1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sched/sch_sfb.c Stochastic Fair Blue 4 * 5 * Copyright (c) 2008-2011 Juliusz Chroboczek <jch@pps.jussieu.fr> 6 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com> 7 * 8 * W. Feng, D. Kandlur, D. Saha, K. Shin. Blue: 9 * A New Class of Active Queue Management Algorithms. 10 * U. Michigan CSE-TR-387-99, April 1999. 11 * 12 * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf 13 */ 14 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/kernel.h> 18 #include <linux/errno.h> 19 #include <linux/skbuff.h> 20 #include <linux/random.h> 21 #include <linux/siphash.h> 22 #include <net/ip.h> 23 #include <net/pkt_sched.h> 24 #include <net/pkt_cls.h> 25 #include <net/inet_ecn.h> 26 27 /* 28 * SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level) 29 * This implementation uses L = 8 and N = 16 30 * This permits us to split one 32bit hash (provided per packet by rxhash or 31 * external classifier) into 8 subhashes of 4 bits. 32 */ 33 #define SFB_BUCKET_SHIFT 4 34 #define SFB_NUMBUCKETS (1 << SFB_BUCKET_SHIFT) /* N bins per Level */ 35 #define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1) 36 #define SFB_LEVELS (32 / SFB_BUCKET_SHIFT) /* L */ 37 38 /* SFB algo uses a virtual queue, named "bin" */ 39 struct sfb_bucket { 40 u16 qlen; /* length of virtual queue */ 41 u16 p_mark; /* marking probability */ 42 }; 43 44 /* We use a double buffering right before hash change 45 * (Section 4.4 of SFB reference : moving hash functions) 46 */ 47 struct sfb_bins { 48 siphash_key_t perturbation; /* siphash key */ 49 struct sfb_bucket bins[SFB_LEVELS][SFB_NUMBUCKETS]; 50 }; 51 52 struct sfb_sched_data { 53 struct Qdisc *qdisc; 54 struct tcf_proto __rcu *filter_list; 55 struct tcf_block *block; 56 unsigned long rehash_interval; 57 unsigned long warmup_time; /* double buffering warmup time in jiffies */ 58 u32 max; 59 u32 bin_size; /* maximum queue length per bin */ 60 u32 increment; /* d1 */ 61 u32 decrement; /* d2 */ 62 u32 limit; /* HARD maximal queue length */ 63 u32 penalty_rate; 64 u32 penalty_burst; 65 u32 tokens_avail; 66 unsigned long rehash_time; 67 unsigned long token_time; 68 69 u8 slot; /* current active bins (0 or 1) */ 70 bool double_buffering; 71 struct sfb_bins bins[2]; 72 73 struct { 74 u32 earlydrop; 75 u32 penaltydrop; 76 u32 bucketdrop; 77 u32 queuedrop; 78 u32 childdrop; /* drops in child qdisc */ 79 u32 marked; /* ECN mark */ 80 } stats; 81 }; 82 83 /* 84 * Each queued skb might be hashed on one or two bins 85 * We store in skb_cb the two hash values. 86 * (A zero value means double buffering was not used) 87 */ 88 struct sfb_skb_cb { 89 u32 hashes[2]; 90 }; 91 92 static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb) 93 { 94 qdisc_cb_private_validate(skb, sizeof(struct sfb_skb_cb)); 95 return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data; 96 } 97 98 /* 99 * If using 'internal' SFB flow classifier, hash comes from skb rxhash 100 * If using external classifier, hash comes from the classid. 