1 /* 2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler. 3 * 4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 5 * Copyright (c) 2012 Paolo Valente. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * version 2 as published by the Free Software Foundation. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/bitops.h> 15 #include <linux/errno.h> 16 #include <linux/netdevice.h> 17 #include <linux/pkt_sched.h> 18 #include <net/sch_generic.h> 19 #include <net/pkt_sched.h> 20 #include <net/pkt_cls.h> 21 22 23 /* Quick Fair Queueing Plus 24 ======================== 25 26 Sources: 27 28 [1] Paolo Valente, 29 "Reducing the Execution Time of Fair-Queueing Schedulers." 30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf 31 32 Sources for QFQ: 33 34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 35 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 36 37 See also: 38 http://retis.sssup.it/~fabio/linux/qfq/ 39 */ 40 41 /* 42 43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES 44 classes. Each aggregate is timestamped with a virtual start time S 45 and a virtual finish time F, and scheduled according to its 46 timestamps. S and F are computed as a function of a system virtual 47 time function V. The classes within each aggregate are instead 48 scheduled with DRR. 49 50 To speed up operations, QFQ+ divides also aggregates into a limited 51 number of groups. Which group a class belongs to depends on the 52 ratio between the maximum packet length for the class and the weight 53 of the class. Groups have their own S and F. In the end, QFQ+ 54 schedules groups, then aggregates within groups, then classes within 55 aggregates. See [1] and [2] for a full description. 56 57 Virtual time computations. 58 59 S, F and V are all computed in fixed point arithmetic with 60 FRAC_BITS decimal bits. 61 62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 63 one bit per index. 64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 65 66 The layout of the bits is as below: 67 68 [ MTU_SHIFT ][ FRAC_BITS ] 69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 70 ^.__grp->index = 0 71 *.__grp->slot_shift 72 73 where MIN_SLOT_SHIFT is derived by difference from the others. 74 75 The max group index corresponds to Lmax/w_min, where 76 Lmax=1<<MTU_SHIFT, w_min = 1 . 77 From this, and knowing how many groups (MAX_INDEX) we want, 78 we can derive the shift corresponding to each group. 79 80 Because we often need to compute 81 F = S + len/w_i and V = V + len/wsum 82 instead of storing w_i store the value 83 inv_w = (1<<FRAC_BITS)/w_i 84 so we can do F = S + len * inv_w * wsum. 85 We use W_TOT in the formulas so we can easily move between 86 static and adaptive weight sum. 87 88 The per-scheduler-instance data contain all the data structures 89 for the scheduler: bitmaps and bucket lists. 90 91 */ 92 93 /* 94 * Maximum number of consecutive slots occupied by backlogged classes 95 * inside a group. 96 */ 97 #define QFQ_MAX_SLOTS 32 98 99 /* 100 * Shifts used for aggregate<->group mapping. We allow class weights that are 101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the 102 * group with the smallest index that can support the L_i / r_i configured 103 * for the classes in the aggregate. 104 * 105 * grp->index is the index of the group; and grp->slot_shift 106 * is the shift for the corresponding (scaled) sigma_i. 107 */ 108 #define QFQ_MAX_INDEX 24 109 #define QFQ_MAX_WSHIFT 10 110 111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ 112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT) 113 114 #define FRAC_BITS 30 /* fixed point arithmetic */ 115 #define ONE_FP (1UL << FRAC_BITS) 116 117 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 118 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */ 119 120 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */ 121 122 /* 123 * Possible group states. These values are used as indexes for the bitmaps 124 * array of struct qfq_queue. 125 */ 126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 127 128 struct qfq_group; 129 130 struct qfq_aggregate; 131 132 struct qfq_class { 133 struct Qdisc_class_common common; 134 135 unsigned int filter_cnt; 136 137 struct gnet_stats_basic_packed bstats; 138 struct gnet_stats_queue qstats; 139 struct net_rate_estimator __rcu *rate_est; 140 struct Qdisc *qdisc; 141 struct list_head alist; /* Link for active-classes list. */ 142 struct qfq_aggregate *agg; /* Parent aggregate. */ 143 int deficit; /* DRR deficit counter. */ 144 }; 145 146 struct qfq_aggregate { 147 struct hlist_node next; /* Link for the slot list. */ 148 u64 S, F; /* flow timestamps (exact) */ 149 150 /* group we belong to. In principle we would need the index, 151 * which is log_2(lmax/weight), but we never reference it 152 * directly, only the group. 153 */ 154 struct qfq_group *grp; 155 156 /* these are copied from the flowset. */ 157 u32 class_weight; /* Weight of each class in this aggregate. */ 158 /* Max pkt size for the classes in this aggregate, DRR quantum. */ 159 int lmax; 160 161 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */ 162 u32 budgetmax; /* Max budget for this aggregate. */ 163 u32 initial_budget, budget; /* Initial and current budget. */ 164 165 int num_classes; /* Number of classes in this aggr. */ 166 struct list_head active; /* DRR queue of active classes. */ 167 168 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */ 169 }; 170 171 struct qfq_group { 172 u64 S, F; /* group timestamps (approx). */ 173 unsigned int slot_shift; /* Slot shift. */ 174 unsigned int index; /* Group index. */ 175 unsigned int front; /* Index of the front slot. */ 176 unsigned long full_slots; /* non-empty slots */ 177 178 /* Array of RR lists of active