);
463 		struct sk_buff *segs, *nskb;
464 		int ret;
465 
466 		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
467 		if (IS_ERR_OR_NULL(segs))
468 			return qdisc_drop(skb, sch, to_free);
469 
470 		skb_list_walk_safe(segs, segs, nskb) {
471 			skb_mark_not_on_list(segs);
472 			qdisc_skb_cb(segs)->pkt_len = segs->len;
473 			slen += segs->len;
474 
475 			ret = taprio_enqueue_one(segs, sch, child, to_free);
476 			if (ret != NET_XMIT_SUCCESS) {
477 				if (net_xmit_drop_count(ret))
478 					qdisc_qstats_drop(sch);
479 			} else {
480 				numsegs++;
481 			}
482 		}
483 
484 		if (numsegs > 1)
485 			qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
486 		consume_skb(skb);
487 
488 		return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
489 	}
490 
491 	return taprio_enqueue_one(skb, sch, child, to_free);
492 }
493 
494 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
495 {
496 	struct taprio_sched *q = qdisc_priv(sch);
497 	struct net_device *dev = qdisc_dev(sch);
498 	struct sched_entry *entry;
499 	struct sk_buff *skb;
500 	u32 gate_mask;
501 	int i;
502 
503 	rcu_read_lock();
504 	entry = rcu_dereference(q->current_entry);
505 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
506 	rcu_read_unlock();
507 
508 	if (!gate_mask)
509 		return NULL;
510 
511 	for (i = 0; i < dev->num_tx_queues; i++) {
512 		struct Qdisc *child = q->qdiscs[i];
513 		int prio;
514 		u8 tc;
515 
516 		if (unlikely(!child))
517 			continue;
518 
519 		skb = child->ops->peek(child);
520 		if (!skb)
521 			continue;
522 
523 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
524 			return skb;
525 
526 		prio = skb->priority;
527 		tc = netdev_get_prio_tc_map(dev, prio);
528 
529 		if (!(gate_mask & BIT(tc)))
530 			continue;
531 
532 		return skb;
533 	}
534 
535 	return NULL;
536 }
537 
538 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
539 {
540 	WARN_ONCE(1, "Trying to peek into the root of a taprio qdisc configured with full offload\n");
541 
542 	return NULL;
543 }
544 
545 static struct sk_buff *taprio_peek(struct Qdisc *sch)
546 {
547 	struct taprio_sched *q = qdisc_priv(sch);
548 
549 	return q->peek(sch);
550 }
551 
552 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
553 {
554 	atomic_set(&entry->budget,
555 		   div64_u64((u64)entry->interval * PSEC_PER_NSEC,
556 			     atomic64_read(&q->picos_per_byte)));
557 }
558 
559 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
560 {
561 	struct taprio_sched *q = qdisc_priv(sch);
562 	struct net_device *dev = qdisc_dev(sch);
563 	struct sk_buff *skb = NULL;
564 	struct sched_entry *entry;
565 	u32 gate_mask;
566 	int i;
567 
568 	rcu_read_lock();
569 	entry = rcu_dereference(q->current_entry);
570 	/* if there's no entry, it means that the schedule didn't
571 	 * start yet, so force all gates to be open, this is in
572 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
573 	 * "AdminGateStates"
574 	 */
575 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
576 
577 	if (!gate_mask)
578 		goto done;
579 
580 	for (i = 0; i < dev->num_tx_queues; i++) {
581 		struct Qdisc *child = q->qdiscs[i];
582 		ktime_t guard;
583 		int prio;
584 		int len;
585 		u8 tc;
586 
587 		if (unlikely(!child))
588 			continue;
589 
590 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
591 			skb = child->ops->dequeue(child);
592 			if (!skb)
593 				continue;
594 			goto skb_found;
595 		}
596 
597 		skb = child->ops->peek(child);
598 		if (!skb)
599 			continue;
600 
601 		prio = skb->priority;
602 		tc = netdev_get_prio_tc_map(dev, prio);
603 
604 		if (!(gate_mask & BIT(tc))) {
605 			skb = NULL;
606 			continue;
607 		}
608 
609 		len = qdisc_pkt_len(skb);
610 		guard = ktime_add_ns(taprio_get_time(q),
611 				     length_to_duration(q, len));
612 
613 		/* In the case that there's no gate entry, there's no
614 		 * guard band ...
615 		 */
616 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
617 		    ktime_after(guard, entry->close_time)) {
618 			skb = NULL;
619 			continue;
620 		}
621 
622 		/* ... and no budget. */
623 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
624 		    atomic_sub_return(len, &entry->budget) < 0) {
625 			skb = NULL;
626 			continue;
627 		}
628 
629 		skb = child->ops->dequeue(child);
630 		if (unlikely(!skb))
631 			goto done;
632 
633 skb_found:
634 		qdisc_bstats_update(sch, skb);
635 		qdisc_qstats_backlog_dec(sch, skb);
636 		sch->q.qlen--;
637 
638 		goto done;
639 	}
640 
641 done:
642 	rcu_read_unlock();
643 
644 	return skb;
645 }
646 
647 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
648 {
649 	WARN_ONCE(1, "Trying to dequeue from the root of a taprio qdisc configured with full offload\n");
650 
651 	return NULL;
652 }
653 
654 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
655 {
656 	struct taprio_sched *q = qdisc_priv(sch);
657 
658 	return q->dequeue(sch);
659 }
660 
661 static bool should_restart_cycle(const struct sched_gate_list *oper,
662 				 const struct sched_entry *entry)
663 {
664 	if (list_is_last(&entry->list, &oper->entries))
665 		return true;
666 
667 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
668 		return true;
669 
670 	return false;
671 }
672 
673 static bool should_change_schedules(const struct sched_gate_list *admin,
674 				    const struct sched_gate_list *oper,
675 				    ktime_t close_time)
676 {
677 	ktime_t next_base_time, extension_time;
678 
679 	if (!admin)
680 		return false;
681 
682 	next_base_time = sched_base_time(admin);
683 
684 	/* This is the simple case, the close_time would fall after
685 	 * the next schedule base_time.
