1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler. 4 * 5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 6 * Copyright (c) 2012 Paolo Valente. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/bitops.h> 12 #include <linux/errno.h> 13 #include <linux/netdevice.h> 14 #include <linux/pkt_sched.h> 15 #include <net/sch_generic.h> 16 #include <net/pkt_sched.h> 17 #include <net/pkt_cls.h> 18 19 20 /* Quick Fair Queueing Plus 21 ======================== 22 23 Sources: 24 25 [1] Paolo Valente, 26 "Reducing the Execution Time of Fair-Queueing Schedulers." 27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf 28 29 Sources for QFQ: 30 31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 32 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 33 34 See also: 35 http://retis.sssup.it/~fabio/linux/qfq/ 36 */ 37 38 /* 39 40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES 41 classes. Each aggregate is timestamped with a virtual start time S 42 and a virtual finish time F, and scheduled according to its 43 timestamps. S and F are computed as a function of a system virtual 44 time function V. The classes within each aggregate are instead 45 scheduled with DRR. 46 47 To speed up operations, QFQ+ divides also aggregates into a limited 48 number of groups. Which group a class belongs to depends on the 49 ratio between the maximum packet length for the class and the weight 50 of the class. Groups have their own S and F. In the end, QFQ+ 51 schedules groups, then aggregates within groups, then classes within 52 aggregates. See [1] and [2] for a full description. 53 54 Virtual time computations. 55 56 S, F and V are all computed in fixed point arithmetic with 57 FRAC_BITS decimal bits. 58 59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 60 one bit per index. 61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 62 63 The layout of the bits is as below: 64 65 [ MTU_SHIFT ][ FRAC_BITS ] 66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 67 ^.__grp->index = 0 68 *.__grp->slot_shift 69 70 where MIN_SLOT_SHIFT is derived by difference from the others. 71 72 The max group index corresponds to Lmax/w_min, where 73 Lmax=1<<MTU_SHIFT, w_min = 1 . 74 From this, and knowing how many groups (MAX_INDEX) we want, 75 we can derive the shift corresponding to each group. 76 77 Because we often need to compute 78 F = S + len/w_i and V = V + len/wsum 79 instead of storing w_i store the value 80 inv_w = (1<<FRAC_BITS)/w_i 81 so we can do F = S + len * inv_w * wsum. 82 We use W_TOT in the formulas so we can easily move between 83 static and adaptive weight sum. 84 85 The per-scheduler-instance data contain all the data structures 86 for the scheduler: bitmaps and bucket lists. 87 88 */ 89 90 /* 91 * Maximum number of consecutive slots occupied by backlogged classes 92 * inside a group. 93 */ 94 #define QFQ_MAX_SLOTS 32 95 96 /* 97 * Shifts used for aggregate<->group mapping. We allow class weights that are 98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the 99 * group with the smallest index that can support the L_i / r_i configured 100 * for the classes in the aggregate. 101 * 102 * grp->index is the index of the group; and grp->slot_shift 103 * is the shift for the corresponding (scaled) sigma_i. 104 */ 105 #define QFQ_MAX_INDEX 24 106 #define QFQ_MAX_WSHIFT 10 107 108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ 109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT) 110 111 #define FRAC_BITS 30 /* fixed point arithmetic */ 112 #define ONE_FP (1UL << FRAC_BITS) 113 114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */ 116 #define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT) 117 118 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */ 119 120 /* 121 * Possible group states. These values are used as indexes for the bitmaps 122 * array of struct qfq_queue. 123 */ 124 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 125 126 struct qfq_group; 127 128 struct qfq_aggregate; 129 130 struct qfq_class { 131 struct Qdisc_class_common common; 132 133 struct gnet_stats_basic_sync bstats; 134 struct gnet_stats_queue qstats; 135 struct net_rate_estimator __rcu *rate_est; 136 struct Qdisc *qdisc; 137 struct list_head alist; /* Link for active-classes list. */ 138 struct qfq_aggregate *agg; /* Parent aggregate. */ 139 int deficit; /* DRR deficit counter. */ 140 }; 141 142 struct qfq_aggregate { 143 struct hlist_node next; /* Link for the slot list. */ 144 u64 S, F; /* flow timestamps (exact) */ 145 146 /* group we belong to. In principle we would need the index, 147 * which is log_2(lmax/weight), but we never reference it 148 * directly, only the group. 149 */ 150 struct qfq_group *grp; 151 152 /* these are copied from the flowset. */ 153 u32 class_weight; /* Weight of each class in this aggregate. */ 154 /* Max pkt size for the classes in this aggregate, DRR quantum. */ 155 int lmax; 156 157 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */ 158 u32 budgetmax; /* Max budget for this aggregate. */ 159 u32 initial_budget, budget; /* Initial and current budget. */ 160 161 int num_classes; /* Number of classes in this aggr. */ 162 struct list_head active; /* DRR queue of active classes. */ 163 164 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */ 165 }; 166 167 struct qfq_group { 168 u64 S, F; /* group timestamps (approx). */ 169 unsigned int slot_shift; /* Slot shift. */ 170 unsigned int index; /* Group index. */ 171 unsigned int front; /* Index of the front slot. */ 172 unsigned long full_slots; /* non-empty slots */ 173 174 /* Array of RR lists of active aggregates. */ 175 struct hlist_head slots[QFQ_MAX_SLOTS]; 176 }; 177 178 struct qfq_sched { 179 struct tcf_proto __rcu *filter_list; 180 struct tcf_block *block; 181 struct Qdisc_class_hash clhash; 182 183 u64 oldV, V; /* Precise virtual times. */ 184 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */ 185 u32 wsum; /* weight sum */ 186 u32 iwsum; /* inverse weight sum */ 187 188 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 189 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 190 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */ 191 192 u32 max_agg_classes; /* Max number of classes per aggr. */ 193 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ 194 }; 195 196 /* 197 * Possible reasons why the timestamps of an aggregate are updated 198 * enqueue: the aggregate switches from idle to active and must scheduled 199 * for service 200 * requeue: the aggregate finishes its budget, so it stops being served and 201 * must be rescheduled for service 202 */ 203 enum update_reason {enqueue, requeue}; 204 205 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 206 { 207 struct qfq_sched *q = qdisc_priv(sch); 208 struct Qdisc_class_common *clc; 209 210 clc = qdisc_class_find(&q->clhash, classid); 211 if (clc == NULL) 212 return NULL; 213 return container_of(clc, struct qfq_class, common); 214 } 215 216 static const struct netlink_range_validation lmax_range = { 217 .min = QFQ_MIN_LMAX, 218 .max = QFQ_MAX_LMAX, 219 }; 220 221 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 222 [TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT), 223 [TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range), 224 }; 225 226 /* 227 * Calculate a flow index, given its weight and maximum packet length. 228 * index = log_2(maxlen/weight) but we need to apply the scaling. 229 * This is used only once at flow creation. 230 */ 231 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) 232 { 233 u64 slot_size = (u64)maxlen * inv_w; 234 unsigned long size_map; 235 int index = 0; 236 237 size_map = slot_size >> min_slot_shift; 238 if (!size_map) 239 goto out; 240 241 index = __fls(size_map) + 1; /* basically a log_2 */ 242 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); 243 244 if (index < 0) 245 index = 0; 246 out: 247 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 248 (unsigned long) ONE_FP/inv_w, maxlen, index); 249 250 return index; 251 } 252 253 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); 254 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, 255 enum update_reason); 256 257 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 258 u32 lmax, u32 weight) 259 { 260 INIT_LIST_HEAD(&agg->active); 261 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 262 263 agg->lmax = lmax; 264 agg->class_weight = weight; 265 } 266 267 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, 268 u32 lmax, u32 weight) 269 { 270 struct qfq_aggregate *agg; 271 272 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) 273 if (agg->lmax == lmax && agg->class_weight == weight) 274 return agg; 275 276 return NULL; 277 } 278 279 280 /* Update aggregate as a function of the new number of classes. */ 281 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 282 int new_num_classes) 283 { 284 u32 new_agg_weight; 285 286 if (new_num_classes == q->max_agg_classes) 287 hlist_del_init(&agg->nonfull_next); 288 289 if (agg->num_classes > new_num_classes && 290 new_num_classes == q->max_agg_classes - 1) /* agg no more full */ 291 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 292 293 /* The next assignment may let 294 * agg->initial_budget > agg->budgetmax 295 * hold, we will take it into account in charge_actual_service(). 296 */ 297 agg->budgetmax = new_num_classes * agg->lmax; 298 new_agg_weight = agg->class_weight * new_num_classes; 299 agg->inv_w = ONE_FP/new_agg_weight; 300 301 if (agg->grp == NULL) { 302 int i = qfq_calc_index(agg->inv_w, agg->budgetmax, 303 q->min_slot_shift); 304 agg->grp = &q->groups[i]; 305 } 306 307 q->wsum += 308 (int) agg->class_weight * (new_num_classes - agg->num_classes); 309 q->iwsum = ONE_FP / q->wsum; 310 311 agg->num_classes = new_num_classes; 312 } 313 314 /* Add class to aggregate. */ 315 static void qfq_add_to_agg(struct qfq_sched *q, 316 struct qfq_aggregate *agg, 317 struct qfq_class *cl) 318 { 319 cl->agg = agg; 320 321 qfq_update_agg(q, agg, agg->num_classes+1); 322 if (cl->qdisc->q.qlen > 0) { /* adding an active class */ 323 list_add_tail(&cl->alist, &agg->active); 324 if (list_first_entry(&agg->active, struct qfq_class, alist) == 325 cl && q->in_serv_agg != agg) /* agg was inactive */ 326 qfq_activate_agg(q, agg, enqueue); /* schedule agg */ 327 } 328 } 329 330 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); 331 332 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 333 { 334 hlist_del_init(&agg->nonfull_next); 335 q->wsum -= agg->class_weight; 336 if (q->wsum != 0) 337 q->iwsum = ONE_FP / q->wsum; 338 339 if (q->in_serv_agg == agg) 340 q->in_serv_agg = qfq_choose_next_agg(q); 341 kfree(agg); 342 } 343 344 /* Deschedule class from within its parent aggregate. */ 345 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 346 { 347 struct qfq_aggregate *agg = cl->agg; 348 349 350 list_del(&cl->alist); /* remove from RR queue of the aggregate */ 351 if (list_empty(&agg->active)) /* agg is now inactive */ 352 qfq_deactivate_agg(q, agg); 353 } 354 355 /* Remove class from its parent aggregate. */ 356 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 357 { 358 struct qfq_aggregate *agg = cl->agg; 359 360 cl->agg = NULL; 361 if (agg->num_classes == 1) { /* agg being emptied, destroy it */ 362 qfq_destroy_agg(q, agg); 363 return; 364 } 365 qfq_update_agg(q, agg, agg->num_classes-1); 366 } 367 368 /* Deschedule class and remove it from its parent aggregate. */ 369 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 370 { 371 if (cl->qdisc->q.qlen > 0) /* class is active */ 372 qfq_deactivate_class(q, cl); 373 374 qfq_rm_from_agg(q, cl); 375 } 376 377 /* Move class to a new aggregate, matching the new class weight and/or lmax */ 378 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, 379 u32 lmax) 380 { 381 struct qfq_sched *q = qdisc_priv(sch); 382 struct qfq_aggregate *new_agg; 383 384 /* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */ 385 if (lmax > QFQ_MAX_LMAX) 386 return -EINVAL; 387 388 new_agg = qfq_find_agg(q, lmax, weight); 389 if (new_agg == NULL) { /* create new aggregate */ 390 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); 391 if (new_agg == NULL) 392 return -ENOBUFS; 393 qfq_init_agg(q, new_agg, lmax, weight); 394 } 395 qfq_deact_rm_from_agg(q, cl); 396 qfq_add_to_agg(q, new_agg, cl); 397 398 return 0; 399 } 400 401 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 402 struct nlattr **tca, unsigned long *arg, 403 struct netlink_ext_ack *extack) 404 { 405 struct qfq_sched *q = qdisc_priv(sch); 406 struct qfq_class *cl = (struct qfq_class *)*arg; 407 bool existing = false; 408 struct nlattr *tb[TCA_QFQ_MAX + 1]; 409 struct qfq_aggregate *new_agg = NULL; 410 u32 weight, lmax, inv_w; 411 int err; 412 int delta_w; 413 414 if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) { 415 NL_SET_ERR_MSG_MOD(extack, "missing options"); 416 return -EINVAL; 417 } 418 419 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], 420 qfq_policy, extack); 421 if (err < 0) 422 return err; 423 424 weight = nla_get_u32_default(tb[TCA_QFQ_WEIGHT], 1); 425 426 if (tb[TCA_QFQ_LMAX]) { 427 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 428 } else { 429 /* MTU size is user controlled */ 430 lmax = psched_mtu(qdisc_dev(sch)); 431 if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) { 432 NL_SET_ERR_MSG_MOD(extack, 433 "MTU size out of bounds for qfq"); 434 return -EINVAL; 435 } 436 } 437 438 inv_w = ONE_FP / weight; 439 weight = ONE_FP / inv_w; 440 441 if (cl != NULL && 442 lmax == cl->agg->lmax && 443 weight == cl->agg->class_weight) 444 return 0; /* nothing to change */ 445 446 delta_w = weight - (cl ? cl->agg->class_weight : 0); 447 448 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 449 NL_SET_ERR_MSG_FMT_MOD(extack, 450 "total weight out of range (%d + %u)\n", 451 delta_w, q->wsum); 452 return -EINVAL; 453 } 454 455 if (cl != NULL) { /* modify existing class */ 456 if (tca[TCA_RATE]) { 457 err = gen_replace_estimator(&cl->bstats, NULL, 458 &cl->rate_est, 459 NULL, 460 true, 461 tca[TCA_RATE]); 462 if (err) 463 return err; 464 } 465 existing = true; 466 goto set_change_agg; 467 } 468 469 /* create and init new class */ 470 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 471 if (cl == NULL) 472 return -ENOBUFS; 473 474 gnet_stats_basic_sync_init(&cl->bstats); 475 cl->common.classid = classid; 476 cl->deficit = lmax; 477 478 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 479 classid, NULL); 480 if (cl->qdisc == NULL) 481 cl->qdisc = &noop_qdisc; 482 483 if (tca[TCA_RATE]) { 484 err = gen_new_estimator(&cl->bstats, NULL, 485 &cl->rate_est, 486 NULL, 487 true, 488 tca[TCA_RATE]); 489 if (err) 490 goto destroy_class; 491 } 492 493 if (cl->qdisc != &noop_qdisc) 494 qdisc_hash_add(cl->qdisc, true); 495 496 set_change_agg: 497 sch_tree_lock(sch); 498 new_agg = qfq_find_agg(q, lmax, weight); 499 if (new_agg == NULL) { /* create new aggregate */ 500 sch_tree_unlock(sch); 501 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); 502 if (new_agg == NULL) { 503 err = -ENOBUFS; 504 gen_kill_estimator(&cl->rate_est); 505 goto destroy_class; 506 } 507 sch_tree_lock(sch); 508 qfq_init_agg(q, new_agg, lmax, weight); 509 } 510 if (existing) 511 qfq_deact_rm_from_agg(q, cl); 512 else 513 qdisc_class_hash_insert(&q->clhash, &cl->common); 514 qfq_add_to_agg(q, new_agg, cl); 515 sch_tree_unlock(sch); 516 qdisc_class_hash_grow(sch, &q->clhash); 517 518 *arg = (unsigned long)cl; 519 return 0; 520 521 destroy_class: 522 qdisc_put(cl->qdisc); 523 kfree(cl); 524 return err; 525 } 526 527 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 528 { 529 struct qfq_sched *q = qdisc_priv(sch); 530 531 qfq_rm_from_agg(q, cl); 532 gen_kill_estimator(&cl->rate_est); 533 qdisc_put(cl->qdisc); 534 kfree(cl); 535 } 536 537 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg, 538 struct netlink_ext_ack *extack) 539 { 540 struct qfq_sched *q = qdisc_priv(sch); 541 struct qfq_class *cl = (struct qfq_class *)arg; 542 543 if (qdisc_class_in_use(&cl->common)) { 544 NL_SET_ERR_MSG_MOD(extack, "QFQ class in use"); 545 return -EBUSY; 546 } 547 548 sch_tree_lock(sch); 549 550 qdisc_purge_queue(cl->qdisc); 551 qdisc_class_hash_remove(&q->clhash, &cl->common); 552 553 sch_tree_unlock(sch); 554 555 qfq_destroy_class(sch, cl); 556 return 0; 557 } 558 559 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid) 560 { 561 return (unsigned long)qfq_find_class(sch, classid); 562 } 563 564 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl, 565 struct netlink_ext_ack *extack) 566 { 567 struct qfq_sched *q = qdisc_priv(sch); 568 569 if (cl) 570 return NULL; 571 572 return q->block; 573 } 574 575 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 576 u32 classid) 577 { 578 struct qfq_class *cl = qfq_find_class(sch, classid); 579 580 if (cl) 581 qdisc_class_get(&cl->common); 582 583 return (unsigned long)cl; 584 } 585 586 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 587 { 588 struct qfq_class *cl = (struct qfq_class *)arg; 589 590 qdisc_class_put(&cl->common); 591 } 592 593 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 594 struct Qdisc *new, struct Qdisc **old, 595 struct netlink_ext_ack *extack) 596 { 597 struct qfq_class *cl = (struct qfq_class *)arg; 598 599 if (new == NULL) { 600 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 601 cl->common.classid, NULL); 602 if (new == NULL) 603 new = &noop_qdisc; 604 } 605 606 *old = qdisc_replace(sch, new, &cl->qdisc); 607 return 0; 608 } 609 610 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 611 { 612 struct qfq_class *cl = (struct qfq_class *)arg; 613 614 return cl->qdisc; 615 } 616 617 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 618 struct sk_buff *skb, struct tcmsg *tcm) 619 { 620 struct qfq_class *cl = (struct qfq_class *)arg; 621 struct nlattr *nest; 622 623 tcm->tcm_parent = TC_H_ROOT; 624 tcm->tcm_handle = cl->common.classid; 625 tcm->tcm_info = cl->qdisc->handle; 626 627 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 628 if (nest == NULL) 629 goto nla_put_failure; 630 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || 631 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) 632 goto nla_put_failure; 633 return nla_nest_end(skb, nest); 634 635 nla_put_failure: 636 nla_nest_cancel(skb, nest); 637 return -EMSGSIZE; 638 } 639 640 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 641 struct gnet_dump *d) 642 { 643 struct qfq_class *cl = (struct qfq_class *)arg; 644 struct tc_qfq_stats xstats; 645 646 memset(&xstats, 0, sizeof(xstats)); 647 648 xstats.weight = cl->agg->class_weight; 649 xstats.lmax = cl->agg->lmax; 650 651 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 || 652 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 653 qdisc_qstats_copy(d, cl->qdisc) < 0) 654 return -1; 655 656 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 657 } 658 659 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 660 { 661 struct qfq_sched *q = qdisc_priv(sch); 662 struct qfq_class *cl; 663 unsigned int i; 664 665 if (arg->stop) 666 return; 667 668 for (i = 0; i < q->clhash.hashsize; i++) { 669 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 670 if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg)) 671 return; 672 } 673 } 674 } 675 676 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 677 int *qerr) 678 { 679 struct qfq_sched *q = qdisc_priv(sch); 680 struct qfq_class *cl; 681 struct tcf_result res; 682 struct tcf_proto *fl; 683 int result; 684 685 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 686 pr_debug("qfq_classify: found %d\n", skb->priority); 687 cl = qfq_find_class(sch, skb->priority); 688 if (cl != NULL) 689 return cl; 690 } 691 692 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 693 fl = rcu_dereference_bh(q->filter_list); 694 result = tcf_classify(skb, NULL, fl, &res, false); 695 if (result >= 0) { 696 #ifdef CONFIG_NET_CLS_ACT 697 switch (result) { 698 case TC_ACT_QUEUED: 699 case TC_ACT_STOLEN: 700 case TC_ACT_TRAP: 701 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 702 fallthrough; 703 case TC_ACT_SHOT: 704 return NULL; 705 } 706 #endif 707 cl = (struct qfq_class *)res.class; 708 if (cl == NULL) 709 cl = qfq_find_class(sch, res.classid); 710 return cl; 711 } 712 713 return NULL; 714 } 715 716 /* Generic comparison function, handling wraparound. */ 717 static inline int qfq_gt(u64 a, u64 b) 718 { 719 return (s64)(a - b) > 0; 720 } 721 722 /* Round a precise timestamp to its slotted value. */ 723 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 724 { 725 return ts & ~((1ULL << shift) - 1); 726 } 727 728 /* return the pointer to the group with lowest index in the bitmap */ 729 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 730 unsigned long bitmap) 731 { 732 int index = __ffs(bitmap); 733 return &q->groups[index]; 734 } 735 /* Calculate a mask to mimic what would be ffs_from(). */ 736 static inline unsigned long mask_from(unsigned long bitmap, int from) 737 { 738 return bitmap & ~((1UL << from) - 1); 739 } 740 741 /* 742 * The state computation relies on ER=0, IR=1, EB=2, IB=3 743 * First compute eligibility comparing grp->S, q->V, 744 * then check if someone is blocking us and possibly add EB 745 */ 746 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 747 { 748 /* if S > V we are not eligible */ 749 unsigned int state = qfq_gt(grp->S, q->V); 750 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 751 struct qfq_group *next; 752 753 if (mask) { 754 next = qfq_ffs(q, mask); 755 if (qfq_gt(grp->F, next->F)) 756 state |= EB; 757 } 758 759 return state; 760 } 761 762 763 /* 764 * In principle 765 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 766 * q->bitmaps[src] &= ~mask; 767 * but we should make sure that src != dst 768 */ 769 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 770 int src, int dst) 771 { 772 q->bitmaps[dst] |= q->bitmaps[src] & mask; 773 q->bitmaps[src] &= ~mask; 774 } 775 776 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 777 { 778 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 779 struct qfq_group *next; 780 781 if (mask) { 782 next = qfq_ffs(q, mask); 783 if (!qfq_gt(next->F, old_F)) 784 return; 785 } 786 787 mask = (1UL << index) - 1; 788 qfq_move_groups(q, mask, EB, ER); 789 qfq_move_groups(q, mask, IB, IR); 790 } 791 792 /* 793 * perhaps 794 * 795 old_V ^= q->V; 796 old_V >>= q->min_slot_shift; 797 if (old_V) { 798 ... 799 } 800 * 801 */ 802 static void qfq_make_eligible(struct qfq_sched *q) 803 { 804 unsigned long vslot = q->V >> q->min_slot_shift; 805 unsigned long old_vslot = q->oldV >> q->min_slot_shift; 806 807 if (vslot != old_vslot) { 808 unsigned long mask; 809 int last_flip_pos = fls(vslot ^ old_vslot); 810 811 if (last_flip_pos > 31) /* higher than the number of groups */ 812 mask = ~0UL; /* make all groups eligible */ 813 else 814 mask = (1UL << last_flip_pos) - 1; 815 816 qfq_move_groups(q, mask, IR, ER); 817 qfq_move_groups(q, mask, IB, EB); 818 } 819 } 820 821 /* 822 * The index of the slot in which the input aggregate agg is to be 823 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' 824 * and not a '-1' because the start time of the group may be moved 825 * backward by one slot after the aggregate has been inserted, and 826 * this would cause non-empty slots to be right-shifted by one 827 * position. 