1 /* 2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler. 3 * 4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 5 * Copyright (c) 2012 Paolo Valente. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * version 2 as published by the Free Software Foundation. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/bitops.h> 15 #include <linux/errno.h> 16 #include <linux/netdevice.h> 17 #include <linux/pkt_sched.h> 18 #include <net/sch_generic.h> 19 #include <net/pkt_sched.h> 20 #include <net/pkt_cls.h> 21 22 23 /* Quick Fair Queueing Plus 24 ======================== 25 26 Sources: 27 28 [1] Paolo Valente, 29 "Reducing the Execution Time of Fair-Queueing Schedulers." 30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf 31 32 Sources for QFQ: 33 34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 35 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 36 37 See also: 38 http://retis.sssup.it/~fabio/linux/qfq/ 39 */ 40 41 /* 42 43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES 44 classes. Each aggregate is timestamped with a virtual start time S 45 and a virtual finish time F, and scheduled according to its 46 timestamps. S and F are computed as a function of a system virtual 47 time function V. The classes within each aggregate are instead 48 scheduled with DRR. 49 50 To speed up operations, QFQ+ divides also aggregates into a limited 51 number of groups. Which group a class belongs to depends on the 52 ratio between the maximum packet length for the class and the weight 53 of the class. Groups have their own S and F. In the end, QFQ+ 54 schedules groups, then aggregates within groups, then classes within 55 aggregates. See [1] and [2] for a full description. 56 57 Virtual time computations. 58 59 S, F and V are all computed in fixed point arithmetic with 60 FRAC_BITS decimal bits. 61 62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 63 one bit per index. 64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 65 66 The layout of the bits is as below: 67 68 [ MTU_SHIFT ][ FRAC_BITS ] 69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 70 ^.__grp->index = 0 71 *.__grp->slot_shift 72 73 where MIN_SLOT_SHIFT is derived by difference from the others. 74 75 The max group index corresponds to Lmax/w_min, where 76 Lmax=1<<MTU_SHIFT, w_min = 1 . 77 From this, and knowing how many groups (MAX_INDEX) we want, 78 we can derive the shift corresponding to each group. 79 80 Because we often need to compute 81 F = S + len/w_i and V = V + len/wsum 82 instead of storing w_i store the value 83 inv_w = (1<<FRAC_BITS)/w_i 84 so we can do F = S + len * inv_w * wsum. 85 We use W_TOT in the formulas so we can easily move between 86 static and adaptive weight sum. 87 88 The per-scheduler-instance data contain all the data structures 89 for the scheduler: bitmaps and bucket lists. 90 91 */ 92 93 /* 94 * Maximum number of consecutive slots occupied by backlogged classes 95 * inside a group. 96 */ 97 #define QFQ_MAX_SLOTS 32 98 99 /* 100 * Shifts used for aggregate<->group mapping. We allow class weights that are 101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the 102 * group with the smallest index that can support the L_i / r_i configured 103 * for the classes in the aggregate. 104 * 105 * grp->index is the index of the group; and grp->slot_shift 106 * is the shift for the corresponding (scaled) sigma_i. 107 */ 108 #define QFQ_MAX_INDEX 24 109 #define QFQ_MAX_WSHIFT 10 110 111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ 112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT) 113 114 #define FRAC_BITS 30 /* fixed point arithmetic */ 115 #define ONE_FP (1UL << FRAC_BITS) 116 117 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 118 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */ 119 120 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */ 121 122 /* 123 * Possible group states. These values are used as indexes for the bitmaps 124 * array of struct qfq_queue. 125 */ 126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 127 128 struct qfq_group; 129 130 struct qfq_aggregate; 131 132 struct qfq_class { 133 struct Qdisc_class_common common; 134 135 unsigned int refcnt; 136 unsigned int filter_cnt; 137 138 struct gnet_stats_basic_packed bstats; 139 struct gnet_stats_queue qstats; 140 struct gnet_stats_rate_est64 rate_est; 141 struct Qdisc *qdisc; 142 struct list_head alist; /* Link for active-classes list. */ 143 struct qfq_aggregate *agg; /* Parent aggregate. */ 144 int deficit; /* DRR deficit counter. */ 145 }; 146 147 struct qfq_aggregate { 148 struct hlist_node next; /* Link for the slot list. */ 149 u64 S, F; /* flow timestamps (exact) */ 150 151 /* group we belong to. In principle we would need the index, 152 * which is log_2(lmax/weight), but we never reference it 153 * directly, only the group. 154 */ 155 struct qfq_group *grp; 156 157 /* these are copied from the flowset. */ 158 u32 class_weight; /* Weight of each class in this aggregate. */ 159 /* Max pkt size for the classes in this aggregate, DRR quantum. */ 160 int lmax; 161 162 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */ 163 u32 budgetmax; /* Max budget for this aggregate. */ 164 u32 initial_budget, budget; /* Initial and current budget. */ 165 166 int num_classes; /* Number of classes in this aggr. */ 167 struct list_head active; /* DRR queue of active classes. */ 168 169 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */ 170 }; 171 172 struct qfq_group { 173 u64 S, F; /* group timestamps (approx). */ 174 unsigned int slot_shift; /* Slot shift. */ 175 unsigned int index; /* Group index. */ 176 unsigned int front; /* Index of the front slot. */ 177 unsigned long full_slots; /* non-empty slots */ 178 179 /* Array of RR lists of active aggregates. */ 180 struct hlist_head slots[QFQ_MAX_SLOTS]; 181 }; 182 183 struct qfq_sched { 184 struct tcf_proto *filter_list; 185 struct Qdisc_class_hash clhash; 186 187 u64 oldV, V; /* Precise virtual times. */ 188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */ 189 u32 num_active_agg; /* Num. of active aggregates */ 190 u32 wsum; /* weight sum */ 191 u32 iwsum; /* inverse weight sum */ 192 193 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 194 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 195 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */ 196 197 u32 max_agg_classes; /* Max number of classes per aggr. */ 198 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ 199 }; 200 201 /* 202 * Possible reasons why the timestamps of an aggregate are updated 203 * enqueue: the aggregate switches from idle to active and must scheduled 204 * for service 205 * requeue: the aggregate finishes its budget, so it stops being served and 206 * must be rescheduled for service 207 */ 208 enum update_reason {enqueue, requeue}; 209 210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 211 { 212 struct qfq_sched *q = qdisc_priv(sch); 213 struct Qdisc_class_common *clc; 214 215 clc = qdisc_class_find(&q->clhash, classid); 216 if (clc == NULL) 217 return NULL; 218 return container_of(clc, struct qfq_class, common); 219 } 220 221 static void qfq_purge_queue(struct qfq_class *cl) 222 { 223 unsigned int len = cl->qdisc->q.qlen; 224 225 qdisc_reset(cl->qdisc); 226 qdisc_tree_decrease_qlen(cl->qdisc, len); 227 } 228 229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, 231 [TCA_QFQ_LMAX] = { .type = NLA_U32 }, 232 }; 233 234 /* 235 * Calculate a flow index, given its weight and maximum packet length. 236 * index = log_2(maxlen/weight) but we need to apply the scaling. 237 * This is used only once at flow creation. 238 */ 239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) 240 { 241 u64 slot_size = (u64)maxlen * inv_w; 242 unsigned long size_map; 243 int index = 0; 244 245 size_map = slot_size >> min_slot_shift; 246 if (!size_map) 247 goto out; 248 249 index = __fls(size_map) + 1; /* basically a log_2 */ 250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); 251 252 if (index < 0) 253 index = 0; 254 out: 255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 256 (unsigned long) ONE_FP/inv_w, maxlen, index); 257 258 return index; 259 } 260 261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); 262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, 263 enum update_reason); 264 265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 266 u32 lmax, u32 weight) 267 { 268 INIT_LIST_HEAD(&agg->active); 269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 270 271 agg->lmax = lmax; 272 agg->class_weight = weight; 273 } 274 275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, 276 u32 lmax, u32 weight) 277 { 278 struct qfq_aggregate *agg; 279 280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) 281 if (agg->lmax == lmax && agg->class_weight == weight) 282 return agg; 283 284 return NULL; 285 } 286 287 288 /* Update aggregate as a function of the new number of classes. */ 289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 290 int new_num_classes) 291 { 292 u32 new_agg_weight; 293 294 if (new_num_classes == q->max_agg_classes) 295 hlist_del_init(&agg->nonfull_next); 296 297 if (agg->num_classes > new_num_classes && 298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */ 299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 300 301 /* The next assignment may let 302 * agg->initial_budget > agg->budgetmax 303 * hold, we will take it into account in charge_actual_service(). 304 */ 305 agg->budgetmax = new_num_classes * agg->lmax; 306 new_agg_weight = agg->class_weight * new_num_classes; 307 agg->inv_w = ONE_FP/new_agg_weight; 308 309 if (agg->grp == NULL) { 310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax, 311 q->min_slot_shift); 312 agg->grp = &q->groups[i]; 313 } 314 315 q->wsum += 316 (int) agg->class_weight * (new_num_classes - agg->num_classes); 317 q->iwsum = ONE_FP / q->wsum; 318 319 agg->num_classes = new_num_classes; 320 } 321 322 /* Add class to aggregate. */ 323 static void qfq_add_to_agg(struct qfq_sched *q, 324 struct qfq_aggregate *agg, 325 struct qfq_class *cl) 326 { 327 cl->agg = agg; 328 329 qfq_update_agg(q, agg, agg->num_classes+1); 330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */ 331 list_add_tail(&cl->alist, &agg->active); 332 if (list_first_entry(&agg->active, struct qfq_class, alist) == 333 cl && q->in_serv_agg != agg) /* agg was inactive */ 334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */ 335 } 336 } 337 338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); 339 340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 341 { 342 if (!hlist_unhashed(&agg->nonfull_next)) 343 hlist_del_init(&agg->nonfull_next); 344 q->wsum -= agg->class_weight; 345 if (q->wsum != 0) 346 q->iwsum = ONE_FP / q->wsum; 347 348 if (q->in_serv_agg == agg) 349 q->in_serv_agg = qfq_choose_next_agg(q); 350 kfree(agg); 351 } 352 353 /* Deschedule class from within its parent aggregate. */ 354 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 355 { 356 struct qfq_aggregate *agg = cl->agg; 357 358 359 list_del(&cl->alist); /* remove from RR queue of the aggregate */ 360 if (list_empty(&agg->active)) /* agg is now inactive */ 361 qfq_deactivate_agg(q, agg); 362 } 363 364 /* Remove class from its parent aggregate. */ 365 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 366 { 367 struct qfq_aggregate *agg = cl->agg; 368 369 cl->agg = NULL; 370 if (agg->num_classes == 1) { /* agg being emptied, destroy it */ 371 qfq_destroy_agg(q, agg); 372 return; 373 } 374 qfq_update_agg(q, agg, agg->num_classes-1); 375 } 376 377 /* Deschedule class and remove it from its parent aggregate. */ 378 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 379 { 380 if (cl->qdisc->q.qlen > 0) /* class is active */ 381 