686 	 */
687 	if (ktime_compare(next_base_time, close_time) <= 0)
688 		return true;
689 
690 	/* This is the cycle_time_extension case, if the close_time
691 	 * plus the amount that can be extended would fall after the
692 	 * next schedule base_time, we can extend the current schedule
693 	 * for that amount.
694 	 */
695 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
696 
697 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
698 	 * how precisely the extension should be made. So after
699 	 * conformance testing, this logic may change.
700 	 */
701 	if (ktime_compare(next_base_time, extension_time) <= 0)
702 		return true;
703 
704 	return false;
705 }
706 
707 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
708 {
709 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
710 					      advance_timer);
711 	struct sched_gate_list *oper, *admin;
712 	struct sched_entry *entry, *next;
713 	struct Qdisc *sch = q->root;
714 	ktime_t close_time;
715 
716 	spin_lock(&q->current_entry_lock);
717 	entry = rcu_dereference_protected(q->current_entry,
718 					  lockdep_is_held(&q->current_entry_lock));
719 	oper = rcu_dereference_protected(q->oper_sched,
720 					 lockdep_is_held(&q->current_entry_lock));
721 	admin = rcu_dereference_protected(q->admin_sched,
722 					  lockdep_is_held(&q->current_entry_lock));
723 
724 	if (!oper)
725 		switch_schedules(q, &admin, &oper);
726 
727 	/* This can happen in two cases: 1. this is the very first run
728 	 * of this function (i.e. we weren't running any schedule
729 	 * previously); 2. The previous schedule just ended. The first
730 	 * entry of all schedules are pre-calculated during the
731 	 * schedule initialization.
732 	 */
733 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
734 		next = list_first_entry(&oper->entries, struct sched_entry,
735 					list);
736 		close_time = next->close_time;
737 		goto first_run;
738 	}
739 
740 	if (should_restart_cycle(oper, entry)) {
741 		next = list_first_entry(&oper->entries, struct sched_entry,
742 					list);
743 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
744 						      oper->cycle_time);
745 	} else {
746 		next = list_next_entry(entry, list);
747 	}
748 
749 	close_time = ktime_add_ns(entry->close_time, next->interval);
750 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
751 
752 	if (should_change_schedules(admin, oper, close_time)) {
753 		/* Set things so the next time this runs, the new
754 		 * schedule runs.
755 		 */
756 		close_time = sched_base_time(admin);
757 		switch_schedules(q, &admin, &oper);
758 	}
759 
760 	next->close_time = close_time;
761 	taprio_set_budget(q, next);
762 
763 first_run:
764 	rcu_assign_pointer(q->current_entry, next);
765 	spin_unlock(&q->current_entry_lock);
766 
767 	hrtimer_set_expires(&q->advance_timer, close_time);
768 
769 	rcu_read_lock();
770 	__netif_schedule(sch);
771 	rcu_read_unlock();
772 
773 	return HRTIMER_RESTART;
774 }
775 
776 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
777 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
778 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
779 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
780 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
781 };
782 
783 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
784 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
785 		.len = sizeof(struct tc_mqprio_qopt)
786 	},
787 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
788 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
789 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
790 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
791 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
792 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
793 	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
794 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
795 };
796 
797 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
798 			    struct sched_entry *entry,
799 			    struct netlink_ext_ack *extack)
800 {
801 	int min_duration = length_to_duration(q, ETH_ZLEN);
802 	u32 interval = 0;
803 
804 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
805 		entry->command = nla_get_u8(
806 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
807 
808 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
809 		entry->gate_mask = nla_get_u32(
810 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
811 
812 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
813 		interval = nla_get_u32(
814 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
815 
816 	/* The interval should allow at least the minimum ethernet
817 	 * frame to go out.
818 	 */
819 	if (interval < min_duration) {
820 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
821 		return -EINVAL;
822 	}
823 
824 	entry->interval = interval;
825 
826 	return 0;
827 }
828 
829 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
830 			     struct sched_entry *entry, int index,
831 			     struct netlink_ext_ack *extack)
832 {
833 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
834 	int err;
835 
836 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
837 					  entry_policy, NULL);
838 	if (err < 0) {
839 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
840 		return -EINVAL;
841 	}
842 
843 	entry->index = index;
844 
845 	return fill_sched_entry(q, tb, entry, extack);
846 }
847 
848 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
849 			    struct sched_gate_list *sched,
850 			    struct netlink_ext_ack *extack)
851 {
852 	struct nlattr *n;
853 	int err, rem;
854 	int i = 0;
855 
856 	if (!list)
857 		return -EINVAL;
858 
859 	nla_for_each_nested(n, list, rem) {
860 		struct sched_entry *entry;
861 
862 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