828 * 829 * QFQ+ fully satisfies this bound to the slot index if the parameters 830 * of the classes are not changed dynamically, and if QFQ+ never 831 * happens to postpone the service of agg unjustly, i.e., it never 832 * happens that the aggregate becomes backlogged and eligible, or just 833 * eligible, while an aggregate with a higher approximated finish time 834 * is being served. In particular, in this case QFQ+ guarantees that 835 * the timestamps of agg are low enough that the slot index is never 836 * higher than 2. Unfortunately, QFQ+ cannot provide the same 837 * guarantee if it happens to unjustly postpone the service of agg, or 838 * if the parameters of some class are changed. 839 * 840 * As for the first event, i.e., an out-of-order service, the 841 * upper bound to the slot index guaranteed by QFQ+ grows to 842 * 2 + 843 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * 844 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. 845 * 846 * The following function deals with this problem by backward-shifting 847 * the timestamps of agg, if needed, so as to guarantee that the slot 848 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may 849 * cause the service of other aggregates to be postponed, yet the 850 * worst-case guarantees of these aggregates are not violated. In 851 * fact, in case of no out-of-order service, the timestamps of agg 852 * would have been even lower than they are after the backward shift, 853 * because QFQ+ would have guaranteed a maximum value equal to 2 for 854 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose 855 * service is postponed because of the backward-shift would have 856 * however waited for the service of agg before being served. 857 * 858 * The other event that may cause the slot index to be higher than 2 859 * for agg is a recent change of the parameters of some class. If the 860 * weight of a class is increased or the lmax (max_pkt_size) of the 861 * class is decreased, then a new aggregate with smaller slot size 862 * than the original parent aggregate of the class may happen to be 863 * activated. The activation of this aggregate should be properly 864 * delayed to when the service of the class has finished in the ideal 865 * system tracked by QFQ+. If the activation of the aggregate is not 866 * delayed to this reference time instant, then this aggregate may be 867 * unjustly served before other aggregates waiting for service. This 868 * may cause the above bound to the slot index to be violated for some 869 * of these unlucky aggregates. 870 * 871 * Instead of delaying the activation of the new aggregate, which is 872 * quite complex, the above-discussed capping of the slot index is 873 * used to handle also the consequences of a change of the parameters 874 * of a class. 875 */ 876 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, 877 u64 roundedS) 878 { 879 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 880 unsigned int i; /* slot index in the bucket list */ 881 882 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 883 u64 deltaS = roundedS - grp->S - 884 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 885 agg->S -= deltaS; 886 agg->F -= deltaS; 887 slot = QFQ_MAX_SLOTS - 2; 888 } 889 890 i = (grp->front + slot) % QFQ_MAX_SLOTS; 891 892 hlist_add_head(&agg->next, &grp->slots[i]); 893 __set_bit(slot, &grp->full_slots); 894 } 895 896 /* Maybe introduce hlist_first_entry?? */ 897 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) 898 { 899 return hlist_entry(grp->slots[grp->front].first, 900 struct qfq_aggregate, next); 901 } 902 903 /* 904 * remove the entry from the slot 905 */ 906 static void qfq_front_slot_remove(struct qfq_group *grp) 907 { 908 struct qfq_aggregate *agg = qfq_slot_head(grp); 909 910 BUG_ON(!agg); 911 hlist_del(&agg->next); 912 if (hlist_empty(&grp->slots[grp->front])) 913 __clear_bit(0, &grp->full_slots); 914 } 915 916 /* 917 * Returns the first aggregate in the first non-empty bucket of the 918 * group. As a side effect, adjusts the bucket list so the first 919 * non-empty bucket is at position 0 in full_slots. 920 */ 921 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) 922 { 923 unsigned int i; 924 925 pr_debug("qfq slot_scan: grp %u full %#lx\n", 926 grp->index, grp->full_slots); 927 928 if (grp->full_slots == 0) 929 return NULL; 930 931 i = __ffs(grp->full_slots); /* zero based */ 932 if (i > 0) { 933 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 934 grp->full_slots >>= i; 935 } 936 937 return qfq_slot_head(grp); 938 } 939 940 /* 941 * adjust the bucket list. When the start time of a group decreases, 942 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 943 * move the objects. The mask of occupied slots must be shifted 944 * because we use ffs() to find the first non-empty slot. 945 * This covers decreases in the group's start time, but what about 946 * increases of the start time ? 