xref: /linux/net/sched/sch_qfq.c (revision c8b90d40d5bba8e6fba457b8a7c10d3c0d467e37)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
4  *
5  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6  * Copyright (c) 2012 Paolo Valente.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
18 
19 
20 /*  Quick Fair Queueing Plus
21     ========================
22 
23     Sources:
24 
25     [1] Paolo Valente,
26     "Reducing the Execution Time of Fair-Queueing Schedulers."
27     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
28 
29     Sources for QFQ:
30 
31     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
33 
34     See also:
35     http://retis.sssup.it/~fabio/linux/qfq/
36  */
37 
38 /*
39 
40   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41   classes. Each aggregate is timestamped with a virtual start time S
42   and a virtual finish time F, and scheduled according to its
43   timestamps. S and F are computed as a function of a system virtual
44   time function V. The classes within each aggregate are instead
45   scheduled with DRR.
46 
47   To speed up operations, QFQ+ divides also aggregates into a limited
48   number of groups. Which group a class belongs to depends on the
49   ratio between the maximum packet length for the class and the weight
50   of the class. Groups have their own S and F. In the end, QFQ+
51   schedules groups, then aggregates within groups, then classes within
52   aggregates. See [1] and [2] for a full description.
53 
54   Virtual time computations.
55 
56   S, F and V are all computed in fixed point arithmetic with
57   FRAC_BITS decimal bits.
58 
59   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60 	one bit per index.
61   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
62 
63   The layout of the bits is as below:
64 
65                    [ MTU_SHIFT ][      FRAC_BITS    ]
66                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
67 				 ^.__grp->index = 0
68 				 *.__grp->slot_shift
69 
70   where MIN_SLOT_SHIFT is derived by difference from the others.
71 
72   The max group index corresponds to Lmax/w_min, where
73   Lmax=1<<MTU_SHIFT, w_min = 1 .
74   From this, and knowing how many groups (MAX_INDEX) we want,
75   we can derive the shift corresponding to each group.
76 
77   Because we often need to compute
78 	F = S + len/w_i  and V = V + len/wsum
79   instead of storing w_i store the value
80 	inv_w = (1<<FRAC_BITS)/w_i
81   so we can do F = S + len * inv_w * wsum.
82   We use W_TOT in the formulas so we can easily move between
83   static and adaptive weight sum.
84 
85   The per-scheduler-instance data contain all the data structures
86   for the scheduler: bitmaps and bucket lists.
87 
88  */
89 
90 /*
91  * Maximum number of consecutive slots occupied by backlogged classes
92  * inside a group.
93  */
94 #define QFQ_MAX_SLOTS	32
95 
96 /*
97  * Shifts used for aggregate<->group mapping.  We allow class weights that are
98  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99  * group with the smallest index that can support the L_i / r_i configured
100  * for the classes in the aggregate.
101  *
102  * grp->index is the index of the group; and grp->slot_shift
103  * is the shift for the corresponding (scaled) sigma_i.
104  */
105 #define QFQ_MAX_INDEX		24
106 #define QFQ_MAX_WSHIFT		10
107 
108 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
110 
111 #define FRAC_BITS		30	/* fixed point arithmetic */
112 #define ONE_FP			(1UL << FRAC_BITS)
113 
114 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
115 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
116 #define QFQ_MAX_LMAX		(1UL << QFQ_MTU_SHIFT)
117 
118 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
119 
120 /*
121  * Possible group states.  These values are used as indexes for the bitmaps
122  * array of struct qfq_queue.
123  */
124 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
125 
126 struct qfq_group;
127 
128 struct qfq_aggregate;
129 
130 struct qfq_class {
131 	struct Qdisc_class_common common;
132 
133 	struct gnet_stats_basic_sync bstats;
134 	struct gnet_stats_queue qstats;
135 	struct net_rate_estimator __rcu *rate_est;
136 	struct Qdisc *qdisc;
137 	struct list_head alist;		/* Link for active-classes list. */
138 	struct qfq_aggregate *agg;	/* Parent aggregate. */
139 	int deficit;			/* DRR deficit counter. */
140 };
141 
142 struct qfq_aggregate {
143 	struct hlist_node next;	/* Link for the slot list. */
144 	u64 S, F;		/* flow timestamps (exact) */
145 
146 	/* group we belong to. In principle we would need the index,
147 	 * which is log_2(lmax/weight), but we never reference it
148 	 * directly, only the group.
149 	 */
150 	struct qfq_group *grp;
151 
152 	/* these are copied from the flowset. */
153 	u32	class_weight; /* Weight of each class in this aggregate. */
154 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
155 	int	lmax;
156 
157 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
158 	u32	budgetmax;  /* Max budget for this aggregate. */
159 	u32	initial_budget, budget;     /* Initial and current budget. */
160 
161 	int		  num_classes;	/* Number of classes in this aggr. */
162 	struct list_head  active;	/* DRR queue of active classes. */
163 
164 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
165 };
166 
167 struct qfq_group {
168 	u64 S, F;			/* group timestamps (approx). */
169 	unsigned int slot_shift;	/* Slot shift. */
170 	unsigned int index;		/* Group index. */
171 	unsigned int front;		/* Index of the front slot. */
172 	unsigned long full_slots;	/* non-empty slots */
173 
174 	/* Array of RR lists of active aggregates. */
175 	struct hlist_head slots[QFQ_MAX_SLOTS];
176 };
177 
178 struct qfq_sched {
179 	struct tcf_proto __rcu *filter_list;
180 	struct tcf_block	*block;
181 	struct Qdisc_class_hash clhash;
182 
183 	u64			oldV, V;	/* Precise virtual times. */
184 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
185 	u32			wsum;		/* weight sum */
186 	u32			iwsum;		/* inverse weight sum */
187 
188 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
189 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
190 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
191 
192 	u32 max_agg_classes;		/* Max number of classes per aggr. */
193 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
194 };
195 
196 /*
197  * Possible reasons why the timestamps of an aggregate are updated
198  * enqueue: the aggregate switches from idle to active and must scheduled
199  *	    for service
200  * requeue: the aggregate finishes its budget, so it stops being served and
201  *	    must be rescheduled for service
202  */
203 enum update_reason {enqueue, requeue};
204 
205 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
206 {
207 	struct qfq_sched *q = qdisc_priv(sch);
208 	struct Qdisc_class_common *clc;
209 
210 	clc = qdisc_class_find(&q->clhash, classid);
211 	if (clc == NULL)
212 		return NULL;
213 	return container_of(clc, struct qfq_class, common);
214 }
215 
216 static const struct netlink_range_validation lmax_range = {
217 	.min = QFQ_MIN_LMAX,
218 	.max = QFQ_MAX_LMAX,
219 };
220 
221 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
222 	[TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT),
223 	[TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range),
224 };
225 
226 /*
227  * Calculate a flow index, given its weight and maximum packet length.
