1 /* 2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 */ 11 12 #include <linux/module.h> 13 #include <asm/uaccess.h> 14 #include <asm/system.h> 15 #include <linux/bitops.h> 16 #include <linux/types.h> 17 #include <linux/kernel.h> 18 #include <linux/jiffies.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/socket.h> 22 #include <linux/sockios.h> 23 #include <linux/in.h> 24 #include <linux/errno.h> 25 #include <linux/interrupt.h> 26 #include <linux/if_ether.h> 27 #include <linux/inet.h> 28 #include <linux/netdevice.h> 29 #include <linux/etherdevice.h> 30 #include <linux/notifier.h> 31 #include <linux/init.h> 32 #include <net/ip.h> 33 #include <linux/ipv6.h> 34 #include <net/route.h> 35 #include <linux/skbuff.h> 36 #include <net/sock.h> 37 #include <net/pkt_sched.h> 38 39 40 /* Stochastic Fairness Queuing algorithm. 41 ======================================= 42 43 Source: 44 Paul E. McKenney "Stochastic Fairness Queuing", 45 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990. 46 47 Paul E. McKenney "Stochastic Fairness Queuing", 48 "Interworking: Research and Experience", v.2, 1991, p.113-131. 49 50 51 See also: 52 M. Shreedhar and George Varghese "Efficient Fair 53 Queuing using Deficit Round Robin", Proc. SIGCOMM 95. 54 55 56 This is not the thing that is usually called (W)FQ nowadays. 57 It does not use any timestamp mechanism, but instead 58 processes queues in round-robin order. 59 60 ADVANTAGE: 61 62 - It is very cheap. Both CPU and memory requirements are minimal. 63 64 DRAWBACKS: 65 66 - "Stochastic" -> It is not 100% fair. 67 When hash collisions occur, several flows are considered as one. 68 69 - "Round-robin" -> It introduces larger delays than virtual clock 70 based schemes, and should not be used for isolating interactive 71 traffic from non-interactive. It means, that this scheduler 72 should be used as leaf of CBQ or P3, which put interactive traffic 73 to higher priority band. 74 75 We still need true WFQ for top level CSZ, but using WFQ 76 for the best effort traffic is absolutely pointless: 77 SFQ is superior for this purpose. 78 79 IMPLEMENTATION: 80 This implementation limits maximal queue length to 128; 81 maximal mtu to 2^15-1; number of hash buckets to 1024. 82 The only goal of this restrictions was that all data 83 fit into one 4K page :-). Struct sfq_sched_data is 84 organized in anti-cache manner: all the data for a bucket 85 are scattered over different locations. This is not good, 86 but it allowed me to put it into 4K. 87 88 It is easy to increase these values, but not in flight. */ 89 90 #define SFQ_DEPTH 128 91 #define SFQ_HASH_DIVISOR 1024 92 93 /* This type should contain at least SFQ_DEPTH*2 values */ 94 typedef unsigned char sfq_index; 95 96 struct sfq_head 97 { 98 sfq_index next; 99 sfq_index prev; 100 }; 101 102 struct sfq_sched_data 103 { 104 /* Parameters */ 105 int perturb_period; 106 unsigned quantum; /* Allotment per round: MUST BE >= MTU */ 107 int limit; 108 109 /* Variables */ 110 struct timer_list perturb_timer; 111 int perturbation; 112 sfq_index tail; /* Index of current slot in round */ 113 sfq_index max_depth; /* Maximal depth */ 114 115 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */ 116 