1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler. 4 * 5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 6 * Copyright (c) 2012 Paolo Valente. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/bitops.h> 12 #include <linux/errno.h> 13 #include <linux/netdevice.h> 14 #include <linux/pkt_sched.h> 15 #include <net/sch_generic.h> 16 #include <net/pkt_sched.h> 17 #include <net/pkt_cls.h> 18 19 20 /* Quick Fair Queueing Plus 21 ======================== 22 23 Sources: 24 25 [1] Paolo Valente, 26 "Reducing the Execution Time of Fair-Queueing Schedulers." 27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf 28 29 Sources for QFQ: 30 31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 32 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 33 34 See also: 35 http://retis.sssup.it/~fabio/linux/qfq/ 36 */ 37 38 /* 39 40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES 41 classes. Each aggregate is timestamped with a virtual start time S 42 and a virtual finish time F, and scheduled according to its 43 timestamps. S and F are computed as a function of a system virtual 44 time function V. The classes within each aggregate are instead 45 scheduled with DRR. 46 47 To speed up operations, QFQ+ divides also aggregates into a limited 48 number of groups. Which group a class belongs to depends on the 49 ratio between the maximum packet length for the class and the weight 50 of the class. Groups have their own S and F. In the end, QFQ+ 51 schedules groups, then aggregates within groups, then classes within 52 aggregates. See [1] and [2] for a full description. 53 54 Virtual time computations. 55 56 S, F and V are all computed in fixed point arithmetic with 57 FRAC_BITS decimal bits. 58 59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 60 one bit per index. 61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 62 63 The layout of the bits is as below: 64 65 [ MTU_SHIFT ][ FRAC_BITS ] 66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 67 ^.__grp->index = 0 68 *.__grp->slot_shift 69 70 where MIN_SLOT_SHIFT is derived by difference from the others. 71 72 The max group index corresponds to Lmax/w_min, where 73 Lmax=1<<MTU_SHIFT, w_min = 1 . 74 From this, and knowing how many groups (MAX_INDEX) we want, 75 we can derive the shift corresponding to each group. 76 77 Because we often need to compute 78 F = S + len/w_i and V = V + len/wsum 79 instead of storing w_i store the value 80 inv_w = (1<<FRAC_BITS)/w_i 81 so we can do F = S + len * inv_w * wsum. 82 We use W_TOT in the formulas so we can easily move between 83 static and adaptive weight sum. 84 85 The per-scheduler-instance data contain all the data structures 86 for the scheduler: bitmaps and bucket lists. 87 88 */ 89 90 /* 91 * Maximum number of consecutive slots occupied by backlogged classes 92 * inside a group. 93 */ 94 #define QFQ_MAX_SLOTS 32 95 96 /* 97 * Shifts used for aggregate<->group mapping. We allow class weights that are 98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the 99 * group with the smallest index that can support the L_i / r_i configured 100 * for the classes in the aggregate. 101 * 102 * grp->index is the index of the group; and grp->slot_shift 103 * is the shift for the corresponding (scaled) sigma_i. 104 */ 105 #define QFQ_MAX_INDEX 24 106 #define QFQ_MAX_WSHIFT 10 107 108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ 109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT) 110 111 #define FRAC_BITS 30 /* fixed point arithmetic */ 112 #define ONE_FP (1UL << FRAC_BITS) 113 114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */ 116 #define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT) 117 118 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */ 119 120 /* 121 * Possible group states. These values are used as indexes for the bitmaps 122 * array of struct qfq_queue. 