228  * index = log_2(maxlen/weight) but we need to apply the scaling.
229  * This is used only once at flow creation.
230  */
231 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
232 {
233 	u64 slot_size = (u64)maxlen * inv_w;
234 	unsigned long size_map;
235 	int index = 0;
236 
237 	size_map = slot_size >> min_slot_shift;
238 	if (!size_map)
239 		goto out;
240 
241 	index = __fls(size_map) + 1;	/* basically a log_2 */
242 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
243 
244 	if (index < 0)
245 		index = 0;
246 out:
247 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
248 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
249 
250 	return index;
251 }
252 
253 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
254 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
255 			     enum update_reason);
256 
257 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
258 			 u32 lmax, u32 weight)
259 {
260 	INIT_LIST_HEAD(&agg->active);
261 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
262 
263 	agg->lmax = lmax;
264 	agg->class_weight = weight;
265 }
266 
267 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
268 					  u32 lmax, u32 weight)
269 {
270 	struct qfq_aggregate *agg;
271 
272 	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
273 		if (agg->lmax == lmax && agg->class_weight == weight)
274 			return agg;
275 
276 	return NULL;
277 }
278 
279 
280 /* Update aggregate as a function of the new number of classes. */
281 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
282 			   int new_num_classes)
283 {
284 	u32 new_agg_weight;
285 
286 	if (new_num_classes == q->max_agg_classes)
287 		hlist_del_init(&agg->nonfull_next);
288 
289 	if (agg->num_classes > new_num_classes &&
290 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
291 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
292 
293 	/* The next assignment may let
294 	 * agg->initial_budget > agg->budgetmax
295 	 * hold, we will take it into account in charge_actual_service().
296 	 */
297 	agg->budgetmax = new_num_classes * agg->lmax;
298 	new_agg_weight = agg->class_weight * new_num_classes;
299 	agg->inv_w = ONE_FP/new_agg_weight;
300 
301 	if (agg->grp == NULL) {
302 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
303 				       q->min_slot_shift);
304 		agg->grp = &q->groups[i];
305 	}
306 
307 	q->wsum +=
308 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
309 	q->iwsum = ONE_FP / q->wsum;
310 
311 	agg->num_classes = new_num_classes;
312 }
313 
314 /* Add class to aggregate. */
315 static void qfq_add_to_agg(struct qfq_sched *q,
316 			   struct qfq_aggregate *agg,
317 			   struct qfq_class *cl)
318 {
319 	cl->agg = agg;
320 
321 	qfq_update_agg(q, agg, agg->num_classes+1);
322 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
323 		list_add_tail(&cl->alist, &agg->active);
324 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
325 		    cl && q->in_serv_agg != agg) /* agg was inactive */
326 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
327 	}
328 }
329 
330 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
331 
332 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
333 {
334 	hlist_del_init(&agg->nonfull_next);
335 	q->wsum -= agg->class_weight;
336 	if (q->wsum != 0)
337 		q->iwsum = ONE_FP / q->wsum;
338 
339 	if (q->in_serv_agg == agg)
340 		q->in_serv_agg = qfq_choose_next_agg(q);
341 	kfree(agg);
342 }
343 
344 /* Deschedule class from within its parent aggregate. */
345 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
346 {
347 	struct qfq_aggregate *agg = cl->agg;
348 
349 
350 	list_del(&cl->alist); /* remove from RR queue of the aggregate */
351 	if (list_empty(&agg->active)) /* agg is now inactive */
352 		qfq_deactivate_agg(q, agg);
353 }
354 
355 /* Remove class from its parent aggregate. */
356 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
357 {
358 	struct qfq_aggregate *agg = cl->agg;
359 
360 	cl->agg = NULL;
361 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
362 		qfq_destroy_agg(q, agg);
363 		return;
364 	}
365 	qfq_update_agg(q, agg, agg->num_classes-1);
366 }
367 
368 /* Deschedule class and remove it from its parent aggregate. */
369 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
370 {
371 	if (cl->qdisc->q.qlen > 0) /* class is active */
372 		qfq_deactivate_class(q, cl);
373 
374 	qfq_rm_from_agg(q, cl);
375 }
376 
377 /* Move class to a new aggregate, matching the new class weight and/or lmax */
378 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
379 			   u32 lmax)
380 {
381 	struct qfq_sched *q = qdisc_priv(sch);
382 	struct qfq_aggregate *new_agg;
383 
384 	/* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
385 	if (lmax > QFQ_MAX_LMAX)
386 		return -EINVAL;
387 
388 	new_agg = qfq_find_agg(q, lmax, weight);
389 	if (new_agg == NULL) { /* create new aggregate */
390 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
391 		if (new_agg == NULL)
392 			return -ENOBUFS;
393 		qfq_init_agg(q, new_agg, lmax, weight);
394 	}
395 	qfq_deact_rm_from_agg(q, cl);
396 	qfq_add_to_agg(q, new_agg, cl);
397 
398 	return 0;
399 }
400 
401 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
402 			    struct nlattr **tca, unsigned long *arg,
403 			    struct netlink_ext_ack *extack)
404 {
405 	struct qfq_sched *q = qdisc_priv(sch);
406 	struct qfq_class *cl = (struct qfq_class *)*arg;
407 	bool existing = false;
408 	struct nlattr *tb[TCA_QFQ_MAX + 1];
409 	struct qfq_aggregate *new_agg = NULL;
410 	u32 weight, lmax, inv_w;
411 	int err;
412 	int delta_w;
413 