947 * Here too we should make sure that i is less than 32 948 */ 949 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 950 { 951 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 952 953 grp->full_slots <<= i; 954 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 955 } 956 957 static void qfq_update_eligible(struct qfq_sched *q) 958 { 959 struct qfq_group *grp; 960 unsigned long ineligible; 961 962 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 963 if (ineligible) { 964 if (!q->bitmaps[ER]) { 965 grp = qfq_ffs(q, ineligible); 966 if (qfq_gt(grp->S, q->V)) 967 q->V = grp->S; 968 } 969 qfq_make_eligible(q); 970 } 971 } 972 973 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ 974 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg, 975 struct qfq_class *cl, unsigned int len) 976 { 977 struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc); 978 979 if (!skb) 980 return NULL; 981 982 cl->deficit -= (int) len; 983 984 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ 985 list_del(&cl->alist); 986 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { 987 cl->deficit += agg->lmax; 988 list_move_tail(&cl->alist, &agg->active); 989 } 990 991 return skb; 992 } 993 994 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, 995 struct qfq_class **cl, 996 unsigned int *len) 997 { 998 struct sk_buff *skb; 999 1000 *cl = list_first_entry(&agg->active, struct qfq_class, alist); 1001 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); 1002 if (skb == NULL) 1003 qdisc_warn_nonwc("qfq_dequeue", (*cl)->qdisc); 1004 else 1005 *len = qdisc_pkt_len(skb); 1006 1007 return skb; 1008 } 1009 1010 /* Update F according to the actual service received by the aggregate. */ 1011 static inline void charge_actual_service(struct qfq_aggregate *agg) 1012 { 1013 /* Compute the service received by the aggregate, taking into 1014 * account that, after decreasing the number of classes in 1015 * agg, it may happen that 1016 * agg->initial_budget - agg->budget > agg->bugdetmax 1017 */ 1018 u32 service_received = min(agg->budgetmax, 1019 agg->initial_budget - agg->budget); 1020 1021 agg->F = agg->S + (u64)service_received * agg->inv_w; 1022 } 1023 1024 /* Assign a reasonable start time for a new aggregate in group i. 1025 * Admissible values for \hat(F) are multiples of \sigma_i 1026 * no greater than V+\sigma_i . Larger values mean that 1027 * we had a wraparound so we consider the timestamp to be stale. 1028 * 1029 * If F is not stale and F >= V then we set S = F. 1030 * Otherwise we should assign S = V, but this may violate 1031 * the ordering in EB (see [2]). So, if we have groups in ER, 1032 * set S to the F_j of the first group j which would be blocking us. 1033 * We are guaranteed not to move S backward because 1034 * otherwise our group i would still be blocked. 1035 */ 1036 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) 1037 { 1038 unsigned long mask; 1039 u64 limit, roundedF; 1040 int slot_shift = agg->grp->slot_shift; 1041 1042 roundedF = qfq_round_down(agg->F, slot_shift); 1043 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 1044 1045 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { 1046 /* timestamp was stale */ 1047 mask = mask_from(q->bitmaps[ER], agg->grp->index); 1048 if (mask) { 1049 struct qfq_group *next = qfq_ffs(q, mask); 1050 if (qfq_gt(roundedF, next->F)) { 1051 if (qfq_gt(limit, next->F)) 1052 agg->S = next->F; 1053 else /* preserve timestamp correctness */ 1054 agg->S = limit; 1055 return; 1056 } 1057 } 1058 agg->S = q->V; 1059 } else /* timestamp is not stale */ 1060 agg->S = agg->F; 1061 } 1062 1063 /* Update the timestamps of agg before scheduling/rescheduling it for 1064 * service. In particular, assign to agg->F its maximum possible 1065 * value, i.e., the virtual finish time with which the aggregate 1066 * should be labeled if it used all its budget once in service. 1067 */ 1068 static inline void 1069 qfq_update_agg_ts(struct qfq_sched *q, 1070 struct qfq_aggregate *agg, enum update_reason reason) 1071 { 1072 if (reason != requeue) 1073 qfq_update_start(q, agg); 1074 else /* just charge agg for the service received */ 1075 agg->S = agg->F; 1076 1077 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; 1078 } 1079 1080 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); 1081 1082 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 1083 { 1084 struct qfq_sched *q = qdisc_priv(sch); 1085 struct qfq_aggregate *in_serv_agg = q->in_serv_agg; 1086 struct qfq_class *cl; 1087 struct sk_buff *skb = NULL; 1088 /* next-packet len, 0 means no more active classes in in-service agg */ 1089 unsigned int len = 0; 1090 1091 if (in_serv_agg == NULL) 1092 return NULL; 1093 1094 if (!list_empty(&in_serv_agg->active)) 1095 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1096 1097 /* 1098 * If there are no active classes in the in-service aggregate, 1099 * or if the aggregate has not enough budget to serve its next 1100 * class, then choose the next aggregate to serve. 1101 */ 1102 if (len == 0 || in_serv_agg->budget < len) { 1103 charge_actual_service(in_serv_agg); 1104 1105 /* recharge the budget of the aggregate */ 1106 in_serv_agg->initial_budget = in_serv_agg->budget = 1107 in_serv_agg->budgetmax; 1108 1109 if (!list_empty(&in_serv_agg->active)) { 1110 /* 1111 * Still active: reschedule for 1112 * service. Possible optimization: if no other 1113 * aggregate is active, then there is no point 1114 * in rescheduling this aggregate, and we can 1115 * just keep it as the in-service one. This 1116 * should be however a corner case, and to 1117 * handle it, we would need to maintain an 1118 * extra num_active_aggs field. 1119 */ 1120 qfq_update_agg_ts(q, in_serv_agg, requeue); 1121 qfq_schedule_agg(q, in_serv_agg); 1122 } else if (sch->q.qlen == 0) { /* no aggregate to serve */ 1123 q->in_serv_agg = NULL; 1124 return NULL; 1125 } 1126 1127 /* 1128 * If we get here, there are other aggregates queued: 1129 * choose the new aggregate to serve. 