qfq_deactivate_class(q, cl); 382 383 qfq_rm_from_agg(q, cl); 384 } 385 386 /* Move class to a new aggregate, matching the new class weight and/or lmax */ 387 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, 388 u32 lmax) 389 { 390 struct qfq_sched *q = qdisc_priv(sch); 391 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight); 392 393 if (new_agg == NULL) { /* create new aggregate */ 394 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); 395 if (new_agg == NULL) 396 return -ENOBUFS; 397 qfq_init_agg(q, new_agg, lmax, weight); 398 } 399 qfq_deact_rm_from_agg(q, cl); 400 qfq_add_to_agg(q, new_agg, cl); 401 402 return 0; 403 } 404 405 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 406 struct nlattr **tca, unsigned long *arg) 407 { 408 struct qfq_sched *q = qdisc_priv(sch); 409 struct qfq_class *cl = (struct qfq_class *)*arg; 410 bool existing = false; 411 struct nlattr *tb[TCA_QFQ_MAX + 1]; 412 struct qfq_aggregate *new_agg = NULL; 413 u32 weight, lmax, inv_w; 414 int err; 415 int delta_w; 416 417 if (tca[TCA_OPTIONS] == NULL) { 418 pr_notice("qfq: no options\n"); 419 return -EINVAL; 420 } 421 422 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy); 423 if (err < 0) 424 return err; 425 426 if (tb[TCA_QFQ_WEIGHT]) { 427 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); 428 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { 429 pr_notice("qfq: invalid weight %u\n", weight); 430 return -EINVAL; 431 } 432 } else 433 weight = 1; 434 435 if (tb[TCA_QFQ_LMAX]) { 436 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 437 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) { 438 pr_notice("qfq: invalid max length %u\n", lmax); 439 return -EINVAL; 440 } 441 } else 442 lmax = psched_mtu(qdisc_dev(sch)); 443 444 inv_w = ONE_FP / weight; 445 weight = ONE_FP / inv_w; 446 447 if (cl != NULL && 448 lmax == cl->agg->lmax && 449 weight == cl->agg->class_weight) 450 return 0; /* nothing to change */ 451 452 delta_w = weight - (cl ? cl->agg->class_weight : 0); 453 454 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 455 pr_notice("qfq: total weight out of range (%d + %u)\n", 456 delta_w, q->wsum); 457 return -EINVAL; 458 } 459 460 if (cl != NULL) { /* modify existing class */ 461 if (tca[TCA_RATE]) { 462 err = gen_replace_estimator(&cl->bstats, &cl->rate_est, 463 qdisc_root_sleeping_lock(sch), 464 tca[TCA_RATE]); 465 if (err) 466 return err; 467 } 468 existing = true; 469 goto set_change_agg; 470 } 471 472 /* create and init new class */ 473 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 474 if (cl == NULL) 475 return -ENOBUFS; 476 477 cl->refcnt = 1; 478 cl->common.classid = classid; 479 cl->deficit = lmax; 480 481 cl->qdisc = qdisc_create_dflt(sch->dev_queue, 482 &pfifo_qdisc_ops, classid); 483 if (cl->qdisc == NULL) 484 cl->qdisc = &noop_qdisc; 485 486 if (tca[TCA_RATE]) { 487 err = gen_new_estimator(&cl->bstats, &cl->rate_est, 488 qdisc_root_sleeping_lock(sch), 489 tca[TCA_RATE]); 490 if (err) 491 goto destroy_class; 492 } 493 494 sch_tree_lock(sch); 495 qdisc_class_hash_insert(&q->clhash, &cl->common); 496 sch_tree_unlock(sch); 497 498 qdisc_class_hash_grow(sch, &q->clhash); 499 500 set_change_agg: 501 sch_tree_lock(sch); 502 new_agg = qfq_find_agg(q, lmax, weight); 503 if (new_agg == NULL) { /* create new aggregate */ 504 sch_tree_unlock(sch); 505 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); 506 if (new_agg == NULL) { 507 err = -ENOBUFS; 508 gen_kill_estimator(&cl->bstats, &cl->rate_est); 509 goto destroy_class; 510 } 511 sch_tree_lock(sch); 512 qfq_init_agg(q, new_agg, lmax, weight); 513 } 514 if (existing) 515 qfq_deact_rm_from_agg(q, cl); 516 qfq_add_to_agg(q, new_agg, cl); 517 sch_tree_unlock(sch); 518 519 *arg = (unsigned long)cl; 520 return 0; 521 522 destroy_class: 523 qdisc_destroy(cl->qdisc); 524 kfree(cl); 525 return err; 526 } 527 528 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 529 { 530 struct qfq_sched *q = qdisc_priv(sch); 531 532 qfq_rm_from_agg(q, cl); 533 gen_kill_estimator(&cl->bstats, &cl->rate_est); 534 qdisc_destroy(cl->qdisc); 535 kfree(cl); 536 } 537 538 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg) 539 { 540 struct qfq_sched *q = qdisc_priv(sch); 541 struct qfq_class *cl = (struct qfq_class *)arg; 542 543 if (cl->filter_cnt > 0) 544 return -EBUSY; 545 546 sch_tree_lock(sch); 547 548 qfq_purge_queue(cl); 549 qdisc_class_hash_remove(&q->clhash, &cl->common); 550 551 BUG_ON(--cl->refcnt == 0); 552 /* 553 * This shouldn't happen: we "hold" one cops->get() when called 554 * from tc_ctl_tclass; the destroy method is done from cops->put(). 555 */ 556 557 sch_tree_unlock(sch); 558 return 0; 559 } 560 561 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid) 562 { 563 struct qfq_class *cl = qfq_find_class(sch, classid); 564 565 if (cl != NULL) 566 cl->refcnt++; 567 568 return (unsigned long)cl; 569 } 570 571 static void qfq_put_class(struct Qdisc *sch, unsigned long arg) 572 { 573 struct qfq_class *cl = (struct qfq_class *)arg; 574 575 if (--cl->refcnt == 0) 576 qfq_destroy_class(sch, cl); 577 } 578 579 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl) 580 { 581 struct qfq_sched *q = qdisc_priv(sch); 582 583 if (cl) 584 return NULL; 585 586 return &q->filter_list; 587 } 588 589 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 590 u32 classid) 591 { 592 struct qfq_class *cl = qfq_find_class(sch, classid); 593 594 if (cl != NULL) 595 cl->filter_cnt++; 596 597 return (unsigned long)cl; 598 } 599 600 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 601 { 602 struct qfq_class *cl = (struct qfq_class *)arg; 603 604 cl->filter_cnt--; 605 } 606 607 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 608 struct Qdisc *new, struct Qdisc **old) 609 { 610 struct qfq_class *cl = (struct qfq_class *)arg; 611 612 if (new == NULL) { 613 new = qdisc_create_dflt(sch->dev_queue, 614 &pfifo_qdisc_ops, cl->common.classid); 615 if (new == NULL) 616 new = &noop_qdisc; 617 } 618 619 sch_tree_lock(sch); 620 qfq_purge_queue(cl); 621 *old = cl->qdisc; 622 cl->qdisc = new; 623 sch_tree_unlock(sch); 624 return 0; 625 } 626 627 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 628 { 629 struct qfq_class *cl = (struct qfq_class *)arg; 630 631 return cl->qdisc; 632 } 633 634 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 635 struct sk_buff *skb, struct tcmsg *tcm) 636 { 637 struct qfq_class *cl = (struct qfq_class *)arg; 638 struct nlattr *nest; 639 640 tcm->tcm_parent = TC_H_ROOT; 641 tcm->tcm_handle = cl->common.classid; 642 tcm->tcm_info = cl->qdisc->handle; 643 644 nest = nla_nest_start(skb, TCA_OPTIONS); 645 if (nest == NULL) 646 goto nla_put_failure; 647 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || 648 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) 649 goto nla_put_failure; 650 return nla_nest_end(skb, nest); 651 652 nla_put_failure: 653 nla_nest_cancel(skb, nest); 654 return -EMSGSIZE; 655 } 656 657 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 658 struct gnet_dump *d) 659 { 660 struct qfq_class *cl = (struct qfq_class *)arg; 661 struct tc_qfq_stats xstats; 662 663 memset(&xstats, 0, sizeof(xstats)); 664 cl->qdisc->qstats.qlen = cl->qdisc->q.qlen; 665 666 xstats.weight = cl->agg->class_weight; 667 xstats.lmax = cl->agg->lmax; 668 669 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || 670 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 || 671 gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0) 672 return -1; 673 674 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 675 } 676 677 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 678 { 679 struct qfq_sched *q = qdisc_priv(sch); 680 struct qfq_class *cl; 681 unsigned int i; 682 683 if (arg->stop) 684 return; 685 686 for (i = 0; i < q->clhash.hashsize; i++) { 687 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 688 if (arg->count < arg->skip) { 689 arg->count++; 690 continue; 691 } 692 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 693 arg->stop = 1; 694 return; 695 } 696 arg->count++; 697 } 698 } 699 } 700 701 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 702 int *qerr) 703 { 704 struct qfq_sched *q = qdisc_priv(sch); 705 struct qfq_class *cl; 706 struct tcf_result res; 707 int result; 708 709 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 710 pr_debug("qfq_classify: found %d\n", skb->priority); 711 cl = qfq_find_class(sch, skb->priority); 712 if (cl != NULL) 713 return cl; 714 } 715 716 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 717 result = tc_classify(skb, q->filter_list, &res); 718 if (result >= 0) { 719 #ifdef CONFIG_NET_CLS_ACT 720 switch (result) { 721 case TC_ACT_QUEUED: 722 case TC_ACT_STOLEN: 723 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 724 case TC_ACT_SHOT: 725 return NULL; 726 } 727 #endif 728 cl = (struct qfq_class *)res.class; 729 if (cl == NULL) 730 cl = qfq_find_class(sch, res.classid); 731 return cl; 732 } 733 734 return NULL; 735 } 736 737 /* Generic comparison function, handling wraparound. */ 738 static inline int qfq_gt(u64 a, u64 b) 739 { 740 return (s64)(a - b) > 0; 741 } 742 743 /* Round a precise timestamp to its slotted value. */ 744 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 745 { 746 return ts & ~((1ULL << shift) - 1); 747 } 748 749 /* return the pointer to the group with lowest index in the bitmap */ 750 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 751 unsigned long bitmap) 752 { 753 int index = __ffs(bitmap); 754 return &q->groups[index]; 755 } 756 /* Calculate a mask to mimic what would be ffs_from(). */ 757 static inline unsigned long mask_from(unsigned long bitmap, int from) 758 { 759 return bitmap & ~((1UL << from) - 1); 760 } 761 762 /* 763 * The state computation relies on ER=0, IR=1, EB=2, IB=3 764 * First compute eligibility comparing grp->S, q->V, 765 * then check if someone is blocking us and possibly add EB 766 */ 767 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 768 { 769 /* if S > V we are not eligible */ 770 unsigned int state = qfq_gt(grp->S, q->V); 771 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 772 struct qfq_group *next; 773 774 if (mask) { 775 next = qfq_ffs(q, mask); 776 if (qfq_gt(grp->F, next->F)) 777 state |= EB; 778 } 779 780 return state; 781 } 782 783 784 /* 785 * In principle 786 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 787 * q->bitmaps[src] &= ~mask; 788 * but we should make sure that src != dst 789 */ 790 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 791 int src, int dst) 792 { 793 q->bitmaps[dst] |= q->bitmaps[src] & mask; 794 q->bitmaps[src] &= ~mask; 795 } 796 797 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 798 { 799 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 800 struct qfq_group *next; 801 802 if (mask) { 803 next = qfq_ffs(q, mask); 804 if (!qfq_gt(next->F, old_F)) 805 return; 806 } 807 808 mask = (1UL << index) - 1; 809 qfq_move_groups(q, mask, EB, ER); 810 qfq_move_groups(q, mask, IB, IR); 811 } 812 813 /* 814 * perhaps 815 * 816 old_V ^= q->V; 817 old_V >>= q->min_slot_shift; 818 if (old_V) { 819 ... 820 } 821 * 822 */ 823 static void qfq_make_eligible(struct qfq_sched *q) 824 { 825 unsigned long vslot = q->V >> q->min_slot_shift; 826 unsigned long old_vslot = q->oldV >> q->min_slot_shift; 827 828 if (vslot != old_vslot) { 829 unsigned long mask; 830 int last_flip_pos = fls(vslot ^ old_vslot); 831 832 if (last_flip_pos > 31) /* higher than the number of groups */ 833 mask = ~0UL; /* make all groups eligible */ 834 else 835 mask = (1UL << last_flip_pos) - 1; 836 837 qfq_move_groups(q, mask, IR, ER); 838 qfq_move_groups(q, mask, IB, EB); 839 } 840 } 841 842 /* 843 * The index of the slot in which the input aggregate agg is to be 844 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' 845 * and not a '-1' because the start time of the group may be moved 846 * backward by one slot after the aggregate has been inserted, and 847 * this would cause non-empty slots to be right-shifted by one 848 * position. 