xref: /linux/net/sched/sch_qfq.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /*
2  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
3  *
4  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5  * Copyright (c) 2012 Paolo Valente.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21 
22 
23 /*  Quick Fair Queueing Plus
24     ========================
25 
26     Sources:
27 
28     [1] Paolo Valente,
29     "Reducing the Execution Time of Fair-Queueing Schedulers."
30     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31 
32     Sources for QFQ:
33 
34     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36 
37     See also:
38     http://retis.sssup.it/~fabio/linux/qfq/
39  */
40 
41 /*
42 
43   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44   classes. Each aggregate is timestamped with a virtual start time S
45   and a virtual finish time F, and scheduled according to its
46   timestamps. S and F are computed as a function of a system virtual
47   time function V. The classes within each aggregate are instead
48   scheduled with DRR.
49 
50   To speed up operations, QFQ+ divides also aggregates into a limited
51   number of groups. Which group a class belongs to depends on the
52   ratio between the maximum packet length for the class and the weight
53   of the class. Groups have their own S and F. In the end, QFQ+
54   schedules groups, then aggregates within groups, then classes within
55   aggregates. See [1] and [2] for a full description.
56 
57   Virtual time computations.
58 
59   S, F and V are all computed in fixed point arithmetic with
60   FRAC_BITS decimal bits.
61 
62   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 	one bit per index.
64   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65 
66   The layout of the bits is as below:
67 
68                    [ MTU_SHIFT ][      FRAC_BITS    ]
69                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
70 				 ^.__grp->index = 0
71 				 *.__grp->slot_shift
72 
73   where MIN_SLOT_SHIFT is derived by difference from the others.
74 
75   The max group index corresponds to Lmax/w_min, where
76   Lmax=1<<MTU_SHIFT, w_min = 1 .
77   From this, and knowing how many groups (MAX_INDEX) we want,
78   we can derive the shift corresponding to each group.
79 
80   Because we often need to compute
81 	F = S + len/w_i  and V = V + len/wsum
82   instead of storing w_i store the value
83 	inv_w = (1<<FRAC_BITS)/w_i
84   so we can do F = S + len * inv_w * wsum.
85   We use W_TOT in the formulas so we can easily move between
86   static and adaptive weight sum.
87 
88   The per-scheduler-instance data contain all the data structures
89   for the scheduler: bitmaps and bucket lists.
90 
91  */
92 
93 /*
94  * Maximum number of consecutive slots occupied by backlogged classes
95  * inside a group.
96  */
97 #define QFQ_MAX_SLOTS	32
98 
99 /*
100  * Shifts used for aggregate<->group mapping.  We allow class weights that are
101  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102  * group with the smallest index that can support the L_i / r_i configured
103  * for the classes in the aggregate.
104  *
105  * grp->index is the index of the group; and grp->slot_shift
106  * is the shift for the corresponding (scaled) sigma_i.
107  */
108 #define QFQ_MAX_INDEX		24
109 #define QFQ_MAX_WSHIFT		10
110 
111 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
113 
114 #define FRAC_BITS		30	/* fixed point arithmetic */
115 #define ONE_FP			(1UL << FRAC_BITS)
116 
117 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
118 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
119 
120 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
121 
122 /*
123  * Possible group states.  These values are used as indexes for the bitmaps
124  * array of struct qfq_queue.
125  */
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127 
128 struct qfq_group;
129 
130 struct qfq_aggregate;
131 
132 struct qfq_class {
133 	struct Qdisc_class_common common;
134 
135 	unsigned int refcnt;
136 	unsigned int filter_cnt;
137 
138 	struct gnet_stats_basic_packed bstats;
139 	struct gnet_stats_queue qstats;
140 	struct gnet_stats_rate_est64 rate_est;
141 	struct Qdisc *qdisc;
142 	struct list_head alist;		/* Link for active-classes list. */
143 	struct qfq_aggregate *agg;	/* Parent aggregate. */
144 	int deficit;			/* DRR deficit counter. */
145 };
146 
147 struct qfq_aggregate {
148 	struct hlist_node next;	/* Link for the slot list. */
149 	u64 S, F;		/* flow timestamps (exact) */
150 
151 	/* group we belong to. In principle we would need the index,
152 	 * which is log_2(lmax/weight), but we never reference it
153 	 * directly, only the group.
154 	 */
155 	struct qfq_group *grp;
156 
157 	/* these are copied from the flowset. */
158 	u32	class_weight; /* Weight of each class in this aggregate. */
159 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
160 	int	lmax;
161 
162 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
163 	u32	budgetmax;  /* Max budget for this aggregate. */
164 	u32	initial_budget, budget;     /* Initial and current budget. */
165 
166 	int		  num_classes;	/* Number of classes in this aggr. */
167 	struct list_head  active;	/* DRR queue of active classes. */
168 
169 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
170 };
171 
172 struct qfq_group {
173 	u64 S, F;			/* group timestamps (approx). */
174 	unsigned int slot_shift;	/* Slot shift. */
175 	unsigned int index;		/* Group index. */
176 	unsigned int front;		/* Index of the front slot. */
177 	unsigned long full_slots;	/* non-empty slots */
178 
179 	/* Array of RR lists of active aggregates. */
180 	struct hlist_head slots[QFQ_MAX_SLOTS];
181 };
182 
183 struct qfq_sched {
184 	struct tcf_proto __rcu *filter_list;
185 	struct Qdisc_class_hash clhash;
186 
187 	u64			oldV, V;	/* Precise virtual times. */
188 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
189 	u32			num_active_agg; /* Num. of active aggregates */
190 	u32			wsum;		/* weight sum */
191 	u32			iwsum;		/* inverse weight sum */
192 
193 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
194 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
195 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
196 
197 	u32 max_agg_classes;		/* Max number of classes per aggr. */
198 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
199 };
200 
201 /*
202  * Possible reasons why the timestamps of an aggregate are updated
203  * enqueue: the aggregate switches from idle to active and must scheduled
204  *	    for service
205  * requeue: the aggregate finishes its budget, so it stops being served and
206  *	    must be rescheduled for service
207  */
208 enum update_reason {enqueue, requeue};
209 
210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 	struct qfq_sched *q = qdisc_priv(sch);
213 	struct Qdisc_class_common *clc;
214 
215 	clc = qdisc_class_find(&q->clhash, classid);
216 	if (clc == NULL)
217 		return NULL;
218 	return container_of(clc, struct qfq_class, common);
219 }
220 
221 static void qfq_purge_queue(struct qfq_class *cl)
222 {
223 	unsigned int len = cl->qdisc->q.qlen;
224 
225 	qdisc_reset(cl->qdisc);
226 	qdisc_tree_decrease_qlen(cl->qdisc, len);
227 }
228 
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
232 };
233 
234 /*
235  * Calculate a flow index, given its weight and maximum packet length.