aggregates. */ 179 struct hlist_head slots[QFQ_MAX_SLOTS]; 180 }; 181 182 struct qfq_sched { 183 struct tcf_proto __rcu *filter_list; 184 struct tcf_block *block; 185 struct Qdisc_class_hash clhash; 186 187 u64 oldV, V; /* Precise virtual times. */ 188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */ 189 u32 wsum; /* weight sum */ 190 u32 iwsum; /* inverse weight sum */ 191 192 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 193 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 194 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */ 195 196 u32 max_agg_classes; /* Max number of classes per aggr. */ 197 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ 198 }; 199 200 /* 201 * Possible reasons why the timestamps of an aggregate are updated 202 * enqueue: the aggregate switches from idle to active and must scheduled 203 * for service 204 * requeue: the aggregate finishes its budget, so it stops being served and 205 * must be rescheduled for service 206 */ 207 enum update_reason {enqueue, requeue}; 208 209 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 210 { 211 struct qfq_sched *q = qdisc_priv(sch); 212 struct Qdisc_class_common *clc; 213 214 clc = qdisc_class_find(&q->clhash, classid); 215 if (clc == NULL) 216 return NULL; 217 return container_of(clc, struct qfq_class, common); 218 } 219 220 static void qfq_purge_queue(struct qfq_class *cl) 221 { 222 unsigned int len = cl->qdisc->q.qlen; 223 unsigned int backlog = cl->qdisc->qstats.backlog; 224 225 qdisc_reset(cl->qdisc); 226 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog); 227 } 228 229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, 231 [TCA_QFQ_LMAX] = { .type = NLA_U32 }, 232 }; 233 234 /* 235 * Calculate a flow index, given its weight and maximum packet length. 236 * index = log_2(maxlen/weight) but we need to apply the scaling. 237 * This is used only once at flow creation. 238 */ 239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) 240 { 241 u64 slot_size = (u64)maxlen * inv_w; 242 unsigned long size_map; 243 int index = 0; 244 245 size_map = slot_size >> min_slot_shift; 246 if (!size_map) 247 goto out; 248 249 index = __fls(size_map) + 1; /* basically a log_2 */ 250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); 251 252 if (index < 0) 253 index = 0; 254 out: 255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 256 (unsigned long) ONE_FP/inv_w, maxlen, index); 257 258 return index; 259 } 260 261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); 262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, 263 enum update_reason); 264 265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 266 u32 lmax, u32 weight) 267 { 268 INIT_LIST_HEAD(&agg->active); 269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 270 271 agg->lmax = lmax; 272 agg->class_weight = weight; 273 } 274 275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, 276 u32 lmax, u32 weight) 277 { 278 struct qfq_aggregate *agg; 279 280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) 281 if (agg->lmax == lmax && agg->class_weight == weight) 282 return agg; 283 284 return NULL; 285 } 286 287 288 /* Update aggregate as a function of the new number of classes. */ 289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 290 int new_num_classes) 291 { 292 u32 new_agg_weight; 293 294 if (new_num_classes == q->max_agg_classes) 295 hlist_del_init(&agg->nonfull_next); 296 297 if (agg->num_classes > new_num_classes && 298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */ 299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 300 301 /* The next assignment may let 302 * agg->initial_budget > agg->budgetmax 303 * hold, we will take it into account in charge_actual_service(). 304 */ 305 agg->budgetmax = new_num_classes * agg->lmax; 306 new_agg_weight = agg->class_weight * new_num_classes; 307 agg->inv_w = ONE_FP/new_agg_weight; 308 309 if (agg->grp == NULL) { 310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax, 311 q->min_slot_shift); 312 agg->grp = &q->groups[i]; 313 } 314 315 q->wsum += 316 (int) agg->class_weight * (new_num_classes - agg->num_classes); 317 q->iwsum = ONE_FP / q->wsum; 318 319 agg->num_classes = new_num_classes; 320 } 321 322 /* Add class to aggregate. */ 323 static void qfq_add_to_agg(struct qfq_sched *q, 324 struct qfq_aggregate *agg, 325 struct qfq_class *cl) 326 { 327 cl->agg = agg; 328 329 qfq_update_agg(q, agg, agg->num_classes+1); 330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */ 331 list_add_tail(&cl->alist, &agg->active); 332 if (list_first_entry(&agg->active, struct qfq_class, alist) == 333 cl && q->in_serv_agg != agg) /* agg was inactive */ 334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */ 335 } 336 } 337 338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); 339 340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 341 { 342 hlist_del_init(&agg->nonfull_next); 343 q->wsum -= agg->class_weight; 344 if (q->wsum != 0) 345 q->iwsum = ONE_FP / q->wsum; 346 347 if (q->in_serv_agg == agg) 348 q->in_serv_agg = qfq_choose_next_agg(q); 349 kfree(agg); 350 } 351 352 /* Deschedule class from within its parent aggregate. */ 353 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 354 { 355 struct qfq_aggregate *agg = cl->agg; 356 357 358 list_del(&cl->alist); /* remove from RR queue of the aggregate */ 359 if (list_empty(&agg->active)) /* agg is now inactive */ 360 qfq_deactivate_agg(q, agg); 361 } 362 363 /* Remove class from its parent aggregate. */ 364 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 365 { 366 struct qfq_aggregate *agg = cl->agg; 367 368 cl->agg = NULL; 369 if (agg->num_classes == 1) { /* agg being emptied, destroy it */ 370 qfq_destroy_agg(q, agg); 371 return; 372 } 