1 /* 2 * net/sched/sch_sfb.c Stochastic Fair Blue 3 * 4 * Copyright (c) 2008-2011 Juliusz Chroboczek <jch@pps.jussieu.fr> 5 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * version 2 as published by the Free Software Foundation. 10 * 11 * W. Feng, D. Kandlur, D. Saha, K. Shin. Blue: 12 * A New Class of Active Queue Management Algorithms. 13 * U. Michigan CSE-TR-387-99, April 1999. 14 * 15 * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf 16 * 17 */ 18 19 #include <linux/module.h> 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/skbuff.h> 24 #include <linux/random.h> 25 #include <linux/jhash.h> 26 #include <net/ip.h> 27 #include <net/pkt_sched.h> 28 #include <net/inet_ecn.h> 29 #include <net/flow_keys.h> 30 31 /* 32 * SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level) 33 * This implementation uses L = 8 and N = 16 34 * This permits us to split one 32bit hash (provided per packet by rxhash or 35 * external classifier) into 8 subhashes of 4 bits. 36 */ 37 #define SFB_BUCKET_SHIFT 4 38 #define SFB_NUMBUCKETS (1 << SFB_BUCKET_SHIFT) /* N bins per Level */ 39 #define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1) 40 #define SFB_LEVELS (32 / SFB_BUCKET_SHIFT) /* L */ 41 42 /* SFB algo uses a virtual queue, named "bin" */ 43 struct sfb_bucket { 44 u16 qlen; /* length of virtual queue */ 45 u16 p_mark; /* marking probability */ 46 }; 47 48 /* We use a double buffering right before hash change 49 * (Section 4.4 of SFB reference : moving hash functions) 50 */ 51 struct sfb_bins { 52 u32 perturbation; /* jhash perturbation */ 53 struct sfb_bucket bins[SFB_LEVELS][SFB_NUMBUCKETS]; 54 }; 55 56 struct sfb_sched_data { 57 struct Qdisc *qdisc; 58 struct tcf_proto __rcu *filter_list; 59 unsigned long rehash_interval; 60 unsigned long warmup_time; /* double buffering warmup time in jiffies */ 61 u32 max; 62 u32 bin_size; /* maximum queue length per bin */ 63 u32 increment; /* d1 */ 64 u32 decrement; /* d2 */ 65 u32 limit; /* HARD maximal queue length */ 66 u32 penalty_rate; 67 u32 penalty_burst; 68 u32 tokens_avail; 69 unsigned long rehash_time; 70 unsigned long token_time; 71 72 u8 slot; /* current active bins (0 or 1) */ 73 bool double_buffering; 74 struct sfb_bins bins[2]; 75 76 struct { 77 u32 earlydrop; 78 u32 penaltydrop; 79 u32 bucketdrop; 80 u32 queuedrop; 81 u32 childdrop; /* drops in child qdisc */ 82 u32 marked; /* ECN mark */ 83 } stats; 84 }; 85 86 /* 87 * Each queued skb might be hashed on one or two bins 88 * We store in skb_cb the two hash values. 89 * (A zero value means double buffering was not used) 90 */ 91 struct sfb_skb_cb { 92 u32 hashes[2]; 93 }; 94 95 static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb) 96 { 97 qdisc_cb_private_validate(skb, sizeof(struct sfb_skb_cb)); 98 return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data; 99 } 100 101 /* 102 * If using 'internal' SFB flow classifier, hash comes from skb rxhash 103 * If using external classifier, hash comes from the classid. 