863 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
864 			continue;
865 		}
866 
867 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
868 		if (!entry) {
869 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
870 			return -ENOMEM;
871 		}
872 
873 		err = parse_sched_entry(q, n, entry, i, extack);
874 		if (err < 0) {
875 			kfree(entry);
876 			return err;
877 		}
878 
879 		list_add_tail(&entry->list, &sched->entries);
880 		i++;
881 	}
882 
883 	sched->num_entries = i;
884 
885 	return i;
886 }
887 
888 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
889 				 struct sched_gate_list *new,
890 				 struct netlink_ext_ack *extack)
891 {
892 	int err = 0;
893 
894 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
895 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
896 		return -ENOTSUPP;
897 	}
898 
899 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
900 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
901 
902 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
903 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
904 
905 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
906 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
907 
908 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
909 		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
910 				       new, extack);
911 	if (err < 0)
912 		return err;
913 
914 	if (!new->cycle_time) {
915 		struct sched_entry *entry;
916 		ktime_t cycle = 0;
917 
918 		list_for_each_entry(entry, &new->entries, list)
919 			cycle = ktime_add_ns(cycle, entry->interval);
920 
921 		if (!cycle) {
922 			NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
923 			return -EINVAL;
924 		}
925 
926 		new->cycle_time = cycle;
927 	}
928 
929 	return 0;
930 }
931 
932 static int taprio_parse_mqprio_opt(struct net_device *dev,
933 				   struct tc_mqprio_qopt *qopt,
934 				   struct netlink_ext_ack *extack,
935 				   u32 taprio_flags)
936 {
937 	int i, j;
938 
939 	if (!qopt && !dev->num_tc) {
940 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
941 		return -EINVAL;
942 	}
943 
944 	/* If num_tc is already set, it means that the user already
945 	 * configured the mqprio part
946 	 */
947 	if (dev->num_tc)
948 		return 0;
949 
950 	/* Verify num_tc is not out of max range */
951 	if (qopt->num_tc > TC_MAX_QUEUE) {
952 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
953 		return -EINVAL;
954 	}
955 
956 	/* taprio imposes that traffic classes map 1:n to tx queues */
957 	if (qopt->num_tc > dev->num_tx_queues) {
958 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
959 		return -EINVAL;
960 	}
961 
962 	/* Verify priority mapping uses valid tcs */
963 	for (i = 0; i <= TC_BITMASK; i++) {
964 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
965 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
966 			return -EINVAL;
967 		}
968 	}
969 
970 	for (i = 0; i < qopt->num_tc; i++) {
971 		unsigned int last = qopt->offset[i] + qopt->count[i];
972 
973 		/* Verify the queue count is in tx range being equal to the
974 		 * real_num_tx_queues indicates the last queue is in use.
975 		 */
976 		if (qopt->offset[i] >= dev->num_tx_queues ||
977 		    !qopt->count[i] ||
978 		    last > dev->real_num_tx_queues) {
979 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
980 			return -EINVAL;
981 		}
982 
983 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
984 			continue;
985 
986 		/* Verify that the offset and counts do not overlap */
987 		for (j = i + 1; j < qopt->num_tc; j++) {
988 			if (last > qopt->offset[j]) {
989 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
990 				return -EINVAL;
991 			}
992 		}
993 	}
994 
995 	return 0;
996 }
997 
998 static int taprio_get_start_time(struct Qdisc *sch,
999 				 struct sched_gate_list *sched,
1000 				 ktime_t *start)
1001 {
1002 	struct taprio_sched *q = qdisc_priv(sch);
1003 	ktime_t now, base, cycle;
1004 	s64 n;
1005 
1006 	base = sched_base_time(sched);
1007 	now = taprio_get_time(q);
1008 
1009 	if (ktime_after(base, now)) {
1010 		*start = base;
1011 		return 0;
1012 	}
1013 
1014 	cycle = sched->cycle_time;
1015 
1016 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1017 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1018 	 * something went really wrong. In that case, we should warn about this
1019 	 * inconsistent state and return error.
1020 	 */
1021 	if (WARN_ON(!cycle))
1022 		return -EFAULT;
1023 
1024 	/* Schedule the start time for the beginning of the next
1025 	 * cycle.
1026 	 */
1027 	n = div64_s64(ktime_sub_ns(now, base), cycle);
1028 	*start = ktime_add_ns(base, (n + 1) * cycle);
1029 	return 0;
1030 }
1031 
1032 static void setup_first_close_time(struct taprio_sched *q,
1033 				   struct sched_gate_list *sched, ktime_t base)
1034 {
1035 	struct sched_entry *first;
1036 	ktime_t cycle;
1037 
1038 	first = list_first_entry(&sched->entries,
1039 				 struct sched_entry, list);
1040 
1041 	cycle = sched->cycle_time;
1042 
1043 	/* FIXME: find a better place to do this */
1044 	sched->cycle_close_time = ktime_add_ns(base, cycle);
1045 
1046 	first->close_time = ktime_add_ns(base, first->interval);
1047 	taprio_set_budget(q, first);
1048 	rcu_assign_pointer(q->current_entry, NULL);
1049 }
1050 
1051 static void taprio_start_sched(struct Qdisc *sch,
1052 			       ktime_t start, struct sched_gate_list *new)
1053 {
1054 	struct taprio_sched *q = qdisc_priv(sch);
1055 	ktime_t expires;
1056 
1057 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1058 		return;
1059 
1060 	expires = hrtimer_get_expires(&q->advance_timer);
1061 	if (expires == 0)
1062 		expires = KTIME_MAX;
1063 
1064 	/* If the new schedule starts before the next expiration, we
1065 	 * reprogram it to the earliest one, so we change the admin
1066 	 * schedule to the operational one at the right time.