414 	if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) {
415 		NL_SET_ERR_MSG_MOD(extack, "missing options");
416 		return -EINVAL;
417 	}
418 
419 	err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
420 					  qfq_policy, extack);
421 	if (err < 0)
422 		return err;
423 
424 	weight = nla_get_u32_default(tb[TCA_QFQ_WEIGHT], 1);
425 
426 	if (tb[TCA_QFQ_LMAX]) {
427 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
428 	} else {
429 		/* MTU size is user controlled */
430 		lmax = psched_mtu(qdisc_dev(sch));
431 		if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) {
432 			NL_SET_ERR_MSG_MOD(extack,
433 					   "MTU size out of bounds for qfq");
434 			return -EINVAL;
435 		}
436 	}
437 
438 	inv_w = ONE_FP / weight;
439 	weight = ONE_FP / inv_w;
440 
441 	if (cl != NULL &&
442 	    lmax == cl->agg->lmax &&
443 	    weight == cl->agg->class_weight)
444 		return 0; /* nothing to change */
445 
446 	delta_w = weight - (cl ? cl->agg->class_weight : 0);
447 
448 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
449 		NL_SET_ERR_MSG_FMT_MOD(extack,
450 				       "total weight out of range (%d + %u)\n",
451 				       delta_w, q->wsum);
452 		return -EINVAL;
453 	}
454 
455 	if (cl != NULL) { /* modify existing class */
456 		if (tca[TCA_RATE]) {
457 			err = gen_replace_estimator(&cl->bstats, NULL,
458 						    &cl->rate_est,
459 						    NULL,
460 						    true,
461 						    tca[TCA_RATE]);
462 			if (err)
463 				return err;
464 		}
465 		existing = true;
466 		goto set_change_agg;
467 	}
468 
469 	/* create and init new class */
470 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
471 	if (cl == NULL)
472 		return -ENOBUFS;
473 
474 	gnet_stats_basic_sync_init(&cl->bstats);
475 	cl->common.classid = classid;
476 	cl->deficit = lmax;
477 
478 	cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
479 				      classid, NULL);
480 	if (cl->qdisc == NULL)
481 		cl->qdisc = &noop_qdisc;
482 
483 	if (tca[TCA_RATE]) {
484 		err = gen_new_estimator(&cl->bstats, NULL,
485 					&cl->rate_est,
486 					NULL,
487 					true,
488 					tca[TCA_RATE]);
489 		if (err)
490 			goto destroy_class;
491 	}
492 
493 	if (cl->qdisc != &noop_qdisc)
494 		qdisc_hash_add(cl->qdisc, true);
495 
496 set_change_agg:
497 	sch_tree_lock(sch);
498 	new_agg = qfq_find_agg(q, lmax, weight);
499 	if (new_agg == NULL) { /* create new aggregate */
500 		sch_tree_unlock(sch);
501 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
502 		if (new_agg == NULL) {
503 			err = -ENOBUFS;
504 			gen_kill_estimator(&cl->rate_est);
505 			goto destroy_class;
506 		}
507 		sch_tree_lock(sch);
508 		qfq_init_agg(q, new_agg, lmax, weight);
509 	}
510 	if (existing)
511 		qfq_deact_rm_from_agg(q, cl);
512 	else
513 		qdisc_class_hash_insert(&q->clhash, &cl->common);
514 	qfq_add_to_agg(q, new_agg, cl);
515 	sch_tree_unlock(sch);
516 	qdisc_class_hash_grow(sch, &q->clhash);
517 
518 	*arg = (unsigned long)cl;
519 	return 0;
520 
521 destroy_class:
522 	qdisc_put(cl->qdisc);
523 	kfree(cl);
524 	return err;
525 }
526 
527 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
528 {
529 	struct qfq_sched *q = qdisc_priv(sch);
530 
531 	qfq_rm_from_agg(q, cl);
532 	gen_kill_estimator(&cl->rate_est);
533 	qdisc_put(cl->qdisc);
534 	kfree(cl);
535 }
536 
537 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg,
538 			    struct netlink_ext_ack *extack)
539 {
540 	struct qfq_sched *q = qdisc_priv(sch);
541 	struct qfq_class *cl = (struct qfq_class *)arg;
542 
543 	if (qdisc_class_in_use(&cl->common)) {
544 		NL_SET_ERR_MSG_MOD(extack, "QFQ class in use");
545 		return -EBUSY;
546 	}
547 
548 	sch_tree_lock(sch);
549 
550 	qdisc_purge_queue(cl->qdisc);
551 	qdisc_class_hash_remove(&q->clhash, &cl->common);
552 
553 	sch_tree_unlock(sch);
554 
555 	qfq_destroy_class(sch, cl);
556 	return 0;
557 }
558 
559 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
560 {
561 	return (unsigned long)qfq_find_class(sch, classid);
562 }
563 
564 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
565 				       struct netlink_ext_ack *extack)
566 {
567 	struct qfq_sched *q = qdisc_priv(sch);
568 
569 	if (cl)
570 		return NULL;
571 
572 	return q->block;
573 }
574 
575 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
576 				  u32 classid)
577 {
578 	struct qfq_class *cl = qfq_find_class(sch, classid);
579 
580 	if (cl)
581 		qdisc_class_get(&cl->common);
582 
583 	return (unsigned long)cl;
584 }
585 
586 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
587 {
588 	struct qfq_class *cl = (struct qfq_class *)arg;
589 
590 	qdisc_class_put(&cl->common);
591 }
592 
593 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
594 			   struct Qdisc *new, struct Qdisc **old,
595 			   struct netlink_ext_ack *extack)
596 {
597 	struct qfq_class *cl = (struct qfq_class *)arg;
598 
599 	if (new == NULL) {
600 		new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
601 					cl->common.classid, NULL);
602 		if (new == NULL)
603 			new = &noop_qdisc;
604 	}
605 
606 	*old = qdisc_replace(sch, new, &cl->qdisc);
607 	return 0;
608 }
609 
610 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
611 {
612 	struct qfq_class *cl = (struct qfq_class *)arg;
613 
614 	return cl->qdisc;
615 }
616 
617 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
618 			  struct sk_buff *skb, struct tcmsg *tcm)
619 {
620 	struct qfq_class *cl = (struct qfq_class *)arg;
621 	struct nlattr *nest;
622 
623 	tcm->tcm_parent	= TC_H_ROOT;
624 	tcm->tcm_handle	= cl->common.classid;
625 	tcm->tcm_info	= cl->qdisc->handle;
626 