373 qfq_update_agg(q, agg, agg->num_classes-1); 374 } 375 376 /* Deschedule class and remove it from its parent aggregate. */ 377 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 378 { 379 if (cl->qdisc->q.qlen > 0) /* class is active */ 380 qfq_deactivate_class(q, cl); 381 382 qfq_rm_from_agg(q, cl); 383 } 384 385 /* Move class to a new aggregate, matching the new class weight and/or lmax */ 386 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, 387 u32 lmax) 388 { 389 struct qfq_sched *q = qdisc_priv(sch); 390 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight); 391 392 if (new_agg == NULL) { /* create new aggregate */ 393 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); 394 if (new_agg == NULL) 395 return -ENOBUFS; 396 qfq_init_agg(q, new_agg, lmax, weight); 397 } 398 qfq_deact_rm_from_agg(q, cl); 399 qfq_add_to_agg(q, new_agg, cl); 400 401 return 0; 402 } 403 404 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 405 struct nlattr **tca, unsigned long *arg) 406 { 407 struct qfq_sched *q = qdisc_priv(sch); 408 struct qfq_class *cl = (struct qfq_class *)*arg; 409 bool existing = false; 410 struct nlattr *tb[TCA_QFQ_MAX + 1]; 411 struct qfq_aggregate *new_agg = NULL; 412 u32 weight, lmax, inv_w; 413 int err; 414 int delta_w; 415 416 if (tca[TCA_OPTIONS] == NULL) { 417 pr_notice("qfq: no options\n"); 418 return -EINVAL; 419 } 420 421 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy, 422 NULL); 423 if (err < 0) 424 return err; 425 426 if (tb[TCA_QFQ_WEIGHT]) { 427 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); 428 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { 429 pr_notice("qfq: invalid weight %u\n", weight); 430 return -EINVAL; 431 } 432 } else 433 weight = 1; 434 435 if (tb[TCA_QFQ_LMAX]) { 436 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 437 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) { 438 pr_notice("qfq: invalid max length %u\n", lmax); 439 return -EINVAL; 440 } 441 } else 442 lmax = psched_mtu(qdisc_dev(sch)); 443 444 inv_w = ONE_FP / weight; 445 weight = ONE_FP / inv_w; 446 447 if (cl != NULL && 448 lmax == cl->agg->lmax && 449 weight == cl->agg->class_weight) 450 return 0; /* nothing to change */ 451 452 delta_w = weight - (cl ? cl->agg->class_weight : 0); 453 454 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 455 pr_notice("qfq: total weight out of range (%d + %u)\n", 456 delta_w, q->wsum); 457 return -EINVAL; 458 } 459 460 if (cl != NULL) { /* modify existing class */ 461 if (tca[TCA_RATE]) { 462 err = gen_replace_estimator(&cl->bstats, NULL, 463 &cl->rate_est, 464 NULL, 465 qdisc_root_sleeping_running(sch), 466 tca[TCA_RATE]); 467 if (err) 468 return err; 469 } 470 existing = true; 471 goto set_change_agg; 472 } 473 474 /* create and init new class */ 475 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 476 if (cl == NULL) 477 return -ENOBUFS; 478 479 cl->common.classid = classid; 480 cl->deficit = lmax; 481 482 cl->qdisc = qdisc_create_dflt(sch->dev_queue, 483 &pfifo_qdisc_ops, classid); 484 if (cl->qdisc == NULL) 485 cl->qdisc = &noop_qdisc; 486 487 if (tca[TCA_RATE]) { 488 err = gen_new_estimator(&cl->bstats, NULL, 489 &cl->rate_est, 490 NULL, 491 qdisc_root_sleeping_running(sch), 492 tca[TCA_RATE]); 493 if (err) 494 goto destroy_class; 495 } 496 497 if (cl->qdisc != &noop_qdisc) 498 qdisc_hash_add(cl->qdisc, true); 499 sch_tree_lock(sch); 500 qdisc_class_hash_insert(&q->clhash, &cl->common); 501 sch_tree_unlock(sch); 502 503 qdisc_class_hash_grow(sch, &q->clhash); 504 505 set_change_agg: 506 sch_tree_lock(sch); 507 new_agg = qfq_find_agg(q, lmax, weight); 508 if (new_agg == NULL) { /* create new aggregate */ 509 sch_tree_unlock(sch); 510 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); 511 if (new_agg == NULL) { 512 err = -ENOBUFS; 513 gen_kill_estimator(&cl->rate_est); 514 goto destroy_class; 515 } 516 sch_tree_lock(sch); 517 qfq_init_agg(q, new_agg, lmax, weight); 518 } 519 if (existing) 520 qfq_deact_rm_from_agg(q, cl); 521 qfq_add_to_agg(q, new_agg, cl); 522 sch_tree_unlock(sch); 523 524 *arg = (unsigned long)cl; 525 return 0; 526 527 destroy_class: 528 qdisc_destroy(cl->qdisc); 529 kfree(cl); 530 return err; 531 } 532 533 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 534 { 535 struct qfq_sched *q = qdisc_priv(sch); 536 537 qfq_rm_from_agg(q, cl); 538 gen_kill_estimator(&cl->rate_est); 539 qdisc_destroy(cl->qdisc); 540 kfree(cl); 541 } 542 543 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg) 544 { 545 struct qfq_sched *q = qdisc_priv(sch); 546 struct qfq_class *cl = (struct qfq_class *)arg; 547 548 if (cl->filter_cnt > 0) 549 return -EBUSY; 550 551 sch_tree_lock(sch); 552 553 qfq_purge_queue(cl); 554 qdisc_class_hash_remove(&q->clhash, &cl->common); 555 556 sch_tree_unlock(sch); 557 558 qfq_destroy_class(sch, cl); 559 return 0; 560 } 561 562 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid) 563 { 564 return (unsigned long)qfq_find_class(sch, classid); 565 } 566 567 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl) 568 { 569 struct qfq_sched *q = qdisc_priv(sch); 570 571 if (cl) 572 return NULL; 573 574 return q->block; 575 } 576 577 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 578 u32 classid) 579 { 580 struct qfq_class *cl = qfq_find_class(sch, classid); 581 582 if (cl != NULL) 583 cl->filter_cnt++; 584 585 return (unsigned long)cl; 586 } 587 588 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 589 { 590 struct qfq_class *cl = (struct qfq_class *)arg; 591 592 cl->filter_cnt--; 593 } 594 595 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 596 struct Qdisc *new, struct Qdisc **old) 597 { 598 struct qfq_class *cl = (struct qfq_class *)arg; 599 600 if (new == NULL) { 601 new = qdisc_create_dflt(sch->dev_queue, 602 &pfifo_qdisc_ops, cl->common.classid); 603 if (new == NULL) 604 new = &noop_qdisc; 605 } 606 607 *old = qdisc_replace(sch, new, &cl->qdisc); 608 return 0; 609 } 610 611 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 612 { 613 struct qfq_class *cl = (struct qfq_class *)arg; 614 615 return cl->qdisc; 616 } 617 618 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 619 struct sk_buff *skb, struct tcmsg *tcm) 620 { 621 struct qfq_class *cl = (struct qfq_class *)arg; 622 struct nlattr *nest; 623 624 tcm->tcm_parent = TC_H_ROOT; 625 tcm->tcm_handle = cl->common.classid; 626 tcm->tcm_info = cl->qdisc->handle; 627 628 nest = nla_nest_start(skb, TCA_OPTIONS); 629 if (nest == NULL) 630 goto nla_put_failure; 631 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || 632 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) 633 goto nla_put_failure; 634 return nla_nest_end(skb, nest); 635 636 nla_put_failure: 637 nla_nest_cancel(skb, nest); 638 return -EMSGSIZE; 639 } 640 641 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 642 struct gnet_dump *d) 643 { 644 struct qfq_class *cl = (struct qfq_class *)arg; 645 struct tc_qfq_stats xstats; 646 647 memset(&xstats, 0, sizeof(xstats)); 648 649 xstats.weight = cl->agg->class_weight; 650 xstats.lmax = cl->agg->lmax; 651 652 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch), 653 d, NULL, &cl->bstats) < 0 || 654 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 655 gnet_stats_copy_queue(d, NULL, 656 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0) 657 return -1; 658 659 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 660 } 661 662 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 663 { 664 struct qfq_sched *q = qdisc_priv(sch); 665 struct qfq_class *cl; 666 unsigned int i; 667 668 if (arg->stop) 669 return; 670 671 for (i = 0; i < q->clhash.hashsize; i++) { 672 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 673 if (arg->count < arg->skip) { 674 arg->count++; 675 continue; 676 } 677 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 678 arg->stop = 1; 679 return; 680 } 681 arg->count++; 682 } 683 } 684 } 685 686 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 687 int *qerr) 688 { 689 struct qfq_sched *q = qdisc_priv(sch); 690 struct qfq_class *cl; 691 struct tcf_result res; 692 struct tcf_proto *fl; 693 int result; 694 695 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 696 pr_debug("qfq_classify: found %d\n", skb->priority); 697 cl = qfq_find_class(sch, skb->priority); 698 if (cl != NULL) 699 return cl; 700 } 701 702 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 703 fl = rcu_dereference_bh(q->filter_list); 704 result = tcf_classify(skb, fl, &res, false); 705 if (result >= 0) { 706 #ifdef CONFIG_NET_CLS_ACT 707 switch (result) { 708 case TC_ACT_QUEUED: 709 case TC_ACT_STOLEN: 710 case TC_ACT_TRAP: 711 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 712 /* fall through */ 713 case TC_ACT_SHOT: 714 return NULL; 715 } 716 #endif 717 cl = (struct qfq_class *)res.class; 718 if (cl == NULL) 719 cl = qfq_find_class(sch, res.classid); 720 return cl; 721 } 722 723 return NULL; 724 } 725 726 /* Generic comparison function, handling wraparound. */ 727 static inline int qfq_gt(u64 a, u64 b) 728 { 729 return (s64)(a - b) > 0; 730 } 731 732 /* Round a precise timestamp to its slotted value. */ 733 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 734 { 735 return ts & ~((1ULL << shift) - 1); 736 } 737 738 /* return the pointer to the group with lowest index in the bitmap */ 739 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 740 unsigned long bitmap) 741 { 742 int index = __ffs(bitmap); 743 return &q->groups[index]; 744 } 745 /* Calculate a mask to mimic what would be ffs_from(). */ 746 static inline unsigned long mask_from(unsigned long bitmap, int from) 747 { 748 return bitmap & ~((1UL << from) - 1); 749 } 750 751 /* 752 * The state computation relies on ER=0, IR=1, EB=2, IB=3 753 * First compute eligibility comparing grp->S, q->V, 754 * then check if someone is blocking us and possibly add EB 755 */ 756 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 757 { 758 /* if S > V we are not eligible */ 759 unsigned int state = qfq_gt(grp->S, q->V); 760 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 761 struct qfq_group *next; 762 763 if (mask) { 764 next = qfq_ffs(q, mask); 765 if (qfq_gt(grp->F, next->F)) 766 state |= EB; 767 } 768 769 return state; 770 } 771 772 773 /* 774 * In principle 775 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 776 * q->bitmaps[src] &= ~mask; 777 * but we should make sure that src != dst 778 */ 779 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 780 int src, int dst) 781 { 782 q->bitmaps[dst] |= q->bitmaps[src] & mask; 783 q->bitmaps[src] &= ~mask; 784 } 785 786 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 787 { 788 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 789 struct qfq_group *next; 790 791 if (mask) { 792 next = qfq_ffs(q, mask); 793 if (!qfq_gt(next->F, old_F)) 794 return; 795 } 796 797 mask = (1UL << index) - 1; 798 qfq_move_groups(q, mask, EB, ER); 799 qfq_move_groups(q, mask, IB, IR); 800 } 801 802 /* 803 * perhaps 804 * 805 old_V ^= q->V; 806 old_V >>= q->min_slot_shift; 807 if (old_V) { 808 ... 