1 /* 2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler. 3 * 4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 5 * Copyright (c) 2012 Paolo Valente. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * version 2 as published by the Free Software Foundation. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/bitops.h> 15 #include <linux/errno.h> 16 #include <linux/netdevice.h> 17 #include <linux/pkt_sched.h> 18 #include <net/sch_generic.h> 19 #include <net/pkt_sched.h> 20 #include <net/pkt_cls.h> 21 22 23 /* Quick Fair Queueing Plus 24 ======================== 25 26 Sources: 27 28 [1] Paolo Valente, 29 "Reducing the Execution Time of Fair-Queueing Schedulers." 30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf 31 32 Sources for QFQ: 33 34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 35 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 36 37 See also: 38 http://retis.sssup.it/~fabio/linux/qfq/ 39 */ 40 41 /* 42 43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES 44 classes. Each aggregate is timestamped with a virtual start time S 45 and a virtual finish time F, and scheduled according to its 46 timestamps. S and F are computed as a function of a system virtual 47 time function V. The classes within each aggregate are instead 48 scheduled with DRR. 49 50 To speed up operations, QFQ+ divides also aggregates into a limited 51 number of groups. Which group a class belongs to depends on the 52 ratio between the maximum packet length for the class and the weight 53 of the class. Groups have their own S and F. In the end, QFQ+ 54 schedules groups, then aggregates within groups, then classes within 55 aggregates. See [1] and [2] for a full description. 56 57 Virtual time computations. 58 59 S, F and V are all computed in fixed point arithmetic with 60 FRAC_BITS decimal bits. 61 62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 63 one bit per index. 64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 65 66 The layout of the bits is as below: 67 68 [ MTU_SHIFT ][ FRAC_BITS ] 69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 70 ^.__grp->index = 0 71 *.__grp->slot_shift 72 73 where MIN_SLOT_SHIFT is derived by difference from the others. 74 75 The max group index corresponds to Lmax/w_min, where 76 Lmax=1<<MTU_SHIFT, w_min = 1 . 77 From this, and knowing how many groups (MAX_INDEX) we want, 78 we can derive the shift corresponding to each group. 79 80 Because we often need to compute 81 F = S + len/w_i and V = V + len/wsum 82 instead of storing w_i store the value 83 inv_w = (1<<FRAC_BITS)/w_i 84 so we can do F = S + len * inv_w * wsum. 85 We use W_TOT in the formulas so we can easily move between 86 static and adaptive weight sum. 87 88 The per-scheduler-instance data contain all the data structures 89 for the scheduler: bitmaps and bucket lists. 90 91 */ 92 93 /* 94 * Maximum number of consecutive slots occupied by backlogged classes 95 * inside a group. 96 */ 97 #define QFQ_MAX_SLOTS 32 98 99 /* 100 * Shifts used for aggregate<->group mapping. We allow class weights that are 101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the 102 * group with the smallest index that can support the L_i / r_i configured 103 * for the classes in the aggregate. 104 * 105 * grp->index is the index of the group; and grp->slot_shift 106 * is the shift for the corresponding (scaled) sigma_i. 107 */ 108 #define QFQ_MAX_INDEX 24 109 #define QFQ_MAX_WSHIFT 10 110 111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ 112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT) 113 114 #define FRAC_BITS 30 /* fixed point arithmetic */ 115 #define ONE_FP (1UL << FRAC_BITS) 116 117 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 118 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */ 119 120 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */ 121 122 /* 123 * Possible group states. These values are used as indexes for the bitmaps 124 * array of struct qfq_queue. 125 */ 126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 127 128 struct qfq_group; 129 130 struct qfq_aggregate; 131 132 struct qfq_class { 133 struct Qdisc_class_common common; 134 135 unsigned int refcnt; 136 unsigned int filter_cnt; 137 138 struct gnet_stats_basic_packed bstats; 139 struct gnet_stats_queue qstats; 140 struct gnet_stats_rate_est64 rate_est; 141 struct Qdisc *qdisc; 142 struct list_head alist; /* Link for active-classes list. */ 143 struct qfq_aggregate *agg; /* Parent aggregate. */ 144 int deficit; /* DRR deficit counter. */ 145 }; 146 147 struct qfq_aggregate { 148 struct hlist_node next; /* Link for the slot list. */ 149 u64 S, F; /* flow timestamps (exact) */ 150 151 /* group we belong to. In principle we would need the index, 152 * which is log_2(lmax/weight), but we never reference it 153 * directly, only the group. 154 */ 155 struct qfq_group *grp; 156 157 /* these are copied from the flowset. */ 158 u32 class_weight; /* Weight of each class in this aggregate. */ 159 /* Max pkt size for the classes in this aggregate, DRR quantum. */ 160 int lmax; 161 162 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */ 163 u32 budgetmax; /* Max budget for this aggregate. */ 164 u32 initial_budget, budget; /* Initial and current budget. */ 165 166 int num_classes; /* Number of classes in this aggr. */ 167 struct list_head active; /* DRR queue of active classes. */ 168 169 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */ 170 }; 171 172 struct qfq_group { 173 u64 S, F; /* group timestamps (approx). */ 174 unsigned int slot_shift; /* Slot shift. */ 175 unsigned int index; /* Group index. */ 176 unsigned int front; /* Index of the front slot. */ 177 unsigned long full_slots; /* non-empty slots */ 178 179 /* Array of RR lists of active aggregates. */ 180 struct hlist_head slots[QFQ_MAX_SLOTS]; 181 }; 182 183 struct qfq_sched { 184 struct tcf_proto __rcu *filter_list; 185 struct Qdisc_class_hash clhash; 186 187 u64 oldV, V; /* Precise virtual times. */ 188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */ 189 u32 num_active_agg; /* Num. of active aggregates */ 190 u32 wsum; /* weight sum */ 191 u32 iwsum; /* inverse weight sum */ 192 193 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 194 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 195 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */ 196 197 u32 max_agg_classes; /* Max number of classes per aggr. */ 198 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ 199 }; 200 201 /* 202 * Possible reasons why the timestamps of an aggregate are updated 203 * enqueue: the aggregate switches from idle to active and must scheduled 204 * for service 205 * requeue: the aggregate finishes its budget, so it stops being served and 206 * must be rescheduled for service 207 */ 208 enum update_reason {enqueue, requeue}; 209 210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 211 { 212 struct qfq_sched *q = qdisc_priv(sch); 213 struct Qdisc_class_common *clc; 214 215 clc = qdisc_class_find(&q->clhash, classid); 216 if (clc == NULL) 217 return NULL; 218 return container_of(clc, struct qfq_class, common); 219 } 220 221 static void qfq_purge_queue(struct qfq_class *cl) 222 { 223 unsigned int len = cl->qdisc->q.qlen; 224 225 qdisc_reset(cl->qdisc); 226 qdisc_tree_decrease_qlen(cl->qdisc, len); 227 } 228 229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, 231 [TCA_QFQ_LMAX] = { .type = NLA_U32 }, 232 }; 233 234 /* 235 * Calculate a flow index, given its weight and maximum packet length. 236 * index = log_2(maxlen/weight) but we need to apply the scaling. 237 * This is used only once at flow creation. 238 */ 239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) 240 { 241 u64 slot_size = (u64)maxlen * inv_w; 242 unsigned long size_map; 243 int index = 0; 244 245 size_map = slot_size >> min_slot_shift; 246 if (!size_map) 247 goto out; 248 249 index = __fls(size_map) + 1; /* basically a log_2 */ 250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); 251 252 if (index < 0) 253 index = 0; 254 out: 255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 256 (unsigned long) ONE_FP/inv_w, maxlen, index); 257 258 return index; 259 } 260 261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); 262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, 263 enum update_reason); 264 265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 266 u32 lmax, u32 weight) 267 { 268 INIT_LIST_HEAD(&agg->active); 269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 270 271 agg->lmax = lmax; 272 agg->class_weight = weight; 273 } 274 275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, 276 u32 lmax, u32 weight) 277 { 278 struct qfq_aggregate *agg; 279 280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) 281 if (agg->lmax == lmax && agg->class_weight == weight) 282 return agg; 283 284 return NULL; 285 } 286 287 288 /* Update aggregate as a function of the new number of classes. */ 289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 290 int new_num_classes) 291 { 292 u32 new_agg_weight; 293 294 if (new_num_classes == q->max_agg_classes) 295 hlist_del_init(&agg->nonfull_next); 296 297 if (agg->num_classes > new_num_classes && 298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */ 299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 300 301 /* The next assignment may let 302 * agg->initial_budget > agg->budgetmax 303 * hold, we will take it into account in charge_actual_service(). 304 */ 305 agg->budgetmax = new_num_classes * agg->lmax; 306 new_agg_weight = agg->class_weight * new_num_classes; 307 agg->inv_w = ONE_FP/new_agg_weight; 308 309 if (agg->grp == NULL) { 310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax, 311 q->min_slot_shift); 312 agg->grp = &q->groups[i]; 313 } 314 315 q->wsum += 316 (int) agg->class_weight * (new_num_classes - agg->num_classes); 317 q->iwsum = ONE_FP / q->wsum; 318 319 agg->num_classes = new_num_classes; 320 } 321 322 /* Add class to aggregate. */ 323 static void qfq_add_to_agg(struct qfq_sched *q, 324 struct qfq_aggregate *agg, 325 struct qfq_class *cl) 326 { 327 cl->agg = agg; 328 329 qfq_update_agg(q, agg, agg->num_classes+1); 330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */ 331 list_add_tail(&cl->alist, &agg->active); 332 if (list_first_entry(&agg->active, struct qfq_class, alist) == 333 cl && q->in_serv_agg != agg) /* agg was inactive */ 334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */ 335 } 336 } 337 338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); 339 340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 341 { 342 hlist_del_init(&agg->nonfull_next); 343 q->wsum -= agg->class_weight; 344 if (q->wsum != 0) 345 q->iwsum = ONE_FP / q->wsum; 346 347 if (q->in_serv_agg == agg) 348 q->in_serv_agg = qfq_choose_next_agg(q); 349 kfree(agg); 350 } 351 352 /* Deschedule class from within its parent aggregate. */ 353 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 354 { 355 struct qfq_aggregate *agg = cl->agg; 356 357 358 list_del(&cl->alist); /* remove from RR queue of the aggregate */ 359 if (list_empty(&agg->active)) /* agg is now inactive */ 360 qfq_deactivate_agg(q, agg); 361 } 362 363 /* Remove class from its parent aggregate. */ 364 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 365 { 366 struct qfq_aggregate *agg = cl->agg; 367 368 cl->agg = NULL; 369 if (agg->num_classes == 1) { /* agg being emptied, destroy it */ 370 qfq_destroy_agg(q, agg); 371 return; 372 } 373 qfq_update_agg(q, agg, agg->num_classes-1); 374 } 375 376 /* Deschedule class and remove it from its parent aggregate. */ 377 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 378 { 379 if (cl->qdisc->q.qlen > 0) /* class is active */ 380 qfq_deactivate_class(q, cl); 381 382 qfq_rm_from_agg(q, cl); 383 } 