101 */ 102 static u32 sfb_hash(const struct sk_buff *skb, u32 slot) 103 { 104 return sfb_skb_cb(skb)->hashes[slot]; 105 } 106 107 /* Probabilities are coded as Q0.16 fixed-point values, 108 * with 0xFFFF representing 65535/65536 (almost 1.0) 109 * Addition and subtraction are saturating in [0, 65535] 110 */ 111 static u32 prob_plus(u32 p1, u32 p2) 112 { 113 u32 res = p1 + p2; 114 115 return min_t(u32, res, SFB_MAX_PROB); 116 } 117 118 static u32 prob_minus(u32 p1, u32 p2) 119 { 120 return p1 > p2 ? p1 - p2 : 0; 121 } 122 123 static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q) 124 { 125 int i; 126 struct sfb_bucket *b = &q->bins[slot].bins[0][0]; 127 128 for (i = 0; i < SFB_LEVELS; i++) { 129 u32 hash = sfbhash & SFB_BUCKET_MASK; 130 131 sfbhash >>= SFB_BUCKET_SHIFT; 132 if (b[hash].qlen < 0xFFFF) 133 b[hash].qlen++; 134 b += SFB_NUMBUCKETS; /* next level */ 135 } 136 } 137 138 static void increment_qlen(const struct sk_buff *skb, struct sfb_sched_data *q) 139 { 140 u32 sfbhash; 141 142 sfbhash = sfb_hash(skb, 0); 143 if (sfbhash) 144 increment_one_qlen(sfbhash, 0, q); 145 146 sfbhash = sfb_hash(skb, 1); 147 if (sfbhash) 148 increment_one_qlen(sfbhash, 1, q); 149 } 150 151 static void decrement_one_qlen(u32 sfbhash, u32 slot, 152 struct sfb_sched_data *q) 153 { 154 int i; 155 struct sfb_bucket *b = &q->bins[slot].bins[0][0]; 156 157 for (i = 0; i < SFB_LEVELS; i++) { 158 u32 hash = sfbhash & SFB_BUCKET_MASK; 159 160 sfbhash >>= SFB_BUCKET_SHIFT; 161 if (b[hash].qlen > 0) 162 b[hash].qlen--; 163 b += SFB_NUMBUCKETS; /* next level */ 164 } 165 } 166 167 static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q) 168 { 169 u32 sfbhash; 170 171 sfbhash = sfb_hash(skb, 0); 172 if (sfbhash) 173 decrement_one_qlen(sfbhash, 0, q); 174 175 sfbhash = sfb_hash(skb, 1); 176 if (sfbhash) 177 decrement_one_qlen(sfbhash, 1, q); 178 } 179 180 static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q) 181 { 182 b->p_mark = prob_minus(b->p_mark, q->decrement); 183 } 184 185 static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q) 186 { 187 b->p_mark = prob_plus(b->p_mark, q->increment); 188 } 189 190 static void sfb_zero_all_buckets(struct sfb_sched_data *q) 191 { 192 memset(&q->bins, 0, sizeof(q->bins)); 193 } 194 195 /* 196 * compute max qlen, max p_mark, and avg p_mark 197 */ 198 static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q) 199 { 200 int i; 201 u32 qlen = 0, prob = 0, totalpm = 0; 202 const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0]; 203 204 for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) { 205 if (qlen < b->qlen) 206 qlen = b->qlen; 207 totalpm += b->p_mark; 208 if (prob < b->p_mark) 209 prob = b->p_mark; 210 b++; 211 } 212 *prob_r = prob; 213 *avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS); 214 return qlen; 215 } 216 217 218 static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q) 219 { 220 get_random_bytes(&q->bins[slot].perturbation, 221 sizeof(q->bins[slot].perturbation)); 222 } 223 224 static void sfb_swap_slot(struct sfb_sched_data *q) 225 { 226 sfb_init_perturbation(q->slot, q); 227 q->slot ^= 1; 228 q->double_buffering = false; 229 } 230 231 /* Non elastic flows are allowed to use part of the bandwidth, expressed 232 * in "penalty_rate" packets per second, with "penalty_burst" burst 233 */ 234 static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q) 235 { 236 if (q->penalty_rate == 0 || q->penalty_burst == 0) 237 return true; 238 239 if (q->tokens_avail < 1) { 240 unsigned long age = min(10UL * HZ, jiffies - q->token_time); 241 242 q->tokens_avail = (age * q->penalty_rate) / HZ; 243 if (q->tokens_avail > q->penalty_burst) 244 q->tokens_avail = q->penalty_burst; 245 q->token_time = jiffies; 246 if (q->tokens_avail < 1) 247 return true; 248 } 249 250 q->tokens_avail--; 251 return false; 252 } 253 254 static bool sfb_classify(struct sk_buff *skb, struct tcf_proto *fl, 255 int *qerr, u32 *salt) 256 { 257 struct tcf_result res; 258 int result; 259 260 result = tcf_classify(skb, fl, &res, false); 261 if (result >= 0) { 262 #ifdef CONFIG_NET_CLS_ACT 263 switch (result) { 264 case TC_ACT_STOLEN: 265 case TC_ACT_QUEUED: 266 case TC_ACT_TRAP: 267 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 268 fallthrough; 269 case TC_ACT_SHOT: 270 return false; 271 } 272 #endif 273 *salt = TC_H_MIN(res.classid); 274 return true; 275 } 276 return false; 277 } 278 279 static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch, 280 struct sk_buff **to_free) 281 { 282 283 struct sfb_sched_data *q = qdisc_priv(sch); 284 struct Qdisc *child = q->qdisc; 285 struct tcf_proto *fl; 286 int i; 287 u32 p_min = ~0; 288 u32 minqlen = ~0; 289 u32 r, sfbhash; 290 u32 slot = q->slot; 291 int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 292 293 if (unlikely(sch->q.qlen >= q->limit)) { 294 qdisc_qstats_overlimit(sch); 295 q->stats.queuedrop++; 296 goto drop; 297 } 298 299 if (q->rehash_interval > 0) { 300 unsigned long limit = q->rehash_time + q->rehash_interval; 301 302 if (unlikely(time_after(jiffies, limit))) { 303 sfb_swap_slot(q); 304 q->rehash_time = jiffies; 305 } else if (unlikely(!q->double_buffering && q->warmup_time > 0 && 306 time_after(jiffies, limit - q->warmup_time))) { 307 q->double_buffering = true; 308 } 309 } 310 311 fl = rcu_dereference_bh(q->filter_list); 312 if (fl) { 313 u32 salt; 314 315 /* If using external classifiers, get result and record it. */ 316 if (!sfb_classify(skb, fl, &ret, &salt)) 317 goto other_drop; 318 sfbhash = siphash_1u32(salt, &q->bins[slot].perturbation); 319 } else { 320 sfbhash = skb_get_hash_perturb(skb, &q->bins[slot].perturbation); 321 } 322 323 324 if (!sfbhash) 325 sfbhash = 1; 326 sfb_skb_cb(skb)->hashes[slot] = sfbhash; 327 328 for (i = 0; i < SFB_LEVELS; i++) { 329 u32 hash = sfbhash & SFB_BUCKET_MASK; 330 struct sfb_bucket *b = &q->bins[slot].bins[i][hash]; 331 332 sfbhash >>= SFB_BUCKET_SHIFT; 333 if (b->qlen == 0) 334 decrement_prob(b, q); 335 else if (b->qlen >= q->bin_size) 336 increment_prob(b, q); 337 if (minqlen > b->qlen) 338 minqlen = b->qlen; 339 if (p_min > b->p_mark) 340 p_min = b->p_mark; 341 } 342 343 slot ^= 1; 344 sfb_skb_cb(skb)->hashes[slot] = 0; 345 346 if (unlikely(minqlen >= q->max)) { 347 qdisc_qstats_overlimit(sch); 348 q->stats.bucketdrop++; 349 goto drop; 350 } 351 352 if (unlikely(p_min >= SFB_MAX_PROB)) { 353 /* Inelastic flow */ 354 if (q->double_buffering) { 355 sfbhash = skb_get_hash_perturb(skb, 356 &q->bins[slot].perturbation); 357 if (!sfbhash) 358 sfbhash = 1; 359 sfb_skb_cb(skb)->hashes[slot] = sfbhash; 360 361 for (i = 0; i < SFB_LEVELS; i++) { 362 u32 hash = sfbhash & SFB_BUCKET_MASK; 363 struct sfb_bucket *b = &q->bins[slot].bins[i][hash]; 364 365 sfbhash >>= SFB_BUCKET_SHIFT; 366 if (b->qlen == 0) 367 decrement_prob(b, q); 368 else if (b->qlen >= q->bin_size) 369 increment_prob(b, q); 370 } 371 } 372 if (sfb_rate_limit(skb, q)) { 373 qdisc_qstats_overlimit(sch); 374 q->stats.penaltydrop++; 375 goto drop; 376 } 377 goto enqueue; 378 } 379 380 r = prandom_u32() & SFB_MAX_PROB; 381 382 if (unlikely(r < p_min)) { 383 if (unlikely(p_min > SFB_MAX_PROB / 2)) { 384 /* If we're marking that many packets, then either 385 * this flow is unresponsive, or we're badly congested. 386 * In either case, we want to start dropping packets. 387 */ 388 if (r < (p_min - SFB_MAX_PROB / 2) * 2) { 389 q->stats.earlydrop++; 390 goto drop; 391 } 392 } 393 if (INET_ECN_set_ce(skb)) { 394 q->stats.marked++; 395 } else { 396 q->stats.earlydrop++; 397 goto drop; 398 } 399 } 400 401 enqueue: 402 ret = qdisc_enqueue(skb, child, to_free); 403 if (likely(ret == NET_XMIT_SUCCESS)) { 404 qdisc_qstats_backlog_inc(sch, skb); 405 sch->q.qlen++; 406 increment_qlen(skb, q); 407 } else if (net_xmit_drop_count(ret)) { 408 q->stats.childdrop++; 409 qdisc_qstats_drop(sch); 410 } 411 return ret; 412 413 drop: 414 qdisc_drop(skb, sch, to_free); 415 return NET_XMIT_CN; 416 other_drop: 417 if (ret & __NET_XMIT_BYPASS) 418 qdisc_qstats_drop(sch); 419 kfree_skb(skb); 420 return ret; 421 } 422 423 static struct sk_buff *sfb_dequeue(struct Qdisc *sch) 424 { 425 struct sfb_sched_data *q = qdisc_priv(sch); 426 struct Qdisc *child = q->qdisc; 427 struct sk_buff *skb; 428 429 skb = child->dequeue(q->qdisc); 430 431 if (skb) { 432 qdisc_bstats_update(sch, skb); 433 qdisc_qstats_backlog_dec(sch, skb); 434 sch->q.qlen--; 435 decrement_qlen(skb, q); 436 } 437 438 return skb; 439 } 440 441 static struct sk_buff *sfb_peek(struct Qdisc *sch) 442 { 443 struct sfb_sched_data *q = qdisc_priv(sch); 444 struct Qdisc *child = q->qdisc; 445 446 return child->ops->peek(child); 447 } 448 449 /* No sfb_drop -- impossible since the child doesn't return the dropped skb. */ 450 451 static void sfb_reset(struct Qdisc *sch) 452 { 453 struct sfb_sched_data *q = qdisc_priv(sch); 454 455 qdisc_reset(q->qdisc); 456 sch->qstats.backlog = 0; 457 sch->q.qlen = 0; 458 q->slot = 0; 459 q->double_buffering = false; 460 sfb_zero_all_buckets(q); 461 sfb_init_perturbation(0, q); 462 } 463 464 static void sfb_destroy(struct Qdisc *sch) 465 { 466 struct sfb_sched_data *q = qdisc_priv(sch); 467 468 tcf_block_put(q->block); 469 qdisc_put(q->qdisc); 470 } 471 472 static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = { 473 [TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) }, 474 }; 475 476 static const struct tc_sfb_qopt sfb_default_ops = { 477 .rehash_interval = 600 * MSEC_PER_SEC, 478 .warmup_time = 60 * MSEC_PER_SEC, 479 .limit = 0, 480 .max = 25, 481 .bin_size = 20, 482 .increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */ 483 .decrement = (SFB_MAX_PROB + 3000) / 