1067 	 */
1068 	start = min_t(ktime_t, start, expires);
1069 
1070 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1071 }
1072 
1073 static void taprio_set_picos_per_byte(struct net_device *dev,
1074 				      struct taprio_sched *q)
1075 {
1076 	struct ethtool_link_ksettings ecmd;
1077 	int speed = SPEED_10;
1078 	int picos_per_byte;
1079 	int err;
1080 
1081 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1082 	if (err < 0)
1083 		goto skip;
1084 
1085 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1086 		speed = ecmd.base.speed;
1087 
1088 skip:
1089 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1090 
1091 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1092 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1093 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1094 		   ecmd.base.speed);
1095 }
1096 
1097 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1098 			       void *ptr)
1099 {
1100 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1101 	struct net_device *qdev;
1102 	struct taprio_sched *q;
1103 	bool found = false;
1104 
1105 	ASSERT_RTNL();
1106 
1107 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1108 		return NOTIFY_DONE;
1109 
1110 	spin_lock(&taprio_list_lock);
1111 	list_for_each_entry(q, &taprio_list, taprio_list) {
1112 		qdev = qdisc_dev(q->root);
1113 		if (qdev == dev) {
1114 			found = true;
1115 			break;
1116 		}
1117 	}
1118 	spin_unlock(&taprio_list_lock);
1119 
1120 	if (found)
1121 		taprio_set_picos_per_byte(dev, q);
1122 
1123 	return NOTIFY_DONE;
1124 }
1125 
1126 static void setup_txtime(struct taprio_sched *q,
1127 			 struct sched_gate_list *sched, ktime_t base)
1128 {
1129 	struct sched_entry *entry;
1130 	u32 interval = 0;
1131 
1132 	list_for_each_entry(entry, &sched->entries, list) {
1133 		entry->next_txtime = ktime_add_ns(base, interval);
1134 		interval += entry->interval;
1135 	}
1136 }
1137 
1138 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1139 {
1140 	struct __tc_taprio_qopt_offload *__offload;
1141 
1142 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1143 			    GFP_KERNEL);
1144 	if (!__offload)
1145 		return NULL;
1146 
1147 	refcount_set(&__offload->users, 1);
1148 
1149 	return &__offload->offload;
1150 }
1151 
1152 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1153 						  *offload)
1154 {
1155 	struct __tc_taprio_qopt_offload *__offload;
1156 
1157 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1158 				 offload);
1159 
1160 	refcount_inc(&__offload->users);
1161 
1162 	return offload;
1163 }
1164 EXPORT_SYMBOL_GPL(taprio_offload_get);
1165 
1166 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1167 {
1168 	struct __tc_taprio_qopt_offload *__offload;
1169 
1170 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1171 				 offload);
1172 
1173 	if (!refcount_dec_and_test(&__offload->users))
1174 		return;
1175 
1176 	kfree(__offload);
1177 }
1178 EXPORT_SYMBOL_GPL(taprio_offload_free);
1179 
1180 /* The function will only serve to keep the pointers to the "oper" and "admin"
1181  * schedules valid in relation to their base times, so when calling dump() the
1182  * users looks at the right schedules.
1183  * When using full offload, the admin configuration is promoted to oper at the
1184  * base_time in the PHC time domain.  But because the system time is not
1185  * necessarily in sync with that, we can't just trigger a hrtimer to call
1186  * switch_schedules at the right hardware time.
1187  * At the moment we call this by hand right away from taprio, but in the future
1188  * it will be useful to create a mechanism for drivers to notify taprio of the
1189  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1190  * This is left as TODO.
1191  */
1192 static void taprio_offload_config_changed(struct taprio_sched *q)
1193 {
1194 	struct sched_gate_list *oper, *admin;
1195 
1196 	spin_lock(&q->current_entry_lock);
1197 
1198 	oper = rcu_dereference_protected(q->oper_sched,
1199 					 lockdep_is_held(&q->current_entry_lock));
1200 	admin = rcu_dereference_protected(q->admin_sched,
1201 					  lockdep_is_held(&q->current_entry_lock));
1202 
1203 	switch_schedules(q, &admin, &oper);
1204 
1205 	spin_unlock(&q->current_entry_lock);
1206 }
1207 
1208 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1209 {
1210 	u32 i, queue_mask = 0;
1211 
1212 	for (i = 0; i < dev->num_tc; i++) {
1213 		u32 offset, count;
1214 
1215 		if (!(tc_mask & BIT(i)))
1216 			continue;
1217 
1218 		offset = dev->tc_to_txq[i].offset;
1219 		count = dev->tc_to_txq[i].count;
1220 
1221 		queue_mask |= GENMASK(offset + count - 1, offset);
1222 	}
1223 
1224 	return queue_mask;
1225 }
1226 
1227 static void taprio_sched_to_offload(struct net_device *dev,
1228 				    struct sched_gate_list *sched,
1229 				    struct tc_taprio_qopt_offload *offload)
1230 {
1231 	struct sched_entry *entry;
1232 	int i = 0;
1233 
1234 	offload->base_time = sched->base_time;
1235 	offload->cycle_time = sched->cycle_time;
1236 	offload->cycle_time_extension = sched->cycle_time_extension;
1237 
1238 	list_for_each_entry(entry, &sched->entries, list) {
1239 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1240 
1241 		e->command = entry->command;
1242 		e->interval = entry->interval;
1243 		e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1244 
1245 		i++;
1246 	}
1247 
1248 	offload->num_entries = i;
1249 }
1250 
1251 static int taprio_enable_offload(struct net_device *dev,
1252 				 struct taprio_sched *q,
1253 				 struct sched_gate_list *sched,
1254 				 struct netlink_ext_ack *extack)
1255 {
1256 	const struct net_device_ops *ops = dev->netdev_ops;
1257 	struct tc_taprio_qopt_offload *offload;
1258 	int err = 0;
1259 
1260 	if (!ops->ndo_setup_tc) {
1261 		NL_SET_ERR_MSG(extack,
1262 			       "Device does not support taprio offload");
1263 		return -EOPNOTSUPP;
1264 	}
1265 
1266 	offload = taprio_offload_alloc(sched->num_entries);
1267 	if (!offload) {
1268 		NL_SET_ERR_MSG(extack,
1269 			       "Not enough memory for enabling offload mode");
1270 		return -ENOMEM;
1271 	}
1272 	offload->enable = 1;
1273 	taprio_sched_to_offload(dev, sched, offload);
1274 
1275 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1276 	if (err < 0) {
1277 		NL_SET_ERR_MSG(extack,
1278 			       "Device failed to setup taprio offload");
1279 		goto done;
1280 	}
1281 
1282 done:
1283 	taprio_offload_free(offload);
1284 
1285 	return err;
1286 }
1287 
1288 static int taprio_disable_offload(struct net_device *dev,
1289 				  struct taprio_sched *q,
1290 				  struct netlink_ext_ack *extack)
1291 {
1292 	const struct net_device_ops *ops = dev->netdev_ops;
1293 	struct tc_taprio_qopt_offload *offload;
1294 	int err;
1295 
1296 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1297 		return 0;
1298 
1299 	if (!ops->ndo_setup_tc)
1300 		return -EOPNOTSUPP;
1301 
1302 	offload = taprio_offload_alloc(0);
1303 	if (!offload) {
1304 		NL_SET_ERR_MSG(extack,
1305 			       "Not enough memory to disable offload mode");
1306 		return -ENOMEM;
1307 	}
1308 	offload->enable = 0;
1309 
1310 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1311 	if (err < 0) {
1312 		NL_SET_ERR_MSG(extack,
1313 			       "Device failed to disable offload");
1314 		goto out;
1315 	}
1316 
1317 out:
1318 	taprio_offload_free(offload);
1319 
1320 	return err;
1321 }
1322 
1323 /* If full offload is enabled, the only possible clockid is the net device's
1324  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1325  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1326  * in sync with the specified clockid via a user space daemon such as phc2sys.