809 } 810 * 811 */ 812 static void qfq_make_eligible(struct qfq_sched *q) 813 { 814 unsigned long vslot = q->V >> q->min_slot_shift; 815 unsigned long old_vslot = q->oldV >> q->min_slot_shift; 816 817 if (vslot != old_vslot) { 818 unsigned long mask; 819 int last_flip_pos = fls(vslot ^ old_vslot); 820 821 if (last_flip_pos > 31) /* higher than the number of groups */ 822 mask = ~0UL; /* make all groups eligible */ 823 else 824 mask = (1UL << last_flip_pos) - 1; 825 826 qfq_move_groups(q, mask, IR, ER); 827 qfq_move_groups(q, mask, IB, EB); 828 } 829 } 830 831 /* 832 * The index of the slot in which the input aggregate agg is to be 833 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' 834 * and not a '-1' because the start time of the group may be moved 835 * backward by one slot after the aggregate has been inserted, and 836 * this would cause non-empty slots to be right-shifted by one 837 * position. 838 * 839 * QFQ+ fully satisfies this bound to the slot index if the parameters 840 * of the classes are not changed dynamically, and if QFQ+ never 841 * happens to postpone the service of agg unjustly, i.e., it never 842 * happens that the aggregate becomes backlogged and eligible, or just 843 * eligible, while an aggregate with a higher approximated finish time 844 * is being served. In particular, in this case QFQ+ guarantees that 845 * the timestamps of agg are low enough that the slot index is never 846 * higher than 2. Unfortunately, QFQ+ cannot provide the same 847 * guarantee if it happens to unjustly postpone the service of agg, or 848 * if the parameters of some class are changed. 849 * 850 * As for the first event, i.e., an out-of-order service, the 851 * upper bound to the slot index guaranteed by QFQ+ grows to 852 * 2 + 853 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * 854 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. 855 * 856 * The following function deals with this problem by backward-shifting 857 * the timestamps of agg, if needed, so as to guarantee that the slot 858 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may 859 * cause the service of other aggregates to be postponed, yet the 860 * worst-case guarantees of these aggregates are not violated. In 861 * fact, in case of no out-of-order service, the timestamps of agg 862 * would have been even lower than they are after the backward shift, 863 * because QFQ+ would have guaranteed a maximum value equal to 2 for 864 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose 865 * service is postponed because of the backward-shift would have 866 * however waited for the service of agg before being served. 867 * 868 * The other event that may cause the slot index to be higher than 2 869 * for agg is a recent change of the parameters of some class. If the 870 * weight of a class is increased or the lmax (max_pkt_size) of the 871 * class is decreased, then a new aggregate with smaller slot size 872 * than the original parent aggregate of the class may happen to be 873 * activated. The activation of this aggregate should be properly 874 * delayed to when the service of the class has finished in the ideal 875 * system tracked by QFQ+. If the activation of the aggregate is not 876 * delayed to this reference time instant, then this aggregate may be 877 * unjustly served before other aggregates waiting for service. This 878 * may cause the above bound to the slot index to be violated for some 879 * of these unlucky aggregates. 880 * 881 * Instead of delaying the activation of the new aggregate, which is 882 * quite complex, the above-discussed capping of the slot index is 883 * used to handle also the consequences of a change of the parameters 884 * of a class. 885 */ 886 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, 887 u64 roundedS) 888 { 889 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 890 unsigned int i; /* slot index in the bucket list */ 891 892 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 893 u64 deltaS = roundedS - grp->S - 894 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 895 agg->S -= deltaS; 896 agg->F -= deltaS; 897 slot = QFQ_MAX_SLOTS - 2; 898 } 899 900 i = (grp->front + slot) % QFQ_MAX_SLOTS; 901 902 hlist_add_head(&agg->next, &grp->slots[i]); 903 __set_bit(slot, &grp->full_slots); 904 } 905 906 /* Maybe introduce hlist_first_entry?? */ 907 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) 908 { 909 return hlist_entry(grp->slots[grp->front].first, 910 struct qfq_aggregate, next); 911 } 912 913 /* 914 * remove the entry from the slot 915 */ 916 static void qfq_front_slot_remove(struct qfq_group *grp) 917 { 918 struct qfq_aggregate *agg = qfq_slot_head(grp); 919 920 BUG_ON(!agg); 921 hlist_del(&agg->next); 922 if (hlist_empty(&grp->slots[grp->front])) 923 __clear_bit(0, &grp->full_slots); 924 } 925 926 /* 927 * Returns the first aggregate in the first non-empty bucket of the 928 * group. As a side effect, adjusts the bucket list so the first 929 * non-empty bucket is at position 0 in full_slots. 930 */ 931 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) 932 { 933 unsigned int i; 934 935 pr_debug("qfq slot_scan: grp %u full %#lx\n", 936 grp->index, grp->full_slots); 937 938 if (grp->full_slots == 0) 939 return NULL; 940 941 i = __ffs(grp->full_slots); /* zero based */ 942 if (i > 0) { 943 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 944 grp->full_slots >>= i; 945 } 946 947 return qfq_slot_head(grp); 948 } 949 950 /* 951 * adjust the bucket list. When the start time of a group decreases, 952 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 953 * move the objects. The mask of occupied slots must be shifted 954 * because we use ffs() to find the first non-empty slot. 955 * This covers decreases in the group's start time, but what about 956 * increases of the start time ? 