849 * 850 * QFQ+ fully satisfies this bound to the slot index if the parameters 851 * of the classes are not changed dynamically, and if QFQ+ never 852 * happens to postpone the service of agg unjustly, i.e., it never 853 * happens that the aggregate becomes backlogged and eligible, or just 854 * eligible, while an aggregate with a higher approximated finish time 855 * is being served. In particular, in this case QFQ+ guarantees that 856 * the timestamps of agg are low enough that the slot index is never 857 * higher than 2. Unfortunately, QFQ+ cannot provide the same 858 * guarantee if it happens to unjustly postpone the service of agg, or 859 * if the parameters of some class are changed. 860 * 861 * As for the first event, i.e., an out-of-order service, the 862 * upper bound to the slot index guaranteed by QFQ+ grows to 863 * 2 + 864 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * 865 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. 866 * 867 * The following function deals with this problem by backward-shifting 868 * the timestamps of agg, if needed, so as to guarantee that the slot 869 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may 870 * cause the service of other aggregates to be postponed, yet the 871 * worst-case guarantees of these aggregates are not violated. In 872 * fact, in case of no out-of-order service, the timestamps of agg 873 * would have been even lower than they are after the backward shift, 874 * because QFQ+ would have guaranteed a maximum value equal to 2 for 875 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose 876 * service is postponed because of the backward-shift would have 877 * however waited for the service of agg before being served. 878 * 879 * The other event that may cause the slot index to be higher than 2 880 * for agg is a recent change of the parameters of some class. If the 881 * weight of a class is increased or the lmax (max_pkt_size) of the 882 * class is decreased, then a new aggregate with smaller slot size 883 * than the original parent aggregate of the class may happen to be 884 * activated. The activation of this aggregate should be properly 885 * delayed to when the service of the class has finished in the ideal 886 * system tracked by QFQ+. If the activation of the aggregate is not 887 * delayed to this reference time instant, then this aggregate may be 888 * unjustly served before other aggregates waiting for service. This 889 * may cause the above bound to the slot index to be violated for some 890 * of these unlucky aggregates. 891 * 892 * Instead of delaying the activation of the new aggregate, which is 893 * quite complex, the above-discussed capping of the slot index is 894 * used to handle also the consequences of a change of the parameters 895 * of a class. 896 */ 897 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, 898 u64 roundedS) 899 { 900 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 901 unsigned int i; /* slot index in the bucket list */ 902 903 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 904 u64 deltaS = roundedS - grp->S - 905 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 906 agg->S -= deltaS; 907 agg->F -= deltaS; 908 slot = QFQ_MAX_SLOTS - 2; 909 } 910 911 i = (grp->front + slot) % QFQ_MAX_SLOTS; 912 913 hlist_add_head(&agg->next, &grp->slots[i]); 914 __set_bit(slot, &grp->full_slots); 915 } 916 917 /* Maybe introduce hlist_first_entry?? */ 918 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) 919 { 920 return hlist_entry(grp->slots[grp->front].first, 921 struct qfq_aggregate, next); 922 } 923 924 /* 925 * remove the entry from the slot 926 */ 927 static void qfq_front_slot_remove(struct qfq_group *grp) 928 { 929 struct qfq_aggregate *agg = qfq_slot_head(grp); 930 931 BUG_ON(!agg); 932 hlist_del(&agg->next); 933 if (hlist_empty(&grp->slots[grp->front])) 934 __clear_bit(0, &grp->full_slots); 935 } 936 937 /* 938 * Returns the first aggregate in the first non-empty bucket of the 939 * group. As a side effect, adjusts the bucket list so the first 940 * non-empty bucket is at position 0 in full_slots. 941 */ 942 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) 943 { 944 unsigned int i; 945 946 pr_debug("qfq slot_scan: grp %u full %#lx\n", 947 grp->index, grp->full_slots); 948 949 if (grp->full_slots == 0) 950 return NULL; 951 952 i = __ffs(grp->full_slots); /* zero based */ 953 if (i > 0) { 954 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 955 grp->full_slots >>= i; 956 } 957 958 return qfq_slot_head(grp); 959 } 960 961 /* 962 * adjust the bucket list. When the start time of a group decreases, 963 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 964 * move the objects. The mask of occupied slots must be shifted 965 * because we use ffs() to find the first non-empty slot. 966 * This covers decreases in the group's start time, but what about 967 * increases of the start time ? 