1 /* 2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 */ 11 12 #include <linux/config.h> 13 #include <linux/module.h> 14 #include <asm/uaccess.h> 15 #include <asm/system.h> 16 #include <linux/bitops.h> 17 #include <linux/types.h> 18 #include <linux/kernel.h> 19 #include <linux/jiffies.h> 20 #include <linux/string.h> 21 #include <linux/mm.h> 22 #include <linux/socket.h> 23 #include <linux/sockios.h> 24 #include <linux/in.h> 25 #include <linux/errno.h> 26 #include <linux/interrupt.h> 27 #include <linux/if_ether.h> 28 #include <linux/inet.h> 29 #include <linux/netdevice.h> 30 #include <linux/etherdevice.h> 31 #include <linux/notifier.h> 32 #include <linux/init.h> 33 #include <net/ip.h> 34 #include <linux/ipv6.h> 35 #include <net/route.h> 36 #include <linux/skbuff.h> 37 #include <net/sock.h> 38 #include <net/pkt_sched.h> 39 40 41 /* Stochastic Fairness Queuing algorithm. 42 ======================================= 43 44 Source: 45 Paul E. McKenney "Stochastic Fairness Queuing", 46 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990. 47 48 Paul E. McKenney "Stochastic Fairness Queuing", 49 "Interworking: Research and Experience", v.2, 1991, p.113-131. 50 51 52 See also: 53 M. Shreedhar and George Varghese "Efficient Fair 54 Queuing using Deficit Round Robin", Proc. SIGCOMM 95. 55 56 57 This is not the thing that is usually called (W)FQ nowadays. 58 It does not use any timestamp mechanism, but instead 59 processes queues in round-robin order. 60 61 ADVANTAGE: 62 63 - It is very cheap. Both CPU and memory requirements are minimal. 64 65 DRAWBACKS: 66 67 - "Stochastic" -> It is not 100% fair. 68 When hash collisions occur, several flows are considered as one. 69 70 - "Round-robin" -> It introduces larger delays than virtual clock 71 based schemes, and should not be used for isolating interactive 72 traffic from non-interactive. It means, that this scheduler 73 should be used as leaf of CBQ or P3, which put interactive traffic 74 to higher priority band. 75 76 We still need true WFQ for top level CSZ, but using WFQ 77 for the best effort traffic is absolutely pointless: 78 SFQ is superior for this purpose. 79 80 IMPLEMENTATION: 81 This implementation limits maximal queue length to 128; 82 maximal mtu to 2^15-1; number of hash buckets to 1024. 83 The only goal of this restrictions was that all data 84 fit into one 4K page :-). Struct sfq_sched_data is 85 organized in anti-cache manner: all the data for a bucket 86 are scattered over different locations. This is not good, 87 but it allowed me to put it into 4K. 88 89 It is easy to increase these values, but not in flight. */ 90 91 #define SFQ_DEPTH 128 92 #define SFQ_HASH_DIVISOR 1024 93 94 /* This type should contain at least SFQ_DEPTH*2 values */ 95 typedef unsigned char sfq_index; 96 97 struct sfq_head 98 { 99 sfq_index next; 100 sfq_index prev; 101 }; 102 103 struct sfq_sched_data 104 { 105 /* Parameters */ 106 int perturb_period; 107 unsigned quantum; /* Allotment per round: MUST BE >= MTU */ 108 int limit; 109 110 /* Variables */ 111 struct timer_list perturb_timer; 112 int perturbation; 113 sfq_index tail; /* Index of current slot in round */ 114 sfq_index max_depth; /* Maximal