xref: /linux/net/sched/sch_qfq.c (revision e8d235d4d8fb8957bae5f6ed4521115203a00d8b)
1 /*
2  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
3  *
4  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5  * Copyright (c) 2012 Paolo Valente.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21 
22 
23 /*  Quick Fair Queueing Plus
24     ========================
25 
26     Sources:
27 
28     [1] Paolo Valente,
29     "Reducing the Execution Time of Fair-Queueing Schedulers."
30     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31 
32     Sources for QFQ:
33 
34     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36 
37     See also:
38     http://retis.sssup.it/~fabio/linux/qfq/
39  */
40 
41 /*
42 
43   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44   classes. Each aggregate is timestamped with a virtual start time S
45   and a virtual finish time F, and scheduled according to its
46   timestamps. S and F are computed as a function of a system virtual
47   time function V. The classes within each aggregate are instead
48   scheduled with DRR.
49 
50   To speed up operations, QFQ+ divides also aggregates into a limited
51   number of groups. Which group a class belongs to depends on the
52   ratio between the maximum packet length for the class and the weight
53   of the class. Groups have their own S and F. In the end, QFQ+
54   schedules groups, then aggregates within groups, then classes within
55   aggregates. See [1] and [2] for a full description.
56 
57   Virtual time computations.
58 
59   S, F and V are all computed in fixed point arithmetic with
60   FRAC_BITS decimal bits.
61 
62   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 	one bit per index.
64   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65 
66   The layout of the bits is as below:
67 
68                    [ MTU_SHIFT ][      FRAC_BITS    ]
69                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
70 				 ^.__grp->index = 0
71 				 *.__grp->slot_shift
72 
73   where MIN_SLOT_SHIFT is derived by difference from the others.
74 
75   The max group index corresponds to Lmax/w_min, where
76   Lmax=1<<MTU_SHIFT, w_min = 1 .
77   From this, and knowing how many groups (MAX_INDEX) we want,
78   we can derive the shift corresponding to each group.
79 
80   Because we often need to compute
81 	F = S + len/w_i  and V = V + len/wsum
82   instead of storing w_i store the value
83 	inv_w = (1<<FRAC_BITS)/w_i
84   so we can do F = S + len * inv_w * wsum.
85   We use W_TOT in the formulas so we can easily move between
86   static and adaptive weight sum.
87 
88   The per-scheduler-instance data contain all the data structures
89   for the scheduler: bitmaps and bucket lists.
90 
91  */
92 
93 /*
94  * Maximum number of consecutive slots occupied by backlogged classes
95  * inside a group.
96  */
97 #define QFQ_MAX_SLOTS	32
98 
99 /*
100  * Shifts used for aggregate<->group mapping.  We allow class weights that are
101  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102  * group with the smallest index that can support the L_i / r_i configured
103  * for the classes in the aggregate.
104  *
105  * grp->index is the index of the group; and grp->slot_shift
106  * is the shift for the corresponding (scaled) sigma_i.
107  */
108 #define QFQ_MAX_INDEX		24
109 #define QFQ_MAX_WSHIFT		10
110 
111 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
113 
114 #define FRAC_BITS		30	/* fixed point arithmetic */
115 #define ONE_FP			(1UL << FRAC_BITS)
116 
117 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
118 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
119 
120 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
121 
122 /*
123  * Possible group states.  These values are used as indexes for the bitmaps
124  * array of struct qfq_queue.
125  */
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127 
128 struct qfq_group;
129 
130 struct qfq_aggregate;
131 
132 struct qfq_class {
133 	struct Qdisc_class_common common;
134 
135 	unsigned int refcnt;
136 	unsigned int filter_cnt;
137 
138 	struct gnet_stats_basic_packed bstats;
139 	struct gnet_stats_queue qstats;
140 	struct gnet_stats_rate_est64 rate_est;
141 	struct Qdisc *qdisc;
142 	struct list_head alist;		/* Link for active-classes list. */
143 	struct qfq_aggregate *agg;	/* Parent aggregate. */
144 	int deficit;			/* DRR deficit counter. */
145 };
146 
147 struct qfq_aggregate {
148 	struct hlist_node next;	/* Link for the slot list. */
149 	u64 S, F;		/* flow timestamps (exact) */
150 
151 	/* group we belong to. In principle we would need the index,
152 	 * which is log_2(lmax/weight), but we never reference it
153 	 * directly, only the group.
154 	 */
155 	struct qfq_group *grp;
156 
157 	/* these are copied from the flowset. */
158 	u32	class_weight; /* Weight of each class in this aggregate. */
159 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
160 	int	lmax;
161 
162 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
163 	u32	budgetmax;  /* Max budget for this aggregate. */
164 	u32	initial_budget, budget;     /* Initial and current budget. */
165 
166 	int		  num_classes;	/* Number of classes in this aggr. */
167 	struct list_head  active;	/* DRR queue of active classes. */
168 
169 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
170 };
171 
172 struct qfq_group {
173 	u64 S, F;			/* group timestamps (approx). */
174 	unsigned int slot_shift;	/* Slot shift. */
175 	unsigned int index;		/* Group index. */
176 	unsigned int front;		/* Index of the front slot. */
177 	unsigned long full_slots;	/* non-empty slots */
178 
179 	/* Array of RR lists of active aggregates. */
180 	struct hlist_head slots[QFQ_MAX_SLOTS];
181 };
182 
183 struct qfq_sched {
184 	struct tcf_proto __rcu *filter_list;
185 	struct Qdisc_class_hash clhash;
186 
187 	u64			oldV, V;	/* Precise virtual times. */
188 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
189 	u32			num_active_agg; /* Num. of active aggregates */
190 	u32			wsum;		/* weight sum */
191 	u32			iwsum;		/* inverse weight sum */
192 
193 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
194 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
195 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
196 
197 	u32 max_agg_classes;		/* Max number of classes per aggr. */
198 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
199 };
200 
201 /*
202  * Possible reasons why the timestamps of an aggregate are updated
203  * enqueue: the aggregate switches from idle to active and must scheduled
204  *	    for service
205  * requeue: the aggregate finishes its budget, so it stops being served and
206  *	    must be rescheduled for service
207  */
208 enum update_reason {enqueue, requeue};
209 
210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 	struct qfq_sched *q = qdisc_priv(sch);
213 	struct Qdisc_class_common *clc;
214 
215 	clc = qdisc_class_find(&q->clhash, classid);
216 	if (clc == NULL)
217 		return NULL;
218 	return container_of(clc, struct qfq_class, common);
219 }
220 
221 static void qfq_purge_queue(struct qfq_class *cl)
222 {
223 	unsigned int len = cl->qdisc->q.qlen;
224 
225 	qdisc_reset(cl->qdisc);
226 	qdisc_tree_decrease_qlen(cl->qdisc, len);
227 }
228 
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
232 };
233 
234 /*
235  * Calculate a flow index, given its weight and maximum packet length.