1130 */ 1131 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); 1132 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1133 } 1134 if (!skb) 1135 return NULL; 1136 1137 sch->q.qlen--; 1138 1139 skb = agg_dequeue(in_serv_agg, cl, len); 1140 1141 if (!skb) { 1142 sch->q.qlen++; 1143 return NULL; 1144 } 1145 1146 qdisc_qstats_backlog_dec(sch, skb); 1147 qdisc_bstats_update(sch, skb); 1148 1149 /* If lmax is lowered, through qfq_change_class, for a class 1150 * owning pending packets with larger size than the new value 1151 * of lmax, then the following condition may hold. 1152 */ 1153 if (unlikely(in_serv_agg->budget < len)) 1154 in_serv_agg->budget = 0; 1155 else 1156 in_serv_agg->budget -= len; 1157 1158 q->V += (u64)len * q->iwsum; 1159 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 1160 len, (unsigned long long) in_serv_agg->F, 1161 (unsigned long long) q->V); 1162 1163 return skb; 1164 } 1165 1166 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) 1167 { 1168 struct qfq_group *grp; 1169 struct qfq_aggregate *agg, *new_front_agg; 1170 u64 old_F; 1171 1172 qfq_update_eligible(q); 1173 q->oldV = q->V; 1174 1175 if (!q->bitmaps[ER]) 1176 return NULL; 1177 1178 grp = qfq_ffs(q, q->bitmaps[ER]); 1179 old_F = grp->F; 1180 1181 agg = qfq_slot_head(grp); 1182 1183 /* agg starts to be served, remove it from schedule */ 1184 qfq_front_slot_remove(grp); 1185 1186 new_front_agg = qfq_slot_scan(grp); 1187 1188 if (new_front_agg == NULL) /* group is now inactive, remove from ER */ 1189 __clear_bit(grp->index, &q->bitmaps[ER]); 1190 else { 1191 u64 roundedS = qfq_round_down(new_front_agg->S, 1192 grp->slot_shift); 1193 unsigned int s; 1194 1195 if (grp->S == roundedS) 1196 return agg; 1197 grp->S = roundedS; 1198 grp->F = roundedS + (2ULL << grp->slot_shift); 1199 __clear_bit(grp->index, &q->bitmaps[ER]); 1200 s = qfq_calc_state(q, grp); 1201 __set_bit(grp->index, &q->bitmaps[s]); 1202 } 1203 1204 qfq_unblock_groups(q, grp->index, old_F); 1205 1206 return agg; 1207 } 1208 1209 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, 1210 struct sk_buff **to_free) 1211 { 1212 unsigned int len = qdisc_pkt_len(skb), gso_segs; 1213 struct qfq_sched *q = qdisc_priv(sch); 1214 struct qfq_class *cl; 1215 struct qfq_aggregate *agg; 1216 int err = 0; 1217 bool first; 1218 1219 cl = qfq_classify(skb, sch, &err); 1220 if (cl == NULL) { 1221 if (err & __NET_XMIT_BYPASS) 1222 qdisc_qstats_drop(sch); 1223 __qdisc_drop(skb, to_free); 1224 return err; 1225 } 1226 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 1227 1228 if (unlikely(cl->agg->lmax < len)) { 1229 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 1230 cl->agg->lmax, len, cl->common.classid); 1231 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len); 1232 if (err) { 1233 cl->qstats.drops++; 1234 return qdisc_drop(skb, sch, to_free); 1235 } 1236 } 1237 1238 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1; 1239 first = !cl->qdisc->q.qlen; 1240 err = qdisc_enqueue(skb, cl->qdisc, to_free); 1241 if (unlikely(err != NET_XMIT_SUCCESS)) { 1242 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 1243 if (net_xmit_drop_count(err)) { 1244 cl->qstats.drops++; 1245 qdisc_qstats_drop(sch); 1246 } 1247 return err; 1248 } 1249 1250 _bstats_update(&cl->bstats, len, gso_segs); 1251 sch->qstats.backlog += len; 1252 ++sch->q.qlen; 1253 1254 agg = cl->agg; 1255 /* if the queue was not empty, then done here */ 1256 if (!first) { 1257 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && 1258 list_first_entry(&agg->active, struct qfq_class, alist) 1259 == cl && cl->deficit < len) 1260 list_move_tail(&cl->alist, &agg->active); 1261 1262 return err; 1263 } 1264 1265 /* schedule class for service within the aggregate */ 1266 cl->deficit = agg->lmax; 1267 list_add_tail(&cl->alist, &agg->active); 1268 1269 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || 1270 q->in_serv_agg == agg) 1271 return err; /* non-empty or in service, nothing else to do */ 1272 1273 qfq_activate_agg(q, agg, enqueue); 1274 1275 return err; 1276 } 1277 1278 /* 1279 * Schedule aggregate according to its timestamps. 1280 */ 1281 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1282 { 1283 struct qfq_group *grp = agg->grp; 1284 u64 roundedS; 1285 int s; 1286 1287 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1288 1289 /* 1290 * Insert agg in the correct bucket. 1291 * If agg->S >= grp->S we don't need to adjust the 1292 * bucket list and simply go to the insertion phase. 1293 * Otherwise grp->S is decreasing, we must make room 1294 * in the bucket list, and also recompute the group state. 1295 * Finally, if there were no flows in this group and nobody 1296 * was in ER make sure to adjust V. 1297 */ 1298 if (grp->full_slots) { 1299 if (!qfq_gt(grp->S, agg->S)) 1300 goto skip_update; 1301 1302 /* create a slot for this agg->S */ 1303 qfq_slot_rotate(grp, roundedS); 1304 /* group was surely ineligible, remove */ 1305 __clear_bit(grp->index, &q->bitmaps[IR]); 1306 __clear_bit(grp->index, &q->bitmaps[IB]); 1307 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && 1308 q->in_serv_agg == NULL) 1309 q->V = roundedS; 1310 1311 grp->S = roundedS; 1312 grp->F = roundedS + (2ULL << grp->slot_shift); 1313 s = qfq_calc_state(q, grp); 1314 __set_bit(grp->index, &q->bitmaps[s]); 1315 1316 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1317 s, q->bitmaps[s], 1318 (unsigned long long) agg->S, 1319 (unsigned long long) agg->F, 1320 (unsigned long long) q->V); 1321 1322 skip_update: 1323 qfq_slot_insert(grp, agg, roundedS); 1324 } 1325 1326 1327 /* Update agg ts and schedule agg for service */ 1328 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 1329 enum update_reason reason) 1330 { 1331 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ 1332 1333 qfq_update_agg_ts(q, agg, reason); 1334 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ 1335 q->in_serv_agg = agg; /* start serving this aggregate */ 1336 /* update V: to be in service, agg must be eligible */ 1337 q->oldV = q->V = agg->S; 1338 } else if (agg != q->in_serv_agg) 1339 qfq_schedule_agg(q, agg); 1340 } 1341 1342 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1343 struct qfq_aggregate *agg) 1344 { 1345 unsigned int i, offset; 1346 u64 roundedS; 1347 1348 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1349 offset = (roundedS - grp->S) >> grp->slot_shift; 1350 1351 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1352 1353 hlist_del(&agg->next); 1354 if (hlist_empty(&grp->slots[i])) 1355 __clear_bit(offset, &grp->full_slots); 1356 } 1357 1358 /* 1359 * Called to forcibly deschedule an aggregate. If the aggregate is 1360 * not in the front bucket, or if the latter has other aggregates in 1361 * the front bucket, we can simply remove the aggregate with no other 1362 * side effects. 