627 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
628 	if (nest == NULL)
629 		goto nla_put_failure;
630 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
631 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
632 		goto nla_put_failure;
633 	return nla_nest_end(skb, nest);
634 
635 nla_put_failure:
636 	nla_nest_cancel(skb, nest);
637 	return -EMSGSIZE;
638 }
639 
640 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
641 				struct gnet_dump *d)
642 {
643 	struct qfq_class *cl = (struct qfq_class *)arg;
644 	struct tc_qfq_stats xstats;
645 
646 	memset(&xstats, 0, sizeof(xstats));
647 
648 	xstats.weight = cl->agg->class_weight;
649 	xstats.lmax = cl->agg->lmax;
650 
651 	if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
652 	    gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
653 	    qdisc_qstats_copy(d, cl->qdisc) < 0)
654 		return -1;
655 
656 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
657 }
658 
659 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
660 {
661 	struct qfq_sched *q = qdisc_priv(sch);
662 	struct qfq_class *cl;
663 	unsigned int i;
664 
665 	if (arg->stop)
666 		return;
667 
668 	for (i = 0; i < q->clhash.hashsize; i++) {
669 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
670 			if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
671 				return;
672 		}
673 	}
674 }
675 
676 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
677 				      int *qerr)
678 {
679 	struct qfq_sched *q = qdisc_priv(sch);
680 	struct qfq_class *cl;
681 	struct tcf_result res;
682 	struct tcf_proto *fl;
683 	int result;
684 
685 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
686 		pr_debug("qfq_classify: found %d\n", skb->priority);
687 		cl = qfq_find_class(sch, skb->priority);
688 		if (cl != NULL)
689 			return cl;
690 	}
691 
692 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
693 	fl = rcu_dereference_bh(q->filter_list);
694 	result = tcf_classify(skb, NULL, fl, &res, false);
695 	if (result >= 0) {
696 #ifdef CONFIG_NET_CLS_ACT
697 		switch (result) {
698 		case TC_ACT_QUEUED:
699 		case TC_ACT_STOLEN:
700 		case TC_ACT_TRAP:
701 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
702 			fallthrough;
703 		case TC_ACT_SHOT:
704 			return NULL;
705 		}
706 #endif
707 		cl = (struct qfq_class *)res.class;
708 		if (cl == NULL)
709 			cl = qfq_find_class(sch, res.classid);
710 		return cl;
711 	}
712 
713 	return NULL;
714 }
715 
716 /* Generic comparison function, handling wraparound. */
717 static inline int qfq_gt(u64 a, u64 b)
718 {
719 	return (s64)(a - b) > 0;
720 }
721 
722 /* Round a precise timestamp to its slotted value. */
723 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
724 {
725 	return ts & ~((1ULL << shift) - 1);
726 }
727 
728 /* return the pointer to the group with lowest index in the bitmap */
729 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
730 					unsigned long bitmap)
731 {
732 	int index = __ffs(bitmap);
733 	return &q->groups[index];
734 }
735 /* Calculate a mask to mimic what would be ffs_from(). */
736 static inline unsigned long mask_from(unsigned long bitmap, int from)
737 {
738 	return bitmap & ~((1UL << from) - 1);
739 }
740 
741 /*
742  * The state computation relies on ER=0, IR=1, EB=2, IB=3
743  * First compute eligibility comparing grp->S, q->V,
744  * then check if someone is blocking us and possibly add EB
745  */
746 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
747 {
748 	/* if S > V we are not eligible */
749 	unsigned int state = qfq_gt(grp->S, q->V);
750 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
751 	struct qfq_group *next;
752 
753 	if (mask) {
754 		next = qfq_ffs(q, mask);
755 		if (qfq_gt(grp->F, next->F))
756 			state |= EB;
757 	}
758 
759 	return state;
760 }
761 
762 
763 /*
764  * In principle
765  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
766  *	q->bitmaps[src] &= ~mask;
767  * but we should make sure that src != dst
768  */
769 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
770 				   int src, int dst)
771 {
772 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
773 	q->bitmaps[src] &= ~mask;
774 }
775 
776 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
777 {
778 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
779 	struct qfq_group *next;
780 
781 	if (mask) {
782 		next = qfq_ffs(q, mask);
783 		if (!qfq_gt(next->F, old_F))
784 			return;
785 	}
786 
787 	mask = (1UL << index) - 1;
788 	qfq_move_groups(q, mask, EB, ER);
789 	qfq_move_groups(q, mask, IB, IR);
790 }
791 
792 /*
793  * perhaps
794  *
795 	old_V ^= q->V;
796 	old_V >>= q->min_slot_shift;
797 	if (old_V) {
798 		...
799 	}
800  *
801  */
802 static void qfq_make_eligible(struct qfq_sched *q)
803 {
804 	unsigned long vslot = q->V >> q->min_slot_shift;
805 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
806 
807 	if (vslot != old_vslot) {
808 		unsigned long mask;
809 		int last_flip_pos = fls(vslot ^ old_vslot);
810 
811 		if (last_flip_pos > 31) /* higher than the number of groups */
812 			mask = ~0UL;    /* make all groups eligible */
813 		else
814 			mask = (1UL << last_flip_pos) - 1;
815 
816 		qfq_move_groups(q, mask, IR, ER);
817 		qfq_move_groups(q, mask, IB, EB);
818 	}
819 }
820 
821 /*
822  * The index of the slot in which the input aggregate agg is to be
823  * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
824  * and not a '-1' because the start time of the group may be moved
825  * backward by one slot after the aggregate has been inserted, and
826  * this would cause non-empty slots to be right-shifted by one
827  * position.