236  * index = log_2(maxlen/weight) but we need to apply the scaling.
237  * This is used only once at flow creation.
238  */
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240 {
241 	u64 slot_size = (u64)maxlen * inv_w;
242 	unsigned long size_map;
243 	int index = 0;
244 
245 	size_map = slot_size >> min_slot_shift;
246 	if (!size_map)
247 		goto out;
248 
249 	index = __fls(size_map) + 1;	/* basically a log_2 */
250 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251 
252 	if (index < 0)
253 		index = 0;
254 out:
255 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
257 
258 	return index;
259 }
260 
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 			     enum update_reason);
264 
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 			 u32 lmax, u32 weight)
267 {
268 	INIT_LIST_HEAD(&agg->active);
269 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270 
271 	agg->lmax = lmax;
272 	agg->class_weight = weight;
273 }
274 
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 					  u32 lmax, u32 weight)
277 {
278 	struct qfq_aggregate *agg;
279 
280 	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 		if (agg->lmax == lmax && agg->class_weight == weight)
282 			return agg;
283 
284 	return NULL;
285 }
286 
287 
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 			   int new_num_classes)
291 {
292 	u32 new_agg_weight;
293 
294 	if (new_num_classes == q->max_agg_classes)
295 		hlist_del_init(&agg->nonfull_next);
296 
297 	if (agg->num_classes > new_num_classes &&
298 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300 
301 	/* The next assignment may let
302 	 * agg->initial_budget > agg->budgetmax
303 	 * hold, we will take it into account in charge_actual_service().
304 	 */
305 	agg->budgetmax = new_num_classes * agg->lmax;
306 	new_agg_weight = agg->class_weight * new_num_classes;
307 	agg->inv_w = ONE_FP/new_agg_weight;
308 
309 	if (agg->grp == NULL) {
310 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 				       q->min_slot_shift);
312 		agg->grp = &q->groups[i];
313 	}
314 
315 	q->wsum +=
316 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
317 	q->iwsum = ONE_FP / q->wsum;
318 
319 	agg->num_classes = new_num_classes;
320 }
321 
322 /* Add class to aggregate. */
323 static void qfq_add_to_agg(struct qfq_sched *q,
324 			   struct qfq_aggregate *agg,
325 			   struct qfq_class *cl)
326 {
327 	cl->agg = agg;
328 
329 	qfq_update_agg(q, agg, agg->num_classes+1);
330 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331 		list_add_tail(&cl->alist, &agg->active);
332 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333 		    cl && q->in_serv_agg != agg) /* agg was inactive */
334 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
335 	}
336 }
337 
338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
339 
340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
341 {
342 	if (!hlist_unhashed(&agg->nonfull_next))
343 		hlist_del_init(&agg->nonfull_next);
344 	q->wsum -= agg->class_weight;
345 	if (q->wsum != 0)
346 		q->iwsum = ONE_FP / q->wsum;
347 
348 	if (q->in_serv_agg == agg)
349 		q->in_serv_agg = qfq_choose_next_agg(q);
350 	kfree(agg);
351 }
352 
353 /* Deschedule class from within its parent aggregate. */
354 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
355 {
356 	struct qfq_aggregate *agg = cl->agg;
357 
358 
359 	list_del(&cl->alist); /* remove from RR queue of the aggregate */
360 	if (list_empty(&agg->active)) /* agg is now inactive */
361 		qfq_deactivate_agg(q, agg);
362 }
363 
364 /* Remove class from its parent aggregate. */
365 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
366 {
367 	struct qfq_aggregate *agg = cl->agg;
368 
369 	cl->agg = NULL;
370 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
371 		qfq_destroy_agg(q, agg);
372 		return;
373 	}
374 	qfq_update_agg(q, agg, agg->num_classes-1);
375 }
376 
377 /* Deschedule class and remove it from its parent aggregate. */
378 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
379 {
380 	if (cl->qdisc->q.qlen > 0) /* class is active */
381 		qfq_deactivate_class(q, cl);
382 
383 	qfq_rm_from_agg(q, cl);
384 }
385 
386 /* Move class to a new aggregate, matching the new class weight and/or lmax */
387 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
388 			   u32 lmax)
389 {
390 	struct qfq_sched *q = qdisc_priv(sch);
391 	struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
392 
393 	if (new_agg == NULL) { /* create new aggregate */
394 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
395 		if (new_agg == NULL)
396 			return -ENOBUFS;
397 		qfq_init_agg(q, new_agg, lmax, weight);
398 	}
399 	qfq_deact_rm_from_agg(q, cl);
400 	qfq_add_to_agg(q, new_agg, cl);
401 
402 	return 0;
403 }
404 
405 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
406 			    struct nlattr **tca, unsigned long *arg)
407 {
408 	struct qfq_sched *q = qdisc_priv(sch);
409 	struct qfq_class *cl = (struct qfq_class *)*arg;
410 	bool existing = false;
411 	struct nlattr *tb[TCA_QFQ_MAX + 1];
412 	struct qfq_aggregate *new_agg = NULL;
413 	u32 weight, lmax, inv_w;
414 	int err;
415 	int delta_w;
416 
417 	if (tca[TCA_OPTIONS] == NULL) {
418 		pr_notice("qfq: no options\n");
419 		return -EINVAL;
420 	}
421 
422 	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
423 	if (err < 0)
424 		return err;
425 
426 	if (tb[TCA_QFQ_WEIGHT]) {
427 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
428 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
429 			pr_notice("qfq: invalid weight %u\n", weight);
430 			return -EINVAL;
431 		}
432 	} else
