1 /* 2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 */ 11 12 #include <linux/module.h> 13 #include <asm/uaccess.h> 14 #include <asm/system.h> 15 #include <linux/bitops.h> 16 #include <linux/types.h> 17 #include <linux/kernel.h> 18 #include <linux/jiffies.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/socket.h> 22 #include <linux/sockios.h> 23 #include <linux/in.h> 24 #include <linux/errno.h> 25 #include <linux/interrupt.h> 26 #include <linux/if_ether.h> 27 #include <linux/inet.h> 28 #include <linux/netdevice.h> 29 #include <linux/etherdevice.h> 30 #include <linux/notifier.h> 31 #include <linux/init.h> 32 #include <net/ip.h> 33 #include <linux/ipv6.h> 34 #include <net/route.h> 35 #include <linux/skbuff.h> 36 #include <net/sock.h> 37 #include <net/pkt_sched.h> 38 39 40 /* Stochastic Fairness Queuing algorithm. 41 ======================================= 42 43 Source: 44 Paul E. McKenney "Stochastic Fairness Queuing", 45 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990. 46 47 Paul E. McKenney "Stochastic Fairness Queuing", 48 "Interworking: Research and Experience", v.2, 1991, p.113-131. 49 50 51 See also: 52 M. Shreedhar and George Varghese "Efficient Fair 53 Queuing using Deficit Round Robin", Proc. SIGCOMM 95. 54 55 56 This is not the thing that is usually called (W)FQ nowadays. 57 It does not use any timestamp mechanism, but instead 58 processes queues in round-robin order. 59 60 ADVANTAGE: 61 62 - It is very cheap. Both CPU and memory requirements are minimal. 63 64 DRAWBACKS: 65 66 - "Stochastic" -> It is not 100% fair. 67 When hash collisions occur, several flows are considered as one. 68 69 - "Round-robin" -> It introduces larger delays than virtual clock 70 based schemes, and should not be used for isolating interactive 71 traffic from non-interactive. It means, that this scheduler 72 should be used as leaf of CBQ or P3, which put interactive traffic 73 to higher priority band. 74 75 We still need true WFQ for top level CSZ, but using WFQ 76 for the best effort traffic is absolutely pointless: 77 SFQ is superior for this purpose. 78 79 IMPLEMENTATION: 80 This implementation limits maximal queue length to 128; 81 maximal mtu to 2^15-1; number of hash buckets to 1024. 82 The only goal of this restrictions was that all data 83 fit into one 4K page :-). Struct sfq_sched_data is 84 organized in anti-cache manner: all the data for a bucket 85 are scattered over different locations. This is not good, 86 but it allowed me to put it into 4K. 87 88 It is easy to increase these values, but not in flight. */ 89 90 #define SFQ_DEPTH 128 91 #define SFQ_HASH_DIVISOR 1024 92 93 /* This type should contain at least SFQ_DEPTH*2 values */ 94 typedef unsigned char sfq_index; 95 96 struct sfq_head 97 { 98 sfq_index next; 99 sfq_index prev; 100 }; 101 102 struct sfq_sched_data 103 { 104 /* Parameters */ 105 int perturb_period; 106 unsigned quantum; /* Allotment per round: MUST BE >= MTU */ 107 int limit; 108 109 /* Variables */ 110 struct timer_list perturb_timer; 111 int perturbation; 112 sfq_index tail; /* Index of current slot in round */ 113 sfq_index max_depth; /* Maximal depth */ 114 115 