1327  * For both software taprio and txtime-assist, the clockid is used for the
1328  * hrtimer that advances the schedule and hence mandatory.
1329  */
1330 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1331 				struct netlink_ext_ack *extack)
1332 {
1333 	struct taprio_sched *q = qdisc_priv(sch);
1334 	struct net_device *dev = qdisc_dev(sch);
1335 	int err = -EINVAL;
1336 
1337 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1338 		const struct ethtool_ops *ops = dev->ethtool_ops;
1339 		struct ethtool_ts_info info = {
1340 			.cmd = ETHTOOL_GET_TS_INFO,
1341 			.phc_index = -1,
1342 		};
1343 
1344 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1345 			NL_SET_ERR_MSG(extack,
1346 				       "The 'clockid' cannot be specified for full offload");
1347 			goto out;
1348 		}
1349 
1350 		if (ops && ops->get_ts_info)
1351 			err = ops->get_ts_info(dev, &info);
1352 
1353 		if (err || info.phc_index < 0) {
1354 			NL_SET_ERR_MSG(extack,
1355 				       "Device does not have a PTP clock");
1356 			err = -ENOTSUPP;
1357 			goto out;
1358 		}
1359 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1360 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1361 		enum tk_offsets tk_offset;
1362 
1363 		/* We only support static clockids and we don't allow
1364 		 * for it to be modified after the first init.
1365 		 */
1366 		if (clockid < 0 ||
1367 		    (q->clockid != -1 && q->clockid != clockid)) {
1368 			NL_SET_ERR_MSG(extack,
1369 				       "Changing the 'clockid' of a running schedule is not supported");
1370 			err = -ENOTSUPP;
1371 			goto out;
1372 		}
1373 
1374 		switch (clockid) {
1375 		case CLOCK_REALTIME:
1376 			tk_offset = TK_OFFS_REAL;
1377 			break;
1378 		case CLOCK_MONOTONIC:
1379 			tk_offset = TK_OFFS_MAX;
1380 			break;
1381 		case CLOCK_BOOTTIME:
1382 			tk_offset = TK_OFFS_BOOT;
1383 			break;
1384 		case CLOCK_TAI:
1385 			tk_offset = TK_OFFS_TAI;
1386 			break;
1387 		default:
1388 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1389 			err = -EINVAL;
1390 			goto out;
1391 		}
1392 		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1393 		WRITE_ONCE(q->tk_offset, tk_offset);
1394 
1395 		q->clockid = clockid;
1396 	} else {
1397 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1398 		goto out;
1399 	}
1400 
1401 	/* Everything went ok, return success. */
1402 	err = 0;
1403 
1404 out:
1405 	return err;
1406 }
1407 
1408 static int taprio_mqprio_cmp(const struct net_device *dev,
1409 			     const struct tc_mqprio_qopt *mqprio)
1410 {
1411 	int i;
1412 
1413 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1414 		return -1;
1415 
1416 	for (i = 0; i < mqprio->num_tc; i++)
1417 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1418 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1419 			return -1;
1420 
1421 	for (i = 0; i <= TC_BITMASK; i++)
1422 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1423 			return -1;
1424 
1425 	return 0;
1426 }
1427 
1428 /* The semantics of the 'flags' argument in relation to 'change()'
1429  * requests, are interpreted following two rules (which are applied in
1430  * this order): (1) an omitted 'flags' argument is interpreted as
1431  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1432  * changed.