433 		weight = 1;
434 
435 	if (tb[TCA_QFQ_LMAX]) {
436 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
437 		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
438 			pr_notice("qfq: invalid max length %u\n", lmax);
439 			return -EINVAL;
440 		}
441 	} else
442 		lmax = psched_mtu(qdisc_dev(sch));
443 
444 	inv_w = ONE_FP / weight;
445 	weight = ONE_FP / inv_w;
446 
447 	if (cl != NULL &&
448 	    lmax == cl->agg->lmax &&
449 	    weight == cl->agg->class_weight)
450 		return 0; /* nothing to change */
451 
452 	delta_w = weight - (cl ? cl->agg->class_weight : 0);
453 
454 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
455 		pr_notice("qfq: total weight out of range (%d + %u)\n",
456 			  delta_w, q->wsum);
457 		return -EINVAL;
458 	}
459 
460 	if (cl != NULL) { /* modify existing class */
461 		if (tca[TCA_RATE]) {
462 			err = gen_replace_estimator(&cl->bstats, NULL,
463 						    &cl->rate_est,
464 						    qdisc_root_sleeping_lock(sch),
465 						    tca[TCA_RATE]);
466 			if (err)
467 				return err;
468 		}
469 		existing = true;
470 		goto set_change_agg;
471 	}
472 
473 	/* create and init new class */
474 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
475 	if (cl == NULL)
476 		return -ENOBUFS;
477 
478 	cl->refcnt = 1;
479 	cl->common.classid = classid;
480 	cl->deficit = lmax;
481 
482 	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
483 				      &pfifo_qdisc_ops, classid);
484 	if (cl->qdisc == NULL)
485 		cl->qdisc = &noop_qdisc;
486 
487 	if (tca[TCA_RATE]) {
488 		err = gen_new_estimator(&cl->bstats, NULL,
489 					&cl->rate_est,
490 					qdisc_root_sleeping_lock(sch),
491 					tca[TCA_RATE]);
492 		if (err)
493 			goto destroy_class;
494 	}
495 
496 	sch_tree_lock(sch);
497 	qdisc_class_hash_insert(&q->clhash, &cl->common);
498 	sch_tree_unlock(sch);
499 
500 	qdisc_class_hash_grow(sch, &q->clhash);
501 
502 set_change_agg:
503 	sch_tree_lock(sch);
504 	new_agg = qfq_find_agg(q, lmax, weight);
505 	if (new_agg == NULL) { /* create new aggregate */
506 		sch_tree_unlock(sch);
507 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
508 		if (new_agg == NULL) {
509 			err = -ENOBUFS;
510 			gen_kill_estimator(&cl->bstats, &cl->rate_est);
511 			goto destroy_class;
512 		}
513 		sch_tree_lock(sch);
514 		qfq_init_agg(q, new_agg, lmax, weight);
515 	}
516 	if (existing)
517 		qfq_deact_rm_from_agg(q, cl);
518 	qfq_add_to_agg(q, new_agg, cl);
519 	sch_tree_unlock(sch);
520 
521 	*arg = (unsigned long)cl;
522 	return 0;
523 
524 destroy_class:
525 	qdisc_destroy(cl->qdisc);
526 	kfree(cl);
527 	return err;
528 }
529 
530 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
531 {
532 	struct qfq_sched *q = qdisc_priv(sch);
533 
534 	qfq_rm_from_agg(q, cl);
535 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
536 	qdisc_destroy(cl->qdisc);
537 	kfree(cl);
538 }
539 
540 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
541 {
542 	struct qfq_sched *q = qdisc_priv(sch);
543 	struct qfq_class *cl = (struct qfq_class *)arg;
544 
545 	if (cl->filter_cnt > 0)
546 		return -EBUSY;
547 
548 	sch_tree_lock(sch);
549 
550 	qfq_purge_queue(cl);
551 	qdisc_class_hash_remove(&q->clhash, &cl->common);
552 
553 	BUG_ON(--cl->refcnt == 0);
554 	/*
555 	 * This shouldn't happen: we "hold" one cops->get() when called
556 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
557 	 */
558 
559 	sch_tree_unlock(sch);
560 	return 0;
561 }
562 
563 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
564 {
565 	struct qfq_class *cl = qfq_find_class(sch, classid);
566 
567 	if (cl != NULL)
568 		cl->refcnt++;
569 
570 	return (unsigned long)cl;
571 }
572 
573 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
574 {
575 	struct qfq_class *cl = (struct qfq_class *)arg;
576 
577 	if (--cl->refcnt == 0)
578 		qfq_destroy_class(sch, cl);
579 }
580 
581 static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
582 					      unsigned long cl)
583 {
584 	struct qfq_sched *q = qdisc_priv(sch);
585 
586 	if (cl)
587 		return NULL;
588 
589 	return &q->filter_list;
590 }
591 
592 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
593 				  u32 classid)
594 {
595 	struct qfq_class *cl = qfq_find_class(sch, classid);
596 
597 	if (cl != NULL)
598 		cl->filter_cnt++;
599 
600 	return (unsigned long)cl;
601 }
602 
603 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
604 {
605 	struct qfq_class *cl = (struct qfq_class *)arg;
606 
607 	cl->filter_cnt--;
608 }
609 
610 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
611 			   struct Qdisc *new, struct Qdisc **old)
612 {
613 	struct qfq_class *cl = (struct qfq_class *)arg;
614 
615 	if (new == NULL) {
616 		new = qdisc_create_dflt(sch->dev_queue,
617 					&pfifo_qdisc_ops, cl->common.classid);
618 		if (new == NULL)
619 			new = &noop_qdisc;
620 	}
621 
622 	sch_tree_lock(sch);
623 	qfq_purge_queue(cl);
624 	*old = cl->qdisc;
625 	cl->qdisc = new;
626 	sch_tree_unlock(sch);
627 	return 0;
628 }
629 
630 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
631 {
632 	struct qfq_class *cl = (struct qfq_class *)arg;
633 
634 	return cl->qdisc;
635 }
636 
637 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
638 			  struct sk_buff *skb, struct tcmsg *tcm)
639 {
640 	struct qfq_class *cl = (struct qfq_class *)arg;
641 	struct nlattr *nest;
642 
643 	tcm->tcm_parent	= TC_H_ROOT;
644 	tcm->tcm_handle	= cl->common.classid;
645 	tcm->tcm_info	= cl->qdisc->handle;
646 
647 	nest = nla_nest_start(skb, TCA_OPTIONS);
648 	if (nest == NULL)
649 		goto nla_put_failure;
650 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