828  *
829  * QFQ+ fully satisfies this bound to the slot index if the parameters
830  * of the classes are not changed dynamically, and if QFQ+ never
831  * happens to postpone the service of agg unjustly, i.e., it never
832  * happens that the aggregate becomes backlogged and eligible, or just
833  * eligible, while an aggregate with a higher approximated finish time
834  * is being served. In particular, in this case QFQ+ guarantees that
835  * the timestamps of agg are low enough that the slot index is never
836  * higher than 2. Unfortunately, QFQ+ cannot provide the same
837  * guarantee if it happens to unjustly postpone the service of agg, or
838  * if the parameters of some class are changed.
839  *
840  * As for the first event, i.e., an out-of-order service, the
841  * upper bound to the slot index guaranteed by QFQ+ grows to
842  * 2 +
843  * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
844  * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
845  *
846  * The following function deals with this problem by backward-shifting
847  * the timestamps of agg, if needed, so as to guarantee that the slot
848  * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
849  * cause the service of other aggregates to be postponed, yet the
850  * worst-case guarantees of these aggregates are not violated.  In
851  * fact, in case of no out-of-order service, the timestamps of agg
852  * would have been even lower than they are after the backward shift,
853  * because QFQ+ would have guaranteed a maximum value equal to 2 for
854  * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
855  * service is postponed because of the backward-shift would have
856  * however waited for the service of agg before being served.
857  *
858  * The other event that may cause the slot index to be higher than 2
859  * for agg is a recent change of the parameters of some class. If the
860  * weight of a class is increased or the lmax (max_pkt_size) of the
861  * class is decreased, then a new aggregate with smaller slot size
862  * than the original parent aggregate of the class may happen to be
863  * activated. The activation of this aggregate should be properly
864  * delayed to when the service of the class has finished in the ideal
865  * system tracked by QFQ+. If the activation of the aggregate is not
866  * delayed to this reference time instant, then this aggregate may be
867  * unjustly served before other aggregates waiting for service. This
868  * may cause the above bound to the slot index to be violated for some
869  * of these unlucky aggregates.
870  *
871  * Instead of delaying the activation of the new aggregate, which is
872  * quite complex, the above-discussed capping of the slot index is
873  * used to handle also the consequences of a change of the parameters
874  * of a class.
875  */
876 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
877 			    u64 roundedS)
878 {
879 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
880 	unsigned int i; /* slot index in the bucket list */
881 
882 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
883 		u64 deltaS = roundedS - grp->S -
884 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
885 		agg->S -= deltaS;
886 		agg->F -= deltaS;
887 		slot = QFQ_MAX_SLOTS - 2;
888 	}
889 
890 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
891 
892 	hlist_add_head(&agg->next, &grp->slots[i]);
893 	__set_bit(slot, &grp->full_slots);
894 }
895 
896 /* Maybe introduce hlist_first_entry?? */
897 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
898 {
899 	return hlist_entry(grp->slots[grp->front].first,
900 			   struct qfq_aggregate, next);
901 }
902 
903 /*
904  * remove the entry from the slot
905  */
906 static void qfq_front_slot_remove(struct qfq_group *grp)
907 {
908 	struct qfq_aggregate *agg = qfq_slot_head(grp);
909 
910 	BUG_ON(!agg);
911 	hlist_del(&agg->next);
912 	if (hlist_empty(&grp->slots[grp->front]))
913 		__clear_bit(0, &grp->full_slots);
914 }
915 
916 /*
917  * Returns the first aggregate in the first non-empty bucket of the
918  * group. As a side effect, adjusts the bucket list so the first
919  * non-empty bucket is at position 0 in full_slots.
920  */
921 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
922 {
923 	unsigned int i;
924 
925 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
926 		 grp->index, grp->full_slots);
927 
928 	if (grp->full_slots == 0)
929 		return NULL;
930 
931 	i = __ffs(grp->full_slots);  /* zero based */
932 	if (i > 0) {
933 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
934 		grp->full_slots >>= i;
935 	}
936 
937 	return qfq_slot_head(grp);
938 }
939 
940 /*
941  * adjust the bucket list. When the start time of a group decreases,
942  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
943  * move the objects. The mask of occupied slots must be shifted
944  * because we use ffs() to find the first non-empty slot.
945  * This covers decreases in the group's start time, but what about
946  * increases of the start time ?
947  * Here too we should make sure that i is less than 32
948  */
949 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
950 {
951 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
952 
953 	grp->full_slots <<= i;
954 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
955 }
956 
957 static void qfq_update_eligible(struct qfq_sched *q)
958 {
959 	struct qfq_group *grp;
960 	unsigned long ineligible;
961 
962 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
963 	if (ineligible) {
964 		if (!q->bitmaps[ER]) {
965 			grp = qfq_ffs(q, ineligible);
966 			if (qfq_gt(grp->S, q->V))
967 				q->V = grp->S;
968 		}
969 		qfq_make_eligible(q);
970 	}
971 }
972 
973 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
974 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
975 				   struct qfq_class *cl, unsigned int len)
976 {
977 	struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
978 
979 	if (!skb)
980 		return NULL;
981 
982 	cl->deficit -= (int) len;
983 
984 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
985 		list_del(&cl->alist);
986 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
987 		cl->deficit += agg->lmax;
988 		list_move_tail(&cl->alist, &agg->active);
989 	}
990 
991 	return skb;
992 }
993 
994 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
995 					   struct qfq_class **cl,
996 					   unsigned int *len)
997 {
998 	struct sk_buff *skb;
999 
1000 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1001 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1002 	if (skb == NULL)
1003 		qdisc_warn_nonwc("qfq_dequeue", (*cl)->qdisc);
1004 	else
1005 		*len = qdisc_pkt_len(skb);
1006 
1007 	return skb;
1008 }
1009 
1010 /* Update F according to the actual service received by the aggregate. */
1011 static inline void charge_actual_service(struct qfq_aggregate *agg)
1012 {
1013 	/* Compute the service received by the aggregate, taking into
1014 	 * account that, after decreasing the number of classes in
1015 	 * agg, it may happen that
1016 	 * agg->initial_budget - agg->budget > agg->bugdetmax
1017 	 */
1018 	u32 service_received = min(agg->budgetmax,
1019 				   agg->initial_budget - agg->budget);
1020 
1021 	agg->F = agg->S + (u64)service_received * agg->inv_w;
1022 }
1023 
1024 /* Assign a reasonable start time for a new aggregate in group i.