957 * Here too we should make sure that i is less than 32 958 */ 959 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 960 { 961 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 962 963 grp->full_slots <<= i; 964 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 965 } 966 967 static void qfq_update_eligible(struct qfq_sched *q) 968 { 969 struct qfq_group *grp; 970 unsigned long ineligible; 971 972 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 973 if (ineligible) { 974 if (!q->bitmaps[ER]) { 975 grp = qfq_ffs(q, ineligible); 976 if (qfq_gt(grp->S, q->V)) 977 q->V = grp->S; 978 } 979 qfq_make_eligible(q); 980 } 981 } 982 983 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ 984 static void agg_dequeue(struct qfq_aggregate *agg, 985 struct qfq_class *cl, unsigned int len) 986 { 987 qdisc_dequeue_peeked(cl->qdisc); 988 989 cl->deficit -= (int) len; 990 991 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ 992 list_del(&cl->alist); 993 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { 994 cl->deficit += agg->lmax; 995 list_move_tail(&cl->alist, &agg->active); 996 } 997 } 998 999 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, 1000 struct qfq_class **cl, 1001 unsigned int *len) 1002 { 1003 struct sk_buff *skb; 1004 1005 *cl = list_first_entry(&agg->active, struct qfq_class, alist); 1006 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); 1007 if (skb == NULL) 1008 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); 1009 else 1010 *len = qdisc_pkt_len(skb); 1011 1012 return skb; 1013 } 1014 1015 /* Update F according to the actual service received by the aggregate. */ 1016 static inline void charge_actual_service(struct qfq_aggregate *agg) 1017 { 1018 /* Compute the service received by the aggregate, taking into 1019 * account that, after decreasing the number of classes in 1020 * agg, it may happen that 1021 * agg->initial_budget - agg->budget > agg->bugdetmax 1022 */ 1023 u32 service_received = min(agg->budgetmax, 1024 agg->initial_budget - agg->budget); 1025 1026 agg->F = agg->S + (u64)service_received * agg->inv_w; 1027 } 1028 1029 /* Assign a reasonable start time for a new aggregate in group i. 1030 * Admissible values for \hat(F) are multiples of \sigma_i 1031 * no greater than V+\sigma_i . Larger values mean that 1032 * we had a wraparound so we consider the timestamp to be stale. 1033 * 1034 * If F is not stale and F >= V then we set S = F. 1035 * Otherwise we should assign S = V, but this may violate 1036 * the ordering in EB (see [2]). So, if we have groups in ER, 1037 * set S to the F_j of the first group j which would be blocking us. 1038 * We are guaranteed not to move S backward because 1039 * otherwise our group i would still be blocked. 1040 */ 1041 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) 1042 { 1043 unsigned long mask; 1044 u64 limit, roundedF; 1045 int slot_shift = agg->grp->slot_shift; 1046 1047 roundedF = qfq_round_down(agg->F, slot_shift); 1048 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 1049 1050 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { 1051 /* timestamp was stale */ 1052 mask = mask_from(q->bitmaps[ER], agg->grp->index); 1053 if (mask) { 1054 struct qfq_group *next = qfq_ffs(q, mask); 1055 if (qfq_gt(roundedF, next->F)) { 1056 if (qfq_gt(limit, next->F)) 1057 agg->S = next->F; 1058 else /* preserve timestamp correctness */ 1059 agg->S = limit; 1060 return; 1061 } 1062 } 1063 agg->S = q->V; 1064 } else /* timestamp is not stale */ 1065 agg->S = agg->F; 1066 } 1067 1068 /* Update the timestamps of agg before scheduling/rescheduling it for 1069 * service. In particular, assign to agg->F its maximum possible 1070 * value, i.e., the virtual finish time with which the aggregate 1071 * should be labeled if it used all its budget once in service. 1072 */ 1073 static inline void 1074 qfq_update_agg_ts(struct qfq_sched *q, 1075 struct qfq_aggregate *agg, enum update_reason reason) 1076 { 1077 if (reason != requeue) 1078 qfq_update_start(q, agg); 1079 else /* just charge agg for the service received */ 1080 agg->S = agg->F; 1081 1082 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; 1083 } 1084 1085 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); 1086 1087 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 1088 { 1089 struct qfq_sched *q = qdisc_priv(sch); 1090 struct qfq_aggregate *in_serv_agg = q->in_serv_agg; 1091 struct qfq_class *cl; 1092 struct sk_buff *skb = NULL; 1093 /* next-packet len, 0 means no more active classes in in-service agg */ 1094 unsigned int len = 0; 1095 1096 if (in_serv_agg == NULL) 1097 return NULL; 1098 1099 if (!list_empty(&in_serv_agg->active)) 1100 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1101 1102 /* 1103 * If there are no active classes in the in-service aggregate, 1104 * or if the aggregate has not enough budget to serve its next 1105 * class, then choose the next aggregate to serve. 1106 */ 1107 if (len == 0 || in_serv_agg->budget < len) { 1108 charge_actual_service(in_serv_agg); 1109 1110 /* recharge the budget of the aggregate */ 1111 in_serv_agg->initial_budget = in_serv_agg->budget = 1112 in_serv_agg->budgetmax; 1113 1114 if (!list_empty(&in_serv_agg->active)) { 1115 /* 1116 * Still active: reschedule for 1117 * service. Possible optimization: if no other 1118 * aggregate is active, then there is no point 1119 * in rescheduling this aggregate, and we can 1120 * just keep it as the in-service one. This 1121 * should be however a corner case, and to 1122 * handle it, we would need to maintain an 1123 * extra num_active_aggs field. 1124 */ 1125 qfq_update_agg_ts(q, in_serv_agg, requeue); 1126 qfq_schedule_agg(q, in_serv_agg); 1127 } else if (sch->q.qlen == 0) { /* no aggregate to serve */ 1128 q->in_serv_agg = NULL; 1129 return NULL; 1130 } 1131 1132 /* 1133 * If we get here, there are other aggregates queued: 1134 * choose the new aggregate to serve. 