651 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
652 		goto nla_put_failure;
653 	return nla_nest_end(skb, nest);
654 
655 nla_put_failure:
656 	nla_nest_cancel(skb, nest);
657 	return -EMSGSIZE;
658 }
659 
660 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
661 				struct gnet_dump *d)
662 {
663 	struct qfq_class *cl = (struct qfq_class *)arg;
664 	struct tc_qfq_stats xstats;
665 
666 	memset(&xstats, 0, sizeof(xstats));
667 
668 	xstats.weight = cl->agg->class_weight;
669 	xstats.lmax = cl->agg->lmax;
670 
671 	if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 ||
672 	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
673 	    gnet_stats_copy_queue(d, NULL,
674 				  &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
675 		return -1;
676 
677 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
678 }
679 
680 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
681 {
682 	struct qfq_sched *q = qdisc_priv(sch);
683 	struct qfq_class *cl;
684 	unsigned int i;
685 
686 	if (arg->stop)
687 		return;
688 
689 	for (i = 0; i < q->clhash.hashsize; i++) {
690 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
691 			if (arg->count < arg->skip) {
692 				arg->count++;
693 				continue;
694 			}
695 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
696 				arg->stop = 1;
697 				return;
698 			}
699 			arg->count++;
700 		}
701 	}
702 }
703 
704 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
705 				      int *qerr)
706 {
707 	struct qfq_sched *q = qdisc_priv(sch);
708 	struct qfq_class *cl;
709 	struct tcf_result res;
710 	struct tcf_proto *fl;
711 	int result;
712 
713 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
714 		pr_debug("qfq_classify: found %d\n", skb->priority);
715 		cl = qfq_find_class(sch, skb->priority);
716 		if (cl != NULL)
717 			return cl;
718 	}
719 
720 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
721 	fl = rcu_dereference_bh(q->filter_list);
722 	result = tc_classify(skb, fl, &res);
723 	if (result >= 0) {
724 #ifdef CONFIG_NET_CLS_ACT
725 		switch (result) {
726 		case TC_ACT_QUEUED:
727 		case TC_ACT_STOLEN:
728 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
729 		case TC_ACT_SHOT:
730 			return NULL;
731 		}
732 #endif
733 		cl = (struct qfq_class *)res.class;
734 		if (cl == NULL)
735 			cl = qfq_find_class(sch, res.classid);
736 		return cl;
737 	}
738 
739 	return NULL;
740 }
741 
742 /* Generic comparison function, handling wraparound. */
743 static inline int qfq_gt(u64 a, u64 b)
744 {
745 	return (s64)(a - b) > 0;
746 }
747 
748 /* Round a precise timestamp to its slotted value. */
749 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
750 {
751 	return ts & ~((1ULL << shift) - 1);
752 }
753 
754 /* return the pointer to the group with lowest index in the bitmap */
755 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
756 					unsigned long bitmap)
757 {
758 	int index = __ffs(bitmap);
759 	return &q->groups[index];
760 }
761 /* Calculate a mask to mimic what would be ffs_from(). */
762 static inline unsigned long mask_from(unsigned long bitmap, int from)
763 {
764 	return bitmap & ~((1UL << from) - 1);
765 }
766 
767 /*
768  * The state computation relies on ER=0, IR=1, EB=2, IB=3
769  * First compute eligibility comparing grp->S, q->V,
770  * then check if someone is blocking us and possibly add EB
771  */
772 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
773 {
774 	/* if S > V we are not eligible */
775 	unsigned int state = qfq_gt(grp->S, q->V);
776 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
777 	struct qfq_group *next;
778 
779 	if (mask) {
780 		next = qfq_ffs(q, mask);
781 		if (qfq_gt(grp->F, next->F))
782 			state |= EB;
783 	}
784 
785 	return state;
786 }
787 
788 
789 /*
790  * In principle
791  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
792  *	q->bitmaps[src] &= ~mask;
793  * but we should make sure that src != dst
794  */
795 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
796 				   int src, int dst)
797 {
798 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
799 	q->bitmaps[src] &= ~mask;
800 }
801 
802 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
803 {
804 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
805 	struct qfq_group *next;
806 
807 	if (mask) {
808 		next = qfq_ffs(q, mask);
809 		if (!qfq_gt(next->F, old_F))
810 			return;
811 	}
812 
813 	mask = (1UL << index) - 1;
814 	qfq_move_groups(q, mask, EB, ER);
815 	qfq_move_groups(q, mask, IB, IR);
816 }
817 
818 /*
819  * perhaps
820  *
821 	old_V ^= q->V;
822 	old_V >>= q->min_slot_shift;
823 	if (old_V) {
824 		...
825 	}
826  *
827  */
828 static void qfq_make_eligible(struct qfq_sched *q)
829 {
830 	unsigned long vslot = q->V >> q->min_slot_shift;
831 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
832 
833 	if (vslot != old_vslot) {
834 		unsigned long mask;
835 		int last_flip_pos = fls(vslot ^ old_vslot);
836 
837 		if (last_flip_pos > 31) /* higher than the number of groups */
838 			mask = ~0UL;    /* make all groups eligible */
839 		else
840 			mask = (1UL << last_flip_pos) - 1;
841 
842 		qfq_move_groups(q, mask, IR, ER);
843 		qfq_move_groups(q, mask, IB, EB);
844 	}
845 }
846 
847 /*
848  * The index of the slot in which the input aggregate agg is to be
849  * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
850  * and not a '-1' because the start time of the group may be moved
851  * backward by one slot after the aggregate has been inserted, and
852  * this would cause non-empty slots to be right-shifted by one
853  * position.