6000, 484 .penalty_rate = 10, 485 .penalty_burst = 20, 486 }; 487 488 static int sfb_change(struct Qdisc *sch, struct nlattr *opt, 489 struct netlink_ext_ack *extack) 490 { 491 struct sfb_sched_data *q = qdisc_priv(sch); 492 struct Qdisc *child, *old; 493 struct nlattr *tb[TCA_SFB_MAX + 1]; 494 const struct tc_sfb_qopt *ctl = &sfb_default_ops; 495 u32 limit; 496 int err; 497 498 if (opt) { 499 err = nla_parse_nested_deprecated(tb, TCA_SFB_MAX, opt, 500 sfb_policy, NULL); 501 if (err < 0) 502 return -EINVAL; 503 504 if (tb[TCA_SFB_PARMS] == NULL) 505 return -EINVAL; 506 507 ctl = nla_data(tb[TCA_SFB_PARMS]); 508 } 509 510 limit = ctl->limit; 511 if (limit == 0) 512 limit = qdisc_dev(sch)->tx_queue_len; 513 514 child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit, extack); 515 if (IS_ERR(child)) 516 return PTR_ERR(child); 517 518 if (child != &noop_qdisc) 519 qdisc_hash_add(child, true); 520 sch_tree_lock(sch); 521 522 qdisc_purge_queue(q->qdisc); 523 old = q->qdisc; 524 q->qdisc = child; 525 526 q->rehash_interval = msecs_to_jiffies(ctl->rehash_interval); 527 q->warmup_time = msecs_to_jiffies(ctl->warmup_time); 528 q->rehash_time = jiffies; 529 q->limit = limit; 530 q->increment = ctl->increment; 531 q->decrement = ctl->decrement; 532 q->max = ctl->max; 533 q->bin_size = ctl->bin_size; 534 q->penalty_rate = ctl->penalty_rate; 535 q->penalty_burst = ctl->penalty_burst; 536 q->tokens_avail = ctl->penalty_burst; 537 q->token_time = jiffies; 538 539 q->slot = 0; 540 q->double_buffering = false; 541 sfb_zero_all_buckets(q); 542 sfb_init_perturbation(0, q); 543 sfb_init_perturbation(1, q); 544 545 sch_tree_unlock(sch); 546 qdisc_put(old); 547 548 return 0; 549 } 550 551 static int sfb_init(struct Qdisc *sch, struct nlattr *opt, 552 struct netlink_ext_ack *extack) 553 { 554 struct sfb_sched_data *q = qdisc_priv(sch); 555 int err; 556 557 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 558 if (err) 559 return err; 560 561 q->qdisc = &noop_qdisc; 562 return sfb_change(sch, opt, extack); 563 } 564 565 static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb) 566 { 567 struct sfb_sched_data *q = qdisc_priv(sch); 568 struct nlattr *opts; 569 struct tc_sfb_qopt opt = { 570 .rehash_interval = jiffies_to_msecs(q->rehash_interval), 571 .warmup_time = jiffies_to_msecs(q->warmup_time), 572 .limit = q->limit, 573 .max = q->max, 574 .bin_size = q->bin_size, 575 .increment = q->increment, 576 .decrement = q->decrement, 577 .penalty_rate = q->penalty_rate, 578 .penalty_burst = q->penalty_burst, 579 }; 580 581 sch->qstats.backlog = q->qdisc->qstats.backlog; 582 opts = nla_nest_start_noflag(skb, TCA_OPTIONS); 583 if (opts == NULL) 584 goto nla_put_failure; 585 if (nla_put(skb, TCA_SFB_PARMS, sizeof(opt), &opt)) 586 goto nla_put_failure; 587 return nla_nest_end(skb, opts); 588 589 nla_put_failure: 590 nla_nest_cancel(skb, opts); 591 return -EMSGSIZE; 592 } 593 594 static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 595 { 596 struct sfb_sched_data *q = qdisc_priv(sch); 597 struct tc_sfb_xstats st = { 598 .earlydrop = q->stats.earlydrop, 599 .penaltydrop = q->stats.penaltydrop, 600 .bucketdrop = q->stats.bucketdrop, 