104 */ 105 static u32 sfb_hash(const struct sk_buff *skb, u32 slot) 106 { 107 return sfb_skb_cb(skb)->hashes[slot]; 108 } 109 110 /* Probabilities are coded as Q0.16 fixed-point values, 111 * with 0xFFFF representing 65535/65536 (almost 1.0) 112 * Addition and subtraction are saturating in [0, 65535] 113 */ 114 static u32 prob_plus(u32 p1, u32 p2) 115 { 116 u32 res = p1 + p2; 117 118 return min_t(u32, res, SFB_MAX_PROB); 119 } 120 121 static u32 prob_minus(u32 p1, u32 p2) 122 { 123 return p1 > p2 ? p1 - p2 : 0; 124 } 125 126 static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q) 127 { 128 int i; 129 struct sfb_bucket *b = &q->bins[slot].bins[0][0]; 130 131 for (i = 0; i < SFB_LEVELS; i++) { 132 u32 hash = sfbhash & SFB_BUCKET_MASK; 133 134 sfbhash >>= SFB_BUCKET_SHIFT; 135 if (b[hash].qlen < 0xFFFF) 136 b[hash].qlen++; 137 b += SFB_NUMBUCKETS; /* next level */ 138 } 139 } 140 141 static void increment_qlen(const struct sk_buff *skb, struct sfb_sched_data *q) 142 { 143 u32 sfbhash; 144 145 sfbhash = sfb_hash(skb, 0); 146 if (sfbhash) 147 increment_one_qlen(sfbhash, 0, q); 148 149 sfbhash = sfb_hash(skb, 1); 150 if (sfbhash) 151 increment_one_qlen(sfbhash, 1, q); 152 } 153 154 static void decrement_one_qlen(u32 sfbhash, u32 slot, 155 struct sfb_sched_data *q) 156 { 157 int i; 158 struct sfb_bucket *b = &q->bins[slot].bins[0][0]; 159 160 for (i = 0; i < SFB_LEVELS; i++) { 161 u32 hash = sfbhash & SFB_BUCKET_MASK; 162 163 sfbhash >>= SFB_BUCKET_SHIFT; 164 if (b[hash].qlen > 0) 165 b[hash].qlen--; 166 b += SFB_NUMBUCKETS; /* next level */ 167 } 168 } 169 170 static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q) 171 { 172 u32 sfbhash; 173 174 sfbhash = sfb_hash(skb, 0); 175 if (sfbhash) 176 decrement_one_qlen(sfbhash, 0, q); 177 178 sfbhash = sfb_hash(skb, 1); 179 if (sfbhash) 180 decrement_one_qlen(sfbhash, 1, q); 181 } 182 183 static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q) 184 { 185 b->p_mark = prob_minus(b->p_mark, q->decrement); 186 } 187 188 static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q) 189 { 190 b->p_mark = prob_plus(b->p_mark, q->increment); 191 } 192 193 static void sfb_zero_all_buckets(struct sfb_sched_data *q) 194 { 195 memset(&q->bins, 0, sizeof(q->bins)); 196 } 197 198 /* 199 * compute max qlen, max p_mark, and avg p_mark 200 */ 201 static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q) 202 { 203 int i; 204 u32 qlen = 0, prob = 0, totalpm = 0; 205 const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0]; 206 207 for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) { 208 if (qlen < b->qlen) 209 qlen = b->qlen; 210 totalpm += b->p_mark; 211 if (prob < b->p_mark) 212 prob = b->p_mark; 213 b++; 214 } 215 *prob_r = prob; 216 *avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS); 217 return qlen; 218 } 219 220 221 static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q) 222 { 223 q->bins[slot].perturbation = prandom_u32(); 224 } 225 226 static void sfb_swap_slot(struct sfb_sched_data *q) 227 { 228 sfb_init_perturbation(q->slot, q); 229 q->slot ^= 1; 230 q->double_buffering = false; 231 } 232 233 /* Non elastic flows are allowed to use part of the bandwidth, expressed 234 * in "penalty_rate" packets