854  *
855  * QFQ+ fully satisfies this bound to the slot index if the parameters
856  * of the classes are not changed dynamically, and if QFQ+ never
857  * happens to postpone the service of agg unjustly, i.e., it never
858  * happens that the aggregate becomes backlogged and eligible, or just
859  * eligible, while an aggregate with a higher approximated finish time
860  * is being served. In particular, in this case QFQ+ guarantees that
861  * the timestamps of agg are low enough that the slot index is never
862  * higher than 2. Unfortunately, QFQ+ cannot provide the same
863  * guarantee if it happens to unjustly postpone the service of agg, or
864  * if the parameters of some class are changed.
865  *
866  * As for the first event, i.e., an out-of-order service, the
867  * upper bound to the slot index guaranteed by QFQ+ grows to
868  * 2 +
869  * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
870  * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
871  *
872  * The following function deals with this problem by backward-shifting
873  * the timestamps of agg, if needed, so as to guarantee that the slot
874  * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
875  * cause the service of other aggregates to be postponed, yet the
876  * worst-case guarantees of these aggregates are not violated.  In
877  * fact, in case of no out-of-order service, the timestamps of agg
878  * would have been even lower than they are after the backward shift,
879  * because QFQ+ would have guaranteed a maximum value equal to 2 for
880  * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
881  * service is postponed because of the backward-shift would have
882  * however waited for the service of agg before being served.
883  *
884  * The other event that may cause the slot index to be higher than 2
885  * for agg is a recent change of the parameters of some class. If the
886  * weight of a class is increased or the lmax (max_pkt_size) of the
887  * class is decreased, then a new aggregate with smaller slot size
888  * than the original parent aggregate of the class may happen to be
889  * activated. The activation of this aggregate should be properly
890  * delayed to when the service of the class has finished in the ideal
891  * system tracked by QFQ+. If the activation of the aggregate is not
892  * delayed to this reference time instant, then this aggregate may be
893  * unjustly served before other aggregates waiting for service. This
894  * may cause the above bound to the slot index to be violated for some
895  * of these unlucky aggregates.
896  *
897  * Instead of delaying the activation of the new aggregate, which is
898  * quite complex, the above-discussed capping of the slot index is
899  * used to handle also the consequences of a change of the parameters
900  * of a class.
901  */
902 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
903 			    u64 roundedS)
904 {
905 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
906 	unsigned int i; /* slot index in the bucket list */
907 
908 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
909 		u64 deltaS = roundedS - grp->S -
910 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
911 		agg->S -= deltaS;
912 		agg->F -= deltaS;
913 		slot = QFQ_MAX_SLOTS - 2;
914 	}
915 
916 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
917 
918 	hlist_add_head(&agg->next, &grp->slots[i]);
919 	__set_bit(slot, &grp->full_slots);
920 }
921 
922 /* Maybe introduce hlist_first_entry?? */
923 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
924 {
925 	return hlist_entry(grp->slots[grp->front].first,
926 			   struct qfq_aggregate, next);
927 }
928 
929 /*
930  * remove the entry from the slot
931  */
932 static void qfq_front_slot_remove(struct qfq_group *grp)
933 {
934 	struct qfq_aggregate *agg = qfq_slot_head(grp);
935 
936 	BUG_ON(!agg);
937 	hlist_del(&agg->next);
938 	if (hlist_empty(&grp->slots[grp->front]))
939 		__clear_bit(0, &grp->full_slots);
940 }
941 
942 /*
943  * Returns the first aggregate in the first non-empty bucket of the
944  * group. As a side effect, adjusts the bucket list so the first
945  * non-empty bucket is at position 0 in full_slots.
946  */
947 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
948 {
949 	unsigned int i;
950 
951 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
952 		 grp->index, grp->full_slots);
953 
954 	if (grp->full_slots == 0)
955 		return NULL;
956 
957 	i = __ffs(grp->full_slots);  /* zero based */
958 	if (i > 0) {
959 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
960 		grp->full_slots >>= i;
961 	}
962 
963 	return qfq_slot_head(grp);
964 }
965 
966 /*
967  * adjust the bucket list. When the start time of a group decreases,
968  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
969  * move the objects. The mask of occupied slots must be shifted
970  * because we use ffs() to find the first non-empty slot.
971  * This covers decreases in the group's start time, but what about
972  * increases of the start time ?
973  * Here too we should make sure that i is less than 32
974  */
975 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
976 {
977 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
978 
979 	grp->full_slots <<= i;
980 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
981 }
982 
983 static void qfq_update_eligible(struct qfq_sched *q)
984 {
985 	struct qfq_group *grp;
986 	unsigned long ineligible;
987 
988 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
989 	if (ineligible) {
990 		if (!q->bitmaps[ER]) {
991 			grp = qfq_ffs(q, ineligible);
992 			if (qfq_gt(grp->S, q->V))
993 				q->V = grp->S;
994 		}
995 		qfq_make_eligible(q);
996 	}
997 }
998 
999 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
1000 static void agg_dequeue(struct qfq_aggregate *agg,
1001 			struct qfq_class *cl, unsigned int len)
1002 {
1003 	qdisc_dequeue_peeked(cl->qdisc);
1004 
1005 	cl->deficit -= (int) len;
1006 
1007 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1008 		list_del(&cl->alist);
1009 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1010 		cl->deficit += agg->lmax;
1011 		list_move_tail(&cl->alist, &agg->active);
1012 	}
1013 }
1014 
1015 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1016 					   struct qfq_class **cl,
1017 					   unsigned int *len)
1018 {
1019 	struct sk_buff *skb;
1020 
1021 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1022 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1023 	if (skb == NULL)
1024 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1025 	else
1026 		*len = qdisc_pkt_len(skb);
1027 
1028 	return skb;
1029 }
1030 
1031 /* Update F according to the actual service received by the aggregate. */
1032 static inline void charge_actual_service(struct qfq_aggregate *agg)
1033 {
1034 	/* Compute the service received by the aggregate, taking into
1035 	 * account that, after decreasing the number of classes in
1036 	 * agg, it may happen that
1037 	 * agg->initial_budget - agg->budget > agg->bugdetmax
1038 	 */
1039 	u32 service_received = min(agg->budgetmax,
1040 				   agg->initial_budget - agg->budget);
1041 
1042 	agg->F = agg->S + (u64)service_received * agg->inv_w;
1043 }
1044 
1045 /* Assign a reasonable start time for a new aggregate in group i.