601 .queuedrop = q->stats.queuedrop, 602 .childdrop = q->stats.childdrop, 603 .marked = q->stats.marked, 604 }; 605 606 st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q); 607 608 return gnet_stats_copy_app(d, &st, sizeof(st)); 609 } 610 611 static int sfb_dump_class(struct Qdisc *sch, unsigned long cl, 612 struct sk_buff *skb, struct tcmsg *tcm) 613 { 614 return -ENOSYS; 615 } 616 617 static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 618 struct Qdisc **old, struct netlink_ext_ack *extack) 619 { 620 struct sfb_sched_data *q = qdisc_priv(sch); 621 622 if (new == NULL) 623 new = &noop_qdisc; 624 625 *old = qdisc_replace(sch, new, &q->qdisc); 626 return 0; 627 } 628 629 static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg) 630 { 631 struct sfb_sched_data *q = qdisc_priv(sch); 632 633 return q->qdisc; 634 } 635 636 static unsigned long sfb_find(struct Qdisc *sch, u32 classid) 637 { 638 return 1; 639 } 640 641 static void sfb_unbind(struct Qdisc *sch, unsigned long arg) 642 { 643 } 644 645 static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 646 struct nlattr **tca, unsigned long *arg, 647 struct netlink_ext_ack *extack) 648 { 649 return -ENOSYS; 650 } 651 652 static int sfb_delete(struct Qdisc *sch, unsigned long cl, 653 struct netlink_ext_ack *extack) 654 { 655 return -ENOSYS; 656 } 657 658 static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker) 659 { 660 if (!walker->stop) { 661 if (walker->count >= walker->skip) 662 if (walker->fn(sch, 1, walker) < 0) { 663 walker->stop = 1; 664 return; 665 } 666 walker->count++; 667 } 668 } 669 670 static struct tcf_block *sfb_tcf_block(struct Qdisc *sch, unsigned long cl, 671 struct netlink_ext_ack *extack) 672 { 673 struct sfb_sched_data *q = qdisc_priv(sch); 674 675 if (cl) 676 return NULL; 677 return q->block; 678 } 679 680 static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent, 681 u32 classid) 682 { 683 return 0; 684 } 685 686 687 static const struct Qdisc_class_ops sfb_class_ops = { 688 .graft = sfb_graft, 689 .leaf = sfb_leaf, 690 .find = sfb_find, 691 .change = sfb_change_class, 692 .delete = sfb_delete, 693 .walk = sfb_walk, 694 .tcf_block = sfb_tcf_block, 695 .bind_tcf = sfb_bind, 696 .unbind_tcf = sfb_unbind, 697 .dump = sfb_dump_class, 698 }; 699 700 static struct Qdisc_ops sfb_qdisc_ops __read_mostly = { 701 .id = "sfb", 702 .priv_size = sizeof(struct sfb_sched_data), 703 .cl_ops = &sfb_class_ops, 704 .enqueue = sfb_enqueue, 705 .dequeue = sfb_dequeue, 706 .peek = sfb_peek, 707 .init = sfb_init, 708 .reset = sfb_reset, 709 .destroy = sfb_destroy, 710 .change = sfb_change, 711 .dump = sfb_dump, 712 .dump_stats = sfb_dump_stats, 713 .owner = THIS_MODULE, 714 }; 715 716 static int __init sfb_module_init(void) 717 { 718 return register_qdisc(&sfb_qdisc_ops); 719 } 720 721 static void __exit sfb_module_exit(void) 722 { 723 unregister_qdisc(&sfb_qdisc_ops); 724 } 725 726 module_init(sfb_module_init) 727 module_exit(sfb_module_exit) 728 729 MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline"); 730 MODULE_AUTHOR("Juliusz Chroboczek"); 731 MODULE_AUTHOR("Eric Dumazet"); 732 MODULE_LICENSE("GPL"); 733