236  * index = log_2(maxlen/weight) but we need to apply the scaling.
237  * This is used only once at flow creation.
238  */
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240 {
241 	u64 slot_size = (u64)maxlen * inv_w;
242 	unsigned long size_map;
243 	int index = 0;
244 
245 	size_map = slot_size >> min_slot_shift;
246 	if (!size_map)
247 		goto out;
248 
249 	index = __fls(size_map) + 1;	/* basically a log_2 */
250 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251 
252 	if (index < 0)
253 		index = 0;
254 out:
255 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
257 
258 	return index;
259 }
260 
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 			     enum update_reason);
264 
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 			 u32 lmax, u32 weight)
267 {
268 	INIT_LIST_HEAD(&agg->active);
269 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270 
271 	agg->lmax = lmax;
272 	agg->class_weight = weight;
273 }
274 
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 					  u32 lmax, u32 weight)
277 {
278 	struct qfq_aggregate *agg;
279 
280 	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 		if (agg->lmax == lmax && agg->class_weight == weight)
282 			return agg;
283 
284 	return NULL;
285 }
286 
287 
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 			   int new_num_classes)
291 {
292 	u32 new_agg_weight;
293 
294 	if (new_num_classes == q->max_agg_classes)
295 		hlist_del_init(&agg->nonfull_next);
296 
297 	if (agg->num_classes > new_num_classes &&
298 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300 
301 	/* The next assignment may let
302 	 * agg->initial_budget > agg->budgetmax
303 	 * hold, we will take it into account in charge_actual_service().
304 	 */
305 	agg->budgetmax = new_num_classes * agg->lmax;
306 	new_agg_weight = agg->class_weight * new_num_classes;
307 	agg->inv_w = ONE_FP/new_agg_weight;
308 
309 	if (agg->grp == NULL) {
310 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 				       q->min_slot_shift);
312 		agg->grp = &q->groups[i];
313 	}
314 
315 	q->wsum +=
316 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
317 	q->iwsum = ONE_FP / q->wsum;
318 
319 	agg->num_classes = new_num_classes;
320 }
321 
322 /* Add class to aggregate. */
323 static void qfq_add_to_agg(struct qfq_sched *q,
324 			   struct qfq_aggregate *agg,
325 			   struct qfq_class *cl)
326 {
327 	cl->agg = agg;
328 
329 	qfq_update_agg(q, agg, agg->num_classes+1);
330 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331 		list_add_tail(&cl->alist, &agg->active);
332 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333 		    cl && q->in_serv_agg != agg) /* agg was inactive */
334 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
335 	}
336 }
337 
338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
339 
340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
341 {
342 	hlist_del_init(&agg->nonfull_next);
343 	q->wsum -= agg->class_weight;
344 	if (q->wsum != 0)
345 		q->iwsum = ONE_FP / q->wsum;
346 
347 	if (q->in_serv_agg == agg)
348 		q->in_serv_agg = qfq_choose_next_agg(q);
349 	kfree(agg);
350 }
351 
352 /* Deschedule class from within its parent aggregate. */
353 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
354 {
355 	struct qfq_aggregate *agg = cl->agg;
356 
357 
358 	list_del(&cl->alist); /* remove from RR queue of the aggregate */
359 	if (list_empty(&agg->active)) /* agg is now inactive */
360 		qfq_deactivate_agg(q, agg);
361 }
362 
363 /* Remove class from its parent aggregate. */
364 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
365 {
366 	struct qfq_aggregate *agg = cl->agg;
367 
368 	cl->agg = NULL;
369 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
370 		qfq_destroy_agg(q, agg);
371 		return;
372 	}
373 	qfq_update_agg(q, agg, agg->num_classes-1);
374 }
375 
376 /* Deschedule class and remove it from its parent aggregate. */
377 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
378 {
379 	if (cl->qdisc->q.qlen > 0) /* class is active */
380 		qfq_deactivate_class(q, cl);
381 
382 	qfq_rm_from_agg(q, cl);
383 }
384 
385 /* Move class to a new aggregate, matching the new class weight and/or lmax */
386 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
387 			   u32 lmax)
388 {
389 	struct qfq_sched *q = qdisc_priv(sch);
390 	struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
391 
392 	if (new_agg == NULL) { /* create new aggregate */
393 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
394 		if (new_agg == NULL)
395 			return -ENOBUFS;
396 		qfq_init_agg(q, new_agg, lmax, weight);
397 	}
398 	qfq_deact_rm_from_agg(q, cl);
399 	qfq_add_to_agg(q, new_agg, cl);
400 
401 	return 0;
402 }
403 
404 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
405 			    struct nlattr **tca, unsigned long *arg)
406 {
407 	struct qfq_sched *q = qdisc_priv(sch);
408 	struct qfq_class *cl = (struct qfq_class *)*arg;
409 	bool existing = false;
410 	struct nlattr *tb[TCA_QFQ_MAX + 1];
411 	struct qfq_aggregate *new_agg = NULL;
412 	u32 weight, lmax, inv_w;
413 	int err;
414 	int delta_w;
415 
416 	if (tca[TCA_OPTIONS] == NULL) {
417 		pr_notice("qfq: no options\n");
418 		return -EINVAL;
419 	}
420 
421 	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
422 	if (err < 0)
423 		return err;
424 
425 	if (tb[TCA_QFQ_WEIGHT]) {
426 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
427 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
428 			pr_notice("qfq: invalid weight %u\n", weight);
429 			return -EINVAL;
430 		}
431 	} else
432 		weight = 1;
433 
434 	if (tb[TCA_QFQ_LMAX]) {
435 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
436 		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
437 			pr_notice("qfq: invalid max length %u\n", lmax);
438 			return -EINVAL;
439 		}
440 	} else