1363 * Otherwise we must propagate the event up. 1364 */ 1365 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1366 { 1367 struct qfq_group *grp = agg->grp; 1368 unsigned long mask; 1369 u64 roundedS; 1370 int s; 1371 1372 if (agg == q->in_serv_agg) { 1373 charge_actual_service(agg); 1374 q->in_serv_agg = qfq_choose_next_agg(q); 1375 return; 1376 } 1377 1378 agg->F = agg->S; 1379 qfq_slot_remove(q, grp, agg); 1380 1381 if (!grp->full_slots) { 1382 __clear_bit(grp->index, &q->bitmaps[IR]); 1383 __clear_bit(grp->index, &q->bitmaps[EB]); 1384 __clear_bit(grp->index, &q->bitmaps[IB]); 1385 1386 if (test_bit(grp->index, &q->bitmaps[ER]) && 1387 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1388 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1389 if (mask) 1390 mask = ~((1UL << __fls(mask)) - 1); 1391 else 1392 mask = ~0UL; 1393 qfq_move_groups(q, mask, EB, ER); 1394 qfq_move_groups(q, mask, IB, IR); 1395 } 1396 __clear_bit(grp->index, &q->bitmaps[ER]); 1397 } else if (hlist_empty(&grp->slots[grp->front])) { 1398 agg = qfq_slot_scan(grp); 1399 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1400 if (grp->S != roundedS) { 1401 __clear_bit(grp->index, &q->bitmaps[ER]); 1402 __clear_bit(grp->index, &q->bitmaps[IR]); 1403 __clear_bit(grp->index, &q->bitmaps[EB]); 1404 __clear_bit(grp->index, &q->bitmaps[IB]); 1405 grp->S = roundedS; 1406 grp->F = roundedS + (2ULL << grp->slot_shift); 1407 s = qfq_calc_state(q, grp); 1408 __set_bit(grp->index, &q->bitmaps[s]); 1409 } 1410 } 1411 } 1412 1413 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1414 { 1415 struct qfq_sched *q = qdisc_priv(sch); 1416 struct qfq_class *cl = (struct qfq_class *)arg; 1417 1418 qfq_deactivate_class(q, cl); 1419 } 1420 1421 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt, 1422 struct netlink_ext_ack *extack) 1423 { 1424 struct qfq_sched *q = qdisc_priv(sch); 1425 struct qfq_group *grp; 1426 int i, j, err; 1427 u32 max_cl_shift, maxbudg_shift, max_classes; 1428 1429 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 1430 if (err) 1431 return err; 1432 1433 err = qdisc_class_hash_init(&q->clhash); 1434 if (err < 0) 1435 return err; 1436 1437 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1, 1438 QFQ_MAX_AGG_CLASSES); 1439 /* max_cl_shift = floor(log_2(max_classes)) */ 1440 max_cl_shift = __fls(max_classes); 1441 q->max_agg_classes = 1<<max_cl_shift; 1442 1443 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ 1444 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; 1445 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; 1446 1447 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1448 grp = &q->groups[i]; 1449 grp->index = i; 1450 grp->slot_shift = q->min_slot_shift + i; 1451 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1452 INIT_HLIST_HEAD(&grp->slots[j]); 1453 } 1454 1455 INIT_HLIST_HEAD(&q->nonfull_aggs); 1456 1457 return 0; 1458 } 1459 1460 static void qfq_reset_qdisc(struct Qdisc *sch) 1461 { 1462 struct qfq_sched *q = qdisc_priv(sch); 1463 struct qfq_class *cl; 1464 unsigned int i; 1465 1466 for (i = 0; i < q->clhash.hashsize; i++) { 1467 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1468 if (cl->qdisc->q.qlen > 0) 1469 qfq_deactivate_class(q, cl); 1470 1471 qdisc_reset(cl->qdisc); 1472 } 1473 } 1474 } 1475 1476 static void qfq_destroy_qdisc(struct Qdisc *sch) 1477 { 1478 struct qfq_sched *q = qdisc_priv(sch); 1479 struct qfq_class *cl; 1480 struct hlist_node *next; 1481 unsigned int i; 1482 1483 tcf_block_put(q->block); 1484 1485 for (i = 0; i < q->clhash.hashsize; i++) { 1486 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1487 common.hnode) { 1488 qfq_destroy_class(sch, cl); 1489 } 1490 } 1491 qdisc_class_hash_destroy(&q->clhash); 1492 } 1493 1494 static const struct Qdisc_class_ops qfq_class_ops = { 1495 .change = qfq_change_class, 1496 .delete = qfq_delete_class, 1497 .find = qfq_search_class, 1498 .tcf_block = qfq_tcf_block, 1499 .bind_tcf = qfq_bind_tcf, 1500 .unbind_tcf = qfq_unbind_tcf, 1501 .graft = qfq_graft_class, 1502 .leaf = qfq_class_leaf, 1503 .qlen_notify = qfq_qlen_notify, 1504 .dump = qfq_dump_class, 1505 .dump_stats = qfq_dump_class_stats, 1506 .walk = qfq_walk, 1507 }; 1508 1509 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1510 .cl_ops = &qfq_class_ops, 1511 .id = "qfq", 1512 .priv_size = sizeof(struct qfq_sched), 1513 .enqueue = qfq_enqueue, 1514 .dequeue = qfq_dequeue, 1515 .peek = qdisc_peek_dequeued, 1516 .init = qfq_init_qdisc, 1517 .reset = qfq_reset_qdisc, 1518 .destroy = qfq_destroy_qdisc, 1519 .owner = THIS_MODULE, 1520 }; 1521 MODULE_ALIAS_NET_SCH("qfq"); 1522 1523 static int __init qfq_init(void) 1524 { 1525 return register_qdisc(&qfq_qdisc_ops); 1526 } 1527 1528 static void __exit qfq_exit(void) 1529 { 1530 unregister_qdisc(&qfq_qdisc_ops); 1531 } 1532 1533 module_init(qfq_init); 1534 module_exit(qfq_exit); 1535 MODULE_LICENSE("GPL"); 1536 MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc"); 1537