968 * Here too we should make sure that i is less than 32 969 */ 970 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 971 { 972 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 973 974 grp->full_slots <<= i; 975 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 976 } 977 978 static void qfq_update_eligible(struct qfq_sched *q) 979 { 980 struct qfq_group *grp; 981 unsigned long ineligible; 982 983 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 984 if (ineligible) { 985 if (!q->bitmaps[ER]) { 986 grp = qfq_ffs(q, ineligible); 987 if (qfq_gt(grp->S, q->V)) 988 q->V = grp->S; 989 } 990 qfq_make_eligible(q); 991 } 992 } 993 994 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ 995 static void agg_dequeue(struct qfq_aggregate *agg, 996 struct qfq_class *cl, unsigned int len) 997 { 998 qdisc_dequeue_peeked(cl->qdisc); 999 1000 cl->deficit -= (int) len; 1001 1002 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ 1003 list_del(&cl->alist); 1004 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { 1005 cl->deficit += agg->lmax; 1006 list_move_tail(&cl->alist, &agg->active); 1007 } 1008 } 1009 1010 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, 1011 struct qfq_class **cl, 1012 unsigned int *len) 1013 { 1014 struct sk_buff *skb; 1015 1016 *cl = list_first_entry(&agg->active, struct qfq_class, alist); 1017 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); 1018 if (skb == NULL) 1019 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); 1020 else 1021 *len = qdisc_pkt_len(skb); 1022 1023 return skb; 1024 } 1025 1026 /* Update F according to the actual service received by the aggregate. */ 1027 static inline void charge_actual_service(struct qfq_aggregate *agg) 1028 { 1029 /* Compute the service received by the aggregate, taking into 1030 * account that, after decreasing the number of classes in 1031 * agg, it may happen that 1032 * agg->initial_budget - agg->budget > agg->bugdetmax 1033 */ 1034 u32 service_received = min(agg->budgetmax, 1035 agg->initial_budget - agg->budget); 1036 1037 agg->F = agg->S + (u64)service_received * agg->inv_w; 1038 } 1039 1040 /* Assign a reasonable start time for a new aggregate in group i. 1041 * Admissible values for \hat(F) are multiples of \sigma_i 1042 * no greater than V+\sigma_i . Larger values mean that 1043 * we had a wraparound so we consider the timestamp to be stale. 1044 * 1045 * If F is not stale and F >= V then we set S = F. 1046 * Otherwise we should assign S = V, but this may violate 1047 * the ordering in EB (see [2]). So, if we have groups in ER, 1048 * set S to the F_j of the first group j which would be blocking us. 1049 * We are guaranteed not to move S backward because 1050 * otherwise our group i would still be blocked. 1051 */ 1052 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) 1053 { 1054 unsigned long mask; 1055 u64 limit, roundedF; 1056 int slot_shift = agg->grp->slot_shift; 1057 1058 roundedF = qfq_round_down(agg->F, slot_shift); 1059 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 1060 1061 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { 1062 /* timestamp was stale */ 1063 mask = mask_from(q->bitmaps[ER], agg->grp->index); 1064 if (mask) { 1065 struct qfq_group *next = qfq_ffs(q, mask); 1066 if (qfq_gt(roundedF, next->F)) { 1067 if (qfq_gt(limit, next->F)) 1068 agg->S = next->F; 1069 else /* preserve timestamp correctness */ 1070 agg->S = limit; 1071 return; 1072 } 1073 } 1074 agg->S = q->V; 1075 } else /* timestamp is not stale */ 1076 agg->S = agg->F; 1077 } 1078 1079 /* Update the timestamps of agg before scheduling/rescheduling it for 1080 * service. In particular, assign to agg->F its maximum possible 1081 * value, i.e., the virtual finish time with which the aggregate 1082 * should be labeled if it used all its budget once in service. 1083 */ 1084 static inline void 1085 qfq_update_agg_ts(struct qfq_sched *q, 1086 struct qfq_aggregate *agg, enum update_reason reason) 1087 { 1088 if (reason != requeue) 1089 qfq_update_start(q, agg); 1090 else /* just charge agg for the service received */ 1091 agg->S = agg->F; 1092 1093 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; 1094 } 1095 1096 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); 1097 1098 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 1099 { 1100 struct qfq_sched *q = qdisc_priv(sch); 1101 struct qfq_aggregate *in_serv_agg = q->in_serv_agg; 1102 struct qfq_class *cl; 1103 struct sk_buff *skb = NULL; 1104 /* next-packet len, 0 means no more active classes in in-service agg */ 1105 unsigned int len = 0; 1106 1107 if (in_serv_agg == NULL) 1108 return NULL; 1109 1110 if (!list_empty(&in_serv_agg->active)) 1111 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1112 1113 /* 1114 * If there are no active classes in the in-service aggregate, 1115 * or if the aggregate has not enough budget to serve its next 1116 * class, then choose the next aggregate to serve. 1117 */ 1118 if (len == 0 || in_serv_agg->budget < len) { 1119 charge_actual_service(in_serv_agg); 1120 1121 /* recharge the budget of the aggregate */ 1122 in_serv_agg->initial_budget = in_serv_agg->budget = 1123 in_serv_agg->budgetmax; 1124 1125 if (!list_empty(&in_serv_agg->active)) { 1126 /* 1127 * Still active: reschedule for 1128 * service. Possible optimization: if no other 1129 * aggregate is active, then there is no point 1130 * in rescheduling this aggregate, and we can 1131 * just keep it as the in-service one. This 1132 * should be however a corner case, and to 1133 * handle it, we would need to maintain an 1134 * extra num_active_aggs field. 1135 */ 1136 qfq_update_agg_ts(q, in_serv_agg, requeue); 1137 qfq_schedule_agg(q, in_serv_agg); 1138 } else if (sch->q.qlen == 0) { /* no aggregate to serve */ 1139 q->in_serv_agg = NULL; 1140 return NULL; 1141 } 1142 1143 /* 1144 * If we get here, there are other aggregates queued: 1145 * choose the new aggregate to serve. 