1025  * Admissible values for \hat(F) are multiples of \sigma_i
1026  * no greater than V+\sigma_i . Larger values mean that
1027  * we had a wraparound so we consider the timestamp to be stale.
1028  *
1029  * If F is not stale and F >= V then we set S = F.
1030  * Otherwise we should assign S = V, but this may violate
1031  * the ordering in EB (see [2]). So, if we have groups in ER,
1032  * set S to the F_j of the first group j which would be blocking us.
1033  * We are guaranteed not to move S backward because
1034  * otherwise our group i would still be blocked.
1035  */
1036 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1037 {
1038 	unsigned long mask;
1039 	u64 limit, roundedF;
1040 	int slot_shift = agg->grp->slot_shift;
1041 
1042 	roundedF = qfq_round_down(agg->F, slot_shift);
1043 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1044 
1045 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1046 		/* timestamp was stale */
1047 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1048 		if (mask) {
1049 			struct qfq_group *next = qfq_ffs(q, mask);
1050 			if (qfq_gt(roundedF, next->F)) {
1051 				if (qfq_gt(limit, next->F))
1052 					agg->S = next->F;
1053 				else /* preserve timestamp correctness */
1054 					agg->S = limit;
1055 				return;
1056 			}
1057 		}
1058 		agg->S = q->V;
1059 	} else  /* timestamp is not stale */
1060 		agg->S = agg->F;
1061 }
1062 
1063 /* Update the timestamps of agg before scheduling/rescheduling it for
1064  * service.  In particular, assign to agg->F its maximum possible
1065  * value, i.e., the virtual finish time with which the aggregate
1066  * should be labeled if it used all its budget once in service.
1067  */
1068 static inline void
1069 qfq_update_agg_ts(struct qfq_sched *q,
1070 		    struct qfq_aggregate *agg, enum update_reason reason)
1071 {
1072 	if (reason != requeue)
1073 		qfq_update_start(q, agg);
1074 	else /* just charge agg for the service received */
1075 		agg->S = agg->F;
1076 
1077 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1078 }
1079 
1080 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1081 
1082 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1083 {
1084 	struct qfq_sched *q = qdisc_priv(sch);
1085 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1086 	struct qfq_class *cl;
1087 	struct sk_buff *skb = NULL;
1088 	/* next-packet len, 0 means no more active classes in in-service agg */
1089 	unsigned int len = 0;
1090 
1091 	if (in_serv_agg == NULL)
1092 		return NULL;
1093 
1094 	if (!list_empty(&in_serv_agg->active))
1095 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1096 
1097 	/*
1098 	 * If there are no active classes in the in-service aggregate,
1099 	 * or if the aggregate has not enough budget to serve its next
1100 	 * class, then choose the next aggregate to serve.
1101 	 */
1102 	if (len == 0 || in_serv_agg->budget < len) {
1103 		charge_actual_service(in_serv_agg);
1104 
1105 		/* recharge the budget of the aggregate */
1106 		in_serv_agg->initial_budget = in_serv_agg->budget =
1107 			in_serv_agg->budgetmax;
1108 
1109 		if (!list_empty(&in_serv_agg->active)) {
1110 			/*
1111 			 * Still active: reschedule for
1112 			 * service. Possible optimization: if no other
1113 			 * aggregate is active, then there is no point
1114 			 * in rescheduling this aggregate, and we can
1115 			 * just keep it as the in-service one. This
1116 			 * should be however a corner case, and to
1117 			 * handle it, we would need to maintain an
1118 			 * extra num_active_aggs field.
1119 			*/
1120 			qfq_update_agg_ts(q, in_serv_agg, requeue);
1121 			qfq_schedule_agg(q, in_serv_agg);
1122 		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1123 			q->in_serv_agg = NULL;
1124 			return NULL;
1125 		}
1126 
1127 		/*
1128 		 * If we get here, there are other aggregates queued:
1129 		 * choose the new aggregate to serve.
1130 		 */
1131 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1132 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1133 	}
1134 	if (!skb)
1135 		return NULL;
1136 
1137 	sch->q.qlen--;
1138 
1139 	skb = agg_dequeue(in_serv_agg, cl, len);
1140 
1141 	if (!skb) {
1142 		sch->q.qlen++;
1143 		return NULL;
1144 	}
1145 
1146 	qdisc_qstats_backlog_dec(sch, skb);
1147 	qdisc_bstats_update(sch, skb);
1148 
1149 	/* If lmax is lowered, through qfq_change_class, for a class
1150 	 * owning pending packets with larger size than the new value
1151 	 * of lmax, then the following condition may hold.