depth */ 115 116 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */ 117 sfq_index next[SFQ_DEPTH]; /* Active slots link */ 118 short allot[SFQ_DEPTH]; /* Current allotment per slot */ 119 unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */ 120 struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */ 121 struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */ 122 }; 123 124 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1) 125 { 126 int pert = q->perturbation; 127 128 /* Have we any rotation primitives? If not, WHY? */ 129 h ^= (h1<<pert) ^ (h1>>(0x1F - pert)); 130 h ^= h>>10; 131 return h & 0x3FF; 132 } 133 134 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb) 135 { 136 u32 h, h2; 137 138 switch (skb->protocol) { 139 case __constant_htons(ETH_P_IP): 140 { 141 struct iphdr *iph = skb->nh.iph; 142 h = iph->daddr; 143 h2 = iph->saddr^iph->protocol; 144 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) && 145 (iph->protocol == IPPROTO_TCP || 146 iph->protocol == IPPROTO_UDP || 147 iph->protocol == IPPROTO_SCTP || 148 iph->protocol == IPPROTO_DCCP || 149 iph->protocol == IPPROTO_ESP)) 150 h2 ^= *(((u32*)iph) + iph->ihl); 151 break; 152 } 153 case __constant_htons(ETH_P_IPV6): 154 { 155 struct ipv6hdr *iph = skb->nh.ipv6h; 156 h = iph->daddr.s6_addr32[3]; 157 h2 = iph->saddr.s6_addr32[3]^iph->nexthdr; 158 if (iph->nexthdr == IPPROTO_TCP || 159 iph->nexthdr == IPPROTO_UDP || 160 iph->nexthdr == IPPROTO_SCTP || 161 iph->nexthdr == IPPROTO_DCCP || 162 iph->nexthdr == IPPROTO_ESP) 163 h2 ^= *(u32*)&iph[1]; 164 break; 165 } 166 default: 167 h = (u32)(unsigned long)skb->dst^skb->protocol; 168 h2 = (u32)(unsigned long)skb->sk; 169 } 170 return sfq_fold_hash(q, h, h2); 171 } 172 173 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x) 174 { 175 sfq_index p, n; 176 int d = q->qs[x].qlen + SFQ_DEPTH; 177 178 p = d; 179 n = q->dep[d].next; 180 q->dep[x].next = n; 181 q->dep[x].prev = p; 182 q->dep[p].next = q->dep[n].prev = x; 183 } 184 185 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x) 186 { 187 sfq_index p, n; 188 189 n = q->dep[x].next; 190 p = q->dep[x].prev; 191 q->dep[p].next = n; 192 q->dep[n].prev = p; 193 194 if (n == p && q->max_depth == q->qs[x].qlen + 1) 195 q->max_depth--; 196 197 sfq_link(q, x); 198 } 199 200 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x) 201 { 202 sfq_index p, n; 203 int d; 204 205 n = q->dep[x].next; 206 p = q->dep[x].prev; 207 q->dep[p].next = n; 208 q->dep[n].prev = p; 209 d = q->qs[x].qlen; 210 if (q->max_depth < d) 211 q->max_depth = d; 212 213 sfq_link(q, x); 214 } 215 216 static unsigned int sfq_drop(struct Qdisc *sch) 217 { 218 struct sfq_sched_data *q = qdisc_priv(sch); 219 sfq_index d = q->max_depth; 220 struct sk_buff *skb; 221 unsigned int len; 222 223 /* Queue is full! Find the longest slot and 224 drop a packet from it */ 225 226 if (d > 1) { 227 sfq_index x = q->dep[d+SFQ_DEPTH].next; 228 skb = q->qs[x].prev; 229 len = skb->len; 230 __skb_unlink(skb, &q->qs[x]); 231 kfree_skb(skb); 232 sfq_dec(q, x); 233 sch->q.qlen--; 234 sch->qstats.drops++; 235 sch->qstats.backlog -= len; 236 return len; 237 } 238 239 if (d == 1) { 240 