441 		lmax = psched_mtu(qdisc_dev(sch));
442 
443 	inv_w = ONE_FP / weight;
444 	weight = ONE_FP / inv_w;
445 
446 	if (cl != NULL &&
447 	    lmax == cl->agg->lmax &&
448 	    weight == cl->agg->class_weight)
449 		return 0; /* nothing to change */
450 
451 	delta_w = weight - (cl ? cl->agg->class_weight : 0);
452 
453 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
454 		pr_notice("qfq: total weight out of range (%d + %u)\n",
455 			  delta_w, q->wsum);
456 		return -EINVAL;
457 	}
458 
459 	if (cl != NULL) { /* modify existing class */
460 		if (tca[TCA_RATE]) {
461 			err = gen_replace_estimator(&cl->bstats, NULL,
462 						    &cl->rate_est,
463 						    qdisc_root_sleeping_lock(sch),
464 						    tca[TCA_RATE]);
465 			if (err)
466 				return err;
467 		}
468 		existing = true;
469 		goto set_change_agg;
470 	}
471 
472 	/* create and init new class */
473 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
474 	if (cl == NULL)
475 		return -ENOBUFS;
476 
477 	cl->refcnt = 1;
478 	cl->common.classid = classid;
479 	cl->deficit = lmax;
480 
481 	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
482 				      &pfifo_qdisc_ops, classid);
483 	if (cl->qdisc == NULL)
484 		cl->qdisc = &noop_qdisc;
485 
486 	if (tca[TCA_RATE]) {
487 		err = gen_new_estimator(&cl->bstats, NULL,
488 					&cl->rate_est,
489 					qdisc_root_sleeping_lock(sch),
490 					tca[TCA_RATE]);
491 		if (err)
492 			goto destroy_class;
493 	}
494 
495 	sch_tree_lock(sch);
496 	qdisc_class_hash_insert(&q->clhash, &cl->common);
497 	sch_tree_unlock(sch);
498 
499 	qdisc_class_hash_grow(sch, &q->clhash);
500 
501 set_change_agg:
502 	sch_tree_lock(sch);
503 	new_agg = qfq_find_agg(q, lmax, weight);
504 	if (new_agg == NULL) { /* create new aggregate */
505 		sch_tree_unlock(sch);
506 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
507 		if (new_agg == NULL) {
508 			err = -ENOBUFS;
509 			gen_kill_estimator(&cl->bstats, &cl->rate_est);
510 			goto destroy_class;
511 		}
512 		sch_tree_lock(sch);
513 		qfq_init_agg(q, new_agg, lmax, weight);
514 	}
515 	if (existing)
516 		qfq_deact_rm_from_agg(q, cl);
517 	qfq_add_to_agg(q, new_agg, cl);
518 	sch_tree_unlock(sch);
519 
520 	*arg = (unsigned long)cl;
521 	return 0;
522 
523 destroy_class:
524 	qdisc_destroy(cl->qdisc);
525 	kfree(cl);
526 	return err;
527 }
528 
529 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
530 {
531 	struct qfq_sched *q = qdisc_priv(sch);
532 
533 	qfq_rm_from_agg(q, cl);
534 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
535 	qdisc_destroy(cl->qdisc);
536 	kfree(cl);
537 }
538 
539 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
540 {
541 	struct qfq_sched *q = qdisc_priv(sch);
542 	struct qfq_class *cl = (struct qfq_class *)arg;
543 
544 	if (cl->filter_cnt > 0)
545 		return -EBUSY;
546 
547 	sch_tree_lock(sch);
548 
549 	qfq_purge_queue(cl);
550 	qdisc_class_hash_remove(&q->clhash, &cl->common);
551 
552 	BUG_ON(--cl->refcnt == 0);
553 	/*
554 	 * This shouldn't happen: we "hold" one cops->get() when called
555 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
556 	 */
557 
558 	sch_tree_unlock(sch);
559 	return 0;
560 }
561 
562 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
563 {
564 	struct qfq_class *cl = qfq_find_class(sch, classid);
565 
566 	if (cl != NULL)
567 		cl->refcnt++;
568 
569 	return (unsigned long)cl;
570 }
571 
572 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
573 {
574 	struct qfq_class *cl = (struct qfq_class *)arg;
575 
576 	if (--cl->refcnt == 0)
577 		qfq_destroy_class(sch, cl);
578 }
579 
580 static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
581 					      unsigned long cl)
582 {
583 	struct qfq_sched *q = qdisc_priv(sch);
584 
585 	if (cl)
586 		return NULL;
587 
588 	return &q->filter_list;
589 }
590 
591 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
592 				  u32 classid)
593 {
594 	struct qfq_class *cl = qfq_find_class(sch, classid);
595 
596 	if (cl != NULL)
597 		cl->filter_cnt++;
598 
599 	return (unsigned long)cl;
600 }
601 
602 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
603 {
604 	struct qfq_class *cl = (struct qfq_class *)arg;
605 
606 	cl->filter_cnt--;
607 }
608 
609 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
610 			   struct Qdisc *new, struct Qdisc **old)
611 {
612 	struct qfq_class *cl = (struct qfq_class *)arg;
613 
614 	if (new == NULL) {
615 		new = qdisc_create_dflt(sch->dev_queue,
616 					&pfifo_qdisc_ops, cl->common.classid);
617 		if (new == NULL)
618 			new = &noop_qdisc;
619 	}
620 
621 	sch_tree_lock(sch);
622 	qfq_purge_queue(cl);
623 	*old = cl->qdisc;
624 	cl->qdisc = new;
625 	sch_tree_unlock(sch);
626 	return 0;
627 }
628 
629 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
630 {
631 	struct qfq_class *cl = (struct qfq_class *)arg;
632 
633 	return cl->qdisc;
634 }
635 
636 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
637 			  struct sk_buff *skb, struct tcmsg *tcm)
638 {
639 	struct qfq_class *cl = (struct qfq_class *)arg;
640 	struct nlattr *nest;
641 
642 	tcm->tcm_parent	= TC_H_ROOT;
643 	tcm->tcm_handle	= cl->common.classid;
644 	tcm->tcm_info	= cl->qdisc->handle;
645 
646 	nest = nla_nest_start(skb, TCA_OPTIONS);
647 	if (nest == NULL)
648 		goto nla_put_failure;
649 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
650 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
651 		goto nla_put_failure;
652 	return nla_nest_end(skb, nest);
653 
654 nla_put_failure:
655 	nla_nest_cancel(skb, nest);
656 	return -EMSGSIZE;
657 }
658 
659 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
660 				struct gnet_dump *d)
661 {
662 	struct qfq_class *cl = (struct qfq_class *)arg;
663 	struct tc_qfq_stats xstats;
664 
665 	memset(&xstats, 0, sizeof(xstats));
666 
667 	xstats.weight = cl->agg->class_weight;