per second, with "penalty_burst" burst 235 */ 236 static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q) 237 { 238 if (q->penalty_rate == 0 || q->penalty_burst == 0) 239 return true; 240 241 if (q->tokens_avail < 1) { 242 unsigned long age = min(10UL * HZ, jiffies - q->token_time); 243 244 q->tokens_avail = (age * q->penalty_rate) / HZ; 245 if (q->tokens_avail > q->penalty_burst) 246 q->tokens_avail = q->penalty_burst; 247 q->token_time = jiffies; 248 if (q->tokens_avail < 1) 249 return true; 250 } 251 252 q->tokens_avail--; 253 return false; 254 } 255 256 static bool sfb_classify(struct sk_buff *skb, struct tcf_proto *fl, 257 int *qerr, u32 *salt) 258 { 259 struct tcf_result res; 260 int result; 261 262 result = tc_classify(skb, fl, &res); 263 if (result >= 0) { 264 #ifdef CONFIG_NET_CLS_ACT 265 switch (result) { 266 case TC_ACT_STOLEN: 267 case TC_ACT_QUEUED: 268 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 269 case TC_ACT_SHOT: 270 return false; 271 } 272 #endif 273 *salt = TC_H_MIN(res.classid); 274 return true; 275 } 276 return false; 277 } 278 279 static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch) 280 { 281 282 struct sfb_sched_data *q = qdisc_priv(sch); 283 struct Qdisc *child = q->qdisc; 284 struct tcf_proto *fl; 285 int i; 286 u32 p_min = ~0; 287 u32 minqlen = ~0; 288 u32 r, slot, salt, sfbhash; 289 int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 290 struct flow_keys keys; 291 292 if (unlikely(sch->q.qlen >= q->limit)) { 293 qdisc_qstats_overlimit(sch); 294 q->stats.queuedrop++; 295 goto drop; 296 } 297 298 if (q->rehash_interval > 0) { 299 unsigned long limit = q->rehash_time + q->rehash_interval; 300 301 if (unlikely(time_after(jiffies, limit))) { 302 sfb_swap_slot(q); 303 q->rehash_time = jiffies; 304 } else if (unlikely(!q->double_buffering && q->warmup_time > 0 && 305 time_after(jiffies, limit - q->warmup_time))) { 306 q->double_buffering = true; 307 } 308 } 309 310 fl = rcu_dereference_bh(q->filter_list); 311 if (fl) { 312 /* If using external classifiers, get result and record it. */ 313 if (!sfb_classify(skb, fl, &ret, &salt)) 314 goto other_drop; 315 keys.src = salt; 316 keys.dst = 0; 317 keys.ports = 0; 318 } else { 319 skb_flow_dissect(skb, &keys); 320 } 321 322 slot = q->slot; 323 324 sfbhash = jhash_3words((__force u32)keys.dst, 325 (__force u32)keys.src, 326 (__force u32)keys.ports, 327 q->bins[slot].perturbation); 328 if (!sfbhash) 329 sfbhash = 1; 330 sfb_skb_cb(skb)->hashes[slot] = sfbhash; 331 332 for (i = 0; i < SFB_LEVELS; i++) { 333 u32 hash = sfbhash & SFB_BUCKET_MASK; 334 struct sfb_bucket *b = &q->bins[slot].bins[i][hash]; 335 336 sfbhash >>= SFB_BUCKET_SHIFT; 337 if (b->qlen == 0) 338 decrement_prob(b, q); 339 else if (b->qlen >= q->bin_size) 340 increment_prob(b, q); 341 if (minqlen > b->qlen) 342 minqlen = b->qlen; 343 if (p_min > b->p_mark) 344 p_min = b->p_mark; 345 } 346 347 slot ^= 1; 348 sfb_skb_cb(skb)->hashes[slot] = 0; 349 350 if (unlikely(minqlen >= q->max)) { 351 qdisc_qstats_overlimit(sch); 352 q->stats.bucketdrop++; 353 goto drop; 354 } 355 356 if (unlikely(p_min >= SFB_MAX_PROB)) { 357 /* Inelastic flow */ 358 if (q->double_buffering) { 359 sfbhash = jhash_3words((__force u32)keys.dst, 360 (__force u32)keys.src, 361 (__force u32)keys.ports, 362 q->bins[slot].perturbation); 363 if (!sfbhash) 364 sfbhash = 1; 365 sfb_skb_cb(skb)->hashes[slot] = sfbhash; 366 367 for (i = 0; i < SFB_LEVELS; i++) { 368 u32 hash = sfbhash & SFB_BUCKET_MASK; 369 struct sfb_bucket *b = &q->bins[slot].bins[i][hash]; 370 371 sfbhash >>= SFB_BUCKET_SHIFT; 372 if (b->qlen == 0) 373 decrement_prob(b, q); 374 else if (b->qlen >= q->bin_size) 375 increment_prob(b, q); 376 } 377 } 378 if (sfb_rate_limit(skb, q)) { 379 qdisc_qstats_overlimit(sch); 380 q->stats.penaltydrop++; 381 goto drop; 382 } 383 goto enqueue; 384 } 385 386 r = prandom_u32() & SFB_MAX_PROB; 387 388 if (unlikely(r < p_min)) { 389 if (unlikely(p_min > SFB_MAX_PROB / 2)) { 390 /* If we're marking that many packets, then either 391 * this flow is unresponsive, or we're badly congested. 392 * In either case, we want to start dropping packets. 393 */ 394 if (r < (p_min - SFB_MAX_PROB / 2) * 2) { 395 q->stats.earlydrop++; 396 goto drop; 397 } 398 } 399 if (INET_ECN_set_ce(skb)) { 400 q->stats.marked++; 401 } else { 402 q->stats.earlydrop++; 403 goto drop; 404 } 405 } 406 407 enqueue: 408 ret = qdisc_enqueue(skb, child); 409 if (likely(ret == NET_XMIT_SUCCESS)) { 410 sch->q.qlen++; 411 increment_qlen(skb, q); 412 } else if (net_xmit_drop_count(ret)) { 413 q->stats.childdrop++; 414 qdisc_qstats_drop(sch); 415 } 416 return ret; 417 418 drop: 419 qdisc_drop(skb, sch); 420 return NET_XMIT_CN; 421 other_drop: 422 if (ret & __NET_XMIT_BYPASS) 423 qdisc_qstats_drop(sch); 424 kfree_skb(skb); 425 return ret; 426 } 427 428 static struct sk_buff *sfb_dequeue(struct Qdisc *sch) 429 { 430 struct sfb_sched_data *q = qdisc_priv(sch); 431 struct Qdisc *child = q->qdisc; 432 struct sk_buff *skb; 433 434 skb = child->dequeue(q->qdisc); 435 436 if (skb) { 437 qdisc_bstats_update(sch, skb); 438 sch->q.qlen--; 439 decrement_qlen(skb, q); 440 } 441 442 return skb; 443 } 444 445 static struct sk_buff *sfb_peek(struct Qdisc *sch) 446 { 447 struct sfb_sched_data *q = qdisc_priv(sch); 448 struct Qdisc *child = q->qdisc; 449 450 return child->ops->peek(child); 451 } 452 453 /* No sfb_drop -- impossible since the child doesn't return the dropped skb. */ 454 455 static void sfb_reset(struct Qdisc *sch) 456 { 457 struct sfb_sched_data *q = qdisc_priv(sch); 458 459 qdisc_reset(q->qdisc); 460 sch->q.qlen = 0; 461 q->slot = 0; 462 q->double_buffering = false; 463 sfb_zero_all_buckets(q); 464 sfb_init_perturbation(0, q); 465 } 466 467 static void sfb_destroy(struct Qdisc *sch) 468 { 469 struct sfb_sched_data *q = qdisc_priv(sch); 470 471 tcf_destroy_chain(&q->filter_list); 472 qdisc_destroy(q->qdisc); 473 } 474 475 static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = { 476 [TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) }, 477 }; 478 479 static const struct tc_sfb_qopt sfb_default_ops = { 480 .rehash_interval = 600 * MSEC_PER_SEC, 481 .warmup_time = 60 * MSEC_PER_SEC, 482 .limit = 0, 483 .max = 