1046  * Admissible values for \hat(F) are multiples of \sigma_i
1047  * no greater than V+\sigma_i . Larger values mean that
1048  * we had a wraparound so we consider the timestamp to be stale.
1049  *
1050  * If F is not stale and F >= V then we set S = F.
1051  * Otherwise we should assign S = V, but this may violate
1052  * the ordering in EB (see [2]). So, if we have groups in ER,
1053  * set S to the F_j of the first group j which would be blocking us.
1054  * We are guaranteed not to move S backward because
1055  * otherwise our group i would still be blocked.
1056  */
1057 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1058 {
1059 	unsigned long mask;
1060 	u64 limit, roundedF;
1061 	int slot_shift = agg->grp->slot_shift;
1062 
1063 	roundedF = qfq_round_down(agg->F, slot_shift);
1064 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1065 
1066 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1067 		/* timestamp was stale */
1068 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1069 		if (mask) {
1070 			struct qfq_group *next = qfq_ffs(q, mask);
1071 			if (qfq_gt(roundedF, next->F)) {
1072 				if (qfq_gt(limit, next->F))
1073 					agg->S = next->F;
1074 				else /* preserve timestamp correctness */
1075 					agg->S = limit;
1076 				return;
1077 			}
1078 		}
1079 		agg->S = q->V;
1080 	} else  /* timestamp is not stale */
1081 		agg->S = agg->F;
1082 }
1083 
1084 /* Update the timestamps of agg before scheduling/rescheduling it for
1085  * service.  In particular, assign to agg->F its maximum possible
1086  * value, i.e., the virtual finish time with which the aggregate
1087  * should be labeled if it used all its budget once in service.
1088  */
1089 static inline void
1090 qfq_update_agg_ts(struct qfq_sched *q,
1091 		    struct qfq_aggregate *agg, enum update_reason reason)
1092 {
1093 	if (reason != requeue)
1094 		qfq_update_start(q, agg);
1095 	else /* just charge agg for the service received */
1096 		agg->S = agg->F;
1097 
1098 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1099 }
1100 
1101 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1102 
1103 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1104 {
1105 	struct qfq_sched *q = qdisc_priv(sch);
1106 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1107 	struct qfq_class *cl;
1108 	struct sk_buff *skb = NULL;
1109 	/* next-packet len, 0 means no more active classes in in-service agg */
1110 	unsigned int len = 0;
1111 
1112 	if (in_serv_agg == NULL)
1113 		return NULL;
1114 
1115 	if (!list_empty(&in_serv_agg->active))
1116 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1117 
1118 	/*
1119 	 * If there are no active classes in the in-service aggregate,
1120 	 * or if the aggregate has not enough budget to serve its next
1121 	 * class, then choose the next aggregate to serve.
1122 	 */
1123 	if (len == 0 || in_serv_agg->budget < len) {
1124 		charge_actual_service(in_serv_agg);
1125 
1126 		/* recharge the budget of the aggregate */
1127 		in_serv_agg->initial_budget = in_serv_agg->budget =
1128 			in_serv_agg->budgetmax;
1129 
1130 		if (!list_empty(&in_serv_agg->active)) {
1131 			/*
1132 			 * Still active: reschedule for
1133 			 * service. Possible optimization: if no other
1134 			 * aggregate is active, then there is no point
1135 			 * in rescheduling this aggregate, and we can
1136 			 * just keep it as the in-service one. This
1137 			 * should be however a corner case, and to
1138 			 * handle it, we would need to maintain an
1139 			 * extra num_active_aggs field.
1140 			*/
1141 			qfq_update_agg_ts(q, in_serv_agg, requeue);
1142 			qfq_schedule_agg(q, in_serv_agg);
1143 		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1144 			q->in_serv_agg = NULL;
1145 			return NULL;
1146 		}
1147 
1148 		/*
1149 		 * If we get here, there are other aggregates queued:
1150 		 * choose the new aggregate to serve.
1151 		 */
1152 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1153 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1154 	}
1155 	if (!skb)
1156 		return NULL;
1157 
1158 	sch->q.qlen--;
1159 	qdisc_bstats_update(sch, skb);
1160 
1161 	agg_dequeue(in_serv_agg, cl, len);
1162 	/* If lmax is lowered, through qfq_change_class, for a class
1163 	 * owning pending packets with larger size than the new value
1164 	 * of lmax, then the following condition may hold.
1165 	 */
1166 	if (unlikely(in_serv_agg->budget < len))
1167 		in_serv_agg->budget = 0;
1168 	else
1169 		in_serv_agg->budget -= len;
1170 
1171 	q->V += (u64)len * q->iwsum;
1172 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1173 		 len, (unsigned long long) in_serv_agg->F,
1174 		 (unsigned long long) q->V);
1175 
1176 	return skb;
1177 }
1178 
1179 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1180 {
1181 	struct qfq_group *grp;
1182 	struct qfq_aggregate *agg, *new_front_agg;
1183 	u64 old_F;
1184 
1185 	qfq_update_eligible(q);
1186 	q->oldV = q->V;
1187 
1188 	if (!q->bitmaps[ER])
1189 		return NULL;
1190 
1191 	grp = qfq_ffs(q, q->bitmaps[ER]);
1192 	old_F = grp->F;
1193 
1194 	agg = qfq_slot_head(grp);
1195 
1196 	/* agg starts to be served, remove it from schedule */
1197 	qfq_front_slot_remove(grp);
1198 
1199 	new_front_agg = qfq_slot_scan(grp);
1200 
1201 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1202 		__clear_bit(grp->index, &q->bitmaps[ER]);
