1 /* 2 * net/sched/sch_qfq.c Quick Fair Queueing Scheduler. 3 * 4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * version 2 as published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/bitops.h> 14 #include <linux/errno.h> 15 #include <linux/netdevice.h> 16 #include <linux/pkt_sched.h> 17 #include <net/sch_generic.h> 18 #include <net/pkt_sched.h> 19 #include <net/pkt_cls.h> 20 21 22 /* Quick Fair Queueing 23 =================== 24 25 Sources: 26 27 Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 28 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 29 30 See also: 31 http://retis.sssup.it/~fabio/linux/qfq/ 32 */ 33 34 /* 35 36 Virtual time computations. 37 38 S, F and V are all computed in fixed point arithmetic with 39 FRAC_BITS decimal bits. 40 41 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 42 one bit per index. 43 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 44 45 The layout of the bits is as below: 46 47 [ MTU_SHIFT ][ FRAC_BITS ] 48 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 49 ^.__grp->index = 0 50 *.__grp->slot_shift 51 52 where MIN_SLOT_SHIFT is derived by difference from the others. 53 54 The max group index corresponds to Lmax/w_min, where 55 Lmax=1<<MTU_SHIFT, w_min = 1 . 56 From this, and knowing how many groups (MAX_INDEX) we want, 57 we can derive the shift corresponding to each group. 58 59 Because we often need to compute 60 F = S + len/w_i and V = V + len/wsum 61 instead of storing w_i store the value 62 inv_w = (1<<FRAC_BITS)/w_i 63 so we can do F = S + len * inv_w * wsum. 64 We use W_TOT in the formulas so we can easily move between 65 static and adaptive weight sum. 66 67 The per-scheduler-instance data contain all the data structures 68 for the scheduler: bitmaps and bucket lists. 69 70 */ 71 72 /* 73 * Maximum number of consecutive slots occupied by backlogged classes 74 * inside a group. 75 */ 76 #define QFQ_MAX_SLOTS 32 77 78 /* 79 * Shifts used for class<->group mapping. We allow class weights that are 80 * in the range [1, 2^MAX_WSHIFT], and we try to map each class i to the 81 * group with the smallest index that can support the L_i / r_i configured 82 * for the class. 83 * 84 * grp->index is the index of the group; and grp->slot_shift 85 * is the shift for the corresponding (scaled) sigma_i. 86 */ 87 #define QFQ_MAX_INDEX 19 88 #define QFQ_MAX_WSHIFT 16 89 90 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) 91 #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT) 92 93 #define FRAC_BITS 30 /* fixed point arithmetic */ 94 #define ONE_FP (1UL << FRAC_BITS) 95 #define IWSUM (ONE_FP/QFQ_MAX_WSUM) 96 97 #define QFQ_MTU_SHIFT 11 98 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX) 99 100 /* 101 * Possible group states. These values are used as indexes for the bitmaps 102 * array of struct qfq_queue. 103 */ 104 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 105 106 struct qfq_group; 107 108 struct qfq_class { 109 struct Qdisc_class_common common; 110 111 unsigned int refcnt; 112 unsigned int filter_cnt; 113 114 struct gnet_stats_basic_packed bstats; 115 struct gnet_stats_queue qstats; 116 struct gnet_stats_rate_est rate_est; 117 struct Qdisc *qdisc; 118 119 struct hlist_node next; /* Link for the slot list. */ 120 u64 S, F; /* flow timestamps (exact) */ 121 122 /* group we belong to. In principle we would need the index, 123 * which is log_2(lmax/weight), but we never reference it 124 * directly, only the group. 