668 	xstats.lmax = cl->agg->lmax;
669 
670 	if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 ||
671 	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
672 	    gnet_stats_copy_queue(d, NULL,
673 				  &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
674 		return -1;
675 
676 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
677 }
678 
679 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
680 {
681 	struct qfq_sched *q = qdisc_priv(sch);
682 	struct qfq_class *cl;
683 	unsigned int i;
684 
685 	if (arg->stop)
686 		return;
687 
688 	for (i = 0; i < q->clhash.hashsize; i++) {
689 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
690 			if (arg->count < arg->skip) {
691 				arg->count++;
692 				continue;
693 			}
694 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
695 				arg->stop = 1;
696 				return;
697 			}
698 			arg->count++;
699 		}
700 	}
701 }
702 
703 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
704 				      int *qerr)
705 {
706 	struct qfq_sched *q = qdisc_priv(sch);
707 	struct qfq_class *cl;
708 	struct tcf_result res;
709 	struct tcf_proto *fl;
710 	int result;
711 
712 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
713 		pr_debug("qfq_classify: found %d\n", skb->priority);
714 		cl = qfq_find_class(sch, skb->priority);
715 		if (cl != NULL)
716 			return cl;
717 	}
718 
719 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
720 	fl = rcu_dereference_bh(q->filter_list);
721 	result = tc_classify(skb, fl, &res);
722 	if (result >= 0) {
723 #ifdef CONFIG_NET_CLS_ACT
724 		switch (result) {
725 		case TC_ACT_QUEUED:
726 		case TC_ACT_STOLEN:
727 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
728 		case TC_ACT_SHOT:
729 			return NULL;
730 		}
731 #endif
732 		cl = (struct qfq_class *)res.class;
733 		if (cl == NULL)
734 			cl = qfq_find_class(sch, res.classid);
735 		return cl;
736 	}
737 
738 	return NULL;
739 }
740 
741 /* Generic comparison function, handling wraparound. */
742 static inline int qfq_gt(u64 a, u64 b)
743 {
744 	return (s64)(a - b) > 0;
745 }
746 
747 /* Round a precise timestamp to its slotted value. */
748 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
749 {
750 	return ts & ~((1ULL << shift) - 1);
751 }
752 
753 /* return the pointer to the group with lowest index in the bitmap */
754 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
755 					unsigned long bitmap)
756 {
757 	int index = __ffs(bitmap);
758 	return &q->groups[index];
759 }
760 /* Calculate a mask to mimic what would be ffs_from(). */
761 static inline unsigned long mask_from(unsigned long bitmap, int from)
762 {
763 	return bitmap & ~((1UL << from) - 1);
764 }
765 
766 /*
767  * The state computation relies on ER=0, IR=1, EB=2, IB=3
768  * First compute eligibility comparing grp->S, q->V,
769  * then check if someone is blocking us and possibly add EB
770  */
771 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
772 {
773 	/* if S > V we are not eligible */
774 	unsigned int state = qfq_gt(grp->S, q->V);
775 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
776 	struct qfq_group *next;
777 
778 	if (mask) {
779 		next = qfq_ffs(q, mask);
780 		if (qfq_gt(grp->F, next->F))
781 			state |= EB;
782 	}
783 
784 	return state;
785 }
786 
787 
788 /*
789  * In principle
790  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
791  *	q->bitmaps[src] &= ~mask;
792  * but we should make sure that src != dst
793  */
794 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
795 				   int src, int dst)
796 {
797 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
798 	q->bitmaps[src] &= ~mask;
799 }
800 
801 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
802 {
803 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
804 	struct qfq_group *next;
805 
806 	if (mask) {
807 		next = qfq_ffs(q, mask);
808 		if (!qfq_gt(next->F, old_F))
809 			return;
810 	}
811 
812 	mask = (1UL << index) - 1;
813 	qfq_move_groups(q, mask, EB, ER);
814 	qfq_move_groups(q, mask, IB, IR);
815 }
816 
817 /*
818  * perhaps
819  *
820 	old_V ^= q->V;
821 	old_V >>= q->min_slot_shift;
822 	if (old_V) {
823 		...
824 	}
825  *
826  */
827 static void qfq_make_eligible(struct qfq_sched *q)
828 {
829 	unsigned long vslot = q->V >> q->min_slot_shift;
830 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
831 
832 	if (vslot != old_vslot) {
833 		unsigned long mask;
834 		int last_flip_pos = fls(vslot ^ old_vslot);
835 
836 		if (last_flip_pos > 31) /* higher than the number of groups */
837 			mask = ~0UL;    /* make all groups eligible */
838 		else
839 			mask = (1UL << last_flip_pos) - 1;
840 
841 		qfq_move_groups(q, mask, IR, ER);
842 		qfq_move_groups(q, mask, IB, EB);
843 	}
844 }
845 
846 /*
847  * The index of the slot in which the input aggregate agg is to be
848  * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
849  * and not a '-1' because the start time of the group may be moved
850  * backward by one slot after the aggregate has been inserted, and
851  * this would cause non-empty slots to be right-shifted by one
852  * position.
853  *
854  * QFQ+ fully satisfies this bound to the slot index if the parameters
855  * of the classes are not changed dynamically, and if QFQ+ never
856  * happens to postpone the service of agg unjustly, i.e., it never
857  * happens that the aggregate becomes backlogged and eligible, or just
858  * eligible, while an aggregate with a higher approximated finish time
859  * is being served. In particular, in this case QFQ+ guarantees that
860  * the timestamps of agg are low enough that the slot index is never
861  * higher than 2. Unfortunately, QFQ+ cannot provide the same
862  * guarantee if it happens to unjustly postpone the service of agg, or
863  * if the parameters of some class are changed.