sfq_index next[SFQ_DEPTH]; /* Active slots link */ 117 short allot[SFQ_DEPTH]; /* Current allotment per slot */ 118 unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */ 119 struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */ 120 struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */ 121 }; 122 123 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1) 124 { 125 int pert = q->perturbation; 126 127 /* Have we any rotation primitives? If not, WHY? */ 128 h ^= (h1<<pert) ^ (h1>>(0x1F - pert)); 129 h ^= h>>10; 130 return h & 0x3FF; 131 } 132 133 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb) 134 { 135 u32 h, h2; 136 137 switch (skb->protocol) { 138 case __constant_htons(ETH_P_IP): 139 { 140 struct iphdr *iph = skb->nh.iph; 141 h = iph->daddr; 142 h2 = iph->saddr^iph->protocol; 143 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) && 144 (iph->protocol == IPPROTO_TCP || 145 iph->protocol == IPPROTO_UDP || 146 iph->protocol == IPPROTO_UDPLITE || 147 iph->protocol == IPPROTO_SCTP || 148 iph->protocol == IPPROTO_DCCP || 149 iph->protocol == IPPROTO_ESP)) 150 h2 ^= *(((u32*)iph) + iph->ihl); 151 break; 152 } 153 case __constant_htons(ETH_P_IPV6): 154 { 155 struct ipv6hdr *iph = skb->nh.ipv6h; 156 h = iph->daddr.s6_addr32[3]; 157 h2 = iph->saddr.s6_addr32[3]^iph->nexthdr; 158 if (iph->nexthdr == IPPROTO_TCP || 159 iph->nexthdr == IPPROTO_UDP || 160 iph->nexthdr == IPPROTO_UDPLITE || 161 iph->nexthdr == IPPROTO_SCTP || 162 iph->nexthdr == IPPROTO_DCCP || 163 iph->nexthdr == IPPROTO_ESP) 164 h2 ^= *(u32*)&iph[1]; 165 break; 166 } 167 default: 168 h = (u32)(unsigned long)skb->dst^skb->protocol; 169 h2 = (u32)(unsigned long)skb->sk; 170 } 171 return sfq_fold_hash(q, h, h2); 172 } 173 174 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x) 175 { 176 sfq_index p, n; 177 int d = q->qs[x].qlen + SFQ_DEPTH; 178 179 p = d; 180 n = q->dep[d].next; 181 q->dep[x].next = n; 182 q->dep[x].prev = p; 183 q->dep[p].next = q->dep[n].prev = x; 184 } 185 186 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x) 187 { 188 sfq_index p, n; 189 190 n = q->dep[x].next; 191 p = q->dep[x].prev; 192 q->dep[p].next = n; 193 q->dep[n].prev = p; 194 195 if (n == p && q->max_depth == q->qs[x].qlen + 1) 196 q->max_depth--; 197 198 sfq_link(q, x); 199 } 200 201 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x) 202 { 203 sfq_index p, n; 204 int d; 205 206 n = q->dep[x].next; 207 p = q->dep[x].prev; 208 q->dep[p].next = n; 209 q->dep[n].prev = p; 210 d = q->qs[x].qlen; 211 if (q->max_depth < d) 212 q->max_depth = d; 213 214 sfq_link(q, x); 215 } 216 217 static unsigned int sfq_drop(struct Qdisc *sch) 218 { 219 struct sfq_sched_data *q = qdisc_priv(sch); 220 sfq_index d = q->max_depth; 221 struct sk_buff *skb; 222 unsigned int len; 223 224 /* Queue is full! Find the longest slot and 225 drop a packet from it */ 226 227 if (d > 1) { 228 sfq_index x = q->dep[d+SFQ_DEPTH].next; 229 skb = q->qs[x].prev; 230 len = skb->len; 231 __skb_unlink(skb, &q->qs[x]); 232 kfree_skb(skb); 233 sfq_dec(q, x); 234 sch->q.qlen--; 235 sch->qstats.drops++; 236 sch->qstats.backlog -= len; 237 return len; 238 } 239 240 if (d == 1) { 241 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */ 242 d = q->next[q->tail]; 243 q->next[q->tail] = q->next[d]; 244 q->allot[q->next[d]] += q->quantum; 245 skb = q->qs[d].prev; 246 len = skb->len; 247 __skb_unlink(skb, &q->qs[d]); 248 kfree_skb(skb); 249 sfq_dec(q, d); 250 sch->q.qlen--; 251 q->ht[q->hash[d]] = SFQ_DEPTH; 252 sch->qstats.drops++; 253 sch->qstats.backlog -= len; 254 return len; 255 } 256 257 return 0; 258 } 259 260 static int 261 sfq_enqueue(struct sk_buff *skb, struct Qdisc* sch) 262 { 263 struct sfq_sched_data *q = qdisc_priv(sch); 264 unsigned hash = sfq_hash(q, skb); 265 sfq_index x; 266 267 x = q->ht[hash]; 268 if (x == SFQ_DEPTH) { 269 q->ht[hash] = x = q->dep[SFQ_DEPTH].next; 270 q->hash[x] = hash; 271 } 272 sch->qstats.backlog += skb->len; 273 __skb_queue_tail(&q->qs[x], skb); 274 sfq_inc(q, x); 275 if (q->qs[x].qlen == 1) { /* The flow is new */ 276 if (q->tail == SFQ_DEPTH) { /* It is the first flow */ 277 q->tail = x; 278 q->next[x] = x; 279 q->allot[x] = q->quantum; 280 } else { 281 q->next[x] = q->next[q->tail]; 282 q->next[q->tail] = x; 283 q->tail = x; 284 } 285 } 286 if (++sch->q.qlen < q->limit-1) { 287 sch->bstats.bytes += skb->len; 288 sch->bstats.packets++; 289 return 0; 290 } 291 292 sfq_drop(sch); 293 return NET_XMIT_CN; 294 } 295 296 static int 297 sfq_requeue(struct sk_buff *skb, struct Qdisc* sch) 298 { 299 struct sfq_sched_data *q = qdisc_priv(sch); 300 unsigned hash = sfq_hash(q, skb); 301 sfq_index x; 302 303 x = q->ht[hash]; 304 if (x == SFQ_DEPTH) { 305 q->ht[hash] = x = q->dep[SFQ_DEPTH].next; 306 q->hash[x] = hash; 307 } 308 sch->qstats.backlog += skb->len; 309 __skb_queue_head(&q->qs[x], skb); 310 sfq_inc(q, x); 311 if (q->qs[x].qlen == 1) { /* The flow is new */ 312 if (q->tail == SFQ_DEPTH) { /* It is the first flow */ 313 q->tail = x; 314 q->next[x] = x; 315 q->allot[x] = q->quantum; 316 } else { 317 q->next[x] = q->next[q->tail]; 318 q->next[q->tail] = x; 319 q->tail = x; 320 } 321 } 322 if (++sch->q.qlen < q->limit - 1) { 323 sch->qstats.requeues++; 324 return 0; 325 } 326 327 sch->qstats.drops++; 328 sfq_drop(sch); 329 return NET_XMIT_CN; 330 } 331 332 333 334 335 static struct sk_buff * 336 sfq_dequeue(struct Qdisc* sch) 337 { 338 struct sfq_sched_data *q = qdisc_priv(sch); 339 struct sk_buff *skb; 340 sfq_index a, old_a; 341 342 /* No active slots */ 343 if (q->tail == SFQ_DEPTH) 344 return NULL; 345 346 a = old_a = q->next[q->tail]; 347 348 /* Grab packet */ 349 skb = __skb_dequeue(&q->qs[a]); 350 sfq_dec(q, a); 351 sch->q.qlen--; 352 sch->qstats.backlog -= skb->len; 353 354 /* Is the slot empty? */ 355 if (q->qs[a].qlen == 0) { 356 q->ht[q->hash[a]] = SFQ_DEPTH; 357 a = q->next[a]; 358 if (a == old_a) { 359 q->tail = SFQ_DEPTH; 360 return skb; 361 } 362 q->next[q->tail] = a; 363 q->allot[a] += q->quantum; 364 } else if ((q->allot[a] -= skb->len) <= 0) { 365 q->tail = a; 366 a = q->next[a]; 367 q->allot[a] += q->quantum; 368 } 369 return skb; 370 } 371 372 static void 373 sfq_reset(struct Qdisc* sch) 374 { 375 struct sk_buff *skb; 376 377 while ((skb = sfq_dequeue(sch)) != NULL) 378 kfree_skb(skb); 379 } 380 381 static void sfq_perturbation(unsigned long arg) 382 { 383 struct Qdisc *sch = (struct Qdisc*)arg; 384 struct sfq_sched_data *q = qdisc_priv(sch); 