125 */ 126 struct qfq_group *grp; 127 128 /* these are copied from the flowset. */ 129 u32 inv_w; /* ONE_FP/weight */ 130 u32 lmax; /* Max packet size for this flow. */ 131 }; 132 133 struct qfq_group { 134 u64 S, F; /* group timestamps (approx). */ 135 unsigned int slot_shift; /* Slot shift. */ 136 unsigned int index; /* Group index. */ 137 unsigned int front; /* Index of the front slot. */ 138 unsigned long full_slots; /* non-empty slots */ 139 140 /* Array of RR lists of active classes. */ 141 struct hlist_head slots[QFQ_MAX_SLOTS]; 142 }; 143 144 struct qfq_sched { 145 struct tcf_proto *filter_list; 146 struct Qdisc_class_hash clhash; 147 148 u64 V; /* Precise virtual time. */ 149 u32 wsum; /* weight sum */ 150 151 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 152 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 153 }; 154 155 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 156 { 157 struct qfq_sched *q = qdisc_priv(sch); 158 struct Qdisc_class_common *clc; 159 160 clc = qdisc_class_find(&q->clhash, classid); 161 if (clc == NULL) 162 return NULL; 163 return container_of(clc, struct qfq_class, common); 164 } 165 166 static void qfq_purge_queue(struct qfq_class *cl) 167 { 168 unsigned int len = cl->qdisc->q.qlen; 169 170 qdisc_reset(cl->qdisc); 171 qdisc_tree_decrease_qlen(cl->qdisc, len); 172 } 173 174 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 175 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, 176 [TCA_QFQ_LMAX] = { .type = NLA_U32 }, 177 }; 178 179 /* 180 * Calculate a flow index, given its weight and maximum packet length. 181 * index = log_2(maxlen/weight) but we need to apply the scaling. 182 * This is used only once at flow creation. 183 */ 184 static int qfq_calc_index(u32 inv_w, unsigned int maxlen) 185 { 186 u64 slot_size = (u64)maxlen * inv_w; 187 unsigned long size_map; 188 int index = 0; 189 190 size_map = slot_size >> QFQ_MIN_SLOT_SHIFT; 191 if (!size_map) 192 goto out; 193 194 index = __fls(size_map) + 1; /* basically a log_2 */ 195 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1))); 196 197 if (index < 0) 198 index = 0; 199 out: 200 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 201 (unsigned long) ONE_FP/inv_w, maxlen, index); 202 203 return index; 204 } 205 206 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 207 struct nlattr **tca, unsigned long *arg) 208 { 209 struct qfq_sched *q = qdisc_priv(sch); 210 struct qfq_class *cl = (struct qfq_class *)*arg; 211 struct nlattr *tb[TCA_QFQ_MAX + 1]; 212 u32 weight, lmax, inv_w; 213 int i, err; 214 int delta_w; 215 216 if (tca[TCA_OPTIONS] == NULL) { 217 pr_notice("qfq: no options\n"); 218 return -EINVAL; 219 } 220 221 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy); 222 if (err < 0) 223 return err; 224 225 if (tb[TCA_QFQ_WEIGHT]) { 226 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); 227 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { 228 pr_notice("qfq: invalid weight %u\n", weight); 229 return -EINVAL; 230 } 231 } else 232 weight = 1; 233 234 inv_w = ONE_FP / weight; 235 weight = ONE_FP / inv_w; 236 delta_w = weight - (cl ? ONE_FP / cl->inv_w : 0); 237 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 238 pr_notice("qfq: total weight out of range (%u + %u)\n", 239 delta_w, q->wsum); 240 return -EINVAL; 241 } 242 243 if (tb[TCA_QFQ_LMAX]) { 244 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 245 if (!lmax || lmax > (1UL << QFQ_MTU_SHIFT)) { 246 pr_notice("qfq: invalid max length %u\n", lmax); 247 return -EINVAL; 248 } 249 } else 250 lmax = 1UL << QFQ_MTU_SHIFT; 251 252 if (cl != NULL) { 253 if (tca[TCA_RATE]) { 254 err = gen_replace_estimator(&cl->bstats, &cl->rate_est, 255 qdisc_root_sleeping_lock(sch), 256 tca[TCA_RATE]); 257 if (err) 258 return err; 259 } 260 261 if (inv_w != cl->inv_w) { 262 sch_tree_lock(sch); 263 q->wsum += delta_w; 264 cl->inv_w = inv_w; 265 sch_tree_unlock(sch); 266 } 267 return 0; 268 } 269 270 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 271 if (cl == NULL) 272 return -ENOBUFS; 273 274 cl->refcnt = 1; 275 cl->common.classid = classid; 276 cl->lmax = lmax; 277 cl->inv_w = inv_w; 278 i = qfq_calc_index(cl->inv_w, cl->lmax); 279 280 cl->grp = &q->groups[i]; 281 282 cl->qdisc = qdisc_create_dflt(sch->dev_queue, 283 &pfifo_qdisc_ops, classid); 284 if (cl->qdisc == NULL) 285 cl->qdisc = &noop_qdisc; 286 287 if (tca[TCA_RATE]) { 288 err = gen_new_estimator(&cl->bstats, &cl->rate_est, 289 qdisc_root_sleeping_lock(sch), 290 tca[TCA_RATE]); 291 if (err) { 292 qdisc_destroy(cl->qdisc); 293 kfree(cl); 294 return err; 295 } 296 } 297 q->wsum += weight; 298 299 sch_tree_lock(sch); 300 qdisc_class_hash_insert(&q->clhash, &cl->common); 301 sch_tree_unlock(sch); 302 303 qdisc_class_hash_grow(sch, &q->clhash); 304 305 *arg = (unsigned long)cl; 306 return 0; 307 } 308 309 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 310 { 311 struct qfq_sched *q = qdisc_priv(sch); 312 313 if (cl->inv_w) { 314 q->wsum -= ONE_FP / cl->inv_w; 315 cl->inv_w = 0; 316 } 317 318 gen_kill_estimator(&cl->bstats, &cl->rate_est); 319 qdisc_destroy(cl->qdisc); 320 kfree(cl); 321 } 322 323 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg) 324 { 325 struct qfq_sched *q = qdisc_priv(sch); 326 struct qfq_class *cl = (struct qfq_class *)arg; 327 328 if (cl->filter_cnt > 0) 329 return -EBUSY; 330 331 sch_tree_lock(sch); 332 333 qfq_purge_queue(cl); 334 qdisc_class_hash_remove(&q->clhash, &cl->common); 335 336 BUG_ON(--cl->refcnt == 0); 337 /* 338 * This shouldn't happen: we "hold" one cops->get() when called 339 * from tc_ctl_tclass; the destroy method is done from cops->put(). 340 */ 341 342 sch_tree_unlock(sch); 343 return 0; 344 } 345 346 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid) 347 { 348 struct qfq_class *cl = qfq_find_class(sch, classid); 349 350 if (cl != NULL) 351 cl->refcnt++; 352 353 return (unsigned long)cl; 354 } 355 356 static void qfq_put_class(struct Qdisc *sch, unsigned long arg) 357 { 358 struct qfq_class *cl = (struct qfq_class *)arg; 359 360 if (--cl->refcnt == 0) 361 qfq_destroy_class(sch, cl); 362 } 363 364 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl) 365 { 366 struct qfq_sched *q = qdisc_priv(sch); 367 368 if (cl) 369 return NULL; 370 371 return &q->filter_list; 372 } 373 374 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 375 u32 classid) 376 { 377 struct qfq_class *cl = qfq_find_class(sch, classid); 378 379 if (cl != NULL) 380 cl->filter_cnt++; 381 382 return (unsigned long)cl; 383 } 384 385 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 386 { 387 struct qfq_class *cl = (struct qfq_class *)arg; 388 389 cl->filter_cnt--; 390 } 391 392 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 393 struct Qdisc *new, struct Qdisc **old) 394 { 395 struct qfq_class *cl = (struct qfq_class *)arg; 396 397 if (new == NULL) { 398 new = qdisc_create_dflt(sch->dev_queue, 399 &pfifo_qdisc_ops, cl->common.classid); 400 if (new == NULL) 401 new = &noop_qdisc; 402 } 403 404 sch_tree_lock(sch); 405 qfq_purge_queue(cl); 406 *old = cl->qdisc; 407 cl->qdisc = new; 408 sch_tree_unlock(sch); 409 return 0; 410 } 411 412 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 413 { 414 struct qfq_class *cl = (struct qfq_class *)arg; 415 416 return cl->qdisc; 417 } 418 419 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 420 struct sk_buff *skb, struct tcmsg *tcm) 421 { 422 struct qfq_class *cl = (struct qfq_class *)arg; 423 struct nlattr *nest; 424 425 tcm->tcm_parent = TC_H_ROOT; 426 tcm->tcm_handle = cl->common.classid; 427 tcm->tcm_info = cl->qdisc->handle; 428 429 nest = nla_nest_start(skb, TCA_OPTIONS); 430 if (nest == NULL) 431 goto nla_put_failure; 432 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, ONE_FP/cl->inv_w) || 433 nla_put_u32(skb, TCA_QFQ_LMAX, cl->lmax)) 434 goto nla_put_failure; 435 return nla_nest_end(skb, nest); 436 437 nla_put_failure: 438 nla_nest_cancel(skb, nest); 