25, 484 .bin_size = 20, 485 .increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */ 486 .decrement = (SFB_MAX_PROB + 3000) / 6000, 487 .penalty_rate = 10, 488 .penalty_burst = 20, 489 }; 490 491 static int sfb_change(struct Qdisc *sch, struct nlattr *opt) 492 { 493 struct sfb_sched_data *q = qdisc_priv(sch); 494 struct Qdisc *child; 495 struct nlattr *tb[TCA_SFB_MAX + 1]; 496 const struct tc_sfb_qopt *ctl = &sfb_default_ops; 497 u32 limit; 498 int err; 499 500 if (opt) { 501 err = nla_parse_nested(tb, TCA_SFB_MAX, opt, sfb_policy); 502 if (err < 0) 503 return -EINVAL; 504 505 if (tb[TCA_SFB_PARMS] == NULL) 506 return -EINVAL; 507 508 ctl = nla_data(tb[TCA_SFB_PARMS]); 509 } 510 511 limit = ctl->limit; 512 if (limit == 0) 513 limit = max_t(u32, qdisc_dev(sch)->tx_queue_len, 1); 514 515 child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit); 516 if (IS_ERR(child)) 517 return PTR_ERR(child); 518 519 sch_tree_lock(sch); 520 521 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen); 522 qdisc_destroy(q->qdisc); 523 q->qdisc = child; 524 525 q->rehash_interval = msecs_to_jiffies(ctl->rehash_interval); 526 q->warmup_time = msecs_to_jiffies(ctl->warmup_time); 527 q->rehash_time = jiffies; 528 q->limit = limit; 529 q->increment = ctl->increment; 530 q->decrement = ctl->decrement; 531 q->max = ctl->max; 532 q->bin_size = ctl->bin_size; 533 q->penalty_rate = ctl->penalty_rate; 534 q->penalty_burst = ctl->penalty_burst; 535 q->tokens_avail = ctl->penalty_burst; 536 q->token_time = jiffies; 537 538 q->slot = 0; 539 q->double_buffering = false; 540 sfb_zero_all_buckets(q); 541 sfb_init_perturbation(0, q); 542 sfb_init_perturbation(1, q); 543 544 sch_tree_unlock(sch); 545 546 return 0; 547 } 548 549 static int sfb_init(struct Qdisc *sch, struct nlattr *opt) 550 { 551 struct sfb_sched_data *q = qdisc_priv(sch); 552 553 q->qdisc = &noop_qdisc; 554 return sfb_change(sch, opt); 555 } 556 557 static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb) 558 { 559 struct sfb_sched_data *q = qdisc_priv(sch); 560 struct nlattr *opts; 561 struct tc_sfb_qopt opt = { 562 .rehash_interval = jiffies_to_msecs(q->rehash_interval), 563 .warmup_time = jiffies_to_msecs(q->warmup_time), 564 .limit = q->limit, 565 .max = q->max, 566 .bin_size = q->bin_size, 567 .increment = q->increment, 568 .decrement = q->decrement, 569 .penalty_rate = q->penalty_rate, 570 .penalty_burst = q->penalty_burst, 571 }; 572 573 sch->qstats.backlog = q->qdisc->qstats.backlog; 574 opts = nla_nest_start(skb, TCA_OPTIONS); 575 if (opts == NULL) 576 goto nla_put_failure; 577 if (nla_put(skb, TCA_SFB_PARMS, sizeof(opt), &opt)) 578 goto nla_put_failure; 579 return nla_nest_end(skb, opts); 580 581 nla_put_failure: 582 nla_nest_cancel(skb, opts); 583 return -EMSGSIZE; 584 } 585 586 static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 587 { 588 struct sfb_sched_data *q = qdisc_priv(sch); 589 struct tc_sfb_xstats st = { 590 .earlydrop = q->stats.earlydrop, 591 .penaltydrop = q->stats.penaltydrop, 592 .bucketdrop = q->stats.bucketdrop, 593 .queuedrop = q->stats.queuedrop, 594 .childdrop = q->stats.childdrop, 595 .marked = q->stats.marked, 596 }; 597 598 st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q); 599 600 return gnet_stats_copy_app(d, &st, sizeof(st)); 601 } 602 603 static int sfb_dump_class(struct Qdisc *sch, unsigned long cl, 604 struct sk_buff *skb, struct tcmsg *tcm) 605 { 606 return -ENOSYS; 607 } 608 609 static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 610 struct Qdisc **old) 611 { 612 struct sfb_sched_data *q = qdisc_priv(sch); 613 614 if (new == NULL) 615 new = &noop_qdisc; 616 617 sch_tree_lock(sch); 618 *old = q->qdisc; 619 q->qdisc = new; 620 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen); 621 qdisc_reset(*old); 622 sch_tree_unlock(sch); 623 return 0; 624 } 625 626 static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg) 627 { 628 struct sfb_sched_data *q = qdisc_priv(sch); 629 630 return q->qdisc; 631 } 632 633 static unsigned long sfb_get(struct Qdisc *sch, u32 classid) 634 { 635 return 1; 636 } 637 638 static void sfb_put(struct Qdisc *sch, unsigned long arg) 639 { 640 } 641 642 static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 643 struct nlattr **tca, unsigned long *arg) 644 { 645 return -ENOSYS; 646 } 647 648 static int sfb_delete(struct Qdisc *sch, unsigned long cl) 649 { 650 return -ENOSYS; 651 } 652 653 static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker) 654 { 655 if (!walker->stop) { 656 if (walker->count >= walker->skip) 657 if (walker->fn(sch, 1, walker) < 0) { 658 walker->stop = 1; 659 return; 660 } 661 walker->count++; 662 } 663 } 664 665 static struct tcf_proto __rcu **sfb_find_tcf(struct Qdisc *sch, 666 unsigned long cl) 667 { 668 struct sfb_sched_data *q = qdisc_priv(sch); 669 670 if (cl) 671 return NULL; 672 return &q->filter_list; 673 } 674 675 static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent, 676 u32 classid) 677 { 678 return 0; 679 } 680 681 682 static const struct Qdisc_class_ops sfb_class_ops = { 683 .graft = sfb_graft, 684 .leaf = sfb_leaf, 685 .get = sfb_get, 686 .put = sfb_put, 687 .change = sfb_change_class, 688 .delete = sfb_delete, 689 .walk = sfb_walk, 690 .tcf_chain = sfb_find_tcf, 691 .bind_tcf = sfb_bind, 692 .unbind_tcf = sfb_put, 693 .dump = sfb_dump_class, 694 }; 695 696 static struct Qdisc_ops sfb_qdisc_ops __read_mostly = { 697 .id = "sfb", 698 .priv_size = sizeof(struct sfb_sched_data), 699 .cl_ops = &sfb_class_ops, 700 .enqueue = sfb_enqueue, 701 .dequeue = sfb_dequeue, 702 .peek = sfb_peek, 703 .init = sfb_init, 704 .reset = sfb_reset, 705 .destroy = sfb_destroy, 706 .change = sfb_change, 707 .dump = sfb_dump, 708 .dump_stats = sfb_dump_stats, 709 .owner = THIS_MODULE, 710 }; 711 712 static int __init sfb_module_init(void) 713 { 714 return register_qdisc(&sfb_qdisc_ops); 715 } 716 717 static void __exit sfb_module_exit(void) 718 { 719 unregister_qdisc(&sfb_qdisc_ops); 720 } 721 722 module_init(sfb_module_init) 723 module_exit(sfb_module_exit) 724 725 MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline"); 726 MODULE_AUTHOR("Juliusz Chroboczek"); 727 MODULE_AUTHOR("Eric Dumazet"); 728 MODULE_LICENSE("GPL"); 729