864  *
865  * As for the first event, i.e., an out-of-order service, the
866  * upper bound to the slot index guaranteed by QFQ+ grows to
867  * 2 +
868  * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
869  * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
870  *
871  * The following function deals with this problem by backward-shifting
872  * the timestamps of agg, if needed, so as to guarantee that the slot
873  * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
874  * cause the service of other aggregates to be postponed, yet the
875  * worst-case guarantees of these aggregates are not violated.  In
876  * fact, in case of no out-of-order service, the timestamps of agg
877  * would have been even lower than they are after the backward shift,
878  * because QFQ+ would have guaranteed a maximum value equal to 2 for
879  * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
880  * service is postponed because of the backward-shift would have
881  * however waited for the service of agg before being served.
882  *
883  * The other event that may cause the slot index to be higher than 2
884  * for agg is a recent change of the parameters of some class. If the
885  * weight of a class is increased or the lmax (max_pkt_size) of the
886  * class is decreased, then a new aggregate with smaller slot size
887  * than the original parent aggregate of the class may happen to be
888  * activated. The activation of this aggregate should be properly
889  * delayed to when the service of the class has finished in the ideal
890  * system tracked by QFQ+. If the activation of the aggregate is not
891  * delayed to this reference time instant, then this aggregate may be
892  * unjustly served before other aggregates waiting for service. This
893  * may cause the above bound to the slot index to be violated for some
894  * of these unlucky aggregates.
895  *
896  * Instead of delaying the activation of the new aggregate, which is
897  * quite complex, the above-discussed capping of the slot index is
898  * used to handle also the consequences of a change of the parameters
899  * of a class.
900  */
901 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
902 			    u64 roundedS)
903 {
904 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
905 	unsigned int i; /* slot index in the bucket list */
906 
907 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
908 		u64 deltaS = roundedS - grp->S -
909 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
910 		agg->S -= deltaS;
911 		agg->F -= deltaS;
912 		slot = QFQ_MAX_SLOTS - 2;
913 	}
914 
915 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
916 
917 	hlist_add_head(&agg->next, &grp->slots[i]);
918 	__set_bit(slot, &grp->full_slots);
919 }
920 
921 /* Maybe introduce hlist_first_entry?? */
922 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
923 {
924 	return hlist_entry(grp->slots[grp->front].first,
925 			   struct qfq_aggregate, next);
926 }
927 
928 /*
929  * remove the entry from the slot
930  */
931 static void qfq_front_slot_remove(struct qfq_group *grp)
932 {
933 	struct qfq_aggregate *agg = qfq_slot_head(grp);
934 
935 	BUG_ON(!agg);
936 	hlist_del(&agg->next);
937 	if (hlist_empty(&grp->slots[grp->front]))
938 		__clear_bit(0, &grp->full_slots);
939 }
940 
941 /*
942  * Returns the first aggregate in the first non-empty bucket of the
943  * group. As a side effect, adjusts the bucket list so the first
944  * non-empty bucket is at position 0 in full_slots.
945  */
946 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
947 {
948 	unsigned int i;
949 
950 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
951 		 grp->index, grp->full_slots);
952 
953 	if (grp->full_slots == 0)
954 		return NULL;
955 
956 	i = __ffs(grp->full_slots);  /* zero based */
957 	if (i > 0) {
958 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
959 		grp->full_slots >>= i;
960 	}
961 
962 	return qfq_slot_head(grp);
963 }
964 
965 /*
966  * adjust the bucket list. When the start time of a group decreases,
967  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
968  * move the objects. The mask of occupied slots must be shifted
969  * because we use ffs() to find the first non-empty slot.
970  * This covers decreases in the group's start time, but what about
971  * increases of the start time ?
972  * Here too we should make sure that i is less than 32
973  */
974 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
975 {
976 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
977 
978 	grp->full_slots <<= i;
979 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
980 }
981 
982 static void qfq_update_eligible(struct qfq_sched *q)
983 {
984 	struct qfq_group *grp;
985 	unsigned long ineligible;
986 
987 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
988 	if (ineligible) {
989 		if (!q->bitmaps[ER]) {
990 			grp = qfq_ffs(q, ineligible);
991 			if (qfq_gt(grp->S, q->V))
992 				q->V = grp->S;
993 		}
994 		qfq_make_eligible(q);
995 	}
996 }
997 
998 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
999 static void agg_dequeue(struct qfq_aggregate *agg,
1000 			struct qfq_class *cl, unsigned int len)
1001 {
1002 	qdisc_dequeue_peeked(cl->qdisc);
1003 
1004 	cl->deficit -= (int) len;
1005 
1006 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1007 		list_del(&cl->alist);
1008 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1009 		cl->deficit += agg->lmax;
1010 		list_move_tail(&cl->alist, &agg->active);
1011 	}
1012 }
1013 
1014 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1015 					   struct qfq_class **cl,
1016 					   unsigned int *len)
1017 {
1018 	struct sk_buff *skb;
1019 
1020 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1021 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1022 	if (skb == NULL)
1023 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1024 	else
1025 		*len = qdisc_pkt_len(skb);
1026 
1027 	return skb;
1028 }
1029 
1030 /* Update F according to the actual service received by the aggregate. */
1031 static inline void charge_actual_service(struct qfq_aggregate *agg)
1032 {
1033 	/* Compute the service received by the aggregate, taking into
1034 	 * account that, after decreasing the number of classes in
1035 	 * agg, it may happen that
1036 	 * agg->initial_budget - agg->budget > agg->bugdetmax
1037 	 */
1038 	u32 service_received = min(agg->budgetmax,
1039 				   agg->initial_budget - agg->budget);
1040 
1041 	agg->F = agg->S + (u64)service_received * agg->inv_w;
1042 }
1043 
1044 /* Assign a reasonable start time for a new aggregate in group i.
1045  * Admissible values for \hat(F) are multiples of \sigma_i
1046  * no greater than V+\sigma_i . Larger values mean that
1047  * we had a wraparound so we consider the timestamp to be stale.
