1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler. 4 * 5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 6 * Copyright (c) 2012 Paolo Valente. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/bitops.h> 12 #include <linux/errno.h> 13 #include <linux/netdevice.h> 14 #include <linux/pkt_sched.h> 15 #include <net/sch_generic.h> 16 #include <net/pkt_sched.h> 17 #include <net/pkt_cls.h> 18 19 20 /* Quick Fair Queueing Plus 21 ======================== 22 23 Sources: 24 25 [1] Paolo Valente, 26 "Reducing the Execution Time of Fair-Queueing Schedulers." 27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf 28 29 Sources for QFQ: 30 31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 32 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 33 34 See also: 35 http://retis.sssup.it/~fabio/linux/qfq/ 36 */ 37 38 /* 39 40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES 41 classes. Each aggregate is timestamped with a virtual start time S 42 and a virtual finish time F, and scheduled according to its 43 timestamps. S and F are computed as a function of a system virtual 44 time function V. The classes within each aggregate are instead 45 scheduled with DRR. 46 47 To speed up operations, QFQ+ divides also aggregates into a limited 48 number of groups. Which group a class belongs to depends on the 49 ratio between the maximum packet length for the class and the weight 50 of the class. Groups have their own S and F. In the end, QFQ+ 51 schedules groups, then aggregates within groups, then classes within 52 aggregates. See [1] and [2] for a full description. 53 54 Virtual time computations. 55 56 S, F and V are all computed in fixed point arithmetic with 57 FRAC_BITS decimal bits. 58 59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 60 one bit per index. 61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 62 63 The layout of the bits is as below: 64 65 [ MTU_SHIFT ][ FRAC_BITS ] 66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 67 ^.__grp->index = 0 68 *.__grp->slot_shift 69 70 where MIN_SLOT_SHIFT is derived by difference from the others. 71 72 The max group index corresponds to Lmax/w_min, where 73 Lmax=1<<MTU_SHIFT, w_min = 1 . 74 From this, and knowing how many groups (MAX_INDEX) we want, 75 we can derive the shift corresponding to each group. 76 77 Because we often need to compute 78 F = S + len/w_i and V = V + len/wsum 79 instead of storing w_i store the value 80 inv_w = (1<<FRAC_BITS)/w_i 81 so we can do F = S + len * inv_w * wsum. 82 We use W_TOT in the formulas so we can easily move between 83 static and adaptive weight sum. 84 85 The per-scheduler-instance data contain all the data structures 86 for the scheduler: bitmaps and bucket lists. 87 88 */ 89 90 /* 91 * Maximum number of consecutive slots occupied by backlogged classes 92 * inside a group. 93 */ 94 #define QFQ_MAX_SLOTS 32 95 96 /* 97 * Shifts used for aggregate<->group mapping. We allow class weights that are 98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the 99 * group with the smallest index that can support the L_i / r_i configured 100 * for the classes in the aggregate. 101 * 102 * grp->index is the index of the group; and grp->slot_shift 103 * is the shift for the corresponding (scaled) sigma_i. 104 */ 105 #define QFQ_MAX_INDEX 24 106 #define QFQ_MAX_WSHIFT 10 107 108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ 109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT) 110 111 #define FRAC_BITS 30 /* fixed point arithmetic */ 112 #define ONE_FP (1UL << FRAC_BITS) 113 114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */ 116 #define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT) 117 118 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */ 119 120 /* 121 * Possible group states. These values are used as indexes for the bitmaps 122 * array of struct qfq_queue. 123 */ 124 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 125 126 struct qfq_group; 127 128 struct qfq_aggregate; 129 130 struct qfq_class { 131 struct Qdisc_class_common common; 132 133 struct gnet_stats_basic_sync bstats; 134 struct gnet_stats_queue qstats; 135 struct net_rate_estimator __rcu *rate_est; 136 struct Qdisc *qdisc; 137 struct list_head alist; /* Link for active-classes list. */ 138 struct qfq_aggregate *agg; /* Parent aggregate. */ 139 int deficit; /* DRR deficit counter. */ 140 }; 141 142 struct qfq_aggregate { 143 struct hlist_node next; /* Link for the slot list. */ 144 u64 S, F; /* flow timestamps (exact) */ 145 146 /* group we belong to. In principle we would need the index, 147 * which is log_2(lmax/weight), but we never reference it 148 * directly, only the group. 149 */ 150 struct qfq_group *grp; 151 152 /* these are copied from the flowset. */ 153 u32 class_weight; /* Weight of each class in this aggregate. */ 154 /* Max pkt size for the classes in this aggregate, DRR quantum. */ 155 int lmax; 156 157 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */ 158 u32 budgetmax; /* Max budget for this aggregate. */ 159 u32 initial_budget, budget; /* Initial and current budget. */ 160 161 int num_classes; /* Number of classes in this aggr. */ 162 struct list_head active; /* DRR queue of active classes. */ 163 164 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */ 165 }; 166 167 struct qfq_group { 168 u64 S, F; /* group timestamps (approx). */ 169 unsigned int slot_shift; /* Slot shift. */ 170 unsigned int index; /* Group index. */ 171 unsigned int front; /* Index of the front slot. */ 172 unsigned long full_slots; /* non-empty slots */ 173 174 /* Array of RR lists of active aggregates. */ 175 struct hlist_head slots[QFQ_MAX_SLOTS]; 176 }; 177 178 struct qfq_sched { 179 struct tcf_proto __rcu *filter_list; 180 struct tcf_block *block; 181 struct Qdisc_class_hash clhash; 182 183 u64 