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */ 116 sfq_index next[SFQ_DEPTH]; /* Active slots link */ 117 short allot[SFQ_DEPTH]; /* Current allotment per slot */ 118 unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */ 119 struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */ 120 struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */ 121 }; 122 123 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1) 124 { 125 int pert = q->perturbation; 126 127 /* Have we any rotation primitives? If not, WHY? */ 128 h ^= (h1<<pert) ^ (h1>>(0x1F - pert)); 129 h ^= h>>10; 130 return h & 0x3FF; 131 } 132 133 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb) 134 { 135 u32 h, h2; 136 137 switch (skb->protocol) { 138 case __constant_htons(ETH_P_IP): 139 { 140 struct iphdr *iph = skb->nh.iph; 141 h = iph->daddr; 142 h2 = iph->saddr^iph->protocol; 143 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) && 144 (iph->protocol == IPPROTO_TCP || 145 iph->protocol == IPPROTO_UDP || 146 iph->protocol == IPPROTO_SCTP || 147 iph->protocol == IPPROTO_DCCP || 148 iph->protocol == IPPROTO_ESP)) 149 h2 ^= *(((u32*)iph) + iph->ihl); 150 break; 151 } 152 case __constant_htons(ETH_P_IPV6): 153 { 154 struct ipv6hdr *iph = skb->nh.ipv6h; 155 h = iph->daddr.s6_addr32[3]; 156 h2 = iph->saddr.s6_addr32[3]^iph->nexthdr; 157 if (iph->nexthdr == IPPROTO_TCP || 158 iph->nexthdr == IPPROTO_UDP || 159 iph->nexthdr == IPPROTO_SCTP || 160 iph->nexthdr == IPPROTO_DCCP || 161 iph->nexthdr == IPPROTO_ESP) 162 h2 ^= *(u32*)&iph[1]; 163 break; 164 } 165 default: 166 h = (u32)(unsigned long)skb->dst^skb->protocol; 167 h2 = (u32)(unsigned long)skb->sk; 168 } 169 return sfq_fold_hash(q, h, h2); 170 } 171 172 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x) 173 { 174 sfq_index p, n; 175 int d = q->qs[x].qlen + SFQ_DEPTH; 176 177 p = d; 178 n = q->dep[d].next; 179 q->dep[x].next = n; 180 q->dep[x].prev = p; 181 q->dep[p].next = q->dep[n].prev = x; 182 } 183 184 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x) 185 { 186 sfq_index p, n; 187 188 n = q->dep[x].next; 189 p = q->dep[x].prev; 190 q->dep[p].next = n; 191 q->dep[n].prev = p; 192 193 if (n == p && q->max_depth == q->qs[x].qlen + 1) 194 q->max_depth--; 195 196 sfq_link(q, x); 197 } 198 199 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x) 200 { 201 sfq_index p, n; 202 int d; 203 204 n = q->dep[x].next; 205 p = q->dep[x].prev; 206 q->dep[p].next = n; 207 q->dep[n].prev = p; 208 d = q->qs[x].qlen; 209 if (q->max_depth < d) 210 q->max_depth = d; 211 212 sfq_link(q, x); 213 } 214 215 static unsigned int sfq_drop(struct Qdisc *sch) 216 { 217 struct sfq_sched_data *q = qdisc_priv(sch); 218 sfq_index d = q->max_depth; 219 struct sk_buff *skb; 220 unsigned int len; 221 222 /* Queue is full! Find the longest slot and 223 drop a packet from it */ 224 225 if (d > 1) { 226 sfq_index x = q->dep[d+SFQ_DEPTH].next; 227 skb = q->qs[x].prev; 228 len = skb->len; 229 __skb_unlink(skb, &q->qs[x]); 230 kfree_skb(skb); 231 sfq_dec(q, x); 232 sch->q.qlen--; 233 sch->qstats.drops++; 234 sch->qstats.backlog -= len; 235 return len; 236 } 237 238 if (d == 1) { 239 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */ 240 d = q->next[q->tail]; 241 q->next[q->tail] = q->next[d]; 242 q->allot[q->next[d]] += q->quantum; 243 skb = q->qs[d].prev; 244 len = skb->len; 245 __skb_unlink(skb, &q->qs[d]); 246 kfree_skb(skb); 247 sfq_dec(q, d); 248 sch->q.qlen--; 249 q->ht[q->hash[d]] = SFQ_DEPTH; 250 sch->qstats.drops++; 251 sch->qstats.backlog -= len; 252 return len; 253 } 254 255 return 0; 256 } 257 258 static int 259 sfq_enqueue(struct sk_buff *skb, struct Qdisc* sch) 260 { 261 struct sfq_sched_data *q = qdisc_priv(sch); 262 unsigned hash = sfq_hash(q, skb); 263 sfq_index x; 264 265 x = q->ht[hash]; 266 if (x == SFQ_DEPTH) { 267 q->ht[hash] = x = q->dep[SFQ_DEPTH].next; 268 q->hash[x] = hash; 269 } 270 sch->qstats.backlog += skb->len; 271 __skb_queue_tail(&q->qs[x], skb); 272 sfq_inc(q, x); 273 if (q->qs[x].qlen == 1) { /* The flow is new */ 274 if (q->tail == SFQ_DEPTH) { /* It is the first flow */ 275 q->tail = x; 276 q->next[x] = x; 277 q->allot[x] = q->quantum; 278 } else { 279 q->next[x] = q->next[q->tail]; 280 q->next[q->tail] = x; 281 q->tail = x; 282 } 283 } 284 if (++sch->q.qlen < q->limit-1) { 285 sch->bstats.bytes += skb->len; 286 sch->bstats.packets++; 287 return 0; 288 } 289 290 sfq_drop(sch); 291 return NET_XMIT_CN; 292 } 293 294 static int 295 sfq_requeue(struct sk_buff *skb, struct Qdisc* sch) 296 { 297 struct sfq_sched_data *q = qdisc_priv(sch); 298 unsigned hash = sfq_hash(q, skb); 299 sfq_index x; 300 301 x = q->ht[hash]; 302 if (x == SFQ_DEPTH) { 303 q->ht[hash] = x = q->dep[SFQ_DEPTH].next; 304 q->hash[x] = hash; 305 } 306 sch->qstats.backlog += skb->len; 307 __skb_queue_head(&q->qs[x], skb); 308 sfq_inc(q, x); 309 if (q->qs[x].qlen == 1) { /* The flow is new */ 310 if (q->tail == SFQ_DEPTH) { /* It is the first flow */ 311 q->tail = x; 312 q->next[x] = x; 313 q->allot[x] = q->quantum; 314 } else { 315 q->next[x] = q->next[q->tail]; 316 q->next[q->tail] = x; 317 q->tail = x; 318 } 319 } 320 if (++sch->q.qlen < q->limit - 1) { 321 sch->qstats.requeues++; 322 return 0; 323 } 324 325 sch->qstats.drops++; 326 sfq_drop(sch); 327 return NET_XMIT_CN; 328 } 329 330 331 332 333 static struct sk_buff * 334 sfq_dequeue(struct Qdisc* sch) 335 { 336 struct sfq_sched_data *q = qdisc_priv(sch); 337 struct sk_buff *skb; 338 sfq_index a, old_a; 339 340 /* No active slots */ 341 if (q->tail == SFQ_DEPTH) 342 return NULL; 343 344 a = old_a = q->next[q->tail]; 345 346 /* Grab packet */ 347 skb = __skb_dequeue(&q->qs[a]); 348 sfq_dec(q, a); 349 sch->q.qlen--; 350 sch->qstats.backlog -= skb->len; 351 352 /* Is the slot empty? */ 353 if (q->qs[a].qlen == 0) { 354 q->ht[q->hash[a]] = SFQ_DEPTH; 355 a = q->next[a]; 356 if (a == old_a) { 357 q->tail = SFQ_DEPTH; 358 return skb; 359 } 360 q->next[q->tail] = a; 361 q->allot[a] += q->quantum; 362 } else if ((q->allot[a] -= skb->len) <= 0) { 363 q->tail = a; 364 a = q->next[a]; 365 q->allot[a] += q->quantum; 366 } 367 return skb; 368 } 369 370 static void 371 sfq_reset(struct Qdisc* sch) 372 { 373 struct sk_buff *skb; 374 375 while ((skb = sfq_dequeue(sch)) != NULL) 376 kfree_skb(skb); 377 } 378 379 static void sfq_perturbation(unsigned long arg) 380 { 381 struct Qdisc *sch = (struct Qdisc*)arg; 382 struct sfq_sched_data *q = qdisc_priv(sch); 383 384 q->perturbation = net_random()&0x1F; 385 386 if (q->perturb_period) { 387 q->perturb_timer.expires = jiffies + q->perturb_period; 388 add_timer(&q->perturb_timer); 389 } 390 } 391 392 static int sfq_change(struct Qdisc *sch, struct rtattr *opt) 393 { 394 struct sfq_sched_data *q = qdisc_priv(sch); 395 struct tc_sfq_qopt *ctl = RTA_DATA(opt); 396 397 if (opt->rta_len < RTA_LENGTH(sizeof(*ctl))) 398 return -EINVAL; 399 400 sch_tree_lock(sch); 401 q->quantum = ctl->quantum ? : psched_mtu(sch->dev); 402 q->perturb_period = ctl->perturb_period*HZ; 403 if (ctl->limit) 404 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH); 405 406 while (sch->q.qlen >= q->limit-1) 407 sfq_drop(sch); 408 409 del_timer(&q->perturb_timer); 410 if (q->perturb_period) { 411 q->perturb_timer.expires = jiffies + q->perturb_period; 412 add_timer(&q->perturb_timer); 413 } 414 sch_tree_unlock(sch); 415 return 0; 416 } 417 418 static int sfq_init(struct Qdisc *sch, struct rtattr *opt) 419 { 420 struct sfq_sched_data *q = qdisc_priv(sch); 421 int i; 422 423 init_timer(&q->perturb_timer); 424 q->perturb_timer.data = (unsigned long)sch; 425 q->perturb_timer.function = sfq_perturbation; 426 427 for (i=0; i<SFQ_HASH_DIVISOR; i++) 428 q->ht[i] = SFQ_DEPTH; 429 for (i=0; i<SFQ_DEPTH; i++) { 430 skb_queue_head_init(&q->qs[i]); 431 q->dep[i+SFQ_DEPTH].next = i+SFQ_DEPTH; 432 q->dep[i+SFQ_DEPTH].prev = i+SFQ_DEPTH; 433 } 434 q->limit = SFQ_DEPTH; 435 q->max_depth = 0; 436 q->tail = SFQ_DEPTH; 437 if (opt == NULL) { 438 q->quantum = psched_mtu(sch->dev); 439 q->perturb_period = 0; 440 } else { 441 int err = sfq_change(sch, opt); 442 if (err) 443 return err; 444 } 445 for (i=0; i<SFQ_DEPTH; i++) 446 sfq_link(q, i); 447 return 0; 448 } 449 450 static void sfq_destroy(struct Qdisc *sch) 451 { 452 struct sfq_sched_data *q = qdisc_priv(sch); 453 del_timer(&q->perturb_timer); 454 } 455 456 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb) 457 { 458 struct sfq_sched_data *q = qdisc_priv(sch); 459 unsigned char *b = skb->tail; 460 struct tc_sfq_qopt opt; 461 462 opt.quantum = q->quantum; 463 opt.perturb_period = q->perturb_period/HZ; 464 465 opt.limit = q->limit; 466 opt.divisor = SFQ_HASH_DIVISOR; 467 opt.flows = q->limit; 468 469 RTA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt); 470 471 return skb->len; 472 473 rtattr_failure: 474 skb_trim(skb, b - skb->data); 475 return -1; 476 } 477 478 static struct Qdisc_ops sfq_qdisc_ops = { 479 .next = NULL, 480 .cl_ops = NULL, 481 .id = "sfq", 482 .priv_size = sizeof(struct sfq_sched_data), 483 .enqueue = sfq_enqueue, 484 .dequeue = sfq_dequeue, 485 .requeue = sfq_requeue, 486 .drop = sfq_drop, 487 .init = sfq_init, 488 .reset = sfq_reset, 489 .destroy = sfq_destroy, 490 .change = NULL, 491 .dump = sfq_dump, 492 .owner = THIS_MODULE, 493 }; 494 495 static int __init sfq_module_init(void) 496 { 497 return register_qdisc(&sfq_qdisc_ops); 498 } 499 static void __exit sfq_module_exit(void) 500 { 501 unregister_qdisc(&sfq_qdisc_ops); 502 } 503 module_init(sfq_module_init) 504 module_exit(sfq_module_exit) 505 MODULE_LICENSE("GPL"); 506