439 return -EMSGSIZE; 440 } 441 442 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 443 struct gnet_dump *d) 444 { 445 struct qfq_class *cl = (struct qfq_class *)arg; 446 struct tc_qfq_stats xstats; 447 448 memset(&xstats, 0, sizeof(xstats)); 449 cl->qdisc->qstats.qlen = cl->qdisc->q.qlen; 450 451 xstats.weight = ONE_FP/cl->inv_w; 452 xstats.lmax = cl->lmax; 453 454 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || 455 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 || 456 gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0) 457 return -1; 458 459 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 460 } 461 462 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 463 { 464 struct qfq_sched *q = qdisc_priv(sch); 465 struct qfq_class *cl; 466 struct hlist_node *n; 467 unsigned int i; 468 469 if (arg->stop) 470 return; 471 472 for (i = 0; i < q->clhash.hashsize; i++) { 473 hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) { 474 if (arg->count < arg->skip) { 475 arg->count++; 476 continue; 477 } 478 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 479 arg->stop = 1; 480 return; 481 } 482 arg->count++; 483 } 484 } 485 } 486 487 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 488 int *qerr) 489 { 490 struct qfq_sched *q = qdisc_priv(sch); 491 struct qfq_class *cl; 492 struct tcf_result res; 493 int result; 494 495 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 496 pr_debug("qfq_classify: found %d\n", skb->priority); 497 cl = qfq_find_class(sch, skb->priority); 498 if (cl != NULL) 499 return cl; 500 } 501 502 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 503 result = tc_classify(skb, q->filter_list, &res); 504 if (result >= 0) { 505 #ifdef CONFIG_NET_CLS_ACT 506 switch (result) { 507 case TC_ACT_QUEUED: 508 case TC_ACT_STOLEN: 509 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 510 case TC_ACT_SHOT: 511 return NULL; 512 } 513 #endif 514 cl = (struct qfq_class *)res.class; 515 if (cl == NULL) 516 cl = qfq_find_class(sch, res.classid); 517 return cl; 518 } 519 520 return NULL; 521 } 522 523 /* Generic comparison function, handling wraparound. */ 524 static inline int qfq_gt(u64 a, u64 b) 525 { 526 return (s64)(a - b) > 0; 527 } 528 529 /* Round a precise timestamp to its slotted value. */ 530 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 531 { 532 return ts & ~((1ULL << shift) - 1); 533 } 534 535 /* return the pointer to the group with lowest index in the bitmap */ 536 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 537 unsigned long bitmap) 538 { 539 int index = __ffs(bitmap); 540 return &q->groups[index]; 541 } 542 /* Calculate a mask to mimic what would be ffs_from(). */ 543 static inline unsigned long mask_from(unsigned long bitmap, int from) 544 { 545 return bitmap & ~((1UL << from) - 1); 546 } 547 548 /* 549 * The state computation relies on ER=0, IR=1, EB=2, IB=3 550 * First compute eligibility comparing grp->S, q->V, 551 * then check if someone is blocking us and possibly add EB 552 */ 553 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 554 { 555 /* if S > V we are not eligible */ 556 unsigned int state = qfq_gt(grp->S, q->V); 557 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 558 struct qfq_group *next; 559 560 if (mask) { 561 next = qfq_ffs(q, mask); 562 if (qfq_gt(grp->F, next->F)) 563 state |= EB; 564 } 565 566 return state; 567 } 568 569 570 /* 571 * In principle 572 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 573 * q->bitmaps[src] &= ~mask; 574 * but we should make sure that src != dst 575 */ 576 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 577 int src, int dst) 578 { 579 q->bitmaps[dst] |= q->bitmaps[src] & mask; 580 q->bitmaps[src] &= ~mask; 581 } 582 583 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 584 { 585 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 586 struct qfq_group *next; 587 588 if (mask) { 589 next = qfq_ffs(q, mask); 590 if (!qfq_gt(next->F, old_F)) 591 return; 592 } 593 594 mask = (1UL << index) - 1; 595 qfq_move_groups(q, mask, EB, ER); 596 qfq_move_groups(q, mask, IB, IR); 597 } 598 599 /* 600 * perhaps 601 * 602 old_V ^= q->V; 603 old_V >>= QFQ_MIN_SLOT_SHIFT; 604 if (old_V) { 605 ... 