1048  *
1049  * If F is not stale and F >= V then we set S = F.
1050  * Otherwise we should assign S = V, but this may violate
1051  * the ordering in EB (see [2]). So, if we have groups in ER,
1052  * set S to the F_j of the first group j which would be blocking us.
1053  * We are guaranteed not to move S backward because
1054  * otherwise our group i would still be blocked.
1055  */
1056 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1057 {
1058 	unsigned long mask;
1059 	u64 limit, roundedF;
1060 	int slot_shift = agg->grp->slot_shift;
1061 
1062 	roundedF = qfq_round_down(agg->F, slot_shift);
1063 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1064 
1065 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1066 		/* timestamp was stale */
1067 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1068 		if (mask) {
1069 			struct qfq_group *next = qfq_ffs(q, mask);
1070 			if (qfq_gt(roundedF, next->F)) {
1071 				if (qfq_gt(limit, next->F))
1072 					agg->S = next->F;
1073 				else /* preserve timestamp correctness */
1074 					agg->S = limit;
1075 				return;
1076 			}
1077 		}
1078 		agg->S = q->V;
1079 	} else  /* timestamp is not stale */
1080 		agg->S = agg->F;
1081 }
1082 
1083 /* Update the timestamps of agg before scheduling/rescheduling it for
1084  * service.  In particular, assign to agg->F its maximum possible
1085  * value, i.e., the virtual finish time with which the aggregate
1086  * should be labeled if it used all its budget once in service.
1087  */
1088 static inline void
1089 qfq_update_agg_ts(struct qfq_sched *q,
1090 		    struct qfq_aggregate *agg, enum update_reason reason)
1091 {
1092 	if (reason != requeue)
1093 		qfq_update_start(q, agg);
1094 	else /* just charge agg for the service received */
1095 		agg->S = agg->F;
1096 
1097 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1098 }
1099 
1100 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1101 
1102 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1103 {
1104 	struct qfq_sched *q = qdisc_priv(sch);
1105 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1106 	struct qfq_class *cl;
1107 	struct sk_buff *skb = NULL;
1108 	/* next-packet len, 0 means no more active classes in in-service agg */
1109 	unsigned int len = 0;
1110 
1111 	if (in_serv_agg == NULL)
1112 		return NULL;
1113 
1114 	if (!list_empty(&in_serv_agg->active))
1115 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1116 
1117 	/*
1118 	 * If there are no active classes in the in-service aggregate,
1119 	 * or if the aggregate has not enough budget to serve its next
1120 	 * class, then choose the next aggregate to serve.
1121 	 */
1122 	if (len == 0 || in_serv_agg->budget < len) {
1123 		charge_actual_service(in_serv_agg);
1124 
1125 		/* recharge the budget of the aggregate */
1126 		in_serv_agg->initial_budget = in_serv_agg->budget =
1127 			in_serv_agg->budgetmax;
1128 
1129 		if (!list_empty(&in_serv_agg->active)) {
1130 			/*
1131 			 * Still active: reschedule for
1132 			 * service. Possible optimization: if no other
1133 			 * aggregate is active, then there is no point
1134 			 * in rescheduling this aggregate, and we can
1135 			 * just keep it as the in-service one. This
1136 			 * should be however a corner case, and to
1137 			 * handle it, we would need to maintain an
1138 			 * extra num_active_aggs field.
1139 			*/
1140 			qfq_update_agg_ts(q, in_serv_agg, requeue);
1141 			qfq_schedule_agg(q, in_serv_agg);
1142 		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1143 			q->in_serv_agg = NULL;
1144 			return NULL;
1145 		}
1146 
1147 		/*
1148 		 * If we get here, there are other aggregates queued:
1149 		 * choose the new aggregate to serve.
1150 		 */
1151 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1152 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1153 	}
1154 	if (!skb)
1155 		return NULL;
1156 
1157 	sch->q.qlen--;
1158 	qdisc_bstats_update(sch, skb);
1159 
1160 	agg_dequeue(in_serv_agg, cl, len);
1161 	/* If lmax is lowered, through qfq_change_class, for a class
1162 	 * owning pending packets with larger size than the new value
1163 	 * of lmax, then the following condition may hold.
1164 	 */
1165 	if (unlikely(in_serv_agg->budget < len))
1166 		in_serv_agg->budget = 0;
1167 	else
1168 		in_serv_agg->budget -= len;
1169 
1170 	q->V += (u64)len * q->iwsum;
1171 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1172 		 len, (unsigned long long) in_serv_agg->F,
1173 		 (unsigned long long) q->V);
1174 
1175 	return skb;
1176 }
1177 
1178 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1179 {
1180 	struct qfq_group *grp;
1181 	struct qfq_aggregate *agg, *new_front_agg;
1182 	u64 old_F;
1183 
1184 	qfq_update_eligible(q);
1185 	q->oldV = q->V;
1186 
1187 	if (!q->bitmaps[ER])
1188 		return NULL;
1189 
1190 	grp = qfq_ffs(q, q->bitmaps[ER]);
1191 	old_F = grp->F;
1192 
1193 	agg = qfq_slot_head(grp);
1194 
1195 	/* agg starts to be served, remove it from schedule */
1196 	qfq_front_slot_remove(grp);
1197 
1198 	new_front_agg = qfq_slot_scan(grp);
1199 
1200 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1201 		__clear_bit(grp->index, &q->bitmaps[ER]);
1202 	else {
1203 		u64 roundedS = qfq_round_down(new_front_agg->S,