1203 	else {
1204 		u64 roundedS = qfq_round_down(new_front_agg->S,
1205 					      grp->slot_shift);
1206 		unsigned int s;
1207 
1208 		if (grp->S == roundedS)
1209 			return agg;
1210 		grp->S = roundedS;
1211 		grp->F = roundedS + (2ULL << grp->slot_shift);
1212 		__clear_bit(grp->index, &q->bitmaps[ER]);
1213 		s = qfq_calc_state(q, grp);
1214 		__set_bit(grp->index, &q->bitmaps[s]);
1215 	}
1216 
1217 	qfq_unblock_groups(q, grp->index, old_F);
1218 
1219 	return agg;
1220 }
1221 
1222 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1223 {
1224 	struct qfq_sched *q = qdisc_priv(sch);
1225 	struct qfq_class *cl;
1226 	struct qfq_aggregate *agg;
1227 	int err = 0;
1228 
1229 	cl = qfq_classify(skb, sch, &err);
1230 	if (cl == NULL) {
1231 		if (err & __NET_XMIT_BYPASS)
1232 			qdisc_qstats_drop(sch);
1233 		kfree_skb(skb);
1234 		return err;
1235 	}
1236 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1237 
1238 	if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1239 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1240 			 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1241 		err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1242 				     qdisc_pkt_len(skb));
1243 		if (err)
1244 			return err;
1245 	}
1246 
1247 	err = qdisc_enqueue(skb, cl->qdisc);
1248 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1249 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1250 		if (net_xmit_drop_count(err)) {
1251 			cl->qstats.drops++;
1252 			qdisc_qstats_drop(sch);
1253 		}
1254 		return err;
1255 	}
1256 
1257 	bstats_update(&cl->bstats, skb);
1258 	++sch->q.qlen;
1259 
1260 	agg = cl->agg;
1261 	/* if the queue was not empty, then done here */
1262 	if (cl->qdisc->q.qlen != 1) {
1263 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1264 		    list_first_entry(&agg->active, struct qfq_class, alist)
1265 		    == cl && cl->deficit < qdisc_pkt_len(skb))
1266 			list_move_tail(&cl->alist, &agg->active);
1267 
1268 		return err;
1269 	}
1270 
1271 	/* schedule class for service within the aggregate */
1272 	cl->deficit = agg->lmax;
1273 	list_add_tail(&cl->alist, &agg->active);
1274 
1275 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1276 	    q->in_serv_agg == agg)
1277 		return err; /* non-empty or in service, nothing else to do */
1278 
1279 	qfq_activate_agg(q, agg, enqueue);
1280 
1281 	return err;
1282 }
1283 
1284 /*
1285  * Schedule aggregate according to its timestamps.
1286  */
1287 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1288 {
1289 	struct qfq_group *grp = agg->grp;
1290 	u64 roundedS;
1291 	int s;
1292 
1293 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1294 
1295 	/*
1296 	 * Insert agg in the correct bucket.
1297 	 * If agg->S >= grp->S we don't need to adjust the
1298 	 * bucket list and simply go to the insertion phase.
1299 	 * Otherwise grp->S is decreasing, we must make room
1300 	 * in the bucket list, and also recompute the group state.
1301 	 * Finally, if there were no flows in this group and nobody
1302 	 * was in ER make sure to adjust V.
1303 	 */
1304 	if (grp->full_slots) {
1305 		if (!qfq_gt(grp->S, agg->S))
1306 			goto skip_update;
1307 
1308 		/* create a slot for this agg->S */
1309 		qfq_slot_rotate(grp, roundedS);
1310 		/* group was surely ineligible, remove */
1311 		__clear_bit(grp->index, &q->bitmaps[IR]);
1312 		__clear_bit(grp->index, &q->bitmaps[IB]);
1313 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1314 		   q->in_serv_agg == NULL)
1315 		q->V = roundedS;
1316 
1317 	grp->S = roundedS;
1318 	grp->F = roundedS + (2ULL << grp->slot_shift);
1319 	s = qfq_calc_state(q, grp);
1320 	__set_bit(grp->index, &q->bitmaps[s]);
1321 
1322 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1323 		 s, q->bitmaps[s],
1324 		 (unsigned long long) agg->S,
1325 		 (unsigned long long) agg->F,
1326 		 (unsigned long long) q->V);
1327 
1328 skip_update:
1329 	qfq_slot_insert(grp, agg, roundedS);
1330 }
1331 
1332 
1333 /* Update agg ts and schedule agg for service */
1334 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1335 			     enum update_reason reason)
1336 {
1337 	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1338 
1339 	qfq_update_agg_ts(q, agg, reason);
1340 	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1341 		q->in_serv_agg = agg; /* start serving this aggregate */
1342 		 /* update V: to be in service, agg must be eligible */
1343 		q->oldV = q->V = agg->S;
1344 	} else if (agg != q->in_serv_agg)
1345 		qfq_schedule_agg(q, agg);
1346 }
1347 
1348 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1349 			    struct qfq_aggregate *agg)
1350 {
1351 	unsigned int i, offset;
1352 	u64 roundedS;
1353 
1354 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1355 	offset = (roundedS - grp->S) >> grp->slot_shift;
1356 
1357 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1358 
1359 	hlist_del(&agg->next);
1360 	if (hlist_empty(&grp->slots[i]))
1361 		__clear_bit(offset, &grp->full_slots);
1362 }
1363 
1364 /*
1365  * Called to forcibly deschedule an aggregate.  If the aggregate is
1366  * not in the front bucket, or if the latter has other aggregates in
1367  * the front bucket, we can simply remove the aggregate with no other
1368  * side effects.
1369  * Otherwise we must propagate the event up.