606 } 607 * 608 */ 609 static void qfq_make_eligible(struct qfq_sched *q, u64 old_V) 610 { 611 unsigned long vslot = q->V >> QFQ_MIN_SLOT_SHIFT; 612 unsigned long old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT; 613 614 if (vslot != old_vslot) { 615 unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1; 616 qfq_move_groups(q, mask, IR, ER); 617 qfq_move_groups(q, mask, IB, EB); 618 } 619 } 620 621 622 /* 623 * XXX we should make sure that slot becomes less than 32. 624 * This is guaranteed by the input values. 625 * roundedS is always cl->S rounded on grp->slot_shift bits. 626 */ 627 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, 628 u64 roundedS) 629 { 630 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 631 unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS; 632 633 hlist_add_head(&cl->next, &grp->slots[i]); 634 __set_bit(slot, &grp->full_slots); 635 } 636 637 /* Maybe introduce hlist_first_entry?? */ 638 static struct qfq_class *qfq_slot_head(struct qfq_group *grp) 639 { 640 return hlist_entry(grp->slots[grp->front].first, 641 struct qfq_class, next); 642 } 643 644 /* 645 * remove the entry from the slot 646 */ 647 static void qfq_front_slot_remove(struct qfq_group *grp) 648 { 649 struct qfq_class *cl = qfq_slot_head(grp); 650 651 BUG_ON(!cl); 652 hlist_del(&cl->next); 653 if (hlist_empty(&grp->slots[grp->front])) 654 __clear_bit(0, &grp->full_slots); 655 } 656 657 /* 658 * Returns the first full queue in a group. As a side effect, 659 * adjust the bucket list so the first non-empty bucket is at 660 * position 0 in full_slots. 661 */ 662 static struct qfq_class *qfq_slot_scan(struct qfq_group *grp) 663 { 664 unsigned int i; 665 666 pr_debug("qfq slot_scan: grp %u full %#lx\n", 667 grp->index, grp->full_slots); 668 669 if (grp->full_slots == 0) 670 return NULL; 671 672 i = __ffs(grp->full_slots); /* zero based */ 673 if (i > 0) { 674 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 675 grp->full_slots >>= i; 676 } 677 678 return qfq_slot_head(grp); 679 } 680 681 /* 682 * adjust the bucket list. When the start time of a group decreases, 683 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 684 * move the objects. The mask of occupied slots must be shifted 685 * because we use ffs() to find the first non-empty slot. 686 * This covers decreases in the group's start time, but what about 687 * increases of the start time ? 688 * Here too we should make sure that i is less than 32 689 */ 690 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 691 { 692 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 693 694 grp->full_slots <<= i; 695 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 696 } 697 698 static void qfq_update_eligible(struct qfq_sched *q, u64 old_V) 699 { 700 struct qfq_group *grp; 701 unsigned long ineligible; 702 703 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 704 if (ineligible) { 705 if (!q->bitmaps[ER]) { 706 grp = qfq_ffs(q, ineligible); 707 if (qfq_gt(grp->S, q->V)) 708 q->V = grp->S; 709 } 710 qfq_make_eligible(q, old_V); 711 } 712 } 713 714 /* What is length of next packet in queue (0 if queue is empty) */ 715 static unsigned int qdisc_peek_len(struct Qdisc *sch) 716 { 717 struct sk_buff *skb; 718 719 skb = sch->ops->peek(sch); 720 return skb ? qdisc_pkt_len(skb) : 0; 721 } 722 723 /* 724 * Updates the class, returns true if also the group needs to be updated. 