1204 					      grp->slot_shift);
1205 		unsigned int s;
1206 
1207 		if (grp->S == roundedS)
1208 			return agg;
1209 		grp->S = roundedS;
1210 		grp->F = roundedS + (2ULL << grp->slot_shift);
1211 		__clear_bit(grp->index, &q->bitmaps[ER]);
1212 		s = qfq_calc_state(q, grp);
1213 		__set_bit(grp->index, &q->bitmaps[s]);
1214 	}
1215 
1216 	qfq_unblock_groups(q, grp->index, old_F);
1217 
1218 	return agg;
1219 }
1220 
1221 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1222 {
1223 	struct qfq_sched *q = qdisc_priv(sch);
1224 	struct qfq_class *cl;
1225 	struct qfq_aggregate *agg;
1226 	int err = 0;
1227 
1228 	cl = qfq_classify(skb, sch, &err);
1229 	if (cl == NULL) {
1230 		if (err & __NET_XMIT_BYPASS)
1231 			qdisc_qstats_drop(sch);
1232 		kfree_skb(skb);
1233 		return err;
1234 	}
1235 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1236 
1237 	if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1238 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1239 			 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1240 		err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1241 				     qdisc_pkt_len(skb));
1242 		if (err)
1243 			return err;
1244 	}
1245 
1246 	err = qdisc_enqueue(skb, cl->qdisc);
1247 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1248 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1249 		if (net_xmit_drop_count(err)) {
1250 			cl->qstats.drops++;
1251 			qdisc_qstats_drop(sch);
1252 		}
1253 		return err;
1254 	}
1255 
1256 	bstats_update(&cl->bstats, skb);
1257 	++sch->q.qlen;
1258 
1259 	agg = cl->agg;
1260 	/* if the queue was not empty, then done here */
1261 	if (cl->qdisc->q.qlen != 1) {
1262 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1263 		    list_first_entry(&agg->active, struct qfq_class, alist)
1264 		    == cl && cl->deficit < qdisc_pkt_len(skb))
1265 			list_move_tail(&cl->alist, &agg->active);
1266 
1267 		return err;
1268 	}
1269 
1270 	/* schedule class for service within the aggregate */
1271 	cl->deficit = agg->lmax;
1272 	list_add_tail(&cl->alist, &agg->active);
1273 
1274 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1275 	    q->in_serv_agg == agg)
1276 		return err; /* non-empty or in service, nothing else to do */
1277 
1278 	qfq_activate_agg(q, agg, enqueue);
1279 
1280 	return err;
1281 }
1282 
1283 /*
1284  * Schedule aggregate according to its timestamps.
1285  */
1286 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1287 {
1288 	struct qfq_group *grp = agg->grp;
1289 	u64 roundedS;
1290 	int s;
1291 
1292 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1293 
1294 	/*
1295 	 * Insert agg in the correct bucket.
1296 	 * If agg->S >= grp->S we don't need to adjust the
1297 	 * bucket list and simply go to the insertion phase.
1298 	 * Otherwise grp->S is decreasing, we must make room
1299 	 * in the bucket list, and also recompute the group state.
1300 	 * Finally, if there were no flows in this group and nobody
1301 	 * was in ER make sure to adjust V.
1302 	 */
1303 	if (grp->full_slots) {
1304 		if (!qfq_gt(grp->S, agg->S))
1305 			goto skip_update;
1306 
1307 		/* create a slot for this agg->S */
1308 		qfq_slot_rotate(grp, roundedS);
1309 		/* group was surely ineligible, remove */
1310 		__clear_bit(grp->index, &q->bitmaps[IR]);
1311 		__clear_bit(grp->index, &q->bitmaps[IB]);
1312 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1313 		   q->in_serv_agg == NULL)
1314 		q->V = roundedS;
1315 
1316 	grp->S = roundedS;
1317 	grp->F = roundedS + (2ULL << grp->slot_shift);
1318 	s = qfq_calc_state(q, grp);
1319 	__set_bit(grp->index, &q->bitmaps[s]);
1320 
1321 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1322 		 s, q->bitmaps[s],
1323 		 (unsigned long long) agg->S,
1324 		 (unsigned long long) agg->F,
1325 		 (unsigned long long) q->V);
1326 
1327 skip_update:
1328 	qfq_slot_insert(grp, agg, roundedS);
1329 }
1330 
1331 
1332 /* Update agg ts and schedule agg for service */
1333 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1334 			     enum update_reason reason)
1335 {
1336 	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1337 
1338 	qfq_update_agg_ts(q, agg, reason);
1339 	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1340 		q->in_serv_agg = agg; /* start serving this aggregate */
1341 		 /* update V: to be in service, agg must be eligible */
1342 		q->oldV = q->V = agg->S;
1343 	} else if (agg != q->in_serv_agg)
1344 		qfq_schedule_agg(q, agg);
1345 }
1346 
1347 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1348 			    struct qfq_aggregate *agg)
1349 {
1350 	unsigned int i, offset;
1351 	u64 roundedS;
1352 
1353 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1354 	offset = (roundedS - grp->S) >> grp->slot_shift;
1355 
1356 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1357 
1358 	hlist_del(&agg->next);
1359 	if (hlist_empty(&grp->slots[i]))
1360 		__clear_bit(offset, &grp->full_slots);
1361 }
1362 
1363 /*
1364  * Called to forcibly deschedule an aggregate.  If the aggregate is
1365  * not in the front bucket, or if the latter has other aggregates in
1366  * the front bucket, we can simply remove the aggregate with no other
1367  * side effects.
1368  * Otherwise we must propagate the event up.