1433  */
1434 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1435 			    struct netlink_ext_ack *extack)
1436 {
1437 	u32 new = 0;
1438 
1439 	if (attr)
1440 		new = nla_get_u32(attr);
1441 
1442 	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1443 		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1444 		return -EOPNOTSUPP;
1445 	}
1446 
1447 	if (!taprio_flags_valid(new)) {
1448 		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1449 		return -EINVAL;
1450 	}
1451 
1452 	return new;
1453 }
1454 
1455 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1456 			 struct netlink_ext_ack *extack)
1457 {
1458 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1459 	struct sched_gate_list *oper, *admin, *new_admin;
1460 	struct taprio_sched *q = qdisc_priv(sch);
1461 	struct net_device *dev = qdisc_dev(sch);
1462 	struct tc_mqprio_qopt *mqprio = NULL;
1463 	unsigned long flags;
1464 	ktime_t start;
1465 	int i, err;
1466 
1467 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1468 					  taprio_policy, extack);
1469 	if (err < 0)
1470 		return err;
1471 
1472 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1473 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1474 
1475 	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1476 			       q->flags, extack);
1477 	if (err < 0)
1478 		return err;
1479 
1480 	q->flags = err;
1481 
1482 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1483 	if (err < 0)
1484 		return err;
1485 
1486 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1487 	if (!new_admin) {
1488 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1489 		return -ENOMEM;
1490 	}
1491 	INIT_LIST_HEAD(&new_admin->entries);
1492 
1493 	rcu_read_lock();
1494 	oper = rcu_dereference(q->oper_sched);
1495 	admin = rcu_dereference(q->admin_sched);
1496 	rcu_read_unlock();
1497 
1498 	/* no changes - no new mqprio settings */
1499 	if (!taprio_mqprio_cmp(dev, mqprio))
1500 		mqprio = NULL;
1501 
1502 	if (mqprio && (oper || admin)) {
1503 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1504 		err = -ENOTSUPP;
1505 		goto free_sched;
1506 	}
1507 
1508 	err = parse_taprio_schedule(q, tb, new_admin, extack);
1509 	if (err < 0)
1510 		goto free_sched;
1511 
1512 	if (new_admin->num_entries == 0) {
1513 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1514 		err = -EINVAL;
1515 		goto free_sched;
1516 	}
1517 
1518 	err = taprio_parse_clockid(sch, tb, extack);
1519 	if (err < 0)
1520 		goto free_sched;
1521 
1522 	taprio_set_picos_per_byte(dev, q);
1523 
1524 	if (mqprio) {
1525 		err = netdev_set_num_tc(dev, mqprio->num_tc);
1526 		if (err)
1527 			goto free_sched;
1528 		for (i = 0; i < mqprio->num_tc; i++)
1529 			netdev_set_tc_queue(dev, i,
1530 					    mqprio->count[i],
1531 					    mqprio->offset[i]);
1532 
1533 		/* Always use supplied priority mappings */
1534 		for (i = 0; i <= TC_BITMASK; i++)
1535 			netdev_set_prio_tc_map(dev, i,
1536 					       mqprio->prio_tc_map[i]);
1537 	}
1538 
1539 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1540 		err = taprio_enable_offload(dev, q, new_admin, extack);
1541 	else
1542 		err = taprio_disable_offload(dev, q, extack);
1543 	if (err)
1544 		goto free_sched;
1545 
1546 	/* Protects against enqueue()/dequeue() */
1547 	spin_lock_bh(qdisc_lock(sch));
1548 
1549 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1550 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1551 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1552 			err = -EINVAL;
1553 			goto unlock;
1554 		}
1555 
1556 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1557 	}
1558 
1559 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1560 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1561 	    !hrtimer_active(&q->advance_timer)) {
1562 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1563 		q->advance_timer.function = advance_sched;
1564 	}
1565 
1566 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1567 		q->dequeue = taprio_dequeue_offload;
1568 		q->peek = taprio_peek_offload;
1569 	} else {
1570 		/* Be sure to always keep the function pointers
1571 		 * in a consistent state.
1572 		 */
1573 		q->dequeue = taprio_dequeue_soft;
1574 		q->peek = taprio_peek_soft;
1575 	}
1576 
1577 	err = taprio_get_start_time(sch, new_admin, &start);
1578 	if (err < 0) {
1579 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1580 		goto unlock;
1581 	}
1582 
1583 	setup_txtime(q, new_admin, start);
1584 
1585 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1586 		if (!oper) {
1587 			rcu_assign_pointer(q->oper_sched, new_admin);
1588 			err = 0;
1589 			new_admin = NULL;
1590 			goto unlock;
1591 		}
1592 
1593 		rcu_assign_pointer(q->admin_sched, new_admin);
1594 		if (admin)
1595 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1596 	} else {
1597 		setup_first_close_time(q, new_admin, start);
1598 
1599 		/* Protects against advance_sched() */
1600 		spin_lock_irqsave(&q->current_entry_lock, flags);
1601 
1602 		taprio_start_sched(sch, start, new_admin);
1603 
1604 		rcu_assign_pointer(q->admin_sched, new_admin);
1605 		if (admin)
1606 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1607 
1608 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1609 
1610 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1611 			taprio_offload_config_changed(q);
1612 	}
1613 
1614 	new_admin = NULL;
1615 	err = 0;
1616 
1617 unlock:
1618 	spin_unlock_bh(qdisc_lock(sch));
1619 
1620 free_sched:
1621 	if (new_admin)
1622 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1623 
1624 	return err;
1625 }
1626 
1627 static void taprio_reset(struct Qdisc *sch)
1628 {
1629 	struct taprio_sched *q = qdisc_priv(sch);
1630 	struct net_device *dev = qdisc_dev(sch);
1631 	int i;
1632 
1633 	hrtimer_cancel(&q->advance_timer);
1634 	if (q->qdiscs) {
1635 		for (i = 0; i < dev->num_tx_queues; i++)
1636 			if (q->qdiscs[i])
1637 				qdisc_reset(q->qdiscs[i]);
1638 	}
1639 }
1640 
1641 static void taprio_destroy(struct Qdisc *sch)
1642 {
1643 	struct taprio_sched *q = qdisc_priv(sch);
1644 	struct net_device *dev = qdisc_dev(sch);
1645 	unsigned int i;
1646 
1647 	spin_lock(&taprio_list_lock);
1648 	list_del(&q->taprio_list);
1649 	spin_unlock(&taprio_list_lock);
1650 
1651 	/* Note that taprio_reset() might not be called if an error
1652 	 * happens in qdisc_create(), after taprio_init() has been called.