1146 */ 1147 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); 1148 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1149 } 1150 if (!skb) 1151 return NULL; 1152 1153 sch->q.qlen--; 1154 qdisc_bstats_update(sch, skb); 1155 1156 agg_dequeue(in_serv_agg, cl, len); 1157 /* If lmax is lowered, through qfq_change_class, for a class 1158 * owning pending packets with larger size than the new value 1159 * of lmax, then the following condition may hold. 1160 */ 1161 if (unlikely(in_serv_agg->budget < len)) 1162 in_serv_agg->budget = 0; 1163 else 1164 in_serv_agg->budget -= len; 1165 1166 q->V += (u64)len * q->iwsum; 1167 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 1168 len, (unsigned long long) in_serv_agg->F, 1169 (unsigned long long) q->V); 1170 1171 return skb; 1172 } 1173 1174 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) 1175 { 1176 struct qfq_group *grp; 1177 struct qfq_aggregate *agg, *new_front_agg; 1178 u64 old_F; 1179 1180 qfq_update_eligible(q); 1181 q->oldV = q->V; 1182 1183 if (!q->bitmaps[ER]) 1184 return NULL; 1185 1186 grp = qfq_ffs(q, q->bitmaps[ER]); 1187 old_F = grp->F; 1188 1189 agg = qfq_slot_head(grp); 1190 1191 /* agg starts to be served, remove it from schedule */ 1192 qfq_front_slot_remove(grp); 1193 1194 new_front_agg = qfq_slot_scan(grp); 1195 1196 if (new_front_agg == NULL) /* group is now inactive, remove from ER */ 1197 __clear_bit(grp->index, &q->bitmaps[ER]); 1198 else { 1199 u64 roundedS = qfq_round_down(new_front_agg->S, 1200 grp->slot_shift); 1201 unsigned int s; 1202 1203 if (grp->S == roundedS) 1204 return agg; 1205 grp->S = roundedS; 1206 grp->F = roundedS + (2ULL << grp->slot_shift); 1207 __clear_bit(grp->index, &q->bitmaps[ER]); 1208 s = qfq_calc_state(q, grp); 1209 __set_bit(grp->index, &q->bitmaps[s]); 1210 } 1211 1212 qfq_unblock_groups(q, grp->index, old_F); 1213 1214 return agg; 1215 } 1216 1217 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch) 1218 { 1219 struct qfq_sched *q = qdisc_priv(sch); 1220 struct qfq_class *cl; 1221 struct qfq_aggregate *agg; 1222 int err = 0; 1223 1224 cl = qfq_classify(skb, sch, &err); 1225 if (cl == NULL) { 1226 if (err & __NET_XMIT_BYPASS) 1227 sch->qstats.drops++; 1228 kfree_skb(skb); 1229 return err; 1230 } 1231 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 1232 1233 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) { 1234 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 1235 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid); 1236 err = qfq_change_agg(sch, cl, cl->agg->class_weight, 1237 qdisc_pkt_len(skb)); 1238 if (err) 1239 return err; 1240 } 1241 1242 err = qdisc_enqueue(skb, cl->qdisc); 1243 if (unlikely(err != NET_XMIT_SUCCESS)) { 1244 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 1245 if (net_xmit_drop_count(err)) { 1246 cl->qstats.drops++; 1247 sch->qstats.drops++; 1248 } 1249 return err; 1250 } 1251 1252 bstats_update(&cl->bstats, skb); 1253 ++sch->q.qlen; 1254 1255 agg = cl->agg; 1256 /* if the queue was not empty, then done here */ 1257 if (cl->qdisc->q.qlen != 1) { 1258 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && 1259 list_first_entry(&agg->active, struct qfq_class, alist) 1260 == cl && cl->deficit < qdisc_pkt_len(skb)) 1261 list_move_tail(&cl->alist, &agg->active); 1262 1263 return err; 1264 } 1265 1266 /* schedule class for service within the aggregate */ 1267 cl->deficit = agg->lmax; 1268 list_add_tail(&cl->alist, &agg->active); 1269 1270 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || 1271 q->in_serv_agg == agg) 1272 return err; /* non-empty or in service, nothing else to do */ 1273 1274 qfq_activate_agg(q, agg, enqueue); 1275 1276 return err; 1277 } 1278 1279 /* 1280 * Schedule aggregate according to its timestamps. 1281 */ 1282 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1283 { 1284 struct qfq_group *grp = agg->grp; 1285 u64 roundedS; 1286 int s; 1287 1288 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1289 1290 /* 1291 * Insert agg in the correct bucket. 1292 * If agg->S >= grp->S we don't need to adjust the 1293 * bucket list and simply go to the insertion phase. 1294 * Otherwise grp->S is decreasing, we must make room 1295 * in the bucket list, and also recompute the group state. 1296 * Finally, if there were no flows in this group and nobody 1297 * was in ER make sure to adjust V. 1298 */ 1299 if (grp->full_slots) { 1300 if (!qfq_gt(grp->S, agg->S)) 1301 goto skip_update; 1302 1303 /* create a slot for this agg->S */ 1304 qfq_slot_rotate(grp, roundedS); 1305 /* group was surely ineligible, remove */ 1306 __clear_bit(grp->index, &q->bitmaps[IR]); 1307 __clear_bit(grp->index, &q->bitmaps[IB]); 1308 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && 1309 q->in_serv_agg == NULL) 1310 q->V = roundedS; 1311 1312 grp->S = roundedS; 1313 grp->F = roundedS + (2ULL << grp->slot_shift); 1314 s = qfq_calc_state(q, grp); 1315 __set_bit(grp->index, &q->bitmaps[s]); 1316 1317 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1318 s, q->bitmaps[s], 1319 (unsigned long long) agg->S, 1320 (unsigned long long) agg->F, 1321 (unsigned long long) q->V); 1322 1323 skip_update: 1324 qfq_slot_insert(grp, agg, roundedS); 1325 } 1326 1327 1328 /* Update agg ts and schedule agg for service */ 1329 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 1330 enum update_reason reason) 1331 { 1332 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ 1333 1334 qfq_update_agg_ts(q, agg, reason); 1335 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ 1336 q->in_serv_agg = agg; /* start serving this aggregate */ 1337 /* update V: to be in service, agg must be eligible */ 1338 q->oldV = q->V = agg->S; 1339 } else if (agg != q->in_serv_agg) 1340 qfq_schedule_agg(q, agg); 1341 } 1342 1343 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1344 struct qfq_aggregate *agg) 1345 { 1346 unsigned int i, offset; 1347 u64 roundedS; 1348 1349 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1350 offset = (roundedS - grp->S) >> grp->slot_shift; 1351 1352 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1353 1354 hlist_del(&agg->next); 1355 if (hlist_empty(&grp->slots[i])) 1356 __clear_bit(offset, &grp->full_slots); 1357 } 1358 1359 /* 1360 * Called to forcibly deschedule an aggregate. If the aggregate is 1361 * not in the front bucket, or if the latter has other aggregates in 1362 * the front bucket, we can simply remove the aggregate with no other 1363 * side effects. 