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */ 241 d = q->next[q->tail]; 242 q->next[q->tail] = q->next[d]; 243 q->allot[q->next[d]] += q->quantum; 244 skb = q->qs[d].prev; 245 len = skb->len; 246 __skb_unlink(skb, &q->qs[d]); 247 kfree_skb(skb); 248 sfq_dec(q, d); 249 sch->q.qlen--; 250 q->ht[q->hash[d]] = SFQ_DEPTH; 251 sch->qstats.drops++; 252 sch->qstats.backlog -= len; 253 return len; 254 } 255 256 return 0; 257 } 258 259 static int 260 sfq_enqueue(struct sk_buff *skb, struct Qdisc* sch) 261 { 262 struct sfq_sched_data *q = qdisc_priv(sch); 263 unsigned hash = sfq_hash(q, skb); 264 sfq_index x; 265 266 x = q->ht[hash]; 267 if (x == SFQ_DEPTH) { 268 q->ht[hash] = x = q->dep[SFQ_DEPTH].next; 269 q->hash[x] = hash; 270 } 271 sch->qstats.backlog += skb->len; 272 __skb_queue_tail(&q->qs[x], skb); 273 sfq_inc(q, x); 274 if (q->qs[x].qlen == 1) { /* The flow is new */ 275 if (q->tail == SFQ_DEPTH) { /* It is the first flow */ 276 q->tail = x; 277 q->next[x] = x; 278 q->allot[x] = q->quantum; 279 } else { 280 q->next[x] = q->next[q->tail]; 281 q->next[q->tail] = x; 282 q->tail = x; 283 } 284 } 285 if (++sch->q.qlen < q->limit-1) { 286 sch->bstats.bytes += skb->len; 287 sch->bstats.packets++; 288 return 0; 289 } 290 291 sfq_drop(sch); 292 return NET_XMIT_CN; 293 } 294 295 static int 296 sfq_requeue(struct sk_buff *skb, struct Qdisc* sch) 297 { 298 struct sfq_sched_data *q = qdisc_priv(sch); 299 unsigned hash = sfq_hash(q, skb); 300 sfq_index x; 301 302 x = q->ht[hash]; 303 if (x == SFQ_DEPTH) { 304 q->ht[hash] = x = q->dep[SFQ_DEPTH].next; 305 q->hash[x] = hash; 306 } 307 sch->qstats.backlog += skb->len; 308 __skb_queue_head(&q->qs[x], skb); 309 sfq_inc(q, x); 310 if (q->qs[x].qlen == 1) { /* The flow is new */ 311 if (q->tail == SFQ_DEPTH) { /* It is the first flow */ 312 q->tail = x; 313 q->next[x] = x; 314 q->allot[x] = q->quantum; 315 } else { 316 q->next[x] = q->next[q->tail]; 317 q->next[q->tail] = x; 318 q->tail = x; 319 } 320 } 321 if (++sch->q.qlen < q->limit - 1) { 322 sch->qstats.requeues++; 323 return 0; 324 } 325 326 sch->qstats.drops++; 327 sfq_drop(sch); 328 return NET_XMIT_CN; 329 } 330 331 332 333 334 static struct sk_buff * 335 sfq_dequeue(struct Qdisc* sch) 336 { 337 struct sfq_sched_data *q = qdisc_priv(sch); 338 struct sk_buff *skb; 339 sfq_index a, old_a; 340 341 /* No active slots */ 342 if (q->tail == SFQ_DEPTH) 343 return NULL; 344 345 a = old_a = q->next[q->tail]; 346 347 /* Grab packet */ 348 skb = __skb_dequeue(&q->qs[a]); 349 sfq_dec(q, a); 350 sch->q.qlen--; 351 sch->qstats.backlog -= skb->len; 352 353 /* Is the slot empty? */ 354 if (q->qs[a].qlen == 0) { 355 q->ht[q->hash[a]] = SFQ_DEPTH; 356 a = q->next[a]; 357 if (a == old_a) { 358 q->tail = SFQ_DEPTH; 359 return skb; 360 } 361 q->next[q->tail] = a; 362 q->allot[a] += q->quantum; 363 } else if ((q->allot[a] -= skb->len) <= 0) { 364 q->tail = a; 365 a = q->next[a]; 366 q->allot[a] += q->quantum; 367 } 368 return skb; 369 } 370 371 static void 372 sfq_reset(struct Qdisc* sch) 373 { 374 struct sk_buff *skb; 375 376 while ((skb = sfq_dequeue(sch)) != NULL) 377 kfree_skb(skb); 378 } 379 380 static void sfq_perturbation(unsigned long arg) 381 { 382 struct