384 385 /* Move class to a new aggregate, matching the new class weight and/or lmax */ 386 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, 387 u32 lmax) 388 { 389 struct qfq_sched *q = qdisc_priv(sch); 390 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight); 391 392 if (new_agg == NULL) { /* create new aggregate */ 393 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); 394 if (new_agg == NULL) 395 return -ENOBUFS; 396 qfq_init_agg(q, new_agg, lmax, weight); 397 } 398 qfq_deact_rm_from_agg(q, cl); 399 qfq_add_to_agg(q, new_agg, cl); 400 401 return 0; 402 } 403 404 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 405 struct nlattr **tca, unsigned long *arg) 406 { 407 struct qfq_sched *q = qdisc_priv(sch); 408 struct qfq_class *cl = (struct qfq_class *)*arg; 409 bool existing = false; 410 struct nlattr *tb[TCA_QFQ_MAX + 1]; 411 struct qfq_aggregate *new_agg = NULL; 412 u32 weight, lmax, inv_w; 413 int err; 414 int delta_w; 415 416 if (tca[TCA_OPTIONS] == NULL) { 417 pr_notice("qfq: no options\n"); 418 return -EINVAL; 419 } 420 421 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy); 422 if (err < 0) 423 return err; 424 425 if (tb[TCA_QFQ_WEIGHT]) { 426 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); 427 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { 428 pr_notice("qfq: invalid weight %u\n", weight); 429 return -EINVAL; 430 } 431 } else 432 weight = 1; 433 434 if (tb[TCA_QFQ_LMAX]) { 435 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 436 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) { 437 pr_notice("qfq: invalid max length %u\n", lmax); 438 return -EINVAL; 439 } 440 } else 441 lmax = psched_mtu(qdisc_dev(sch)); 442 443 inv_w = ONE_FP / weight; 444 weight = ONE_FP / inv_w; 445 446 if (cl != NULL && 447 lmax == cl->agg->lmax && 448 weight == cl->agg->class_weight) 449 return 0; /* nothing to change */ 450 451 delta_w = weight - (cl ? cl->agg->class_weight : 0); 452 453 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 454 pr_notice("qfq: total weight out of range (%d + %u)\n", 455 delta_w, q->wsum); 456 return -EINVAL; 457 } 458 459 if (cl != NULL) { /* modify existing class */ 460 if (tca[TCA_RATE]) { 461 err = gen_replace_estimator(&cl->bstats, NULL, 462 &cl->rate_est, 463 qdisc_root_sleeping_lock(sch), 464 tca[TCA_RATE]); 465 if (err) 466 return err; 467 } 468 existing = true; 469 goto set_change_agg; 470 } 471 472 /* create and init new class */ 473 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 474 if (cl == NULL) 475 return -ENOBUFS; 476 477 cl->refcnt = 1; 478 cl->common.classid = classid; 479 cl->deficit = lmax; 480 481 cl->qdisc = qdisc_create_dflt(sch->dev_queue, 482 &pfifo_qdisc_ops, classid); 483 if (cl->qdisc == NULL) 484 cl->qdisc = &noop_qdisc; 485 486 if (tca[TCA_RATE]) { 487 err = gen_new_estimator(&cl->bstats, NULL, 488 &cl->rate_est, 489 qdisc_root_sleeping_lock(sch), 490 tca[TCA_RATE]); 491 if (err) 492 goto destroy_class; 493 } 494 495 sch_tree_lock(sch); 496 qdisc_class_hash_insert(&q->clhash, &cl->common); 497 sch_tree_unlock(sch); 498 499 qdisc_class_hash_grow(sch, &q->clhash); 500 501 set_change_agg: 502 sch_tree_lock(sch); 503 new_agg = qfq_find_agg(q, lmax, weight); 504 if (new_agg == NULL) { /* create new aggregate */ 505 sch_tree_unlock(sch); 506 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); 507 if (new_agg == NULL) { 508 err = -ENOBUFS; 509 gen_kill_estimator(&cl->bstats, &cl->rate_est); 510 goto destroy_class; 511 } 512 sch_tree_lock(sch); 513 qfq_init_agg(q, new_agg, lmax, weight); 514 } 515 if (existing) 516 qfq_deact_rm_from_agg(q, cl); 517 qfq_add_to_agg(q, new_agg, cl); 518 sch_tree_unlock(sch); 519 520 *arg = (unsigned long)cl; 521 return 0; 522 523 destroy_class: 524 qdisc_destroy(cl->qdisc); 525 kfree(cl); 526 return err; 527 } 528 529 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 530 { 531 struct qfq_sched *q = qdisc_priv(sch); 532 533 qfq_rm_from_agg(q, cl); 534 gen_kill_estimator(&cl->bstats, &cl->rate_est); 535 qdisc_destroy(cl->qdisc); 536 kfree(cl); 537 } 538 539 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg) 540 { 541 struct qfq_sched *q = qdisc_priv(sch); 542 struct qfq_class *cl = (struct qfq_class *)arg; 543 544 if (cl->filter_cnt > 0) 545 return -EBUSY; 546 547 sch_tree_lock(sch); 548 549 qfq_purge_queue(cl); 550 qdisc_class_hash_remove(&q->clhash, &cl->common); 551 552 BUG_ON(--cl->refcnt == 0); 553 /* 554 * This shouldn't happen: we "hold" one cops->get() when called 555 * from tc_ctl_tclass; the destroy method is done from cops->put(). 556 */ 557 558 sch_tree_unlock(sch); 559 return 0; 560 } 561 562 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid) 563 { 564 struct qfq_class *cl = qfq_find_class(sch, classid); 565 566 if (cl != NULL) 567 cl->refcnt++; 568 569 return (unsigned long)cl; 570 } 571 572 static void qfq_put_class(struct Qdisc *sch, unsigned long arg) 573 { 574 struct qfq_class *cl = (struct qfq_class *)arg; 575 576 if (--cl->refcnt == 0) 577 qfq_destroy_class(sch, cl); 578 } 579 580 static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch, 581 unsigned long cl) 582 { 583 struct qfq_sched *q = qdisc_priv(sch); 584 585 if (cl) 586 return NULL; 587 588 return &q->filter_list; 589 } 590 591 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 592 u32 classid) 593 { 594 struct qfq_class *cl = qfq_find_class(sch, classid); 595 596 if (cl != NULL) 597 cl->filter_cnt++; 598 599 return (unsigned long)cl; 600 } 601 602 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 603 { 604 struct qfq_class *cl = (struct qfq_class *)arg; 605 606 cl->filter_cnt--; 607 } 608 609 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 610 struct Qdisc *new, struct Qdisc **old) 611 { 612 struct qfq_class *cl = (struct qfq_class *)arg; 613 614 if (new == NULL) { 615 new = qdisc_create_dflt(sch->dev_queue, 616 &pfifo_qdisc_ops, cl->common.classid); 