725 */ 726 static bool qfq_update_class(struct qfq_group *grp, struct qfq_class *cl) 727 { 728 unsigned int len = qdisc_peek_len(cl->qdisc); 729 730 cl->S = cl->F; 731 if (!len) 732 qfq_front_slot_remove(grp); /* queue is empty */ 733 else { 734 u64 roundedS; 735 736 cl->F = cl->S + (u64)len * cl->inv_w; 737 roundedS = qfq_round_down(cl->S, grp->slot_shift); 738 if (roundedS == grp->S) 739 return false; 740 741 qfq_front_slot_remove(grp); 742 qfq_slot_insert(grp, cl, roundedS); 743 } 744 745 return true; 746 } 747 748 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 749 { 750 struct qfq_sched *q = qdisc_priv(sch); 751 struct qfq_group *grp; 752 struct qfq_class *cl; 753 struct sk_buff *skb; 754 unsigned int len; 755 u64 old_V; 756 757 if (!q->bitmaps[ER]) 758 return NULL; 759 760 grp = qfq_ffs(q, q->bitmaps[ER]); 761 762 cl = qfq_slot_head(grp); 763 skb = qdisc_dequeue_peeked(cl->qdisc); 764 if (!skb) { 765 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); 766 return NULL; 767 } 768 769 sch->q.qlen--; 770 qdisc_bstats_update(sch, skb); 771 772 old_V = q->V; 773 len = qdisc_pkt_len(skb); 774 q->V += (u64)len * IWSUM; 775 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 776 len, (unsigned long long) cl->F, (unsigned long long) q->V); 777 778 if (qfq_update_class(grp, cl)) { 779 u64 old_F = grp->F; 780 781 cl = qfq_slot_scan(grp); 782 if (!cl) 783 __clear_bit(grp->index, &q->bitmaps[ER]); 784 else { 785 u64 roundedS = qfq_round_down(cl->S, grp->slot_shift); 786 unsigned int s; 787 788 if (grp->S == roundedS) 789 goto skip_unblock; 790 grp->S = roundedS; 791 grp->F = roundedS + (2ULL << grp->slot_shift); 792 __clear_bit(grp->index, &q->bitmaps[ER]); 793 s = qfq_calc_state(q, grp); 794 __set_bit(grp->index, &q->bitmaps[s]); 795 } 796 797 qfq_unblock_groups(q, grp->index, old_F); 798 } 799 800 skip_unblock: 801 qfq_update_eligible(q, old_V); 802 803 return skb; 804 } 805 806 /* 807 * Assign a reasonable start time for a new flow k in group i. 808 * Admissible values for \hat(F) are multiples of \sigma_i 809 * no greater than V+\sigma_i . Larger values mean that 810 * we had a wraparound so we consider the timestamp to be stale. 811 * 812 * If F is not stale and F >= V then we set S = F. 813 * Otherwise we should assign S = V, but this may violate 814 * the ordering in ER. So, if we have groups in ER, set S to 815 * the F_j of the first group j which would be blocking us. 816 * We are guaranteed not to move S backward because 817 * otherwise our group i would still be blocked. 818 */ 819 static void qfq_update_start(struct qfq_sched *q, struct qfq_class *cl) 820 { 821 unsigned long mask; 822 u64 limit, roundedF; 823 int slot_shift = cl->grp->slot_shift; 824 825 roundedF = qfq_round_down(cl->F, slot_shift); 826 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 827 828 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) { 829 /* timestamp was stale */ 830 mask = mask_from(q->bitmaps[ER], cl->grp->index); 831 if (mask) { 832 struct qfq_group *next = qfq_ffs(q, mask); 833 if (qfq_gt(roundedF, next->F)) { 834 cl->S = next->F; 835 return; 836 } 837 } 838 cl->S = q->V; 839 } else /* timestamp is not stale */ 840 cl->S = cl->F; 841 } 842 843 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch) 844 { 845 struct qfq_sched *q = qdisc_priv(sch); 846 struct qfq_group *grp; 847 struct qfq_class *cl; 848 int err; 849 u64 roundedS; 850 int s; 851 852 cl = qfq_classify(skb, sch, &err); 853 if (cl == NULL) { 854 if (err & __NET_XMIT_BYPASS) 855 sch->qstats.drops++; 856 kfree_skb(skb); 857 return err; 858 } 859 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 860 861 err = qdisc_enqueue(skb, cl->qdisc); 862 if (unlikely(err != NET_XMIT_SUCCESS)) { 863 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 864 