Qdisc *sch = (struct Qdisc*)arg; 383 struct sfq_sched_data *q = qdisc_priv(sch); 384 385 q->perturbation = net_random()&0x1F; 386 387 if (q->perturb_period) { 388 q->perturb_timer.expires = jiffies + q->perturb_period; 389 add_timer(&q->perturb_timer); 390 } 391 } 392 393 static int sfq_change(struct Qdisc *sch, struct rtattr *opt) 394 { 395 struct sfq_sched_data *q = qdisc_priv(sch); 396 struct tc_sfq_qopt *ctl = RTA_DATA(opt); 397 398 if (opt->rta_len < RTA_LENGTH(sizeof(*ctl))) 399 return -EINVAL; 400 401 sch_tree_lock(sch); 402 q->quantum = ctl->quantum ? : psched_mtu(sch->dev); 403 q->perturb_period = ctl->perturb_period*HZ; 404 if (ctl->limit) 405 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH); 406 407 while (sch->q.qlen >= q->limit-1) 408 sfq_drop(sch); 409 410 del_timer(&q->perturb_timer); 411 if (q->perturb_period) { 412 q->perturb_timer.expires = jiffies + q->perturb_period; 413 add_timer(&q->perturb_timer); 414 } 415 sch_tree_unlock(sch); 416 return 0; 417 } 418 419 static int sfq_init(struct Qdisc *sch, struct rtattr *opt) 420 { 421 struct sfq_sched_data *q = qdisc_priv(sch); 422 int i; 423 424 init_timer(&q->perturb_timer); 425 q->perturb_timer.data = (unsigned long)sch; 426 q->perturb_timer.function = sfq_perturbation; 427 428 for (i=0; i<SFQ_HASH_DIVISOR; i++) 429 q->ht[i] = SFQ_DEPTH; 430 for (i=0; i<SFQ_DEPTH; i++) { 431 skb_queue_head_init(&q->qs[i]); 432 q->dep[i+SFQ_DEPTH].next = i+SFQ_DEPTH; 433 q->dep[i+SFQ_DEPTH].prev = i+SFQ_DEPTH; 434 } 435 q->limit = SFQ_DEPTH; 436 q->max_depth = 0; 437 q->tail = SFQ_DEPTH; 438 if (opt == NULL) { 439 q->quantum = psched_mtu(sch->dev); 440 q->perturb_period = 0; 441 } else { 442 int err = sfq_change(sch, opt); 443 if (err) 444 return err; 445 } 446 for (i=0; i<SFQ_DEPTH; i++) 447 sfq_link(q, i); 448 return 0; 449 } 450 451 static void sfq_destroy(struct Qdisc *sch) 452 { 453 struct sfq_sched_data *q = qdisc_priv(sch); 454 del_timer(&q->perturb_timer); 455 } 456 457 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb) 458 { 459 struct sfq_sched_data *q = qdisc_priv(sch); 460 unsigned char *b = skb->tail; 461 struct tc_sfq_qopt opt; 462 463 opt.quantum = q->quantum; 464 opt.perturb_period = q->perturb_period/HZ; 465 466 opt.limit = q->limit; 467 opt.divisor = SFQ_HASH_DIVISOR; 468 opt.flows = q->limit; 469 470 RTA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt); 471 472 return skb->len; 473 474 rtattr_failure: 475 skb_trim(skb, b - skb->data); 476 return -1; 477 } 478 479 static struct Qdisc_ops sfq_qdisc_ops = { 480 .next = NULL, 481 .cl_ops = NULL, 482 .id = "sfq", 483 .priv_size = sizeof(struct sfq_sched_data), 484 .enqueue = sfq_enqueue, 485 .dequeue = sfq_dequeue, 486 .requeue = sfq_requeue, 487 .drop = sfq_drop, 488 .init = sfq_init, 489 .reset = sfq_reset, 490 .destroy = sfq_destroy, 491 .change = NULL, 492 .dump = sfq_dump, 493 .owner = THIS_MODULE, 494 }; 495 496 static int __init sfq_module_init(void) 497 { 498 return register_qdisc(&sfq_qdisc_ops); 499 } 500 static void __exit sfq_module_exit(void) 501 { 502 unregister_qdisc(&sfq_qdisc_ops); 503 } 504 module_init(sfq_module_init) 505 module_exit(sfq_module_exit) 506 MODULE_LICENSE("GPL"); 507