617 if (new == NULL) 618 new = &noop_qdisc; 619 } 620 621 sch_tree_lock(sch); 622 qfq_purge_queue(cl); 623 *old = cl->qdisc; 624 cl->qdisc = new; 625 sch_tree_unlock(sch); 626 return 0; 627 } 628 629 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 630 { 631 struct qfq_class *cl = (struct qfq_class *)arg; 632 633 return cl->qdisc; 634 } 635 636 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 637 struct sk_buff *skb, struct tcmsg *tcm) 638 { 639 struct qfq_class *cl = (struct qfq_class *)arg; 640 struct nlattr *nest; 641 642 tcm->tcm_parent = TC_H_ROOT; 643 tcm->tcm_handle = cl->common.classid; 644 tcm->tcm_info = cl->qdisc->handle; 645 646 nest = nla_nest_start(skb, TCA_OPTIONS); 647 if (nest == NULL) 648 goto nla_put_failure; 649 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || 650 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) 651 goto nla_put_failure; 652 return nla_nest_end(skb, nest); 653 654 nla_put_failure: 655 nla_nest_cancel(skb, nest); 656 return -EMSGSIZE; 657 } 658 659 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 660 struct gnet_dump *d) 661 { 662 struct qfq_class *cl = (struct qfq_class *)arg; 663 struct tc_qfq_stats xstats; 664 665 memset(&xstats, 0, sizeof(xstats)); 666 667 xstats.weight = cl->agg->class_weight; 668 xstats.lmax = cl->agg->lmax; 669 670 if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 || 671 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 || 672 gnet_stats_copy_queue(d, NULL, 673 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0) 674 return -1; 675 676 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 677 } 678 679 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 680 { 681 struct qfq_sched *q = qdisc_priv(sch); 682 struct qfq_class *cl; 683 unsigned int i; 684 685 if (arg->stop) 686 return; 687 688 for (i = 0; i < q->clhash.hashsize; i++) { 689 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 690 if (arg->count < arg->skip) { 691 arg->count++; 692 continue; 693 } 694 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 695 arg->stop = 1; 696 return; 697 } 698 arg->count++; 699 } 700 } 701 } 702 703 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 704 int *qerr) 705 { 706 struct qfq_sched *q = qdisc_priv(sch); 707 struct qfq_class *cl; 708 struct tcf_result res; 709 struct tcf_proto *fl; 710 int result; 711 712 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 713 pr_debug("qfq_classify: found %d\n", skb->priority); 714 cl = qfq_find_class(sch, skb->priority); 715 if (cl != NULL) 716 return cl; 717 } 718 719 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 720 fl = rcu_dereference_bh(q->filter_list); 721 result = tc_classify(skb, fl, &res); 722 if (result >= 0) { 723 #ifdef CONFIG_NET_CLS_ACT 724 switch (result) { 725 case TC_ACT_QUEUED: 726 case TC_ACT_STOLEN: 727 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 728 case TC_ACT_SHOT: 729 return NULL; 730 } 731 #endif 732 cl = (struct qfq_class *)res.class; 733 if (cl == NULL) 734 cl = qfq_find_class(sch, res.classid); 735 return cl; 736 } 737 738 return NULL; 739 } 740 741 /* Generic comparison function, handling wraparound. */ 742 static inline int qfq_gt(u64 a, u64 b) 743 { 744 return (s64)(a - b) > 0; 745 } 746 747 /* Round a precise timestamp to its slotted value. */ 748 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 749 { 750 return ts & ~((1ULL << shift) - 1); 751 } 752 753 /* return the pointer to the group with lowest index in the bitmap */ 754 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 755 unsigned long bitmap) 756 { 757 int index = __ffs(bitmap); 758 return &q->groups[index]; 759 } 760 /* Calculate a mask to mimic what would be ffs_from(). */ 761 static inline unsigned long mask_from(unsigned long bitmap, int from) 762 { 763 return bitmap & ~((1UL << from) - 1); 764 } 765 766 /* 767 * The state computation relies on ER=0, IR=1, EB=2, IB=3 768 * First compute eligibility comparing grp->S, q->V, 769 * then check if someone is blocking us and possibly add EB 770 */ 771 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 772 { 773 /* if S > V we are not eligible */ 774 unsigned int state = qfq_gt(grp->S, q->V); 775 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 776 struct qfq_group *next; 777 778 if (mask) { 779 next = qfq_ffs(q, mask); 780 if (qfq_gt(grp->F, next->F)) 781 state |= EB; 782 } 783 784 return state; 785 } 786 787 788 /* 789 * In principle 790 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 791 * q->bitmaps[src] &= ~mask; 792 * but we should make sure that src != dst 793 */ 794 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 795 int src, int dst) 796 { 797 q->bitmaps[dst] |= q->bitmaps[src] & mask; 798 q->bitmaps[src] &= ~mask; 799 } 800 801 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 802 { 803 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 804 struct qfq_group *next; 805 806 if (mask) { 807 next = qfq_ffs(q, mask); 808 if (!qfq_gt(next->F, old_F)) 809 return; 810 } 811 812 mask = (1UL << index) - 1; 813 qfq_move_groups(q, mask, EB, ER); 814 qfq_move_groups(q, mask, IB, IR); 815 } 816 817 /* 818 * perhaps 819 * 820 old_V ^= q->V; 821 old_V >>= q->min_slot_shift; 822 if (old_V) { 823 ... 824 } 825 * 826 */ 827 static void qfq_make_eligible(struct qfq_sched *q) 828 { 829 unsigned long vslot = q->V >> q->min_slot_shift; 830 unsigned long old_vslot = q->oldV >> q->min_slot_shift; 831 832 if (vslot != old_vslot) { 833 unsigned long mask; 834 int last_flip_pos = fls(vslot ^ old_vslot); 835 836 if (last_flip_pos > 31) /* higher than the number of groups */ 837 mask = ~0UL; /* make all groups eligible */ 838 else 839 mask = (1UL << last_flip_pos) - 1; 840 841 qfq_move_groups(q, mask, IR, ER); 842 qfq_move_groups(q, mask, IB, EB); 843 } 844 } 845 846 /* 847 * The index of the slot in which the input aggregate agg is to be 848 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' 849 * and not a '-1' because the start time of the group may be moved 850 * backward by one slot after the aggregate has been inserted, and 851 * this would cause non-empty slots to be right-shifted by one 852 * position. 