oldV, V; /* Precise virtual times. */ 184 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */ 185 u32 wsum; /* weight sum */ 186 u32 iwsum; /* inverse weight sum */ 187 188 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 189 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 190 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */ 191 192 u32 max_agg_classes; /* Max number of classes per aggr. */ 193 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ 194 }; 195 196 /* 197 * Possible reasons why the timestamps of an aggregate are updated 198 * enqueue: the aggregate switches from idle to active and must scheduled 199 * for service 200 * requeue: the aggregate finishes its budget, so it stops being served and 201 * must be rescheduled for service 202 */ 203 enum update_reason {enqueue, requeue}; 204 205 static bool cl_is_active(struct qfq_class *cl) 206 { 207 return !list_empty(&cl->alist); 208 } 209 210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 211 { 212 struct qfq_sched *q = qdisc_priv(sch); 213 struct Qdisc_class_common *clc; 214 215 clc = qdisc_class_find(&q->clhash, classid); 216 if (clc == NULL) 217 return NULL; 218 return container_of(clc, struct qfq_class, common); 219 } 220 221 static const struct netlink_range_validation lmax_range = { 222 .min = QFQ_MIN_LMAX, 223 .max = QFQ_MAX_LMAX, 224 }; 225 226 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 227 [TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT), 228 [TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range), 229 }; 230 231 /* 232 * Calculate a flow index, given its weight and maximum packet length. 233 * index = log_2(maxlen/weight) but we need to apply the scaling. 234 * This is used only once at flow creation. 235 */ 236 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) 237 { 238 u64 slot_size = (u64)maxlen * inv_w; 239 unsigned long size_map; 240 int index = 0; 241 242 size_map = slot_size >> min_slot_shift; 243 if (!size_map) 244 goto out; 245 246 index = __fls(size_map) + 1; /* basically a log_2 */ 247 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); 248 249 if (index < 0) 250 index = 0; 251 out: 252 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 253 (unsigned long) ONE_FP/inv_w, maxlen, index); 254 255 return index; 256 } 257 258 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); 259 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, 260 enum update_reason); 261 262 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 263 u32 lmax, u32 weight) 264 { 265 INIT_LIST_HEAD(&agg->active); 266 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 267 268 agg->lmax = lmax; 269 agg->class_weight = weight; 270 } 271 272 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, 273 u32 lmax, u32 weight) 274 { 275 struct qfq_aggregate *agg; 276 277 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) 278 if (agg->lmax == lmax && agg->class_weight == weight) 279 return agg; 280 281 return NULL; 282 } 283 284 285 /* Update aggregate as a function of the new number of classes. */ 286 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 287 int new_num_classes) 288 { 289 u32 new_agg_weight; 290 291 if (new_num_classes == q->max_agg_classes) 292 hlist_del_init(&agg->nonfull_next); 293 294 if (agg->num_classes > new_num_classes && 295 new_num_classes == q->max_agg_classes - 1) /* agg no more full */ 296 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 297 298 /* The next assignment may let 299 * agg->initial_budget > agg->budgetmax 300 * hold, we will take it into account in charge_actual_service(). 301 */ 302 agg->budgetmax = new_num_classes * agg->lmax; 303 new_agg_weight = agg->class_weight * new_num_classes; 304 agg->inv_w = ONE_FP/new_agg_weight; 305 306 if (agg->grp == NULL) { 307 int i = qfq_calc_index(agg->inv_w, agg->budgetmax, 308 q->min_slot_shift); 309 agg->grp = &q->groups[i]; 310 } 311 312 q->wsum += 313 (int) agg->class_weight * (new_num_classes - agg->num_classes); 314 q->iwsum = ONE_FP / q->wsum; 315 316 agg->num_classes = new_num_classes; 317 } 318 319 /* Add class to aggregate. */ 320 static void qfq_add_to_agg(struct qfq_sched *q, 321 struct qfq_aggregate *agg, 322 struct qfq_class *cl) 323 { 324 cl->agg = agg; 325 326 qfq_update_agg(q, agg, agg->num_classes+1); 327 if (cl->qdisc->q.qlen > 0) { /* adding an active class */ 328 list_add_tail(&cl->alist, &agg->active); 329 if (list_first_entry(&agg->active, struct qfq_class, alist) == 330 cl && q->in_serv_agg != agg) /* agg was inactive */ 331 qfq_activate_agg(q, agg, enqueue); /* schedule agg */ 332 } 333 } 334 335 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); 336 337 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 338 { 339 hlist_del_init(&agg->nonfull_next); 340 q->wsum -= agg->class_weight; 341 if (q->wsum != 0) 342 q->iwsum = ONE_FP / q->wsum; 343 344 if (q->in_serv_agg == agg) 345 q->in_serv_agg = qfq_choose_next_agg(q); 346 kfree(agg); 347 } 348 349 /* Deschedule class from within its parent aggregate. */ 350 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 351 { 352 struct qfq_aggregate *agg = cl->agg; 353 354 355 list_del_init(&cl->alist); /* remove from RR queue of the aggregate */ 356 if (list_empty(&agg->active)) /* agg is now inactive */ 357 qfq_deactivate_agg(q, agg); 358 } 359 360 /* Remove class from its parent aggregate. */ 361 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 362 { 363 struct qfq_aggregate *agg = cl->agg; 364 365 cl->agg = NULL; 366 if (agg->num_classes == 1) { /* agg being emptied, destroy it */ 367 qfq_destroy_agg(q, agg); 368 return; 369 } 370 qfq_update_agg(q, agg, agg->num_classes-1); 371 } 372 373 /* Deschedule class and remove it from its parent aggregate. */ 374 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 375 { 376 if (cl->qdisc->q.qlen > 0) /* class is active */ 377 qfq_deactivate_class(q, cl); 378 379 qfq_rm_from_agg(q, cl); 380 } 381 382 /* Move class to a new aggregate, matching the new class weight and/or lmax */ 383 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, 384 u32 lmax) 385 { 386 struct qfq_sched *q = qdisc_priv(sch); 387 struct qfq_aggregate *new_agg; 388 389 /* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */ 390 if (lmax > QFQ_MAX_LMAX) 391 return -EINVAL; 392 393 new_agg = qfq_find_agg(q, lmax, weight); 394 if (new_agg == NULL) { /* create new aggregate */ 395 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); 396 if (new_agg == NULL) 397 return -ENOBUFS; 398 qfq_init_agg(q, new_agg, lmax, weight); 399 } 400 qfq_deact_rm_from_agg(q, cl); 401 qfq_add_to_agg(q, new_agg, cl); 402 403 return 0; 404 } 405 406 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 407 struct nlattr **tca, unsigned long *arg, 408 struct netlink_ext_ack *extack) 409 { 410 struct qfq_sched *q = qdisc_priv(sch); 411 struct qfq_class *cl = (struct qfq_class *)*arg; 412 bool existing = false; 413 struct nlattr *tb[TCA_QFQ_MAX + 1]; 414 struct qfq_aggregate *new_agg = NULL; 415 u32 weight, lmax, inv_w, old_weight, old_lmax; 416 int err; 417 int delta_w; 418 419 if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) { 420 NL_SET_ERR_MSG_MOD(extack, "missing options"); 421 return -EINVAL; 422 } 423 424 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], 425 qfq_policy, extack); 426 if (err < 0) 427 return err; 428 429 weight = nla_get_u32_default(tb[TCA_QFQ_WEIGHT], 1); 430 431 if (tb[TCA_QFQ_LMAX]) { 432 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 433 } else { 434 /* MTU size is user controlled */ 435 lmax = psched_mtu(qdisc_dev(sch)); 436 if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) { 437 NL_SET_ERR_MSG_MOD(extack, 438 "MTU size out of bounds for qfq"); 439 return -EINVAL; 440 } 441 } 442 443 inv_w = ONE_FP / weight; 444 weight = ONE_FP / inv_w; 445 446 if (cl != NULL) { 447 sch_tree_lock(sch); 448 old_weight = cl->agg->class_weight; 449 old_lmax = cl->agg->lmax; 450 sch_tree_unlock(sch); 451 if (lmax == old_lmax && weight == old_weight) 452 return 0; /* nothing to change */ 453 } 454 455 delta_w = weight - (cl ? old_weight : 0); 456 457 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 458 NL_SET_ERR_MSG_FMT_MOD(extack, 459 "total weight out of range (%d + %u)", 460 delta_w, q->wsum); 461 return -EINVAL; 462 } 463 464 if (cl != NULL) { /* modify existing class */ 465 if (tca[TCA_RATE]) { 466 err = gen_replace_estimator(&cl->bstats, NULL, 467 &cl->rate_est, 468 NULL, 469 true, 470 tca[TCA_RATE]); 471 if (err) 472 return err; 473 } 474 existing = true; 475 goto set_change_agg; 476 } 477 478 /* create and init new class */ 479 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 480 if (cl == NULL) 481 return -ENOBUFS; 482 483 gnet_stats_basic_sync_init(&cl->bstats); 484 cl->common.classid = classid; 485 cl->deficit = lmax; 486 INIT_LIST_HEAD(&cl->alist); 487 488 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 489 classid, NULL); 490 if (cl->qdisc == NULL) 491 cl->qdisc = &noop_qdisc; 492 493 if (tca[TCA_RATE]) { 494 err = gen_new_estimator(&cl->bstats, NULL, 495 &cl->rate_est, 496 NULL, 497 true, 498 tca[TCA_RATE]); 499 if (err) 500 goto destroy_class; 501 } 502 503 if (cl->qdisc != &noop_qdisc) 504 qdisc_hash_add(cl->qdisc, true); 505 506 set_change_agg: 507 sch_tree_lock(sch); 508 new_agg = qfq_find_agg(q, lmax, weight); 509 if (new_agg == NULL) { /* create new aggregate */ 510 sch_tree_unlock(sch); 511 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); 512 if (new_agg == NULL) { 513 err = -ENOBUFS; 514 gen_kill_estimator(&cl->rate_est); 515 goto destroy_class; 516 } 517 sch_tree_lock(sch); 518 qfq_init_agg(q, new_agg, lmax, weight); 519 } 520 if (existing) 521 qfq_deact_rm_from_agg(q, cl); 522 else 523 qdisc_class_hash_insert(&q->clhash, &cl->common); 524 qfq_add_to_agg(q, new_agg, cl); 525 sch_tree_unlock(sch); 526 qdisc_class_hash_grow(sch, &q->clhash); 527 528 *arg = (unsigned long)cl; 529 return 0; 530 531 destroy_class: 532 qdisc_put(cl->qdisc); 533 kfree(cl); 534 return err; 535 } 536 537 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 538 { 539 gen_kill_estimator(&cl->rate_est); 540 qdisc_put(cl->qdisc); 541 kfree(cl); 542 } 543 544 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg, 545 struct netlink_ext_ack *extack) 546 { 547 struct qfq_sched *q = qdisc_priv(sch); 548 struct qfq_class *cl = (struct qfq_class *)arg; 549 550 if (qdisc_class_in_use(&cl->common)) { 551 NL_SET_ERR_MSG_MOD(extack, "QFQ class in use"); 552 return -EBUSY; 553 } 554 555 sch_tree_lock(sch); 556 557 qdisc_purge_queue(cl->qdisc); 558 qdisc_class_hash_remove(&q->clhash, &cl->common); 559 qfq_rm_from_agg(q, cl); 560 561 sch_tree_unlock(sch); 562 563 qfq_destroy_class(sch, cl); 564 return 0; 565 } 566 567 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid) 568 { 569 return (unsigned long)qfq_find_class(sch, classid); 570 } 571 572 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl, 573 struct netlink_ext_ack *extack) 574 { 575 struct qfq_sched *q = qdisc_priv(sch); 576 577 if (cl) 578 return NULL; 579 580 return q->block; 581 } 582 583 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 584 u32 classid) 585 { 586 struct qfq_class *cl = qfq_find_class(sch, classid); 587 588 if (cl) 589 qdisc_class_get(&cl->common); 590 591 return (unsigned long)cl; 592 } 593 594 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 595 { 596 struct qfq_class *cl = (struct qfq_class *)arg; 597 598 qdisc_class_put(&cl->common); 599 } 600 601 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 602 struct Qdisc *new, struct Qdisc **old, 603 struct netlink_ext_ack *extack) 604 { 605 struct qfq_class *cl = (struct qfq_class *)arg; 606 607 if (new == NULL) { 608 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 609 cl->common.classid, NULL); 610 if (new == NULL) 611 new = &noop_qdisc; 612 } 613 614 *old = qdisc_replace(sch, new, &cl->qdisc); 615 return 0; 616 } 617 618 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 619 { 620 struct qfq_class *cl = (struct qfq_class *)arg; 621 622 return cl->qdisc; 623 } 624 625 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 626 struct sk_buff *skb, struct tcmsg *tcm) 627 { 628 struct qfq_class *cl = (struct qfq_class *)arg; 629 struct nlattr *nest; 630 u32 class_weight, lmax; 631 632 tcm->tcm_parent = TC_H_ROOT; 633 tcm->tcm_handle = cl->common.classid; 634 tcm->tcm_info = cl->qdisc->handle; 635 636 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 637 if (nest == NULL) 638 goto nla_put_failure; 639 640 sch_tree_lock(sch); 641 class_weight = cl->agg->class_weight; 642 lmax = cl->agg->lmax; 643 sch_tree_unlock(sch); 644 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, class_weight) || 645 nla_put_u32(skb, TCA_QFQ_LMAX, lmax)) 646 goto nla_put_failure; 647 return nla_nest_end(skb, nest); 648 649 nla_put_failure: 650 nla_nest_cancel(skb, nest); 651 return -EMSGSIZE; 652 } 653 654 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 655 struct gnet_dump *d) 656 { 657 struct qfq_class *cl = (struct qfq_class *)arg; 658 struct tc_qfq_stats xstats; 659 660 memset(&xstats, 0, sizeof(xstats)); 661 662 sch_tree_lock(sch); 663 xstats.weight = cl->agg->class_weight; 664 xstats.lmax = cl->agg->lmax; 665 sch_tree_unlock(sch); 666 667 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 || 668 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 669 qdisc_qstats_copy(d, cl->qdisc) < 0) 670 return -1; 671 672 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 673 } 674 675 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 676 { 677 struct qfq_sched *q = qdisc_priv(sch); 678 struct qfq_class *cl; 679 unsigned int i; 680 681 if (arg->stop) 682 return; 683 684 for (i = 0; i < q->clhash.hashsize; i++) { 685 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 686 if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg)) 687 return; 688 } 689 } 690 } 691 692 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 693 int *qerr) 694 { 695 struct qfq_sched *q = qdisc_priv(sch); 696 struct qfq_class *cl; 697 struct tcf_result res; 698 struct tcf_proto *fl; 699 int result; 700 701 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 702 pr_debug("qfq_classify: found %d\n", skb->priority); 703 cl = qfq_find_class(sch, skb->priority); 704 if (cl != NULL) 705 return cl; 706 } 707 708 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 709 fl = rcu_dereference_bh(q->filter_list); 710 result = tcf_classify(skb, NULL, fl, &res, false); 711 if (result >= 0) { 712 #ifdef CONFIG_NET_CLS_ACT 713 switch (result) { 714 case TC_ACT_QUEUED: 715 case TC_ACT_STOLEN: 716 case TC_ACT_TRAP: 717 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 718 fallthrough; 719 case TC_ACT_SHOT: 720 return NULL; 721 } 722 #endif 723 cl = (struct qfq_class *)res.class; 724 if (cl == NULL) 725 cl = qfq_find_class(sch, res.classid); 726 return cl; 727 } 728 729 return NULL; 730 } 731 732 /* Generic comparison function, handling wraparound. */ 733 static inline int qfq_gt(u64 a, u64 b) 734 { 735 return (s64)(a - b) > 0; 736 } 737 738 /* Round a precise timestamp to its slotted value. */ 739 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 740 { 741 return ts & ~((1ULL << shift) - 1); 742 } 743 744 /* return the pointer to the group with lowest index in the bitmap */ 745 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 746 unsigned long bitmap) 747 { 748 int index = __ffs(bitmap); 749 return &q->groups[index]; 750 } 751 /* Calculate a mask to mimic what would be ffs_from(). */ 752 static inline unsigned long mask_from(unsigned long bitmap, int from) 753 { 754 return bitmap & ~((1UL << from) - 1); 755 } 756 757 /* 758 * The state computation relies on ER=0, IR=1, EB=2, IB=3 759 * First compute eligibility comparing grp->S, q->V, 760 * then check if someone is blocking us and possibly add EB 761 */ 762 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 763 { 764 /* if S > V we are not eligible */ 765 unsigned int state = qfq_gt(grp->S, q->V); 766 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 767 struct qfq_group *next; 768 769 if (mask) { 770 next = qfq_ffs(q, mask); 771 if (qfq_gt(grp->F, next->F)) 772 state |= EB; 773 } 774 775 return state; 776 } 777 778 779 /* 780 * In principle 781 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 782 * q->bitmaps[src] &= ~mask; 783 * but we should make sure that src != dst 784 */ 785 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 786 int src, int dst) 787 { 788 q->bitmaps[dst] |= q->bitmaps[src] & mask; 789 q->bitmaps[src] &= ~mask; 790 } 791 792 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 793 { 794 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 795 struct qfq_group *next; 796 797 if (mask) { 798 next = qfq_ffs(q, mask); 799 if (!qfq_gt(next->F, old_F)) 800 return; 801 } 802 803 mask = (1UL << index) - 1; 804 qfq_move_groups(q, mask, EB, ER); 805 qfq_move_groups(q, mask, IB, IR); 806 } 807 808 /* 809 * perhaps 810 * 811 old_V ^= q->V; 812 old_V >>= q->min_slot_shift; 813 if (old_V) { 814 ... 