123 */ 124 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 125 126 struct qfq_group; 127 128 struct qfq_aggregate; 129 130 struct qfq_class { 131 struct Qdisc_class_common common; 132 133 struct gnet_stats_basic_sync bstats; 134 struct gnet_stats_queue qstats; 135 struct net_rate_estimator __rcu *rate_est; 136 struct Qdisc *qdisc; 137 struct list_head alist; /* Link for active-classes list. */ 138 struct qfq_aggregate *agg; /* Parent aggregate. */ 139 int deficit; /* DRR deficit counter. */ 140 }; 141 142 struct qfq_aggregate { 143 struct hlist_node next; /* Link for the slot list. */ 144 u64 S, F; /* flow timestamps (exact) */ 145 146 /* group we belong to. In principle we would need the index, 147 * which is log_2(lmax/weight), but we never reference it 148 * directly, only the group. 149 */ 150 struct qfq_group *grp; 151 152 /* these are copied from the flowset. */ 153 u32 class_weight; /* Weight of each class in this aggregate. */ 154 /* Max pkt size for the classes in this aggregate, DRR quantum. */ 155 int lmax; 156 157 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */ 158 u32 budgetmax; /* Max budget for this aggregate. */ 159 u32 initial_budget, budget; /* Initial and current budget. */ 160 161 int num_classes; /* Number of classes in this aggr. */ 162 struct list_head active; /* DRR queue of active classes. */ 163 164 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */ 165 }; 166 167 struct qfq_group { 168 u64 S, F; /* group timestamps (approx). */ 169 unsigned int slot_shift; /* Slot shift. */ 170 unsigned int index; /* Group index. */ 171 unsigned int front; /* Index of the front slot. */ 172 unsigned long full_slots; /* non-empty slots */ 173 174 /* Array of RR lists of active aggregates. */ 175 struct hlist_head slots[QFQ_MAX_SLOTS]; 176 }; 177 178 struct qfq_sched { 179 struct tcf_proto __rcu *filter_list; 180 struct tcf_block *block; 181 struct Qdisc_class_hash clhash; 182 183 u64 oldV, V; /* Precise virtual times. */ 184 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */ 185 u32 wsum; /* weight sum */ 186 u32 iwsum; /* inverse weight sum */ 187 188 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 189 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 190 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */ 191 192 u32 max_agg_classes; /* Max number of classes per aggr. */ 193 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ 194 }; 195 196 /* 197 * Possible reasons why the timestamps of an aggregate are updated 198 * enqueue: the aggregate switches from idle to active and must scheduled 199 * for service 200 * requeue: the aggregate finishes its budget, so it stops being served and 201 * must be rescheduled for service 202 */ 203 enum update_reason {enqueue, requeue}; 204 205 static bool cl_is_active(struct qfq_class *cl) 206 { 207 return !list_empty(&cl->alist); 208 } 209 210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 211 { 212 struct qfq_sched *q = qdisc_priv(sch); 213 struct Qdisc_class_common *clc; 214 215 clc = qdisc_class_find(&q->clhash, classid); 216 if (clc == NULL) 217 return NULL; 218 return container_of(clc, struct qfq_class, common); 219 } 220 221 static const struct netlink_range_validation lmax_range = { 222 .min = QFQ_MIN_LMAX, 223 .max = QFQ_MAX_LMAX, 224 }; 225 226 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 227 [TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT), 228 [TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range), 229 }; 230 231 /* 232 * Calculate a flow index, given its weight and maximum packet length. 233 * index = log_2(maxlen/weight) but we need to apply the scaling. 234 * This is used only once at flow creation. 235 */ 236 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) 237 { 238 u64 slot_size = (u64)maxlen * inv_w; 239 unsigned long size_map; 240 int index = 0; 241 242 size_map = slot_size >> min_slot_shift; 243 if (!size_map) 244 goto out; 245 246 index = __fls(size_map) + 1; /* basically a log_2 */ 247 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); 248 249 if (index < 0) 250 index = 0; 251 out: 252 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 253 (unsigned long) ONE_FP/inv_w, maxlen, index); 254 255 return index; 256 } 257 258 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); 259 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, 260 enum update_reason); 261 262 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 263 u32 lmax, u32 weight) 264 { 265 INIT_LIST_HEAD(&agg->active); 266 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 267 268 agg->lmax = lmax; 269 agg->class_weight = weight; 270 } 271 272 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, 273 u32 lmax, u32 weight) 274 { 275 struct qfq_aggregate *agg; 276 277 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) 278 if (agg->lmax == lmax && agg->class_weight == weight) 279 return agg; 280 281 return NULL; 282 } 283 284 285 /* Update aggregate as a function of the new number of classes. */ 286 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 287 int new_num_classes) 288 { 289 u32 new_agg_weight; 290 291 if (new_num_classes == q->max_agg_classes) 292 hlist_del_init(&agg->nonfull_next); 293 294 if (agg->num_classes > new_num_classes && 295 new_num_classes == q->max_agg_classes - 1) /* agg no more full */ 296 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 297 298 /* The next assignment may let 299 * agg->initial_budget > agg->budgetmax 300 * hold, we will take it into account in charge_actual_service(). 301 */ 302 agg->budgetmax = new_num_classes * agg->lmax; 303 new_agg_weight = agg->class_weight * new_num_classes; 304 agg->inv_w = ONE_FP/new_agg_weight; 305 306 if (agg->grp == NULL) { 307 int i = qfq_calc_index(agg->inv_w, agg->budgetmax, 308 q->min_slot_shift); 309 agg->grp = &q->groups[i]; 310 } 311 312 q->wsum += 313 (int) agg->class_weight * (new_num_classes - agg->num_classes); 314 q->iwsum = ONE_FP / q->wsum; 315 316 agg->num_classes = new_num_classes; 317 } 318 319 /* Add class to aggregate. */ 320 static void qfq_add_to_agg(struct qfq_sched *q, 321 struct qfq_aggregate *agg, 322 struct qfq_class *cl) 323 { 324 cl->agg = agg; 325 326 qfq_update_agg(q, agg, agg->num_classes+1); 327 if (cl->qdisc->q.qlen > 0) { /* adding an active class */ 328 list_add_tail(&cl->alist, &agg->active); 329 if (list_first_entry(&agg->active, struct qfq_class, alist) == 330 cl && q->in_serv_agg != agg) /* agg was inactive */ 331 qfq_activate_agg(q, agg, enqueue); /* schedule agg */ 332 } 333 } 334 335 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); 336 337 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 338 { 339 hlist_del_init(&agg->nonfull_next); 340 q->wsum -= agg->class_weight; 341 if (q->wsum != 0) 342 q->iwsum = ONE_FP / q->wsum; 343 344 if (q->in_serv_agg == agg) 345 q->in_serv_agg = qfq_choose_next_agg(q); 346 kfree(agg); 347 } 348 349 /* Deschedule class from within its parent aggregate. */ 350 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 351 { 352 struct qfq_aggregate *agg = cl->agg; 353 354 355 list_del_init(&cl->alist); /* remove from RR queue of the aggregate */ 356 if (list_empty(&agg->active)) /* agg is now inactive */ 357 qfq_deactivate_agg(q, agg); 358 } 359 360 /* Remove class from its parent aggregate. */ 361 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 362 { 363 struct qfq_aggregate *agg = cl->agg; 364 365 cl->agg = NULL; 366 if (agg->num_classes == 1) { /* agg being emptied, destroy it */ 367 qfq_destroy_agg(q, agg); 368 return; 369 } 370 qfq_update_agg(q, agg, agg->num_classes-1); 371 } 372 373 /* Deschedule class and remove it from its parent aggregate. */ 374 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 375 { 376 if (cl->qdisc->q.qlen > 0) /* class is active */ 377 qfq_deactivate_class(q, cl); 378 379 qfq_rm_from_agg(q, cl); 380 } 381 382 /* Move class to a new aggregate, matching the new class weight and/or lmax */ 383 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, 384 u32 lmax) 385 { 386 struct qfq_sched *q = qdisc_priv(sch); 387 struct qfq_aggregate *new_agg; 388 389 /* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */ 390 if (lmax > QFQ_MAX_LMAX) 391 return -EINVAL; 392 393 new_agg = qfq_find_agg(q, lmax, weight); 394 if (new_agg == NULL) { /* create new aggregate */ 395 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); 396 if (new_agg == NULL) 397 return -ENOBUFS; 398 qfq_init_agg(q, new_agg, lmax, weight); 399 } 400 qfq_deact_rm_from_agg(q, cl); 401 qfq_add_to_agg(q, new_agg, cl); 402 403 return 0; 404 } 405 406 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 407 struct nlattr **tca, unsigned long *arg, 408 struct netlink_ext_ack *extack) 409 { 410 struct qfq_sched *q = qdisc_priv(sch); 411 struct qfq_class *cl = (struct qfq_class *)*arg; 