1135 */ 1136 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); 1137 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1138 } 1139 if (!skb) 1140 return NULL; 1141 1142 qdisc_qstats_backlog_dec(sch, skb); 1143 sch->q.qlen--; 1144 qdisc_bstats_update(sch, skb); 1145 1146 agg_dequeue(in_serv_agg, cl, len); 1147 /* If lmax is lowered, through qfq_change_class, for a class 1148 * owning pending packets with larger size than the new value 1149 * of lmax, then the following condition may hold. 1150 */ 1151 if (unlikely(in_serv_agg->budget < len)) 1152 in_serv_agg->budget = 0; 1153 else 1154 in_serv_agg->budget -= len; 1155 1156 q->V += (u64)len * q->iwsum; 1157 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 1158 len, (unsigned long long) in_serv_agg->F, 1159 (unsigned long long) q->V); 1160 1161 return skb; 1162 } 1163 1164 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) 1165 { 1166 struct qfq_group *grp; 1167 struct qfq_aggregate *agg, *new_front_agg; 1168 u64 old_F; 1169 1170 qfq_update_eligible(q); 1171 q->oldV = q->V; 1172 1173 if (!q->bitmaps[ER]) 1174 return NULL; 1175 1176 grp = qfq_ffs(q, q->bitmaps[ER]); 1177 old_F = grp->F; 1178 1179 agg = qfq_slot_head(grp); 1180 1181 /* agg starts to be served, remove it from schedule */ 1182 qfq_front_slot_remove(grp); 1183 1184 new_front_agg = qfq_slot_scan(grp); 1185 1186 if (new_front_agg == NULL) /* group is now inactive, remove from ER */ 1187 __clear_bit(grp->index, &q->bitmaps[ER]); 1188 else { 1189 u64 roundedS = qfq_round_down(new_front_agg->S, 1190 grp->slot_shift); 1191 unsigned int s; 1192 1193 if (grp->S == roundedS) 1194 return agg; 1195 grp->S = roundedS; 1196 grp->F = roundedS + (2ULL << grp->slot_shift); 1197 __clear_bit(grp->index, &q->bitmaps[ER]); 1198 s = qfq_calc_state(q, grp); 1199 __set_bit(grp->index, &q->bitmaps[s]); 1200 } 1201 1202 qfq_unblock_groups(q, grp->index, old_F); 1203 1204 return agg; 1205 } 1206 1207 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, 1208 struct sk_buff **to_free) 1209 { 1210 struct qfq_sched *q = qdisc_priv(sch); 1211 struct qfq_class *cl; 1212 struct qfq_aggregate *agg; 1213 int err = 0; 1214 1215 cl = qfq_classify(skb, sch, &err); 1216 if (cl == NULL) { 1217 if (err & __NET_XMIT_BYPASS) 1218 qdisc_qstats_drop(sch); 1219 __qdisc_drop(skb, to_free); 1220 return err; 1221 } 1222 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 1223 1224 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) { 1225 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 1226 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid); 1227 err = qfq_change_agg(sch, cl, cl->agg->class_weight, 1228 qdisc_pkt_len(skb)); 1229 if (err) { 1230 cl->qstats.drops++; 1231 return qdisc_drop(skb, sch, to_free); 1232 } 1233 } 1234 1235 err = qdisc_enqueue(skb, cl->qdisc, to_free); 1236 if (unlikely(err != NET_XMIT_SUCCESS)) { 1237 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 1238 if (net_xmit_drop_count(err)) { 1239 cl->qstats.drops++; 1240 qdisc_qstats_drop(sch); 1241 } 1242 return err; 1243 } 1244 1245 bstats_update(&cl->bstats, skb); 1246 qdisc_qstats_backlog_inc(sch, skb); 1247 ++sch->q.qlen; 1248 1249 agg = cl->agg; 1250 /* if the queue was not empty, then done here */ 1251 if (cl->qdisc->q.qlen != 1) { 1252 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && 1253 list_first_entry(&agg->active, struct qfq_class, alist) 1254 == cl && cl->deficit < qdisc_pkt_len(skb)) 1255 list_move_tail(&cl->alist, &agg->active); 1256 1257 return err; 1258 } 1259 1260 /* schedule class for service within the aggregate */ 1261 cl->deficit = agg->lmax; 1262 list_add_tail(&cl->alist, &agg->active); 1263 1264 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || 1265 q->in_serv_agg == agg) 1266 return err; /* non-empty or in service, nothing else to do */ 1267 1268 qfq_activate_agg(q, agg, enqueue); 1269 1270 return err; 1271 } 1272 1273 /* 1274 * Schedule aggregate according to its timestamps. 1275 */ 1276 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1277 { 1278 struct qfq_group *grp = agg->grp; 1279 u64 roundedS; 1280 int s; 1281 1282 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1283 1284 /* 1285 * Insert agg in the correct bucket. 1286 * If agg->S >= grp->S we don't need to adjust the 1287 * bucket list and simply go to the insertion phase. 1288 * Otherwise grp->S is decreasing, we must make room 1289 * in the bucket list, and also recompute the group state. 1290 * Finally, if there were no flows in this group and nobody 1291 * was in ER make sure to adjust V. 1292 */ 1293 if (grp->full_slots) { 1294 if (!qfq_gt(grp->S, agg->S)) 1295 goto skip_update; 1296 1297 /* create a slot for this agg->S */ 1298 qfq_slot_rotate(grp, roundedS); 1299 /* group was surely ineligible, remove */ 1300 __clear_bit(grp->index, &q->bitmaps[IR]); 1301 __clear_bit(grp->index, &q->bitmaps[IB]); 1302 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && 1303 q->in_serv_agg == NULL) 1304 q->V = roundedS; 1305 1306 grp->S = roundedS; 1307 grp->F = roundedS + (2ULL << grp->slot_shift); 1308 s = qfq_calc_state(q, grp); 1309 __set_bit(grp->index, &q->bitmaps[s]); 1310 1311 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1312 s, q->bitmaps[s], 1313 (unsigned long long) agg->S, 1314 (unsigned long long) agg->F, 1315 (unsigned long long) q->V); 1316 1317 skip_update: 1318 qfq_slot_insert(grp, agg, roundedS); 1319 } 1320 1321 1322 /* Update agg ts and schedule agg for service */ 1323 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 1324 enum update_reason reason) 1325 { 1326 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ 1327 1328 qfq_update_agg_ts(q, agg, reason); 1329 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ 1330 q->in_serv_agg = agg; /* start serving this aggregate */ 1331 /* update V: to be in service, agg must be eligible */ 1332 q->oldV = q->V = agg->S; 1333 } else if (agg != q->in_serv_agg) 1334 qfq_schedule_agg(q, agg); 1335 } 1336 1337 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1338 struct qfq_aggregate *agg) 1339 { 1340 unsigned int i, offset; 1341 u64 roundedS; 1342 1343 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1344 offset = (roundedS - grp->S) >> grp->slot_shift; 1345 1346 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1347 1348 hlist_del(&agg->next); 1349 if (hlist_empty(&grp->slots[i])) 1350 __clear_bit(offset, &grp->full_slots); 1351 } 1352 1353 /* 1354 * Called to forcibly deschedule an aggregate. If the aggregate is 1355 * not in the front bucket, or if the latter has other aggregates in 1356 * the front bucket, we can simply remove the aggregate with no other 1357 * side effects. 