1369  */
1370 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1371 {
1372 	struct qfq_group *grp = agg->grp;
1373 	unsigned long mask;
1374 	u64 roundedS;
1375 	int s;
1376 
1377 	if (agg == q->in_serv_agg) {
1378 		charge_actual_service(agg);
1379 		q->in_serv_agg = qfq_choose_next_agg(q);
1380 		return;
1381 	}
1382 
1383 	agg->F = agg->S;
1384 	qfq_slot_remove(q, grp, agg);
1385 
1386 	if (!grp->full_slots) {
1387 		__clear_bit(grp->index, &q->bitmaps[IR]);
1388 		__clear_bit(grp->index, &q->bitmaps[EB]);
1389 		__clear_bit(grp->index, &q->bitmaps[IB]);
1390 
1391 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1392 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1393 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1394 			if (mask)
1395 				mask = ~((1UL << __fls(mask)) - 1);
1396 			else
1397 				mask = ~0UL;
1398 			qfq_move_groups(q, mask, EB, ER);
1399 			qfq_move_groups(q, mask, IB, IR);
1400 		}
1401 		__clear_bit(grp->index, &q->bitmaps[ER]);
1402 	} else if (hlist_empty(&grp->slots[grp->front])) {
1403 		agg = qfq_slot_scan(grp);
1404 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1405 		if (grp->S != roundedS) {
1406 			__clear_bit(grp->index, &q->bitmaps[ER]);
1407 			__clear_bit(grp->index, &q->bitmaps[IR]);
1408 			__clear_bit(grp->index, &q->bitmaps[EB]);
1409 			__clear_bit(grp->index, &q->bitmaps[IB]);
1410 			grp->S = roundedS;
1411 			grp->F = roundedS + (2ULL << grp->slot_shift);
1412 			s = qfq_calc_state(q, grp);
1413 			__set_bit(grp->index, &q->bitmaps[s]);
1414 		}
1415 	}
1416 }
1417 
1418 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1419 {
1420 	struct qfq_sched *q = qdisc_priv(sch);
1421 	struct qfq_class *cl = (struct qfq_class *)arg;
1422 
1423 	if (cl->qdisc->q.qlen == 0)
1424 		qfq_deactivate_class(q, cl);
1425 }
1426 
1427 static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1428 				       struct hlist_head *slot)
1429 {
1430 	struct qfq_aggregate *agg;
1431 	struct qfq_class *cl;
1432 	unsigned int len;
1433 
1434 	hlist_for_each_entry(agg, slot, next) {
1435 		list_for_each_entry(cl, &agg->active, alist) {
1436 
1437 			if (!cl->qdisc->ops->drop)
1438 				continue;
1439 
1440 			len = cl->qdisc->ops->drop(cl->qdisc);
1441 			if (len > 0) {
1442 				if (cl->qdisc->q.qlen == 0)
1443 					qfq_deactivate_class(q, cl);
1444 
1445 				return len;
1446 			}
1447 		}
1448 	}
1449 	return 0;
1450 }
1451 
1452 static unsigned int qfq_drop(struct Qdisc *sch)
1453 {
1454 	struct qfq_sched *q = qdisc_priv(sch);
1455 	struct qfq_group *grp;
1456 	unsigned int i, j, len;
1457 
1458 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1459 		grp = &q->groups[i];
1460 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1461 			len = qfq_drop_from_slot(q, &grp->slots[j]);
1462 			if (len > 0) {
1463 				sch->q.qlen--;
1464 				return len;
1465 			}
1466 		}
1467 
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1474 {
1475 	struct qfq_sched *q = qdisc_priv(sch);
1476 	struct qfq_group *grp;
1477 	int i, j, err;
1478 	u32 max_cl_shift, maxbudg_shift, max_classes;
1479 
1480 	err = qdisc_class_hash_init(&q->clhash);
1481 	if (err < 0)
1482 		return err;
1483 
1484 	if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1485 		max_classes = QFQ_MAX_AGG_CLASSES;
1486 	else
1487 		max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1488 	/* max_cl_shift = floor(log_2(max_classes)) */
1489 	max_cl_shift = __fls(max_classes);
1490 	q->max_agg_classes = 1<<max_cl_shift;
1491 
1492 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1493 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1494 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1495 
1496 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1497 		grp = &q->groups[i];
1498 		grp->index = i;
1499 		grp->slot_shift = q->min_slot_shift + i;
1500 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1501 			INIT_HLIST_HEAD(&grp->slots[j]);
1502 	}
1503 
1504 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1505 
1506 	return 0;
1507 }
1508 
1509 static void qfq_reset_qdisc(struct Qdisc *sch)
1510 {
1511 	struct qfq_sched *q = qdisc_priv(sch);
1512 	struct qfq_class *cl;
1513 	unsigned int i;
1514 
1515 	for (i = 0; i < q->clhash.hashsize; i++) {
1516 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1517 			if (cl->qdisc->q.qlen > 0)
1518 				qfq_deactivate_class(q, cl);
1519 
1520 			qdisc_reset(cl->qdisc);
1521 		}
1522 	}
1523 	sch->q.qlen = 0;
1524 }
1525 
1526 static void qfq_destroy_qdisc(struct Qdisc *sch)
1527 {
1528 	struct qfq_sched *q = qdisc_priv(sch);
1529 	struct qfq_class *cl;
1530 	struct hlist_node *next;
1531 	unsigned int i;
1532 
1533 	tcf_destroy_chain(&q->filter_list);
1534 
1535 	for (i = 0; i < q->clhash.hashsize; i++) {
1536 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1537 					  common.hnode) {
1538 			qfq_destroy_class(sch, cl);
1539 		}
1540 	}
1541 	qdisc_class_hash_destroy(&q->clhash);
1542 }
1543 
1544 static const struct Qdisc_class_ops qfq_class_ops = {
1545 	.change		= qfq_change_class,
1546 	.delete		= qfq_delete_class,
1547 	.get		= qfq_get_class,
1548 	.put		= qfq_put_class,
1549 	.tcf_chain	= qfq_tcf_chain,
1550 	.bind_tcf	= qfq_bind_tcf,
1551 	.unbind_tcf	= qfq_unbind_tcf,
1552 	.graft		= qfq_graft_class,
1553 	.leaf		= qfq_class_leaf,
1554 	.qlen_notify	= qfq_qlen_notify,
1555 	.dump		= qfq_dump_class,
1556 	.dump_stats	= qfq_dump_class_stats,
1557 	.walk		= qfq_walk,
1558 };
1559 
1560 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1561 	.cl_ops		= &qfq_class_ops,
1562 	.id		= "qfq",
1563 	.priv_size	= sizeof(struct qfq_sched),
1564 	.enqueue	= qfq_enqueue,
1565 	.dequeue	= qfq_dequeue,
1566 	.peek		= qdisc_peek_dequeued,
1567 	.drop		= qfq_drop,
1568 	.init		= qfq_init_qdisc,
1569 	.reset		= qfq_reset_qdisc,
1570 	.destroy	= qfq_destroy_qdisc,
1571 	.owner		= THIS_MODULE,
1572 };
1573 
1574 static int __init qfq_init(void)
1575 {
1576 	return register_qdisc(&qfq_qdisc_ops);
1577 }
1578 
1579 static void __exit qfq_exit(void)
1580 {
1581 	unregister_qdisc(&qfq_qdisc_ops);
1582 }
1583 
1584 module_init(qfq_init);
1585 module_exit(qfq_exit);
1586 MODULE_LICENSE("GPL");
1587