1653 	 */
1654 	hrtimer_cancel(&q->advance_timer);
1655 
1656 	taprio_disable_offload(dev, q, NULL);
1657 
1658 	if (q->qdiscs) {
1659 		for (i = 0; i < dev->num_tx_queues; i++)
1660 			qdisc_put(q->qdiscs[i]);
1661 
1662 		kfree(q->qdiscs);
1663 	}
1664 	q->qdiscs = NULL;
1665 
1666 	netdev_reset_tc(dev);
1667 
1668 	if (q->oper_sched)
1669 		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1670 
1671 	if (q->admin_sched)
1672 		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1673 }
1674 
1675 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1676 		       struct netlink_ext_ack *extack)
1677 {
1678 	struct taprio_sched *q = qdisc_priv(sch);
1679 	struct net_device *dev = qdisc_dev(sch);
1680 	int i;
1681 
1682 	spin_lock_init(&q->current_entry_lock);
1683 
1684 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1685 	q->advance_timer.function = advance_sched;
1686 
1687 	q->dequeue = taprio_dequeue_soft;
1688 	q->peek = taprio_peek_soft;
1689 
1690 	q->root = sch;
1691 
1692 	/* We only support static clockids. Use an invalid value as default
1693 	 * and get the valid one on taprio_change().
1694 	 */
1695 	q->clockid = -1;
1696 	q->flags = TAPRIO_FLAGS_INVALID;
1697 
1698 	spin_lock(&taprio_list_lock);
1699 	list_add(&q->taprio_list, &taprio_list);
1700 	spin_unlock(&taprio_list_lock);
1701 
1702 	if (sch->parent != TC_H_ROOT)
1703 		return -EOPNOTSUPP;
1704 
1705 	if (!netif_is_multiqueue(dev))
1706 		return -EOPNOTSUPP;
1707 
1708 	/* pre-allocate qdisc, attachment can't fail */
1709 	q->qdiscs = kcalloc(dev->num_tx_queues,
1710 			    sizeof(q->qdiscs[0]),
1711 			    GFP_KERNEL);
1712 
1713 	if (!q->qdiscs)
1714 		return -ENOMEM;
1715 
1716 	if (!opt)
1717 		return -EINVAL;
1718 
1719 	for (i = 0; i < dev->num_tx_queues; i++) {
1720 		struct netdev_queue *dev_queue;
1721 		struct Qdisc *qdisc;
1722 
1723 		dev_queue = netdev_get_tx_queue(dev, i);
1724 		qdisc = qdisc_create_dflt(dev_queue,
1725 					  &pfifo_qdisc_ops,
1726 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1727 						    TC_H_MIN(i + 1)),
1728 					  extack);
1729 		if (!qdisc)
1730 			return -ENOMEM;
1731 
1732 		if (i < dev->real_num_tx_queues)
1733 			qdisc_hash_add(qdisc, false);
1734 
1735 		q->qdiscs[i] = qdisc;
1736 	}
1737 
1738 	return taprio_change(sch, opt, extack);
1739 }
1740 
1741 static void taprio_attach(struct Qdisc *sch)
1742 {
1743 	struct taprio_sched *q = qdisc_priv(sch);
1744 	struct net_device *dev = qdisc_dev(sch);
1745 	unsigned int ntx;
1746 
1747 	/* Attach underlying qdisc */
1748 	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
1749 		struct Qdisc *qdisc = q->qdiscs[ntx];
1750 		struct Qdisc *old;
1751 
1752 		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1753 			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1754 			old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
1755 		} else {
1756 			old = dev_graft_qdisc(qdisc->dev_queue, sch);
1757 			qdisc_refcount_inc(sch);
1758 		}
1759 		if (old)
1760 			qdisc_put(old);
1761 	}
1762 
1763 	/* access to the child qdiscs is not needed in offload mode */
1764 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1765 		kfree(q->qdiscs);
1766 		q->qdiscs = NULL;
1767 	}
1768 }
1769 
1770 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1771 					     unsigned long cl)
1772 {
1773 	struct net_device *dev = qdisc_dev(sch);
1774 	unsigned long ntx = cl - 1;
1775 
1776 	if (ntx >= dev->num_tx_queues)
1777 		return NULL;
1778 
1779 	return netdev_get_tx_queue(dev, ntx);
1780 }
1781 
1782 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1783 			struct Qdisc *new, struct Qdisc **old,
1784 			struct netlink_ext_ack *extack)
1785 {
1786 	struct taprio_sched *q = qdisc_priv(sch);
1787 	struct net_device *dev = qdisc_dev(sch);
1788 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1789 
1790 	if (!dev_queue)
1791 		return -EINVAL;
1792 
1793 	if (dev->flags & IFF_UP)
1794 		dev_deactivate(dev);
1795 
1796 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1797 		*old = dev_graft_qdisc(dev_queue, new);
1798 	} else {
1799 		*old = q->qdiscs[cl - 1];
1800 		q->qdiscs[cl - 1] = new;
1801 	}
1802 
1803 	if (new)
1804 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1805 
1806 	if (dev->flags & IFF_UP)
1807 		dev_activate(dev);
1808 
1809 	return 0;
1810 }
1811 
1812 static int dump_entry(struct sk_buff *msg,
1813 		      const struct sched_entry *entry)
1814 {
1815 	struct nlattr *item;
1816 
1817 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1818 	if (!item)
1819 		return -ENOSPC;
1820 
1821 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1822 		goto nla_put_failure;
1823 
1824 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1825 		goto nla_put_failure;
1826 
1827 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1828 			entry->gate_mask))
1829 		goto nla_put_failure;
1830 
1831 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1832 			entry->interval))
1833 		goto nla_put_failure;
1834 
1835 	return nla_nest_end(msg, item);
1836 
1837 nla_put_failure:
1838 	nla_nest_cancel(msg, item);
1839 	return -1;
1840 }
1841 
1842 static int dump_schedule(struct sk_buff *msg,
1843 			 const struct sched_gate_list *root)
1844 {
1845 	struct nlattr *entry_list;
1846 	struct sched_entry *entry;
1847 
1848 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1849 			root->base_time, TCA_TAPRIO_PAD))
1850 		return -1;
1851 
1852 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1853 			root->cycle_time, TCA_TAPRIO_PAD))
1854 		return -1;
1855 