412 bool existing = false; 413 struct nlattr *tb[TCA_QFQ_MAX + 1]; 414 struct qfq_aggregate *new_agg = NULL; 415 u32 weight, lmax, inv_w; 416 int err; 417 int delta_w; 418 419 if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) { 420 NL_SET_ERR_MSG_MOD(extack, "missing options"); 421 return -EINVAL; 422 } 423 424 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], 425 qfq_policy, extack); 426 if (err < 0) 427 return err; 428 429 weight = nla_get_u32_default(tb[TCA_QFQ_WEIGHT], 1); 430 431 if (tb[TCA_QFQ_LMAX]) { 432 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 433 } else { 434 /* MTU size is user controlled */ 435 lmax = psched_mtu(qdisc_dev(sch)); 436 if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) { 437 NL_SET_ERR_MSG_MOD(extack, 438 "MTU size out of bounds for qfq"); 439 return -EINVAL; 440 } 441 } 442 443 inv_w = ONE_FP / weight; 444 weight = ONE_FP / inv_w; 445 446 if (cl != NULL && 447 lmax == cl->agg->lmax && 448 weight == cl->agg->class_weight) 449 return 0; /* nothing to change */ 450 451 delta_w = weight - (cl ? cl->agg->class_weight : 0); 452 453 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 454 NL_SET_ERR_MSG_FMT_MOD(extack, 455 "total weight out of range (%d + %u)", 456 delta_w, q->wsum); 457 return -EINVAL; 458 } 459 460 if (cl != NULL) { /* modify existing class */ 461 if (tca[TCA_RATE]) { 462 err = gen_replace_estimator(&cl->bstats, NULL, 463 &cl->rate_est, 464 NULL, 465 true, 466 tca[TCA_RATE]); 467 if (err) 468 return err; 469 } 470 existing = true; 471 goto set_change_agg; 472 } 473 474 /* create and init new class */ 475 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 476 if (cl == NULL) 477 return -ENOBUFS; 478 479 gnet_stats_basic_sync_init(&cl->bstats); 480 cl->common.classid = classid; 481 cl->deficit = lmax; 482 INIT_LIST_HEAD(&cl->alist); 483 484 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 485 classid, NULL); 486 if (cl->qdisc == NULL) 487 cl->qdisc = &noop_qdisc; 488 489 if (tca[TCA_RATE]) { 490 err = gen_new_estimator(&cl->bstats, NULL, 491 &cl->rate_est, 492 NULL, 493 true, 494 tca[TCA_RATE]); 495 if (err) 496 goto destroy_class; 497 } 498 499 if (cl->qdisc != &noop_qdisc) 500 qdisc_hash_add(cl->qdisc, true); 501 502 set_change_agg: 503 sch_tree_lock(sch); 504 new_agg = qfq_find_agg(q, lmax, weight); 505 if (new_agg == NULL) { /* create new aggregate */ 506 sch_tree_unlock(sch); 507 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); 508 if (new_agg == NULL) { 509 err = -ENOBUFS; 510 gen_kill_estimator(&cl->rate_est); 511 goto destroy_class; 512 } 513 sch_tree_lock(sch); 514 qfq_init_agg(q, new_agg, lmax, weight); 515 } 516 if (existing) 517 qfq_deact_rm_from_agg(q, cl); 518 else 519 qdisc_class_hash_insert(&q->clhash, &cl->common); 520 qfq_add_to_agg(q, new_agg, cl); 521 sch_tree_unlock(sch); 522 qdisc_class_hash_grow(sch, &q->clhash); 523 524 *arg = (unsigned long)cl; 525 return 0; 526 527 destroy_class: 528 qdisc_put(cl->qdisc); 529 kfree(cl); 530 return err; 531 } 532 533 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 534 { 535 struct qfq_sched *q = qdisc_priv(sch); 536 537 qfq_rm_from_agg(q, cl); 538 gen_kill_estimator(&cl->rate_est); 539 qdisc_put(cl->qdisc); 540 kfree(cl); 541 } 542 543 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg, 544 struct netlink_ext_ack *extack) 545 { 546 struct qfq_sched *q = qdisc_priv(sch); 547 struct qfq_class *cl = (struct qfq_class *)arg; 548 549 if (qdisc_class_in_use(&cl->common)) { 550 NL_SET_ERR_MSG_MOD(extack, "QFQ class in use"); 551 return -EBUSY; 552 } 553 554 sch_tree_lock(sch); 555 556 qdisc_purge_queue(cl->qdisc); 557 qdisc_class_hash_remove(&q->clhash, &cl->common); 558 559 sch_tree_unlock(sch); 560 561 qfq_destroy_class(sch, cl); 562 return 0; 563 } 564 565 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid) 566 { 567 return (unsigned long)qfq_find_class(sch, classid); 568 } 569 570 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl, 571 struct netlink_ext_ack *extack) 572 { 573 struct qfq_sched *q = qdisc_priv(sch); 574 575 if (cl) 576 return NULL; 577 578 return q->block; 579 } 580 581 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 582 u32 classid) 583 { 584 struct qfq_class *cl = qfq_find_class(sch, classid); 585 586 if (cl) 587 qdisc_class_get(&cl->common); 588 589 return (unsigned long)cl; 590 } 591 592 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 593 { 594 struct qfq_class *cl = (struct qfq_class *)arg; 595 596 qdisc_class_put(&cl->common); 597 } 598 599 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 600 struct Qdisc *new, struct Qdisc **old, 601 struct netlink_ext_ack *extack) 602 { 603 struct qfq_class *cl = (struct qfq_class *)arg; 604 605 if (new == NULL) { 606 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 607 cl->common.classid, NULL); 608 if (new == NULL) 609 new = &noop_qdisc; 610 } 611 612 *old = qdisc_replace(sch, new, &cl->qdisc); 613 return 0; 614 } 615 616 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 617 { 618 struct qfq_class *cl = (struct qfq_class *)arg; 619 620 return cl->qdisc; 621 } 622 623 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 624 struct sk_buff *skb, struct tcmsg *tcm) 625 { 626 struct qfq_class *cl = (struct qfq_class *)arg; 627 struct nlattr *nest; 628 629 tcm->tcm_parent = TC_H_ROOT; 630 tcm->tcm_handle = cl->common.classid; 631 tcm->tcm_info = cl->qdisc->handle; 632 633 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 634 if (nest == NULL) 635 goto nla_put_failure; 636 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || 637 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) 638 goto nla_put_failure; 639 return nla_nest_end(skb, nest); 640 641 nla_put_failure: 642 nla_nest_cancel(skb, nest); 643 return -EMSGSIZE; 644 } 645 646 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 647 struct gnet_dump *d) 648 { 649 struct qfq_class *cl = (struct qfq_class *)arg; 650 struct tc_qfq_stats xstats; 651 652 memset(&xstats, 0, sizeof(xstats)); 653 654 xstats.weight = cl->agg->class_weight; 655 xstats.lmax = cl->agg->lmax; 656 657 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 || 658 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 659 qdisc_qstats_copy(d, cl->qdisc) < 0) 660 return -1; 661 662 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 663 } 664 665 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 666 { 667 struct qfq_sched *q = qdisc_priv(sch); 668 struct qfq_class *cl; 669 unsigned int i; 670 671 if (arg->stop) 672 return; 673 674 for (i = 0; i < q->clhash.hashsize; i++) { 675 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 676 if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg)) 677 return; 678 } 679 } 680 } 681 682 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 683 int *qerr) 684 { 685 struct qfq_sched *q = qdisc_priv(sch); 686 struct qfq_class *cl; 687 struct tcf_result res; 688 struct tcf_proto *fl; 689 int result; 690 691 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 692 pr_debug("qfq_classify: found %d\n", skb->priority); 693 cl = qfq_find_class(sch, skb->priority); 694 if (cl != NULL) 695 return cl; 696 } 697 698 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 699 fl = rcu_dereference_bh(q->filter_list); 700 result = tcf_classify(skb, NULL, fl, &res, false); 701 if (result >= 0) { 702 #ifdef CONFIG_NET_CLS_ACT 703 switch (result) { 704 case TC_ACT_QUEUED: 705 case TC_ACT_STOLEN: 706 case TC_ACT_TRAP: 707 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 708 fallthrough; 709 case TC_ACT_SHOT: 710 return NULL; 711 } 712 #endif 713 cl = (struct qfq_class *)res.class; 714 if (cl == NULL) 715 cl = qfq_find_class(sch, res.classid); 716 return cl; 717 } 718 719 return NULL; 720 } 721 722 /* Generic comparison function, handling wraparound. */ 723 static inline int qfq_gt(u64 a, u64 b) 724 { 725 return (s64)(a - b) > 0; 726 } 727 728 /* Round a precise timestamp to its slotted value. */ 729 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 730 { 731 return ts & ~((1ULL << shift) - 1); 732 } 733 734 /* return the pointer to the group with lowest index in the bitmap */ 735 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 736 unsigned long bitmap) 737 { 738 int index = __ffs(bitmap); 739 return &q->groups[index]; 740 } 741 /* Calculate a mask to mimic what would be ffs_from(). */ 742 static inline unsigned long mask_from(unsigned long bitmap, int from) 743 { 744 return bitmap & ~((1UL << from) - 1); 745 } 746 747 /* 748 * The state computation relies on ER=0, IR=1, EB=2, IB=3 749 * First compute eligibility comparing grp->S, q->V, 750 * then check if someone is blocking us and possibly add EB 751 */ 752 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 753 { 754 /* if S > V we are not eligible */ 755 unsigned int state = qfq_gt(grp->S, q->V); 756 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 757 struct qfq_group *next; 758 759 if (mask) { 760 next = qfq_ffs(q, mask); 761 if (qfq_gt(grp->F, next->F)) 762 state |= EB; 763 } 764 765 return state; 766 } 767 768 769 /* 770 * In principle 771 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 772 * q->bitmaps[src] &= ~mask; 773 * but we should make sure that src != dst 774 */ 775 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 776 int src, int dst) 777 { 778 q->bitmaps[dst] |= q->bitmaps[src] & mask; 779 q->bitmaps[src] &= ~mask; 780 } 781 782 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 783 { 784 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 785 struct qfq_group *next; 786 787 if (mask) { 788 next = qfq_ffs(q, mask); 789 if (!qfq_gt(next->F, old_F)) 790 return; 791 } 792 793 mask = (1UL << index) - 1; 794 qfq_move_groups(q, mask, EB, ER); 795 qfq_move_groups(q, mask, IB, IR); 796 } 797 798 /* 799 * perhaps 800 * 801 old_V ^= q->V; 802 old_V >>= q->min_slot_shift; 803 if (old_V) { 804 ... 805 } 806 * 807 */ 808 static void qfq_make_eligible(struct qfq_sched *q) 809 { 810 unsigned long vslot = q->V >> q->min_slot_shift; 811 unsigned long old_vslot = q->oldV >> q->min_slot_shift; 812 813 if (vslot != old_vslot) { 814 unsigned long mask; 815 int last_flip_pos = fls(vslot ^ old_vslot); 816 817 if (last_flip_pos > 31) /* higher than the number of groups */ 818 mask = ~0UL; /* make all groups eligible */ 819 else 820 mask = (1UL << last_flip_pos) - 1; 821 822 qfq_move_groups(q, mask, IR, ER); 823 qfq_move_groups(q, mask, IB, EB); 824 } 825 } 826 827 /* 828 * The index of the slot in which the input aggregate agg is to be 829 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' 830 * and not a '-1' because the start time of the group may be moved 831 * backward by one slot after the aggregate has been inserted, and 832 * this would cause non-empty slots to be right-shifted by one 833 * position. 834 * 835 * QFQ+ fully satisfies this bound to the slot index if the parameters 836 * of the classes are not changed dynamically, and if QFQ+ never 837 * happens to postpone the service of agg unjustly, i.e., it never 838 * happens that the aggregate becomes backlogged and eligible, or just 839 * eligible, while an aggregate with a higher approximated finish time 840 * is being served. In particular, in this case QFQ+ guarantees that 841 * the timestamps of agg are low enough that the slot index is never 842 * higher than 2. Unfortunately, QFQ+ cannot provide the same 843 * guarantee if it happens to unjustly postpone the service of agg, or 844 * if the parameters of some class are changed. 845 * 846 * As for the first event, i.e., an out-of-order service, the 847 * upper bound to the slot index guaranteed by QFQ+ grows to 848 * 2 + 849 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * 850 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. 851 * 852 * The following function deals with this problem by backward-shifting 853 * the timestamps of agg, if needed, so as to guarantee that the slot 854 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may 855 * cause the service of other aggregates to be postponed, yet the 856 * worst-case guarantees of these aggregates are not violated. In 857 * fact, in case of no out-of-order service, the timestamps of agg 858 * would have been even lower than they are after the backward shift, 859 * because QFQ+ would have guaranteed a maximum value equal to 2 for 860 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose 861 * service is postponed because of the backward-shift would have 862 * however waited for the service of agg before being served. 