if (net_xmit_drop_count(err)) { 865 cl->qstats.drops++; 866 sch->qstats.drops++; 867 } 868 return err; 869 } 870 871 bstats_update(&cl->bstats, skb); 872 ++sch->q.qlen; 873 874 /* If the new skb is not the head of queue, then done here. */ 875 if (cl->qdisc->q.qlen != 1) 876 return err; 877 878 /* If reach this point, queue q was idle */ 879 grp = cl->grp; 880 qfq_update_start(q, cl); 881 882 /* compute new finish time and rounded start. */ 883 cl->F = cl->S + (u64)qdisc_pkt_len(skb) * cl->inv_w; 884 roundedS = qfq_round_down(cl->S, grp->slot_shift); 885 886 /* 887 * insert cl in the correct bucket. 888 * If cl->S >= grp->S we don't need to adjust the 889 * bucket list and simply go to the insertion phase. 890 * Otherwise grp->S is decreasing, we must make room 891 * in the bucket list, and also recompute the group state. 892 * Finally, if there were no flows in this group and nobody 893 * was in ER make sure to adjust V. 894 */ 895 if (grp->full_slots) { 896 if (!qfq_gt(grp->S, cl->S)) 897 goto skip_update; 898 899 /* create a slot for this cl->S */ 900 qfq_slot_rotate(grp, roundedS); 901 /* group was surely ineligible, remove */ 902 __clear_bit(grp->index, &q->bitmaps[IR]); 903 __clear_bit(grp->index, &q->bitmaps[IB]); 904 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V)) 905 q->V = roundedS; 906 907 grp->S = roundedS; 908 grp->F = roundedS + (2ULL << grp->slot_shift); 909 s = qfq_calc_state(q, grp); 910 __set_bit(grp->index, &q->bitmaps[s]); 911 912 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 913 s, q->bitmaps[s], 914 (unsigned long long) cl->S, 915 (unsigned long long) cl->F, 916 (unsigned long long) q->V); 917 918 skip_update: 919 qfq_slot_insert(grp, cl, roundedS); 920 921 return err; 922 } 923 924 925 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 926 struct qfq_class *cl) 927 { 928 unsigned int i, offset; 929 u64 roundedS; 930 931 roundedS = qfq_round_down(cl->S, grp->slot_shift); 932 offset = (roundedS - grp->S) >> grp->slot_shift; 933 i = (grp->front + offset) % QFQ_MAX_SLOTS; 934 935 hlist_del(&cl->next); 936 if (hlist_empty(&grp->slots[i])) 937 __clear_bit(offset, &grp->full_slots); 938 } 939 940 /* 941 * called to forcibly destroy a queue. 942 * If the queue is not in the front bucket, or if it has 943 * other queues in the front bucket, we can simply remove 944 * the queue with no other side effects. 945 * Otherwise we must propagate the event up. 946 */ 947 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 948 { 949 struct qfq_group *grp = cl->grp; 950 unsigned long mask; 951 u64 roundedS; 952 int s; 953 954 cl->F = cl->S; 955 qfq_slot_remove(q, grp, cl); 956 957 if (!grp->full_slots) { 958 __clear_bit(grp->index, &q->bitmaps[IR]); 959 __clear_bit(grp->index, &q->bitmaps[EB]); 960 __clear_bit(grp->index, &q->bitmaps[IB]); 961 962 if (test_bit(grp->index, &q->bitmaps[ER]) && 963 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 964 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 965 if (mask) 966 mask = ~((1UL << __fls(mask)) - 1); 967 else 968 mask = ~0UL; 969 qfq_move_groups(q, mask, EB, ER); 970 qfq_move_groups(q, mask, IB, IR); 971 } 972 __clear_bit(grp->index, &q->bitmaps[ER]); 973 } else if (hlist_empty(&grp->slots[grp->front])) { 974 cl = qfq_slot_scan(grp); 975 roundedS = qfq_round_down(cl->S, grp->slot_shift); 976 if (grp->S != roundedS) { 977 __clear_bit(grp->index, &q->bitmaps[ER]); 978 __clear_bit(grp->index, &q->bitmaps[IR]); 979 __clear_bit(grp->index, &q->bitmaps[EB]); 980 __clear_bit(grp->index, &q->bitmaps[IB]); 981 grp->S = roundedS; 982 grp->F = roundedS + (2ULL << grp->slot_shift); 983 s = qfq_calc_state(q, grp); 984 __set_bit(grp->index, &q->bitmaps[s]); 985 } 986 } 987 988 qfq_update_eligible(q, q->V); 989 } 990 991 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 