1856 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1857 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1858 		return -1;
1859 
1860 	entry_list = nla_nest_start_noflag(msg,
1861 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1862 	if (!entry_list)
1863 		goto error_nest;
1864 
1865 	list_for_each_entry(entry, &root->entries, list) {
1866 		if (dump_entry(msg, entry) < 0)
1867 			goto error_nest;
1868 	}
1869 
1870 	nla_nest_end(msg, entry_list);
1871 	return 0;
1872 
1873 error_nest:
1874 	nla_nest_cancel(msg, entry_list);
1875 	return -1;
1876 }
1877 
1878 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1879 {
1880 	struct taprio_sched *q = qdisc_priv(sch);
1881 	struct net_device *dev = qdisc_dev(sch);
1882 	struct sched_gate_list *oper, *admin;
1883 	struct tc_mqprio_qopt opt = { 0 };
1884 	struct nlattr *nest, *sched_nest;
1885 	unsigned int i;
1886 
1887 	rcu_read_lock();
1888 	oper = rcu_dereference(q->oper_sched);
1889 	admin = rcu_dereference(q->admin_sched);
1890 
1891 	opt.num_tc = netdev_get_num_tc(dev);
1892 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1893 
1894 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1895 		opt.count[i] = dev->tc_to_txq[i].count;
1896 		opt.offset[i] = dev->tc_to_txq[i].offset;
1897 	}
1898 
1899 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1900 	if (!nest)
1901 		goto start_error;
1902 
1903 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1904 		goto options_error;
1905 
1906 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1907 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1908 		goto options_error;
1909 
1910 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1911 		goto options_error;
1912 
1913 	if (q->txtime_delay &&
1914 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1915 		goto options_error;
1916 
1917 	if (oper && dump_schedule(skb, oper))
1918 		goto options_error;
1919 
1920 	if (!admin)
1921 		goto done;
1922 
1923 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1924 	if (!sched_nest)
1925 		goto options_error;
1926 
1927 	if (dump_schedule(skb, admin))
1928 		goto admin_error;
1929 
1930 	nla_nest_end(skb, sched_nest);
1931 
1932 done:
1933 	rcu_read_unlock();
1934 
1935 	return nla_nest_end(skb, nest);
1936 
1937 admin_error:
1938 	nla_nest_cancel(skb, sched_nest);
1939 
1940 options_error:
1941 	nla_nest_cancel(skb, nest);
1942 
1943 start_error:
1944 	rcu_read_unlock();
1945 	return -ENOSPC;
1946 }
1947 
1948 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1949 {
1950 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1951 
1952 	if (!dev_queue)
1953 		return NULL;
1954 
1955 	return dev_queue->qdisc_sleeping;
1956 }
1957 
1958 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1959 {
1960 	unsigned int ntx = TC_H_MIN(classid);
1961 
1962 	if (!taprio_queue_get(sch, ntx))
1963 		return 0;
1964 	return ntx;
1965 }
1966 
1967 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1968 			     struct sk_buff *skb, struct tcmsg *tcm)
1969 {
1970 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1971 
1972 	tcm->tcm_parent = TC_H_ROOT;
1973 	tcm->tcm_handle |= TC_H_MIN(cl);
1974 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1975 
1976 	return 0;
1977 }
1978 
1979 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1980 				   struct gnet_dump *d)
1981 	__releases(d->lock)
1982 	__acquires(d->lock)
1983 {
1984 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1985 
1986 	sch = dev_queue->qdisc_sleeping;
1987 	if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 ||
1988 	    qdisc_qstats_copy(d, sch) < 0)
1989 		return -1;
1990 	return 0;
1991 }
1992 
1993 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1994 {
1995 	struct net_device *dev = qdisc_dev(sch);
1996 	unsigned long ntx;
1997 
1998 	if (arg->stop)
1999 		return;
2000 
2001 	arg->count = arg->skip;
2002 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2003 		if (arg->fn(sch, ntx + 1, arg) < 0) {
2004 			arg->stop = 1;
2005 			break;
2006 		}
2007 		arg->count++;
2008 	}
2009 }
2010 
2011 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2012 						struct tcmsg *tcm)
2013 {
2014 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2015 }
2016 
2017 static const struct Qdisc_class_ops taprio_class_ops = {
2018 	.graft		= taprio_graft,
2019 	.leaf		= taprio_leaf,
2020 	.find		= taprio_find,
2021 	.walk		= taprio_walk,
2022 	.dump		= taprio_dump_class,
2023 	.dump_stats	= taprio_dump_class_stats,
2024 	.select_queue	= taprio_select_queue,
2025 };
2026 
2027 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2028 	.cl_ops		= &taprio_class_ops,
2029 	.id		= "taprio",
2030 	.priv_size	= sizeof(struct taprio_sched),
2031 	.init		= taprio_init,
2032 	.change		= taprio_change,
2033 	.destroy	= taprio_destroy,
2034 	.reset		= taprio_reset,
2035 	.attach		= taprio_attach,
2036 	.peek		= taprio_peek,
2037 	.dequeue	= taprio_dequeue,
2038 	.enqueue	= taprio_enqueue,
2039 	.dump		= taprio_dump,
2040 	.owner		= THIS_MODULE,
2041 };
2042 
2043 static struct notifier_block taprio_device_notifier = {
2044 	.notifier_call = taprio_dev_notifier,
2045 };
2046 
2047 static int __init taprio_module_init(void)
2048 {
2049 	int err = register_netdevice_notifier(&taprio_device_notifier);
2050 
2051 	if (err)
2052 		return err;
2053 
2054 	return register_qdisc(&taprio_qdisc_ops);
2055 }
2056 
2057 static void __exit taprio_module_exit(void)
2058 {
2059 	unregister_qdisc(&taprio_qdisc_ops);
2060 	unregister_netdevice_notifier(&taprio_device_notifier);
2061 }
2062 
2063 module_init(taprio_module_init);
2064 module_exit(taprio_module_exit);
2065 MODULE_LICENSE("GPL");
2066