1358 * Otherwise we must propagate the event up. 1359 */ 1360 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1361 { 1362 struct qfq_group *grp = agg->grp; 1363 unsigned long mask; 1364 u64 roundedS; 1365 int s; 1366 1367 if (agg == q->in_serv_agg) { 1368 charge_actual_service(agg); 1369 q->in_serv_agg = qfq_choose_next_agg(q); 1370 return; 1371 } 1372 1373 agg->F = agg->S; 1374 qfq_slot_remove(q, grp, agg); 1375 1376 if (!grp->full_slots) { 1377 __clear_bit(grp->index, &q->bitmaps[IR]); 1378 __clear_bit(grp->index, &q->bitmaps[EB]); 1379 __clear_bit(grp->index, &q->bitmaps[IB]); 1380 1381 if (test_bit(grp->index, &q->bitmaps[ER]) && 1382 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1383 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1384 if (mask) 1385 mask = ~((1UL << __fls(mask)) - 1); 1386 else 1387 mask = ~0UL; 1388 qfq_move_groups(q, mask, EB, ER); 1389 qfq_move_groups(q, mask, IB, IR); 1390 } 1391 __clear_bit(grp->index, &q->bitmaps[ER]); 1392 } else if (hlist_empty(&grp->slots[grp->front])) { 1393 agg = qfq_slot_scan(grp); 1394 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1395 if (grp->S != roundedS) { 1396 __clear_bit(grp->index, &q->bitmaps[ER]); 1397 __clear_bit(grp->index, &q->bitmaps[IR]); 1398 __clear_bit(grp->index, &q->bitmaps[EB]); 1399 __clear_bit(grp->index, &q->bitmaps[IB]); 1400 grp->S = roundedS; 1401 grp->F = roundedS + (2ULL << grp->slot_shift); 1402 s = qfq_calc_state(q, grp); 1403 __set_bit(grp->index, &q->bitmaps[s]); 1404 } 1405 } 1406 } 1407 1408 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1409 { 1410 struct qfq_sched *q = qdisc_priv(sch); 1411 struct qfq_class *cl = (struct qfq_class *)arg; 1412 1413 qfq_deactivate_class(q, cl); 1414 } 1415 1416 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt) 1417 { 1418 struct qfq_sched *q = qdisc_priv(sch); 1419 struct qfq_group *grp; 1420 int i, j, err; 1421 u32 max_cl_shift, maxbudg_shift, max_classes; 1422 1423 err = tcf_block_get(&q->block, &q->filter_list, sch); 1424 if (err) 1425 return err; 1426 1427 err = qdisc_class_hash_init(&q->clhash); 1428 if (err < 0) 1429 return err; 1430 1431 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES) 1432 max_classes = QFQ_MAX_AGG_CLASSES; 1433 else 1434 max_classes = qdisc_dev(sch)->tx_queue_len + 1; 1435 /* max_cl_shift = floor(log_2(max_classes)) */ 1436 max_cl_shift = __fls(max_classes); 1437 q->max_agg_classes = 1<<max_cl_shift; 1438 1439 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ 1440 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; 1441 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; 1442 1443 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1444 grp = &q->groups[i]; 1445 grp->index = i; 1446 grp->slot_shift = q->min_slot_shift + i; 1447 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1448 INIT_HLIST_HEAD(&grp->slots[j]); 1449 } 1450 1451 INIT_HLIST_HEAD(&q->nonfull_aggs); 1452 1453 return 0; 1454 } 1455 1456 static void qfq_reset_qdisc(struct Qdisc *sch) 1457 { 1458 struct qfq_sched *q = qdisc_priv(sch); 1459 struct qfq_class *cl; 1460 unsigned int i; 1461 1462 for (i = 0; i < q->clhash.hashsize; i++) { 1463 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1464 if (cl->qdisc->q.qlen > 0) 1465 qfq_deactivate_class(q, cl); 1466 1467 qdisc_reset(cl->qdisc); 1468 } 1469 } 1470 sch->qstats.backlog = 0; 1471 sch->q.qlen = 0; 1472 } 1473 1474 static void qfq_destroy_qdisc(struct Qdisc *sch) 1475 { 1476 struct qfq_sched *q = qdisc_priv(sch); 1477 struct qfq_class *cl; 1478 struct hlist_node *next; 1479 unsigned int i; 1480 1481 tcf_block_put(q->block); 1482 1483 for (i = 0; i < q->clhash.hashsize; i++) { 1484 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1485 common.hnode) { 1486 qfq_destroy_class(sch, cl); 1487 } 1488 } 1489 qdisc_class_hash_destroy(&q->clhash); 1490 } 1491 1492 static const struct Qdisc_class_ops qfq_class_ops = { 1493 .change = qfq_change_class, 1494 .delete = qfq_delete_class, 1495 .find = qfq_search_class, 1496 .tcf_block = qfq_tcf_block, 1497 .bind_tcf = qfq_bind_tcf, 1498 .unbind_tcf = qfq_unbind_tcf, 1499 .graft = qfq_graft_class, 1500 .leaf = qfq_class_leaf, 1501 .qlen_notify = qfq_qlen_notify, 1502 .dump = qfq_dump_class, 1503 .dump_stats = qfq_dump_class_stats, 1504 .walk = qfq_walk, 1505 }; 1506 1507 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1508 .cl_ops = &qfq_class_ops, 1509 .id = "qfq", 1510 .priv_size = sizeof(struct qfq_sched), 1511 .enqueue = qfq_enqueue, 1512 .dequeue = qfq_dequeue, 1513 .peek = qdisc_peek_dequeued, 1514 .init = qfq_init_qdisc, 1515 .reset = qfq_reset_qdisc, 1516 .destroy = qfq_destroy_qdisc, 1517 .owner = THIS_MODULE, 1518 }; 1519 1520 static int __init qfq_init(void) 1521 { 1522 return register_qdisc(&qfq_qdisc_ops); 1523 } 1524 1525 static void __exit qfq_exit(void) 1526 { 1527 unregister_qdisc(&qfq_qdisc_ops); 1528 } 1529 1530 module_init(qfq_init); 1531 module_exit(qfq_exit); 1532 MODULE_LICENSE("GPL"); 1533