815 } 816 * 817 */ 818 static void qfq_make_eligible(struct qfq_sched *q) 819 { 820 unsigned long vslot = q->V >> q->min_slot_shift; 821 unsigned long old_vslot = q->oldV >> q->min_slot_shift; 822 823 if (vslot != old_vslot) { 824 unsigned long mask; 825 int last_flip_pos = fls(vslot ^ old_vslot); 826 827 if (last_flip_pos > 31) /* higher than the number of groups */ 828 mask = ~0UL; /* make all groups eligible */ 829 else 830 mask = (1UL << last_flip_pos) - 1; 831 832 qfq_move_groups(q, mask, IR, ER); 833 qfq_move_groups(q, mask, IB, EB); 834 } 835 } 836 837 /* 838 * The index of the slot in which the input aggregate agg is to be 839 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' 840 * and not a '-1' because the start time of the group may be moved 841 * backward by one slot after the aggregate has been inserted, and 842 * this would cause non-empty slots to be right-shifted by one 843 * position. 844 * 845 * QFQ+ fully satisfies this bound to the slot index if the parameters 846 * of the classes are not changed dynamically, and if QFQ+ never 847 * happens to postpone the service of agg unjustly, i.e., it never 848 * happens that the aggregate becomes backlogged and eligible, or just 849 * eligible, while an aggregate with a higher approximated finish time 850 * is being served. In particular, in this case QFQ+ guarantees that 851 * the timestamps of agg are low enough that the slot index is never 852 * higher than 2. Unfortunately, QFQ+ cannot provide the same 853 * guarantee if it happens to unjustly postpone the service of agg, or 854 * if the parameters of some class are changed. 855 * 856 * As for the first event, i.e., an out-of-order service, the 857 * upper bound to the slot index guaranteed by QFQ+ grows to 858 * 2 + 859 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * 860 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. 861 * 862 * The following function deals with this problem by backward-shifting 863 * the timestamps of agg, if needed, so as to guarantee that the slot 864 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may 865 * cause the service of other aggregates to be postponed, yet the 866 * worst-case guarantees of these aggregates are not violated. In 867 * fact, in case of no out-of-order service, the timestamps of agg 868 * would have been even lower than they are after the backward shift, 869 * because QFQ+ would have guaranteed a maximum value equal to 2 for 870 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose 871 * service is postponed because of the backward-shift would have 872 * however waited for the service of agg before being served. 873 * 874 * The other event that may cause the slot index to be higher than 2 875 * for agg is a recent change of the parameters of some class. If the 876 * weight of a class is increased or the lmax (max_pkt_size) of the 877 * class is decreased, then a new aggregate with smaller slot size 878 * than the original parent aggregate of the class may happen to be 879 * activated. The activation of this aggregate should be properly 880 * delayed to when the service of the class has finished in the ideal 881 * system tracked by QFQ+. If the activation of the aggregate is not 882 * delayed to this reference time instant, then this aggregate may be 883 * unjustly served before other aggregates waiting for service. This 884 * may cause the above bound to the slot index to be violated for some 885 * of these unlucky aggregates. 886 * 887 * Instead of delaying the activation of the new aggregate, which is 888 * quite complex, the above-discussed capping of the slot index is 889 * used to handle also the consequences of a change of the parameters 890 * of a class. 891 */ 892 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, 893 u64 roundedS) 894 { 895 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 896 unsigned int i; /* slot index in the bucket list */ 897 898 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 899 u64 deltaS = roundedS - grp->S - 900 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 901 agg->S -= deltaS; 902 agg->F -= deltaS; 903 slot = QFQ_MAX_SLOTS - 2; 904 } 905 906 i = (grp->front + slot) % QFQ_MAX_SLOTS; 907 908 hlist_add_head(&agg->next, &grp->slots[i]); 909 __set_bit(slot, &grp->full_slots); 910 } 911 912 /* Maybe introduce hlist_first_entry?? */ 913 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) 914 { 915 return hlist_entry(grp->slots[grp->front].first, 916 struct qfq_aggregate, next); 917 } 918 919 /* 920 * remove the entry from the slot 921 */ 922 static void qfq_front_slot_remove(struct qfq_group *grp) 923 { 924 struct qfq_aggregate *agg = qfq_slot_head(grp); 925 926 BUG_ON(!agg); 927 hlist_del(&agg->next); 928 if (hlist_empty(&grp->slots[grp->front])) 929 __clear_bit(0, &grp->full_slots); 930 } 931 932 /* 933 * Returns the first aggregate in the first non-empty bucket of the 934 * group. As a side effect, adjusts the bucket list so the first 935 * non-empty bucket is at position 0 in full_slots. 936 */ 937 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) 938 { 939 unsigned int i; 940 941 pr_debug("qfq slot_scan: grp %u full %#lx\n", 942 grp->index, grp->full_slots); 943 944 if (grp->full_slots == 0) 945 return NULL; 946 947 i = __ffs(grp->full_slots); /* zero based */ 948 if (i > 0) { 949 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 950 grp->full_slots >>= i; 951 } 952 953 return qfq_slot_head(grp); 954 } 955 956 /* 957 * adjust the bucket list. When the start time of a group decreases, 958 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 959 * move the objects. The mask of occupied slots must be shifted 960 * because we use ffs() to find the first non-empty slot. 961 * This covers decreases in the group's start time, but what about 962 * increases of the start time ? 