1152 	 */
1153 	if (unlikely(in_serv_agg->budget < len))
1154 		in_serv_agg->budget = 0;
1155 	else
1156 		in_serv_agg->budget -= len;
1157 
1158 	q->V += (u64)len * q->iwsum;
1159 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1160 		 len, (unsigned long long) in_serv_agg->F,
1161 		 (unsigned long long) q->V);
1162 
1163 	return skb;
1164 }
1165 
1166 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1167 {
1168 	struct qfq_group *grp;
1169 	struct qfq_aggregate *agg, *new_front_agg;
1170 	u64 old_F;
1171 
1172 	qfq_update_eligible(q);
1173 	q->oldV = q->V;
1174 
1175 	if (!q->bitmaps[ER])
1176 		return NULL;
1177 
1178 	grp = qfq_ffs(q, q->bitmaps[ER]);
1179 	old_F = grp->F;
1180 
1181 	agg = qfq_slot_head(grp);
1182 
1183 	/* agg starts to be served, remove it from schedule */
1184 	qfq_front_slot_remove(grp);
1185 
1186 	new_front_agg = qfq_slot_scan(grp);
1187 
1188 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1189 		__clear_bit(grp->index, &q->bitmaps[ER]);
1190 	else {
1191 		u64 roundedS = qfq_round_down(new_front_agg->S,
1192 					      grp->slot_shift);
1193 		unsigned int s;
1194 
1195 		if (grp->S == roundedS)
1196 			return agg;
1197 		grp->S = roundedS;
1198 		grp->F = roundedS + (2ULL << grp->slot_shift);
1199 		__clear_bit(grp->index, &q->bitmaps[ER]);
1200 		s = qfq_calc_state(q, grp);
1201 		__set_bit(grp->index, &q->bitmaps[s]);
1202 	}
1203 
1204 	qfq_unblock_groups(q, grp->index, old_F);
1205 
1206 	return agg;
1207 }
1208 
1209 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1210 		       struct sk_buff **to_free)
1211 {
1212 	unsigned int len = qdisc_pkt_len(skb), gso_segs;
1213 	struct qfq_sched *q = qdisc_priv(sch);
1214 	struct qfq_class *cl;
1215 	struct qfq_aggregate *agg;
1216 	int err = 0;
1217 	bool first;
1218 
1219 	cl = qfq_classify(skb, sch, &err);
1220 	if (cl == NULL) {
1221 		if (err & __NET_XMIT_BYPASS)
1222 			qdisc_qstats_drop(sch);
1223 		__qdisc_drop(skb, to_free);
1224 		return err;
1225 	}
1226 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1227 
1228 	if (unlikely(cl->agg->lmax < len)) {
1229 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1230 			 cl->agg->lmax, len, cl->common.classid);
1231 		err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1232 		if (err) {
1233 			cl->qstats.drops++;
1234 			return qdisc_drop(skb, sch, to_free);
1235 		}
1236 	}
1237 
1238 	gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1239 	first = !cl->qdisc->q.qlen;
1240 	err = qdisc_enqueue(skb, cl->qdisc, to_free);
1241 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1242 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1243 		if (net_xmit_drop_count(err)) {
1244 			cl->qstats.drops++;
1245 			qdisc_qstats_drop(sch);
1246 		}
1247 		return err;
1248 	}
1249 
1250 	_bstats_update(&cl->bstats, len, gso_segs);
1251 	sch->qstats.backlog += len;
1252 	++sch->q.qlen;
1253 
1254 	agg = cl->agg;
1255 	/* if the queue was not empty, then done here */
1256 	if (!first) {
1257 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1258 		    list_first_entry(&agg->active, struct qfq_class, alist)
1259 		    == cl && cl->deficit < len)
1260 			list_move_tail(&cl->alist, &agg->active);
1261 
1262 		return err;
1263 	}
1264 
1265 	/* schedule class for service within the aggregate */
1266 	cl->deficit = agg->lmax;
1267 	list_add_tail(&cl->alist, &agg->active);
1268 
1269 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1270 	    q->in_serv_agg == agg)
1271 		return err; /* non-empty or in service, nothing else to do */
1272 
1273 	qfq_activate_agg(q, agg, enqueue);
1274 
1275 	return err;
1276 }
1277 
1278 /*
1279  * Schedule aggregate according to its timestamps.
1280  */
1281 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1282 {
1283 	struct qfq_group *grp = agg->grp;
1284 	u64 roundedS;
1285 	int s;
1286 
1287 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1288 
1289 	/*
1290 	 * Insert agg in the correct bucket.
1291 	 * If agg->S >= grp->S we don't need to adjust the
1292 	 * bucket list and simply go to the insertion phase.
1293 	 * Otherwise grp->S is decreasing, we must make room
1294 	 * in the bucket list, and also recompute the group state.
1295 	 * Finally, if there were no flows in this group and nobody
1296 	 * was in ER make sure to adjust V.
1297 	 */
1298 	if (grp->full_slots) {
1299 		if (!qfq_gt(grp->S, agg->S))
1300 			goto skip_update;
1301 
1302 		/* create a slot for this agg->S */
1303 		qfq_slot_rotate(grp, roundedS);
1304 		/* group was surely ineligible, remove */
1305 		__clear_bit(grp->index, &q->bitmaps[IR]);
1306 		__clear_bit(grp->index, &q->bitmaps[IB]);
1307 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1308 		   q->in_serv_agg == NULL)
1309 		q->V = roundedS;
1310 
1311 	grp->S = roundedS;
1312 	grp->F = roundedS + (2ULL << grp->slot_shift);
1313 	s = qfq_calc_state(q, grp);
1314 	__set_bit(grp->index, &q->bitmaps[s]);
1315 
1316 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1317 		 s, q->bitmaps[s],
1318 		 (unsigned long long) agg->S,
1319 		 (unsigned long long) agg->F,
1320 		 (unsigned long long) q->V);
1321 
1322 skip_update:
1323 	qfq_slot_insert(grp, agg, roundedS);
1324 }
1325 
1326 
1327 /* Update agg ts and schedule agg for service */
1328 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1329 			     enum update_reason reason)
1330 {
1331 	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1332 
1333 	qfq_update_agg_ts(q, agg, reason);
1334 	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1335 		q->in_serv_agg = agg; /* start serving this aggregate */
1336 		 /* update V: to be in service, agg must be eligible */
1337 		q->oldV = q->V = agg->S;
1338 	} else if (agg != q->in_serv_agg)
1339 		qfq_schedule_agg(q, agg);
1340 }
1341 
1342 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1343 			    struct qfq_aggregate *agg)
1344 {
1345 	unsigned int i, offset;
1346 	u64 roundedS;
1347 
1348 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1349 	offset = (roundedS - grp->S) >> grp->slot_shift;
1350 
1351 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1352 
1353 	hlist_del(&agg->next);
1354 	if (hlist_empty(&grp->slots[i]))
1355 		__clear_bit(offset, &grp->full_slots);
1356 }
1357 
1358 /*
1359  * Called to forcibly deschedule an aggregate.  If the aggregate is
1360  * not in the front bucket, or if the latter has other aggregates in
1361  * the front bucket, we can simply remove the aggregate with no other
1362  * side effects.
1363  * Otherwise we must propagate the event up.