1370  */
1371 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1372 {
1373 	struct qfq_group *grp = agg->grp;
1374 	unsigned long mask;
1375 	u64 roundedS;
1376 	int s;
1377 
1378 	if (agg == q->in_serv_agg) {
1379 		charge_actual_service(agg);
1380 		q->in_serv_agg = qfq_choose_next_agg(q);
1381 		return;
1382 	}
1383 
1384 	agg->F = agg->S;
1385 	qfq_slot_remove(q, grp, agg);
1386 
1387 	if (!grp->full_slots) {
1388 		__clear_bit(grp->index, &q->bitmaps[IR]);
1389 		__clear_bit(grp->index, &q->bitmaps[EB]);
1390 		__clear_bit(grp->index, &q->bitmaps[IB]);
1391 
1392 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1393 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1394 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1395 			if (mask)
1396 				mask = ~((1UL << __fls(mask)) - 1);
1397 			else
1398 				mask = ~0UL;
1399 			qfq_move_groups(q, mask, EB, ER);
1400 			qfq_move_groups(q, mask, IB, IR);
1401 		}
1402 		__clear_bit(grp->index, &q->bitmaps[ER]);
1403 	} else if (hlist_empty(&grp->slots[grp->front])) {
1404 		agg = qfq_slot_scan(grp);
1405 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1406 		if (grp->S != roundedS) {
1407 			__clear_bit(grp->index, &q->bitmaps[ER]);
1408 			__clear_bit(grp->index, &q->bitmaps[IR]);
1409 			__clear_bit(grp->index, &q->bitmaps[EB]);
1410 			__clear_bit(grp->index, &q->bitmaps[IB]);
1411 			grp->S = roundedS;
1412 			grp->F = roundedS + (2ULL << grp->slot_shift);
1413 			s = qfq_calc_state(q, grp);
1414 			__set_bit(grp->index, &q->bitmaps[s]);
1415 		}
1416 	}
1417 }
1418 
1419 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1420 {
1421 	struct qfq_sched *q = qdisc_priv(sch);
1422 	struct qfq_class *cl = (struct qfq_class *)arg;
1423 
1424 	if (cl->qdisc->q.qlen == 0)
1425 		qfq_deactivate_class(q, cl);
1426 }
1427 
1428 static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1429 				       struct hlist_head *slot)
1430 {
1431 	struct qfq_aggregate *agg;
1432 	struct qfq_class *cl;
1433 	unsigned int len;
1434 
1435 	hlist_for_each_entry(agg, slot, next) {
1436 		list_for_each_entry(cl, &agg->active, alist) {
1437 
1438 			if (!cl->qdisc->ops->drop)
1439 				continue;
1440 
1441 			len = cl->qdisc->ops->drop(cl->qdisc);
1442 			if (len > 0) {
1443 				if (cl->qdisc->q.qlen == 0)
1444 					qfq_deactivate_class(q, cl);
1445 
1446 				return len;
1447 			}
1448 		}
1449 	}
1450 	return 0;
1451 }
1452 
1453 static unsigned int qfq_drop(struct Qdisc *sch)
1454 {
1455 	struct qfq_sched *q = qdisc_priv(sch);
1456 	struct qfq_group *grp;
1457 	unsigned int i, j, len;
1458 
1459 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1460 		grp = &q->groups[i];
1461 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1462 			len = qfq_drop_from_slot(q, &grp->slots[j]);
1463 			if (len > 0) {
1464 				sch->q.qlen--;
1465 				return len;
1466 			}
1467 		}
1468 
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1475 {
1476 	struct qfq_sched *q = qdisc_priv(sch);
1477 	struct qfq_group *grp;
1478 	int i, j, err;
1479 	u32 max_cl_shift, maxbudg_shift, max_classes;
1480 
1481 	err = qdisc_class_hash_init(&q->clhash);
1482 	if (err < 0)
1483 		return err;
1484 
1485 	if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1486 		max_classes = QFQ_MAX_AGG_CLASSES;
1487 	else
1488 		max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1489 	/* max_cl_shift = floor(log_2(max_classes)) */
1490 	max_cl_shift = __fls(max_classes);
1491 	q->max_agg_classes = 1<<max_cl_shift;
1492 
1493 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1494 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1495 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1496 
1497 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1498 		grp = &q->groups[i];
1499 		grp->index = i;
1500 		grp->slot_shift = q->min_slot_shift + i;
1501 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1502 			INIT_HLIST_HEAD(&grp->slots[j]);
1503 	}
1504 
1505 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1506 
1507 	return 0;
1508 }
1509 
1510 static void qfq_reset_qdisc(struct Qdisc *sch)
1511 {
1512 	struct qfq_sched *q = qdisc_priv(sch);
1513 	struct qfq_class *cl;
1514 	unsigned int i;
1515 
1516 	for (i = 0; i < q->clhash.hashsize; i++) {
1517 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1518 			if (cl->qdisc->q.qlen > 0)
1519 				qfq_deactivate_class(q, cl);
1520 
1521 			qdisc_reset(cl->qdisc);
1522 		}
1523 	}
1524 	sch->q.qlen = 0;
1525 }
1526 
1527 static void qfq_destroy_qdisc(struct Qdisc *sch)
1528 {
1529 	struct qfq_sched *q = qdisc_priv(sch);
1530 	struct qfq_class *cl;
1531 	struct hlist_node *next;
1532 	unsigned int i;
1533 
1534 	tcf_destroy_chain(&q->filter_list);
1535 
1536 	for (i = 0; i < q->clhash.hashsize; i++) {
1537 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1538 					  common.hnode) {
1539 			qfq_destroy_class(sch, cl);
1540 		}
1541 	}
1542 	qdisc_class_hash_destroy(&q->clhash);
1543 }
1544 
1545 static const struct Qdisc_class_ops qfq_class_ops = {
1546 	.change		= qfq_change_class,
1547 	.delete		= qfq_delete_class,
1548 	.get		= qfq_get_class,
1549 	.put		= qfq_put_class,
1550 	.tcf_chain	= qfq_tcf_chain,
1551 	.bind_tcf	= qfq_bind_tcf,
1552 	.unbind_tcf	= qfq_unbind_tcf,
1553 	.graft		= qfq_graft_class,
1554 	.leaf		= qfq_class_leaf,
1555 	.qlen_notify	= qfq_qlen_notify,
1556 	.dump		= qfq_dump_class,
1557 	.dump_stats	= qfq_dump_class_stats,
1558 	.walk		= qfq_walk,
1559 };
1560 
1561 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1562 	.cl_ops		= &qfq_class_ops,
1563 	.id		= "qfq",
1564 	.priv_size	= sizeof(struct qfq_sched),
1565 	.enqueue	= qfq_enqueue,
1566 	.dequeue	= qfq_dequeue,
1567 	.peek		= qdisc_peek_dequeued,
1568 	.drop		= qfq_drop,
1569 	.init		= qfq_init_qdisc,
1570 	.reset		= qfq_reset_qdisc,
1571 	.destroy	= qfq_destroy_qdisc,
1572 	.owner		= THIS_MODULE,
1573 };
1574 
1575 static int __init qfq_init(void)
1576 {
1577 	return register_qdisc(&qfq_qdisc_ops);
1578 }
1579 
1580 static void __exit qfq_exit(void)
1581 {
1582 	unregister_qdisc(&qfq_qdisc_ops);
1583 }
1584 
1585 module_init(qfq_init);
1586 module_exit(qfq_exit);
1587 MODULE_LICENSE("GPL");
1588