853 * 854 * QFQ+ fully satisfies this bound to the slot index if the parameters 855 * of the classes are not changed dynamically, and if QFQ+ never 856 * happens to postpone the service of agg unjustly, i.e., it never 857 * happens that the aggregate becomes backlogged and eligible, or just 858 * eligible, while an aggregate with a higher approximated finish time 859 * is being served. In particular, in this case QFQ+ guarantees that 860 * the timestamps of agg are low enough that the slot index is never 861 * higher than 2. Unfortunately, QFQ+ cannot provide the same 862 * guarantee if it happens to unjustly postpone the service of agg, or 863 * if the parameters of some class are changed. 864 * 865 * As for the first event, i.e., an out-of-order service, the 866 * upper bound to the slot index guaranteed by QFQ+ grows to 867 * 2 + 868 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * 869 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. 870 * 871 * The following function deals with this problem by backward-shifting 872 * the timestamps of agg, if needed, so as to guarantee that the slot 873 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may 874 * cause the service of other aggregates to be postponed, yet the 875 * worst-case guarantees of these aggregates are not violated. In 876 * fact, in case of no out-of-order service, the timestamps of agg 877 * would have been even lower than they are after the backward shift, 878 * because QFQ+ would have guaranteed a maximum value equal to 2 for 879 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose 880 * service is postponed because of the backward-shift would have 881 * however waited for the service of agg before being served. 882 * 883 * The other event that may cause the slot index to be higher than 2 884 * for agg is a recent change of the parameters of some class. If the 885 * weight of a class is increased or the lmax (max_pkt_size) of the 886 * class is decreased, then a new aggregate with smaller slot size 887 * than the original parent aggregate of the class may happen to be 888 * activated. The activation of this aggregate should be properly 889 * delayed to when the service of the class has finished in the ideal 890 * system tracked by QFQ+. If the activation of the aggregate is not 891 * delayed to this reference time instant, then this aggregate may be 892 * unjustly served before other aggregates waiting for service. This 893 * may cause the above bound to the slot index to be violated for some 894 * of these unlucky aggregates. 895 * 896 * Instead of delaying the activation of the new aggregate, which is 897 * quite complex, the above-discussed capping of the slot index is 898 * used to handle also the consequences of a change of the parameters 899 * of a class. 900 */ 901 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, 902 u64 roundedS) 903 { 904 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 905 unsigned int i; /* slot index in the bucket list */ 906 907 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 908 u64 deltaS = roundedS - grp->S - 909 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 910 agg->S -= deltaS; 911 agg->F -= deltaS; 912 slot = QFQ_MAX_SLOTS - 2; 913 } 914 915 i = (grp->front + slot) % QFQ_MAX_SLOTS; 916 917 hlist_add_head(&agg->next, &grp->slots[i]); 918 __set_bit(slot, &grp->full_slots); 919 } 920 921 /* Maybe introduce hlist_first_entry?? */ 922 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) 923 { 924 return hlist_entry(grp->slots[grp->front].first, 925 struct qfq_aggregate, next); 926 } 927 928 /* 929 * remove the entry from the slot 930 */ 931 static void qfq_front_slot_remove(struct qfq_group *grp) 932 { 933 struct qfq_aggregate *agg = qfq_slot_head(grp); 934 935 BUG_ON(!agg); 936 hlist_del(&agg->next); 937 if (hlist_empty(&grp->slots[grp->front])) 938 __clear_bit(0, &grp->full_slots); 939 } 940 941 /* 942 * Returns the first aggregate in the first non-empty bucket of the 943 * group. As a side effect, adjusts the bucket list so the first 944 * non-empty bucket is at position 0 in full_slots. 945 */ 946 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) 947 { 948 unsigned int i; 949 950 pr_debug("qfq slot_scan: grp %u full %#lx\n", 951 grp->index, grp->full_slots); 952 953 if (grp->full_slots == 0) 954 return NULL; 955 956 i = __ffs(grp->full_slots); /* zero based */ 957 if (i > 0) { 958 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 959 grp->full_slots >>= i; 960 } 961 962 return qfq_slot_head(grp); 963 } 964 965 /* 966 * adjust the bucket list. When the start time of a group decreases, 967 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 968 * move the objects. The mask of occupied slots must be shifted 969 * because we use ffs() to find the first non-empty slot. 970 * This covers decreases in the group's start time, but what about 971 * increases of the start time ? 