963 * Here too we should make sure that i is less than 32 964 */ 965 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 966 { 967 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 968 969 grp->full_slots <<= i; 970 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 971 } 972 973 static void qfq_update_eligible(struct qfq_sched *q) 974 { 975 struct qfq_group *grp; 976 unsigned long ineligible; 977 978 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 979 if (ineligible) { 980 if (!q->bitmaps[ER]) { 981 grp = qfq_ffs(q, ineligible); 982 if (qfq_gt(grp->S, q->V)) 983 q->V = grp->S; 984 } 985 qfq_make_eligible(q); 986 } 987 } 988 989 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ 990 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg, 991 struct qfq_class *cl, unsigned int len) 992 { 993 struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc); 994 995 if (!skb) 996 return NULL; 997 998 cl->deficit -= (int) len; 999 1000 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ 1001 list_del_init(&cl->alist); 1002 else if (cl->deficit < qdisc_peek_len(cl->qdisc)) { 1003 cl->deficit += agg->lmax; 1004 list_move_tail(&cl->alist, &agg->active); 1005 } 1006 1007 return skb; 1008 } 1009 1010 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, 1011 struct qfq_class **cl, 1012 unsigned int *len) 1013 { 1014 struct sk_buff *skb; 1015 1016 *cl = list_first_entry(&agg->active, struct qfq_class, alist); 1017 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); 1018 if (skb == NULL) 1019 qdisc_warn_nonwc("qfq_dequeue", (*cl)->qdisc); 1020 else 1021 *len = qdisc_pkt_len(skb); 1022 1023 return skb; 1024 } 1025 1026 /* Update F according to the actual service received by the aggregate. */ 1027 static inline void charge_actual_service(struct qfq_aggregate *agg) 1028 { 1029 /* Compute the service received by the aggregate, taking into 1030 * account that, after decreasing the number of classes in 1031 * agg, it may happen that 1032 * agg->initial_budget - agg->budget > agg->bugdetmax 1033 */ 1034 u32 service_received = min(agg->budgetmax, 1035 agg->initial_budget - agg->budget); 1036 1037 agg->F = agg->S + (u64)service_received * agg->inv_w; 1038 } 1039 1040 /* Assign a reasonable start time for a new aggregate in group i. 1041 * Admissible values for \hat(F) are multiples of \sigma_i 1042 * no greater than V+\sigma_i . Larger values mean that 1043 * we had a wraparound so we consider the timestamp to be stale. 1044 * 1045 * If F is not stale and F >= V then we set S = F. 1046 * Otherwise we should assign S = V, but this may violate 1047 * the ordering in EB (see [2]). So, if we have groups in ER, 1048 * set S to the F_j of the first group j which would be blocking us. 1049 * We are guaranteed not to move S backward because 1050 * otherwise our group i would still be blocked. 1051 */ 1052 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) 1053 { 1054 unsigned long mask; 1055 u64 limit, roundedF; 1056 int slot_shift = agg->grp->slot_shift; 1057 1058 roundedF = qfq_round_down(agg->F, slot_shift); 1059 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 1060 1061 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { 1062 /* timestamp was stale */ 1063 mask = mask_from(q->bitmaps[ER], agg->grp->index); 1064 if (mask) { 1065 struct qfq_group *next = qfq_ffs(q, mask); 1066 if (qfq_gt(roundedF, next->F)) { 1067 if (qfq_gt(limit, next->F)) 1068 agg->S = next->F; 1069 else /* preserve timestamp correctness */ 1070 agg->S = limit; 1071 return; 1072 } 1073 } 1074 agg->S = q->V; 1075 } else /* timestamp is not stale */ 1076 agg->S = agg->F; 1077 } 1078 1079 /* Update the timestamps of agg before scheduling/rescheduling it for 1080 * service. In particular, assign to agg->F its maximum possible 1081 * value, i.e., the virtual finish time with which the aggregate 1082 * should be labeled if it used all its budget once in service. 1083 */ 1084 static inline void 1085 qfq_update_agg_ts(struct qfq_sched *q, 1086 struct qfq_aggregate *agg, enum update_reason reason) 1087 { 1088 if (reason != requeue) 1089 qfq_update_start(q, agg); 1090 else /* just charge agg for the service received */ 1091 agg->S = agg->F; 1092 1093 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; 1094 } 1095 1096 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); 1097 1098 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 1099 { 1100 struct qfq_sched *q = qdisc_priv(sch); 1101 struct qfq_aggregate *in_serv_agg = q->in_serv_agg; 1102 struct qfq_class *cl; 1103 struct sk_buff *skb = NULL; 1104 /* next-packet len, 0 means no more active classes in in-service agg */ 1105 unsigned int len = 0; 1106 1107 if (in_serv_agg == NULL) 1108 return NULL; 1109 1110 if (!list_empty(&in_serv_agg->active)) 1111 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1112 1113 /* 1114 * If there are no active classes in the in-service aggregate, 1115 * or if the aggregate has not enough budget to serve its next 1116 * class, then choose the next aggregate to serve. 1117 */ 1118 if (len == 0 || in_serv_agg->budget < len) { 1119 charge_actual_service(in_serv_agg); 1120 1121 /* recharge the budget of the aggregate */ 1122 in_serv_agg->initial_budget = in_serv_agg->budget = 1123 in_serv_agg->budgetmax; 1124 1125 if (!list_empty(&in_serv_agg->active)) { 1126 /* 1127 * Still active: reschedule for 1128 * service. Possible optimization: if no other 1129 * aggregate is active, then there is no point 1130 * in rescheduling this aggregate, and we can 1131 * just keep it as the in-service one. This 1132 * should be however a corner case, and to 1133 * handle it, we would need to maintain an 1134 * extra num_active_aggs field. 1135 */ 1136 qfq_update_agg_ts(q, in_serv_agg, requeue); 1137 qfq_schedule_agg(q, in_serv_agg); 1138 } else if (sch->q.qlen == 0) { /* no aggregate to serve */ 1139 q->in_serv_agg = NULL; 1140 return NULL; 1141 } 1142 1143 /* 1144 * If we get here, there are other aggregates queued: 1145 * choose the new aggregate to serve. 