1364 * Otherwise we must propagate the event up. 1365 */ 1366 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1367 { 1368 struct qfq_group *grp = agg->grp; 1369 unsigned long mask; 1370 u64 roundedS; 1371 int s; 1372 1373 if (agg == q->in_serv_agg) { 1374 charge_actual_service(agg); 1375 q->in_serv_agg = qfq_choose_next_agg(q); 1376 return; 1377 } 1378 1379 agg->F = agg->S; 1380 qfq_slot_remove(q, grp, agg); 1381 1382 if (!grp->full_slots) { 1383 __clear_bit(grp->index, &q->bitmaps[IR]); 1384 __clear_bit(grp->index, &q->bitmaps[EB]); 1385 __clear_bit(grp->index, &q->bitmaps[IB]); 1386 1387 if (test_bit(grp->index, &q->bitmaps[ER]) && 1388 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1389 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1390 if (mask) 1391 mask = ~((1UL << __fls(mask)) - 1); 1392 else 1393 mask = ~0UL; 1394 qfq_move_groups(q, mask, EB, ER); 1395 qfq_move_groups(q, mask, IB, IR); 1396 } 1397 __clear_bit(grp->index, &q->bitmaps[ER]); 1398 } else if (hlist_empty(&grp->slots[grp->front])) { 1399 agg = qfq_slot_scan(grp); 1400 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1401 if (grp->S != roundedS) { 1402 __clear_bit(grp->index, &q->bitmaps[ER]); 1403 __clear_bit(grp->index, &q->bitmaps[IR]); 1404 __clear_bit(grp->index, &q->bitmaps[EB]); 1405 __clear_bit(grp->index, &q->bitmaps[IB]); 1406 grp->S = roundedS; 1407 grp->F = roundedS + (2ULL << grp->slot_shift); 1408 s = qfq_calc_state(q, grp); 1409 __set_bit(grp->index, &q->bitmaps[s]); 1410 } 1411 } 1412 } 1413 1414 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1415 { 1416 struct qfq_sched *q = qdisc_priv(sch); 1417 struct qfq_class *cl = (struct qfq_class *)arg; 1418 1419 if (cl->qdisc->q.qlen == 0) 1420 qfq_deactivate_class(q, cl); 1421 } 1422 1423 static unsigned int qfq_drop_from_slot(struct qfq_sched *q, 1424 struct hlist_head *slot) 1425 { 1426 struct qfq_aggregate *agg; 1427 struct qfq_class *cl; 1428 unsigned int len; 1429 1430 hlist_for_each_entry(agg, slot, next) { 1431 list_for_each_entry(cl, &agg->active, alist) { 1432 1433 if (!cl->qdisc->ops->drop) 1434 continue; 1435 1436 len = cl->qdisc->ops->drop(cl->qdisc); 1437 if (len > 0) { 1438 if (cl->qdisc->q.qlen == 0) 1439 qfq_deactivate_class(q, cl); 1440 1441 return len; 1442 } 1443 } 1444 } 1445 return 0; 1446 } 1447 1448 static unsigned int qfq_drop(struct Qdisc *sch) 1449 { 1450 struct qfq_sched *q = qdisc_priv(sch); 1451 struct qfq_group *grp; 1452 unsigned int i, j, len; 1453 1454 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1455 grp = &q->groups[i]; 1456 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 1457 len = qfq_drop_from_slot(q, &grp->slots[j]); 1458 if (len > 0) { 1459 sch->q.qlen--; 1460 return len; 1461 } 1462 } 1463 1464 } 1465 1466 return 0; 1467 } 1468 1469 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt) 1470 { 1471 struct qfq_sched *q = qdisc_priv(sch); 1472 struct qfq_group *grp; 1473 int i, j, err; 1474 u32 max_cl_shift, maxbudg_shift, max_classes; 1475 1476 err = qdisc_class_hash_init(&q->clhash); 1477 if (err < 0) 1478 return err; 1479 1480 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES) 1481 max_classes = QFQ_MAX_AGG_CLASSES; 1482 else 1483 max_classes = qdisc_dev(sch)->tx_queue_len + 1; 1484 /* max_cl_shift = floor(log_2(max_classes)) */ 1485 max_cl_shift = __fls(max_classes); 1486 q->max_agg_classes = 1<<max_cl_shift; 1487 1488 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ 1489 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; 1490 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; 1491 1492 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1493 grp = &q->groups[i]; 1494 grp->index = i; 1495 grp->slot_shift = q->min_slot_shift + i; 1496 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1497 INIT_HLIST_HEAD(&grp->slots[j]); 1498 } 1499 1500 INIT_HLIST_HEAD(&q->nonfull_aggs); 1501 1502 return 0; 1503 } 1504 1505 static void qfq_reset_qdisc(struct Qdisc *sch) 1506 { 1507 struct qfq_sched *q = qdisc_priv(sch); 1508 struct qfq_class *cl; 1509 unsigned int i; 1510 1511 for (i = 0; i < q->clhash.hashsize; i++) { 1512 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1513 if (cl->qdisc->q.qlen > 0) 1514 qfq_deactivate_class(q, cl); 1515 1516 qdisc_reset(cl->qdisc); 1517 } 1518 } 1519 sch->q.qlen = 0; 1520 } 1521 1522 static void qfq_destroy_qdisc(struct Qdisc *sch) 1523 { 1524 struct qfq_sched *q = qdisc_priv(sch); 1525 struct qfq_class *cl; 1526 struct hlist_node *next; 1527 unsigned int i; 1528 1529 tcf_destroy_chain(&q->filter_list); 1530 1531 for (i = 0; i < q->clhash.hashsize; i++) { 1532 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1533 common.hnode) { 1534 qfq_destroy_class(sch, cl); 1535 } 1536 } 1537 qdisc_class_hash_destroy(&q->clhash); 1538 } 1539 1540 static const struct Qdisc_class_ops qfq_class_ops = { 1541 .change = qfq_change_class, 1542 .delete = qfq_delete_class, 1543 .get = qfq_get_class, 1544 .put = qfq_put_class, 1545 .tcf_chain = qfq_tcf_chain, 1546 .bind_tcf = qfq_bind_tcf, 1547 .unbind_tcf = qfq_unbind_tcf, 1548 .graft = qfq_graft_class, 1549 .leaf = qfq_class_leaf, 1550 .qlen_notify = qfq_qlen_notify, 1551 .dump = qfq_dump_class, 1552 .dump_stats = qfq_dump_class_stats, 1553 .walk = qfq_walk, 1554 }; 1555 1556 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1557 .cl_ops = &qfq_class_ops, 1558 .id = "qfq", 1559 .priv_size = sizeof(struct qfq_sched), 1560 .enqueue = qfq_enqueue, 1561 .dequeue = qfq_dequeue, 1562 .peek = qdisc_peek_dequeued, 1563 .drop = qfq_drop, 1564 .init = qfq_init_qdisc, 1565 .reset = qfq_reset_qdisc, 1566 .destroy = qfq_destroy_qdisc, 1567 .owner = THIS_MODULE, 1568 }; 1569 1570 static int __init qfq_init(void) 1571 { 1572 return register_qdisc(&qfq_qdisc_ops); 1573 } 1574 1575 static void __exit qfq_exit(void) 1576 { 1577 unregister_qdisc(&qfq_qdisc_ops); 1578 } 1579 1580 module_init(qfq_init); 1581 module_exit(qfq_exit); 1582 MODULE_LICENSE("GPL"); 1583