972 * Here too we should make sure that i is less than 32 973 */ 974 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 975 { 976 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 977 978 grp->full_slots <<= i; 979 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 980 } 981 982 static void qfq_update_eligible(struct qfq_sched *q) 983 { 984 struct qfq_group *grp; 985 unsigned long ineligible; 986 987 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 988 if (ineligible) { 989 if (!q->bitmaps[ER]) { 990 grp = qfq_ffs(q, ineligible); 991 if (qfq_gt(grp->S, q->V)) 992 q->V = grp->S; 993 } 994 qfq_make_eligible(q); 995 } 996 } 997 998 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ 999 static void agg_dequeue(struct qfq_aggregate *agg, 1000 struct qfq_class *cl, unsigned int len) 1001 { 1002 qdisc_dequeue_peeked(cl->qdisc); 1003 1004 cl->deficit -= (int) len; 1005 1006 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ 1007 list_del(&cl->alist); 1008 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { 1009 cl->deficit += agg->lmax; 1010 list_move_tail(&cl->alist, &agg->active); 1011 } 1012 } 1013 1014 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, 1015 struct qfq_class **cl, 1016 unsigned int *len) 1017 { 1018 struct sk_buff *skb; 1019 1020 *cl = list_first_entry(&agg->active, struct qfq_class, alist); 1021 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); 1022 if (skb == NULL) 1023 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); 1024 else 1025 *len = qdisc_pkt_len(skb); 1026 1027 return skb; 1028 } 1029 1030 /* Update F according to the actual service received by the aggregate. */ 1031 static inline void charge_actual_service(struct qfq_aggregate *agg) 1032 { 1033 /* Compute the service received by the aggregate, taking into 1034 * account that, after decreasing the number of classes in 1035 * agg, it may happen that 1036 * agg->initial_budget - agg->budget > agg->bugdetmax 1037 */ 1038 u32 service_received = min(agg->budgetmax, 1039 agg->initial_budget - agg->budget); 1040 1041 agg->F = agg->S + (u64)service_received * agg->inv_w; 1042 } 1043 1044 /* Assign a reasonable start time for a new aggregate in group i. 1045 * Admissible values for \hat(F) are multiples of \sigma_i 1046 * no greater than V+\sigma_i . Larger values mean that 1047 * we had a wraparound so we consider the timestamp to be stale. 1048 * 1049 * If F is not stale and F >= V then we set S = F. 1050 * Otherwise we should assign S = V, but this may violate 1051 * the ordering in EB (see [2]). So, if we have groups in ER, 1052 * set S to the F_j of the first group j which would be blocking us. 1053 * We are guaranteed not to move S backward because 1054 * otherwise our group i would still be blocked. 1055 */ 1056 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) 1057 { 1058 unsigned long mask; 1059 u64 limit, roundedF; 1060 int slot_shift = agg->grp->slot_shift; 1061 1062 roundedF = qfq_round_down(agg->F, slot_shift); 1063 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 1064 1065 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { 1066 /* timestamp was stale */ 1067 mask = mask_from(q->bitmaps[ER], agg->grp->index); 1068 if (mask) { 1069 struct qfq_group *next = qfq_ffs(q, mask); 1070 if (qfq_gt(roundedF, next->F)) { 1071 if (qfq_gt(limit, next->F)) 1072 agg->S = next->F; 1073 else /* preserve timestamp correctness */ 1074 agg->S = limit; 1075 return; 1076 } 1077 } 1078 agg->S = q->V; 1079 } else /* timestamp is not stale */ 1080 agg->S = agg->F; 1081 } 1082 1083 /* Update the timestamps of agg before scheduling/rescheduling it for 1084 * service. In particular, assign to agg->F its maximum possible 1085 * value, i.e., the virtual finish time with which the aggregate 1086 * should be labeled if it used all its budget once in service. 1087 */ 1088 static inline void 1089 qfq_update_agg_ts(struct qfq_sched *q, 1090 struct qfq_aggregate *agg, enum update_reason reason) 1091 { 1092 if (reason != requeue) 1093 qfq_update_start(q, agg); 1094 else /* just charge agg for the service received */ 1095 agg->S = agg->F; 1096 1097 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; 1098 } 1099 1100 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); 1101 1102 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 1103 { 1104 struct qfq_sched *q = qdisc_priv(sch); 1105 struct qfq_aggregate *in_serv_agg = q->in_serv_agg; 1106 struct qfq_class *cl; 1107 struct sk_buff *skb = NULL; 1108 /* next-packet len, 0 means no more active classes in in-service agg */ 1109 unsigned int len = 0; 1110 1111 if (in_serv_agg == NULL) 1112 return NULL; 1113 1114 if (!list_empty(&in_serv_agg->active)) 1115 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1116 1117 /* 1118 * If there are no active classes in the in-service aggregate, 1119 * or if the aggregate has not enough budget to serve its next 1120 * class, then choose the next aggregate to serve. 1121 */ 1122 if (len == 0 || in_serv_agg->budget < len) { 1123 charge_actual_service(in_serv_agg); 1124 1125 /* recharge the budget of the aggregate */ 1126 in_serv_agg->initial_budget = in_serv_agg->budget = 1127 in_serv_agg->budgetmax; 1128 1129 if (!list_empty(&in_serv_agg->active)) { 1130 /* 1131 * Still active: reschedule for 1132 * service. Possible optimization: if no other 1133 * aggregate is active, then there is no point 1134 * in rescheduling this aggregate, and we can 1135 * just keep it as the in-service one. This 1136 * should be however a corner case, and to 1137 * handle it, we would need to maintain an 1138 * extra num_active_aggs field. 1139 */ 1140 qfq_update_agg_ts(q, in_serv_agg, requeue); 1141 qfq_schedule_agg(q, in_serv_agg); 1142 } else if (sch->q.qlen == 0) { /* no aggregate to serve */ 1143 q->in_serv_agg = NULL; 1144 return NULL; 1145 } 1146 1147 /* 1148 * If we get here, there are other aggregates queued: 1149 * choose the new aggregate to serve. 