1364  */
1365 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1366 {
1367 	struct qfq_group *grp = agg->grp;
1368 	unsigned long mask;
1369 	u64 roundedS;
1370 	int s;
1371 
1372 	if (agg == q->in_serv_agg) {
1373 		charge_actual_service(agg);
1374 		q->in_serv_agg = qfq_choose_next_agg(q);
1375 		return;
1376 	}
1377 
1378 	agg->F = agg->S;
1379 	qfq_slot_remove(q, grp, agg);
1380 
1381 	if (!grp->full_slots) {
1382 		__clear_bit(grp->index, &q->bitmaps[IR]);
1383 		__clear_bit(grp->index, &q->bitmaps[EB]);
1384 		__clear_bit(grp->index, &q->bitmaps[IB]);
1385 
1386 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1387 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1388 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1389 			if (mask)
1390 				mask = ~((1UL << __fls(mask)) - 1);
1391 			else
1392 				mask = ~0UL;
1393 			qfq_move_groups(q, mask, EB, ER);
1394 			qfq_move_groups(q, mask, IB, IR);
1395 		}
1396 		__clear_bit(grp->index, &q->bitmaps[ER]);
1397 	} else if (hlist_empty(&grp->slots[grp->front])) {
1398 		agg = qfq_slot_scan(grp);
1399 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1400 		if (grp->S != roundedS) {
1401 			__clear_bit(grp->index, &q->bitmaps[ER]);
1402 			__clear_bit(grp->index, &q->bitmaps[IR]);
1403 			__clear_bit(grp->index, &q->bitmaps[EB]);
1404 			__clear_bit(grp->index, &q->bitmaps[IB]);
1405 			grp->S = roundedS;
1406 			grp->F = roundedS + (2ULL << grp->slot_shift);
1407 			s = qfq_calc_state(q, grp);
1408 			__set_bit(grp->index, &q->bitmaps[s]);
1409 		}
1410 	}
1411 }
1412 
1413 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1414 {
1415 	struct qfq_sched *q = qdisc_priv(sch);
1416 	struct qfq_class *cl = (struct qfq_class *)arg;
1417 
1418 	qfq_deactivate_class(q, cl);
1419 }
1420 
1421 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1422 			  struct netlink_ext_ack *extack)
1423 {
1424 	struct qfq_sched *q = qdisc_priv(sch);
1425 	struct qfq_group *grp;
1426 	int i, j, err;
1427 	u32 max_cl_shift, maxbudg_shift, max_classes;
1428 
1429 	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1430 	if (err)
1431 		return err;
1432 
1433 	err = qdisc_class_hash_init(&q->clhash);
1434 	if (err < 0)
1435 		return err;
1436 
1437 	max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1438 			    QFQ_MAX_AGG_CLASSES);
1439 	/* max_cl_shift = floor(log_2(max_classes)) */
1440 	max_cl_shift = __fls(max_classes);
1441 	q->max_agg_classes = 1<<max_cl_shift;
1442 
1443 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1444 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1445 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1446 
1447 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1448 		grp = &q->groups[i];
1449 		grp->index = i;
1450 		grp->slot_shift = q->min_slot_shift + i;
1451 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1452 			INIT_HLIST_HEAD(&grp->slots[j]);
1453 	}
1454 
1455 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1456 
1457 	return 0;
1458 }
1459 
1460 static void qfq_reset_qdisc(struct Qdisc *sch)
1461 {
1462 	struct qfq_sched *q = qdisc_priv(sch);
1463 	struct qfq_class *cl;
1464 	unsigned int i;
1465 
1466 	for (i = 0; i < q->clhash.hashsize; i++) {
1467 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1468 			if (cl->qdisc->q.qlen > 0)
1469 				qfq_deactivate_class(q, cl);
1470 
1471 			qdisc_reset(cl->qdisc);
1472 		}
1473 	}
1474 }
1475 
1476 static void qfq_destroy_qdisc(struct Qdisc *sch)
1477 {
1478 	struct qfq_sched *q = qdisc_priv(sch);
1479 	struct qfq_class *cl;
1480 	struct hlist_node *next;
1481 	unsigned int i;
1482 
1483 	tcf_block_put(q->block);
1484 
1485 	for (i = 0; i < q->clhash.hashsize; i++) {
1486 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1487 					  common.hnode) {
1488 			qfq_destroy_class(sch, cl);
1489 		}
1490 	}
1491 	qdisc_class_hash_destroy(&q->clhash);
1492 }
1493 
1494 static const struct Qdisc_class_ops qfq_class_ops = {
1495 	.change		= qfq_change_class,
1496 	.delete		= qfq_delete_class,
1497 	.find		= qfq_search_class,
1498 	.tcf_block	= qfq_tcf_block,
1499 	.bind_tcf	= qfq_bind_tcf,
1500 	.unbind_tcf	= qfq_unbind_tcf,
1501 	.graft		= qfq_graft_class,
1502 	.leaf		= qfq_class_leaf,
1503 	.qlen_notify	= qfq_qlen_notify,
1504 	.dump		= qfq_dump_class,
1505 	.dump_stats	= qfq_dump_class_stats,
1506 	.walk		= qfq_walk,
1507 };
1508 
1509 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1510 	.cl_ops		= &qfq_class_ops,
1511 	.id		= "qfq",
1512 	.priv_size	= sizeof(struct qfq_sched),
1513 	.enqueue	= qfq_enqueue,
1514 	.dequeue	= qfq_dequeue,
1515 	.peek		= qdisc_peek_dequeued,
1516 	.init		= qfq_init_qdisc,
1517 	.reset		= qfq_reset_qdisc,
1518 	.destroy	= qfq_destroy_qdisc,
1519 	.owner		= THIS_MODULE,
1520 };
1521 MODULE_ALIAS_NET_SCH("qfq");
1522 
1523 static int __init qfq_init(void)
1524 {
1525 	return register_qdisc(&qfq_qdisc_ops);
1526 }
1527 
1528 static void __exit qfq_exit(void)
1529 {
1530 	unregister_qdisc(&qfq_qdisc_ops);
1531 }
1532 
1533 module_init(qfq_init);
1534 module_exit(qfq_exit);
1535 MODULE_LICENSE("GPL");
1536 MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc");
1537