1146 */ 1147 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); 1148 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1149 } 1150 if (!skb) 1151 return NULL; 1152 1153 sch->q.qlen--; 1154 1155 skb = agg_dequeue(in_serv_agg, cl, len); 1156 1157 if (!skb) { 1158 sch->q.qlen++; 1159 return NULL; 1160 } 1161 1162 qdisc_qstats_backlog_dec(sch, skb); 1163 qdisc_bstats_update(sch, skb); 1164 1165 /* If lmax is lowered, through qfq_change_class, for a class 1166 * owning pending packets with larger size than the new value 1167 * of lmax, then the following condition may hold. 1168 */ 1169 if (unlikely(in_serv_agg->budget < len)) 1170 in_serv_agg->budget = 0; 1171 else 1172 in_serv_agg->budget -= len; 1173 1174 q->V += (u64)len * q->iwsum; 1175 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 1176 len, (unsigned long long) in_serv_agg->F, 1177 (unsigned long long) q->V); 1178 1179 return skb; 1180 } 1181 1182 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) 1183 { 1184 struct qfq_group *grp; 1185 struct qfq_aggregate *agg, *new_front_agg; 1186 u64 old_F; 1187 1188 qfq_update_eligible(q); 1189 q->oldV = q->V; 1190 1191 if (!q->bitmaps[ER]) 1192 return NULL; 1193 1194 grp = qfq_ffs(q, q->bitmaps[ER]); 1195 old_F = grp->F; 1196 1197 agg = qfq_slot_head(grp); 1198 1199 /* agg starts to be served, remove it from schedule */ 1200 qfq_front_slot_remove(grp); 1201 1202 new_front_agg = qfq_slot_scan(grp); 1203 1204 if (new_front_agg == NULL) /* group is now inactive, remove from ER */ 1205 __clear_bit(grp->index, &q->bitmaps[ER]); 1206 else { 1207 u64 roundedS = qfq_round_down(new_front_agg->S, 1208 grp->slot_shift); 1209 unsigned int s; 1210 1211 if (grp->S == roundedS) 1212 return agg; 1213 grp->S = roundedS; 1214 grp->F = roundedS + (2ULL << grp->slot_shift); 1215 __clear_bit(grp->index, &q->bitmaps[ER]); 1216 s = qfq_calc_state(q, grp); 1217 __set_bit(grp->index, &q->bitmaps[s]); 1218 } 1219 1220 qfq_unblock_groups(q, grp->index, old_F); 1221 1222 return agg; 1223 } 1224 1225 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, 1226 struct sk_buff **to_free) 1227 { 1228 unsigned int len = qdisc_pkt_len(skb), gso_segs; 1229 struct qfq_sched *q = qdisc_priv(sch); 1230 struct qfq_class *cl; 1231 struct qfq_aggregate *agg; 1232 int err = 0; 1233 1234 cl = qfq_classify(skb, sch, &err); 1235 if (cl == NULL) { 1236 if (err & __NET_XMIT_BYPASS) 1237 qdisc_qstats_drop(sch); 1238 __qdisc_drop(skb, to_free); 1239 return err; 1240 } 1241 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 1242 1243 if (unlikely(cl->agg->lmax < len)) { 1244 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 1245 cl->agg->lmax, len, cl->common.classid); 1246 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len); 1247 if (err) { 1248 cl->qstats.drops++; 1249 return qdisc_drop(skb, sch, to_free); 1250 } 1251 } 1252 1253 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1; 1254 err = qdisc_enqueue(skb, cl->qdisc, to_free); 1255 if (unlikely(err != NET_XMIT_SUCCESS)) { 1256 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 1257 if (net_xmit_drop_count(err)) { 1258 cl->qstats.drops++; 1259 qdisc_qstats_drop(sch); 1260 } 1261 return err; 1262 } 1263 1264 _bstats_update(&cl->bstats, len, gso_segs); 1265 sch->qstats.backlog += len; 1266 ++sch->q.qlen; 1267 1268 agg = cl->agg; 1269 /* if the class is active, then done here */ 1270 if (cl_is_active(cl)) { 1271 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && 1272 list_first_entry(&agg->active, struct qfq_class, alist) 1273 == cl && cl->deficit < len) 1274 list_move_tail(&cl->alist, &agg->active); 1275 1276 return err; 1277 } 1278 1279 /* schedule class for service within the aggregate */ 1280 cl->deficit = agg->lmax; 1281 list_add_tail(&cl->alist, &agg->active); 1282 1283 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || 1284 q->in_serv_agg == agg) 1285 return err; /* non-empty or in service, nothing else to do */ 1286 1287 qfq_activate_agg(q, agg, enqueue); 1288 1289 return err; 1290 } 1291 1292 /* 1293 * Schedule aggregate according to its timestamps. 1294 */ 1295 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1296 { 1297 struct qfq_group *grp = agg->grp; 1298 u64 roundedS; 1299 int s; 1300 1301 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1302 1303 /* 1304 * Insert agg in the correct bucket. 1305 * If agg->S >= grp->S we don't need to adjust the 1306 * bucket list and simply go to the insertion phase. 1307 * Otherwise grp->S is decreasing, we must make room 1308 * in the bucket list, and also recompute the group state. 1309 * Finally, if there were no flows in this group and nobody 1310 * was in ER make sure to adjust V. 1311 */ 1312 if (grp->full_slots) { 1313 if (!qfq_gt(grp->S, agg->S)) 1314 goto skip_update; 1315 1316 /* create a slot for this agg->S */ 1317 qfq_slot_rotate(grp, roundedS); 1318 /* group was surely ineligible, remove */ 1319 __clear_bit(grp->index, &q->bitmaps[IR]); 1320 __clear_bit(grp->index, &q->bitmaps[IB]); 1321 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && 1322 q->in_serv_agg == NULL) 1323 q->V = roundedS; 1324 1325 grp->S = roundedS; 1326 grp->F = roundedS + (2ULL << grp->slot_shift); 1327 s = qfq_calc_state(q, grp); 1328 __set_bit(grp->index, &q->bitmaps[s]); 1329 1330 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1331 s, q->bitmaps[s], 1332 (unsigned long long) agg->S, 1333 (unsigned long long) agg->F, 1334 (unsigned long long) q->V); 1335 1336 skip_update: 1337 qfq_slot_insert(grp, agg, roundedS); 1338 } 1339 1340 1341 /* Update agg ts and schedule agg for service */ 1342 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 1343 enum update_reason reason) 1344 { 1345 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ 1346 1347 qfq_update_agg_ts(q, agg, reason); 1348 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ 1349 q->in_serv_agg = agg; /* start serving this aggregate */ 1350 /* update V: to be in service, agg must be eligible */ 1351 q->oldV = q->V = agg->S; 1352 } else if (agg != q->in_serv_agg) 1353 qfq_schedule_agg(q, agg); 1354 } 1355 1356 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1357 struct qfq_aggregate *agg) 1358 { 1359 unsigned int i, offset; 1360 u64 roundedS; 1361 1362 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1363 offset = (roundedS - grp->S) >> grp->slot_shift; 1364 1365 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1366 1367 hlist_del(&agg->next); 1368 if (hlist_empty(&grp->slots[i])) 1369 __clear_bit(offset, &grp->full_slots); 1370 } 1371 1372 /* 1373 * Called to forcibly deschedule an aggregate. If the aggregate is 1374 * not in the front bucket, or if the latter has other aggregates in 1375 * the front bucket, we can simply remove the aggregate with no other 1376 * side effects. 