1150 */ 1151 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); 1152 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1153 } 1154 if (!skb) 1155 return NULL; 1156 1157 sch->q.qlen--; 1158 qdisc_bstats_update(sch, skb); 1159 1160 agg_dequeue(in_serv_agg, cl, len); 1161 /* If lmax is lowered, through qfq_change_class, for a class 1162 * owning pending packets with larger size than the new value 1163 * of lmax, then the following condition may hold. 1164 */ 1165 if (unlikely(in_serv_agg->budget < len)) 1166 in_serv_agg->budget = 0; 1167 else 1168 in_serv_agg->budget -= len; 1169 1170 q->V += (u64)len * q->iwsum; 1171 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 1172 len, (unsigned long long) in_serv_agg->F, 1173 (unsigned long long) q->V); 1174 1175 return skb; 1176 } 1177 1178 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) 1179 { 1180 struct qfq_group *grp; 1181 struct qfq_aggregate *agg, *new_front_agg; 1182 u64 old_F; 1183 1184 qfq_update_eligible(q); 1185 q->oldV = q->V; 1186 1187 if (!q->bitmaps[ER]) 1188 return NULL; 1189 1190 grp = qfq_ffs(q, q->bitmaps[ER]); 1191 old_F = grp->F; 1192 1193 agg = qfq_slot_head(grp); 1194 1195 /* agg starts to be served, remove it from schedule */ 1196 qfq_front_slot_remove(grp); 1197 1198 new_front_agg = qfq_slot_scan(grp); 1199 1200 if (new_front_agg == NULL) /* group is now inactive, remove from ER */ 1201 __clear_bit(grp->index, &q->bitmaps[ER]); 1202 else { 1203 u64 roundedS = qfq_round_down(new_front_agg->S, 1204 grp->slot_shift); 1205 unsigned int s; 1206 1207 if (grp->S == roundedS) 1208 return agg; 1209 grp->S = roundedS; 1210 grp->F = roundedS + (2ULL << grp->slot_shift); 1211 __clear_bit(grp->index, &q->bitmaps[ER]); 1212 s = qfq_calc_state(q, grp); 1213 __set_bit(grp->index, &q->bitmaps[s]); 1214 } 1215 1216 qfq_unblock_groups(q, grp->index, old_F); 1217 1218 return agg; 1219 } 1220 1221 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch) 1222 { 1223 struct qfq_sched *q = qdisc_priv(sch); 1224 struct qfq_class *cl; 1225 struct qfq_aggregate *agg; 1226 int err = 0; 1227 1228 cl = qfq_classify(skb, sch, &err); 1229 if (cl == NULL) { 1230 if (err & __NET_XMIT_BYPASS) 1231 qdisc_qstats_drop(sch); 1232 kfree_skb(skb); 1233 return err; 1234 } 1235 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 1236 1237 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) { 1238 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 1239 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid); 1240 err = qfq_change_agg(sch, cl, cl->agg->class_weight, 1241 qdisc_pkt_len(skb)); 1242 if (err) 1243 return err; 1244 } 1245 1246 err = qdisc_enqueue(skb, cl->qdisc); 1247 if (unlikely(err != NET_XMIT_SUCCESS)) { 1248 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 1249 if (net_xmit_drop_count(err)) { 1250 cl->qstats.drops++; 1251 qdisc_qstats_drop(sch); 1252 } 1253 return err; 1254 } 1255 1256 bstats_update(&cl->bstats, skb); 1257 ++sch->q.qlen; 1258 1259 agg = cl->agg; 1260 /* if the queue was not empty, then done here */ 1261 if (cl->qdisc->q.qlen != 1) { 1262 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && 1263 list_first_entry(&agg->active, struct qfq_class, alist) 1264 == cl && cl->deficit < qdisc_pkt_len(skb)) 1265 list_move_tail(&cl->alist, &agg->active); 1266 1267 return err; 1268 } 1269 1270 /* schedule class for service within the aggregate */ 1271 cl->deficit = agg->lmax; 1272 list_add_tail(&cl->alist, &agg->active); 1273 1274 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || 1275 q->in_serv_agg == agg) 1276 return err; /* non-empty or in service, nothing else to do */ 1277 1278 qfq_activate_agg(q, agg, enqueue); 1279 1280 return err; 1281 } 1282 1283 /* 1284 * Schedule aggregate according to its timestamps. 1285 */ 1286 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1287 { 1288 struct qfq_group *grp = agg->grp; 1289 u64 roundedS; 1290 int s; 1291 1292 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1293 1294 /* 1295 * Insert agg in the correct bucket. 1296 * If agg->S >= grp->S we don't need to adjust the 1297 * bucket list and simply go to the insertion phase. 1298 * Otherwise grp->S is decreasing, we must make room 1299 * in the bucket list, and also recompute the group state. 1300 * Finally, if there were no flows in this group and nobody 1301 * was in ER make sure to adjust V. 1302 */ 1303 if (grp->full_slots) { 1304 if (!qfq_gt(grp->S, agg->S)) 1305 goto skip_update; 1306 1307 /* create a slot for this agg->S */ 1308 qfq_slot_rotate(grp, roundedS); 1309 /* group was surely ineligible, remove */ 1310 __clear_bit(grp->index, &q->bitmaps[IR]); 1311 __clear_bit(grp->index, &q->bitmaps[IB]); 1312 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && 1313 q->in_serv_agg == NULL) 1314 q->V = roundedS; 1315 1316 grp->S = roundedS; 1317 grp->F = roundedS + (2ULL << grp->slot_shift); 1318 s = qfq_calc_state(q, grp); 1319 __set_bit(grp->index, &q->bitmaps[s]); 1320 1321 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1322 s, q->bitmaps[s], 1323 (unsigned long long) agg->S, 1324 (unsigned long long) agg->F, 1325 (unsigned long long) q->V); 1326 1327 skip_update: 1328 qfq_slot_insert(grp, agg, roundedS); 1329 } 1330 1331 1332 /* Update agg ts and schedule agg for service */ 1333 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 1334 enum update_reason reason) 1335 { 1336 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ 1337 1338 qfq_update_agg_ts(q, agg, reason); 1339 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ 1340 q->in_serv_agg = agg; /* start serving this aggregate */ 1341 /* update V: to be in service, agg must be eligible */ 1342 q->oldV = q->V = agg->S; 1343 } else if (agg != q->in_serv_agg) 1344 qfq_schedule_agg(q, agg); 1345 } 1346 1347 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1348 struct qfq_aggregate *agg) 1349 { 1350 unsigned int i, offset; 1351 u64 roundedS; 1352 1353 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1354 offset = (roundedS - grp->S) >> grp->slot_shift; 1355 1356 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1357 1358 hlist_del(&agg->next); 1359 if (hlist_empty(&grp->slots[i])) 1360 __clear_bit(offset, &grp->full_slots); 1361 } 1362 1363 /* 1364 * Called to forcibly deschedule an aggregate. If the aggregate is 1365 * not in the front bucket, or if the latter has other aggregates in 1366 * the front bucket, we can simply remove the aggregate with no other 1367 * side effects. 