992 { 993 struct qfq_sched *q = qdisc_priv(sch); 994 struct qfq_class *cl = (struct qfq_class *)arg; 995 996 if (cl->qdisc->q.qlen == 0) 997 qfq_deactivate_class(q, cl); 998 } 999 1000 static unsigned int qfq_drop(struct Qdisc *sch) 1001 { 1002 struct qfq_sched *q = qdisc_priv(sch); 1003 struct qfq_group *grp; 1004 unsigned int i, j, len; 1005 1006 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1007 grp = &q->groups[i]; 1008 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 1009 struct qfq_class *cl; 1010 struct hlist_node *n; 1011 1012 hlist_for_each_entry(cl, n, &grp->slots[j], next) { 1013 1014 if (!cl->qdisc->ops->drop) 1015 continue; 1016 1017 len = cl->qdisc->ops->drop(cl->qdisc); 1018 if (len > 0) { 1019 sch->q.qlen--; 1020 if (!cl->qdisc->q.qlen) 1021 qfq_deactivate_class(q, cl); 1022 1023 return len; 1024 } 1025 } 1026 } 1027 } 1028 1029 return 0; 1030 } 1031 1032 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt) 1033 { 1034 struct qfq_sched *q = qdisc_priv(sch); 1035 struct qfq_group *grp; 1036 int i, j, err; 1037 1038 err = qdisc_class_hash_init(&q->clhash); 1039 if (err < 0) 1040 return err; 1041 1042 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1043 grp = &q->groups[i]; 1044 grp->index = i; 1045 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS 1046 - (QFQ_MAX_INDEX - i); 1047 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1048 INIT_HLIST_HEAD(&grp->slots[j]); 1049 } 1050 1051 return 0; 1052 } 1053 1054 static void qfq_reset_qdisc(struct Qdisc *sch) 1055 { 1056 struct qfq_sched *q = qdisc_priv(sch); 1057 struct qfq_group *grp; 1058 struct qfq_class *cl; 1059 struct hlist_node *n, *tmp; 1060 unsigned int i, j; 1061 1062 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1063 grp = &q->groups[i]; 1064 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 1065 hlist_for_each_entry_safe(cl, n, tmp, 1066 &grp->slots[j], next) { 1067 qfq_deactivate_class(q, cl); 1068 } 1069 } 1070 } 1071 1072 for (i = 0; i < q->clhash.hashsize; i++) { 1073 hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) 1074 qdisc_reset(cl->qdisc); 1075 } 1076 sch->q.qlen = 0; 1077 } 1078 1079 static void qfq_destroy_qdisc(struct Qdisc *sch) 1080 { 1081 struct qfq_sched *q = qdisc_priv(sch); 1082 struct qfq_class *cl; 1083 struct hlist_node *n, *next; 1084 unsigned int i; 1085 1086 tcf_destroy_chain(&q->filter_list); 1087 1088 for (i = 0; i < q->clhash.hashsize; i++) { 1089 hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i], 1090 common.hnode) { 1091 qfq_destroy_class(sch, cl); 1092 } 1093 } 1094 qdisc_class_hash_destroy(&q->clhash); 1095 } 1096 1097 static const struct Qdisc_class_ops qfq_class_ops = { 1098 .change = qfq_change_class, 1099 .delete = qfq_delete_class, 1100 .get = qfq_get_class, 1101 .put = qfq_put_class, 1102 .tcf_chain = qfq_tcf_chain, 1103 .bind_tcf = qfq_bind_tcf, 1104 .unbind_tcf = qfq_unbind_tcf, 1105 .graft = qfq_graft_class, 1106 .leaf = qfq_class_leaf, 1107 .qlen_notify = qfq_qlen_notify, 1108 .dump = qfq_dump_class, 1109 .dump_stats = qfq_dump_class_stats, 1110 .walk = qfq_walk, 1111 }; 1112 1113 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1114 .cl_ops = &qfq_class_ops, 1115 .id = "qfq", 1116 .priv_size = sizeof(struct qfq_sched), 1117 .enqueue = qfq_enqueue, 1118 .dequeue = qfq_dequeue, 1119 .peek = qdisc_peek_dequeued, 1120 .drop = qfq_drop, 1121 .init = qfq_init_qdisc, 1122 .reset = qfq_reset_qdisc, 1123 .destroy = qfq_destroy_qdisc, 1124 .owner = THIS_MODULE, 1125 }; 1126 1127 static int __init qfq_init(void) 1128 { 1129 return register_qdisc(&qfq_qdisc_ops); 1130 } 1131 1132 static void __exit qfq_exit(void) 1133 { 1134 unregister_qdisc(&qfq_qdisc_ops); 1135 } 1136 1137 module_init(qfq_init); 1138 module_exit(qfq_exit); 1139 MODULE_LICENSE("GPL"); 1140