1377 * Otherwise we must propagate the event up. 1378 */ 1379 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1380 { 1381 struct qfq_group *grp = agg->grp; 1382 unsigned long mask; 1383 u64 roundedS; 1384 int s; 1385 1386 if (agg == q->in_serv_agg) { 1387 charge_actual_service(agg); 1388 q->in_serv_agg = qfq_choose_next_agg(q); 1389 return; 1390 } 1391 1392 agg->F = agg->S; 1393 qfq_slot_remove(q, grp, agg); 1394 1395 if (!grp->full_slots) { 1396 __clear_bit(grp->index, &q->bitmaps[IR]); 1397 __clear_bit(grp->index, &q->bitmaps[EB]); 1398 __clear_bit(grp->index, &q->bitmaps[IB]); 1399 1400 if (test_bit(grp->index, &q->bitmaps[ER]) && 1401 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1402 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1403 if (mask) 1404 mask = ~((1UL << __fls(mask)) - 1); 1405 else 1406 mask = ~0UL; 1407 qfq_move_groups(q, mask, EB, ER); 1408 qfq_move_groups(q, mask, IB, IR); 1409 } 1410 __clear_bit(grp->index, &q->bitmaps[ER]); 1411 } else if (hlist_empty(&grp->slots[grp->front])) { 1412 agg = qfq_slot_scan(grp); 1413 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1414 if (grp->S != roundedS) { 1415 __clear_bit(grp->index, &q->bitmaps[ER]); 1416 __clear_bit(grp->index, &q->bitmaps[IR]); 1417 __clear_bit(grp->index, &q->bitmaps[EB]); 1418 __clear_bit(grp->index, &q->bitmaps[IB]); 1419 grp->S = roundedS; 1420 grp->F = roundedS + (2ULL << grp->slot_shift); 1421 s = qfq_calc_state(q, grp); 1422 __set_bit(grp->index, &q->bitmaps[s]); 1423 } 1424 } 1425 } 1426 1427 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1428 { 1429 struct qfq_sched *q = qdisc_priv(sch); 1430 struct qfq_class *cl = (struct qfq_class *)arg; 1431 1432 if (list_empty(&cl->alist)) 1433 return; 1434 qfq_deactivate_class(q, cl); 1435 } 1436 1437 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt, 1438 struct netlink_ext_ack *extack) 1439 { 1440 struct qfq_sched *q = qdisc_priv(sch); 1441 struct qfq_group *grp; 1442 int i, j, err; 1443 u32 max_cl_shift, maxbudg_shift, max_classes; 1444 1445 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 1446 if (err) 1447 return err; 1448 1449 err = qdisc_class_hash_init(&q->clhash); 1450 if (err < 0) 1451 return err; 1452 1453 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1, 1454 QFQ_MAX_AGG_CLASSES); 1455 /* max_cl_shift = floor(log_2(max_classes)) */ 1456 max_cl_shift = __fls(max_classes); 1457 q->max_agg_classes = 1<<max_cl_shift; 1458 1459 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ 1460 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; 1461 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; 1462 1463 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1464 grp = &q->groups[i]; 1465 grp->index = i; 1466 grp->slot_shift = q->min_slot_shift + i; 1467 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1468 INIT_HLIST_HEAD(&grp->slots[j]); 1469 } 1470 1471 INIT_HLIST_HEAD(&q->nonfull_aggs); 1472 1473 return 0; 1474 } 1475 1476 static void qfq_reset_qdisc(struct Qdisc *sch) 1477 { 1478 struct qfq_sched *q = qdisc_priv(sch); 1479 struct qfq_class *cl; 1480 unsigned int i; 1481 1482 for (i = 0; i < q->clhash.hashsize; i++) { 1483 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1484 if (cl->qdisc->q.qlen > 0) 1485 qfq_deactivate_class(q, cl); 1486 1487 qdisc_reset(cl->qdisc); 1488 } 1489 } 1490 } 1491 1492 static void qfq_destroy_qdisc(struct Qdisc *sch) 1493 { 1494 struct qfq_sched *q = qdisc_priv(sch); 1495 struct qfq_class *cl; 1496 struct hlist_node *next; 1497 unsigned int i; 1498 1499 tcf_block_put(q->block); 1500 1501 for (i = 0; i < q->clhash.hashsize; i++) { 1502 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1503 common.hnode) { 1504 qfq_rm_from_agg(q, cl); 1505 qfq_destroy_class(sch, cl); 1506 } 1507 } 1508 qdisc_class_hash_destroy(&q->clhash); 1509 } 1510 1511 static const struct Qdisc_class_ops qfq_class_ops = { 1512 .change = qfq_change_class, 1513 .delete = qfq_delete_class, 1514 .find = qfq_search_class, 1515 .tcf_block = qfq_tcf_block, 1516 .bind_tcf = qfq_bind_tcf, 1517 .unbind_tcf = qfq_unbind_tcf, 1518 .graft = qfq_graft_class, 1519 .leaf = qfq_class_leaf, 1520 .qlen_notify = qfq_qlen_notify, 1521 .dump = qfq_dump_class, 1522 .dump_stats = qfq_dump_class_stats, 1523 .walk = qfq_walk, 1524 }; 1525 1526 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1527 .cl_ops = &qfq_class_ops, 1528 .id = "qfq", 1529 .priv_size = sizeof(struct qfq_sched), 1530 .enqueue = qfq_enqueue, 1531 .dequeue = qfq_dequeue, 1532 .peek = qdisc_peek_dequeued, 1533 .init = qfq_init_qdisc, 1534 .reset = qfq_reset_qdisc, 1535 .destroy = qfq_destroy_qdisc, 1536 .owner = THIS_MODULE, 1537 }; 1538 MODULE_ALIAS_NET_SCH("qfq"); 1539 1540 static int __init qfq_init(void) 1541 { 1542 return register_qdisc(&qfq_qdisc_ops); 1543 } 1544 1545 static void __exit qfq_exit(void) 1546 { 1547 unregister_qdisc(&qfq_qdisc_ops); 1548 } 1549 1550 module_init(qfq_init); 1551 module_exit(qfq_exit); 1552 MODULE_LICENSE("GPL"); 1553 MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc"); 1554