1368 * Otherwise we must propagate the event up. 1369 */ 1370 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1371 { 1372 struct qfq_group *grp = agg->grp; 1373 unsigned long mask; 1374 u64 roundedS; 1375 int s; 1376 1377 if (agg == q->in_serv_agg) { 1378 charge_actual_service(agg); 1379 q->in_serv_agg = qfq_choose_next_agg(q); 1380 return; 1381 } 1382 1383 agg->F = agg->S; 1384 qfq_slot_remove(q, grp, agg); 1385 1386 if (!grp->full_slots) { 1387 __clear_bit(grp->index, &q->bitmaps[IR]); 1388 __clear_bit(grp->index, &q->bitmaps[EB]); 1389 __clear_bit(grp->index, &q->bitmaps[IB]); 1390 1391 if (test_bit(grp->index, &q->bitmaps[ER]) && 1392 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1393 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1394 if (mask) 1395 mask = ~((1UL << __fls(mask)) - 1); 1396 else 1397 mask = ~0UL; 1398 qfq_move_groups(q, mask, EB, ER); 1399 qfq_move_groups(q, mask, IB, IR); 1400 } 1401 __clear_bit(grp->index, &q->bitmaps[ER]); 1402 } else if (hlist_empty(&grp->slots[grp->front])) { 1403 agg = qfq_slot_scan(grp); 1404 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1405 if (grp->S != roundedS) { 1406 __clear_bit(grp->index, &q->bitmaps[ER]); 1407 __clear_bit(grp->index, &q->bitmaps[IR]); 1408 __clear_bit(grp->index, &q->bitmaps[EB]); 1409 __clear_bit(grp->index, &q->bitmaps[IB]); 1410 grp->S = roundedS; 1411 grp->F = roundedS + (2ULL << grp->slot_shift); 1412 s = qfq_calc_state(q, grp); 1413 __set_bit(grp->index, &q->bitmaps[s]); 1414 } 1415 } 1416 } 1417 1418 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1419 { 1420 struct qfq_sched *q = qdisc_priv(sch); 1421 struct qfq_class *cl = (struct qfq_class *)arg; 1422 1423 if (cl->qdisc->q.qlen == 0) 1424 qfq_deactivate_class(q, cl); 1425 } 1426 1427 static unsigned int qfq_drop_from_slot(struct qfq_sched *q, 1428 struct hlist_head *slot) 1429 { 1430 struct qfq_aggregate *agg; 1431 struct qfq_class *cl; 1432 unsigned int len; 1433 1434 hlist_for_each_entry(agg, slot, next) { 1435 list_for_each_entry(cl, &agg->active, alist) { 1436 1437 if (!cl->qdisc->ops->drop) 1438 continue; 1439 1440 len = cl->qdisc->ops->drop(cl->qdisc); 1441 if (len > 0) { 1442 if (cl->qdisc->q.qlen == 0) 1443 qfq_deactivate_class(q, cl); 1444 1445 return len; 1446 } 1447 } 1448 } 1449 return 0; 1450 } 1451 1452 static unsigned int qfq_drop(struct Qdisc *sch) 1453 { 1454 struct qfq_sched *q = qdisc_priv(sch); 1455 struct qfq_group *grp; 1456 unsigned int i, j, len; 1457 1458 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1459 grp = &q->groups[i]; 1460 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 1461 len = qfq_drop_from_slot(q, &grp->slots[j]); 1462 if (len > 0) { 1463 sch->q.qlen--; 1464 return len; 1465 } 1466 } 1467 1468 } 1469 1470 return 0; 1471 } 1472 1473 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt) 1474 { 1475 struct qfq_sched *q = qdisc_priv(sch); 1476 struct qfq_group *grp; 1477 int i, j, err; 1478 u32 max_cl_shift, maxbudg_shift, max_classes; 1479 1480 err = qdisc_class_hash_init(&q->clhash); 1481 if (err < 0) 1482 return err; 1483 1484 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES) 1485 max_classes = QFQ_MAX_AGG_CLASSES; 1486 else 1487 max_classes = qdisc_dev(sch)->tx_queue_len + 1; 1488 /* max_cl_shift = floor(log_2(max_classes)) */ 1489 max_cl_shift = __fls(max_classes); 1490 q->max_agg_classes = 1<<max_cl_shift; 1491 1492 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ 1493 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; 1494 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; 1495 1496 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1497 grp = &q->groups[i]; 1498 grp->index = i; 1499 grp->slot_shift = q->min_slot_shift + i; 1500 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1501 INIT_HLIST_HEAD(&grp->slots[j]); 1502 } 1503 1504 INIT_HLIST_HEAD(&q->nonfull_aggs); 1505 1506 return 0; 1507 } 1508 1509 static void qfq_reset_qdisc(struct Qdisc *sch) 1510 { 1511 struct qfq_sched *q = qdisc_priv(sch); 1512 struct qfq_class *cl; 1513 unsigned int i; 1514 1515 for (i = 0; i < q->clhash.hashsize; i++) { 1516 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1517 if (cl->qdisc->q.qlen > 0) 1518 qfq_deactivate_class(q, cl); 1519 1520 qdisc_reset(cl->qdisc); 1521 } 1522 } 1523 sch->q.qlen = 0; 1524 } 1525 1526 static void qfq_destroy_qdisc(struct Qdisc *sch) 1527 { 1528 struct qfq_sched *q = qdisc_priv(sch); 1529 struct qfq_class *cl; 1530 struct hlist_node *next; 1531 unsigned int i; 1532 1533 tcf_destroy_chain(&q->filter_list); 1534 1535 for (i = 0; i < q->clhash.hashsize; i++) { 1536 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1537 common.hnode) { 1538 qfq_destroy_class(sch, cl); 1539 } 1540 } 1541 qdisc_class_hash_destroy(&q->clhash); 1542 } 1543 1544 static const struct Qdisc_class_ops qfq_class_ops = { 1545 .change = qfq_change_class, 1546 .delete = qfq_delete_class, 1547 .get = qfq_get_class, 1548 .put = qfq_put_class, 1549 .tcf_chain = qfq_tcf_chain, 1550 .bind_tcf = qfq_bind_tcf, 1551 .unbind_tcf = qfq_unbind_tcf, 1552 .graft = qfq_graft_class, 1553 .leaf = qfq_class_leaf, 1554 .qlen_notify = qfq_qlen_notify, 1555 .dump = qfq_dump_class, 1556 .dump_stats = qfq_dump_class_stats, 1557 .walk = qfq_walk, 1558 }; 1559 1560 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1561 .cl_ops = &qfq_class_ops, 1562 .id = "qfq", 1563 .priv_size = sizeof(struct qfq_sched), 1564 .enqueue = qfq_enqueue, 1565 .dequeue = qfq_dequeue, 1566 .peek = qdisc_peek_dequeued, 1567 .drop = qfq_drop, 1568 .init = qfq_init_qdisc, 1569 .reset = qfq_reset_qdisc, 1570 .destroy = qfq_destroy_qdisc, 1571 .owner = THIS_MODULE, 1572 }; 1573 1574 static int __init qfq_init(void) 1575 { 1576 return register_qdisc(&qfq_qdisc_ops); 1577 } 1578 1579 static void __exit qfq_exit(void) 1580 { 1581 unregister_qdisc(&qfq_qdisc_ops); 1582 } 1583 1584 module_init(qfq_init); 1585 module_exit(qfq_exit); 1586 MODULE_LICENSE("GPL"); 1587