385 386 q->perturbation = net_random()&0x1F; 387 388 if (q->perturb_period) { 389 q->perturb_timer.expires = jiffies + q->perturb_period; 390 add_timer(&q->perturb_timer); 391 } 392 } 393 394 static int sfq_change(struct Qdisc *sch, struct rtattr *opt) 395 { 396 struct sfq_sched_data *q = qdisc_priv(sch); 397 struct tc_sfq_qopt *ctl = RTA_DATA(opt); 398 unsigned int qlen; 399 400 if (opt->rta_len < RTA_LENGTH(sizeof(*ctl))) 401 return -EINVAL; 402 403 sch_tree_lock(sch); 404 q->quantum = ctl->quantum ? : psched_mtu(sch->dev); 405 q->perturb_period = ctl->perturb_period*HZ; 406 if (ctl->limit) 407 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH); 408 409 qlen = sch->q.qlen; 410 while (sch->q.qlen >= q->limit-1) 411 sfq_drop(sch); 412 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen); 413 414 del_timer(&q->perturb_timer); 415 if (q->perturb_period) { 416 q->perturb_timer.expires = jiffies + q->perturb_period; 417 add_timer(&q->perturb_timer); 418 } 419 sch_tree_unlock(sch); 420 return 0; 421 } 422 423 static int sfq_init(struct Qdisc *sch, struct rtattr *opt) 424 { 425 struct sfq_sched_data *q = qdisc_priv(sch); 426 int i; 427 428 init_timer(&q->perturb_timer); 429 q->perturb_timer.data = (unsigned long)sch; 430 q->perturb_timer.function = sfq_perturbation; 431 432 for (i=0; i<SFQ_HASH_DIVISOR; i++) 433 q->ht[i] = SFQ_DEPTH; 434 for (i=0; i<SFQ_DEPTH; i++) { 435 skb_queue_head_init(&q->qs[i]); 436 q->dep[i+SFQ_DEPTH].next = i+SFQ_DEPTH; 437 q->dep[i+SFQ_DEPTH].prev = i+SFQ_DEPTH; 438 } 439 q->limit = SFQ_DEPTH; 440 q->max_depth = 0; 441 q->tail = SFQ_DEPTH; 442 if (opt == NULL) { 443 q->quantum = psched_mtu(sch->dev); 444 q->perturb_period = 0; 445 } else { 446 int err = sfq_change(sch, opt); 447 if (err) 448 return err; 449 } 450 for (i=0; i<SFQ_DEPTH; i++) 451 sfq_link(q, i); 452 return 0; 453 } 454 455 static void sfq_destroy(struct Qdisc *sch) 456 { 457 struct sfq_sched_data *q = qdisc_priv(sch); 458 del_timer(&q->perturb_timer); 459 } 460 461 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb) 462 { 463 struct sfq_sched_data *q = qdisc_priv(sch); 464 unsigned char *b = skb->tail; 465 struct tc_sfq_qopt opt; 466 467 opt.quantum = q->quantum; 468 opt.perturb_period = q->perturb_period/HZ; 469 470 opt.limit = q->limit; 471 opt.divisor = SFQ_HASH_DIVISOR; 472 opt.flows = q->limit; 473 474 RTA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt); 475 476 return skb->len; 477 478 rtattr_failure: 479 skb_trim(skb, b - skb->data); 480 return -1; 481 } 482 483 static struct Qdisc_ops sfq_qdisc_ops = { 484 .next = NULL, 485 .cl_ops = NULL, 486 .id = "sfq", 487 .priv_size = sizeof(struct sfq_sched_data), 488 .enqueue = sfq_enqueue, 489 .dequeue = sfq_dequeue, 490 .requeue = sfq_requeue, 491 .drop = sfq_drop, 492 .init = sfq_init, 493 .reset = sfq_reset, 494 .destroy = sfq_destroy, 495 .change = NULL, 496 .dump = sfq_dump, 497 .owner = THIS_MODULE, 498 }; 499 500 static int __init sfq_module_init(void) 501 { 502 return register_qdisc(&sfq_qdisc_ops); 503 } 504 static void __exit sfq_module_exit(void) 505 { 506 unregister_qdisc(&sfq_qdisc_ops); 507 } 508 module_init(sfq_module_init) 509 module_exit(sfq_module_exit) 510 MODULE_LICENSE("GPL"); 511