863 * 864 * The other event that may cause the slot index to be higher than 2 865 * for agg is a recent change of the parameters of some class. If the 866 * weight of a class is increased or the lmax (max_pkt_size) of the 867 * class is decreased, then a new aggregate with smaller slot size 868 * than the original parent aggregate of the class may happen to be 869 * activated. The activation of this aggregate should be properly 870 * delayed to when the service of the class has finished in the ideal 871 * system tracked by QFQ+. If the activation of the aggregate is not 872 * delayed to this reference time instant, then this aggregate may be 873 * unjustly served before other aggregates waiting for service. This 874 * may cause the above bound to the slot index to be violated for some 875 * of these unlucky aggregates. 876 * 877 * Instead of delaying the activation of the new aggregate, which is 878 * quite complex, the above-discussed capping of the slot index is 879 * used to handle also the consequences of a change of the parameters 880 * of a class. 881 */ 882 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, 883 u64 roundedS) 884 { 885 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 886 unsigned int i; /* slot index in the bucket list */ 887 888 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 889 u64 deltaS = roundedS - grp->S - 890 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 891 agg->S -= deltaS; 892 agg->F -= deltaS; 893 slot = QFQ_MAX_SLOTS - 2; 894 } 895 896 i = (grp->front + slot) % QFQ_MAX_SLOTS; 897 898 hlist_add_head(&agg->next, &grp->slots[i]); 899 __set_bit(slot, &grp->full_slots); 900 } 901 902 /* Maybe introduce hlist_first_entry?? */ 903 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) 904 { 905 return hlist_entry(grp->slots[grp->front].first, 906 struct qfq_aggregate, next); 907 } 908 909 /* 910 * remove the entry from the slot 911 */ 912 static void qfq_front_slot_remove(struct qfq_group *grp) 913 { 914 struct qfq_aggregate *agg = qfq_slot_head(grp); 915 916 BUG_ON(!agg); 917 hlist_del(&agg->next); 918 if (hlist_empty(&grp->slots[grp->front])) 919 __clear_bit(0, &grp->full_slots); 920 } 921 922 /* 923 * Returns the first aggregate in the first non-empty bucket of the 924 * group. As a side effect, adjusts the bucket list so the first 925 * non-empty bucket is at position 0 in full_slots. 926 */ 927 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) 928 { 929 unsigned int i; 930 931 pr_debug("qfq slot_scan: grp %u full %#lx\n", 932 grp->index, grp->full_slots); 933 934 if (grp->full_slots == 0) 935 return NULL; 936 937 i = __ffs(grp->full_slots); /* zero based */ 938 if (i > 0) { 939 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 940 grp->full_slots >>= i; 941 } 942 943 return qfq_slot_head(grp); 944 } 945 946 /* 947 * adjust the bucket list. When the start time of a group decreases, 948 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 949 * move the objects. The mask of occupied slots must be shifted 950 * because we use ffs() to find the first non-empty slot. 951 * This covers decreases in the group's start time, but what about 952 * increases of the start time ? 953 * Here too we should make sure that i is less than 32 954 */ 955 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 956 { 957 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 958 959 grp->full_slots <<= i; 960 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 961 } 962 963 static void qfq_update_eligible(struct qfq_sched *q) 964 { 965 struct qfq_group *grp; 966 unsigned long ineligible; 967 968 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 969 if (ineligible) { 970 if (!q->bitmaps[ER]) { 971 grp = qfq_ffs(q, ineligible); 972 if (qfq_gt(grp->S, q->V)) 973 q->V = grp->S; 974 } 975 qfq_make_eligible(q); 976 } 977 } 978 979 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ 980 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg, 981 struct qfq_class *cl, unsigned int len) 982 { 983 struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc); 984 985 if (!skb) 986 return NULL; 987 988 cl->deficit -= (int) len; 989 990 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ 991 list_del_init(&cl->alist); 992 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { 993 cl->deficit += agg->lmax; 994 list_move_tail(&cl->alist, &agg->active); 995 } 996 997 return skb; 998 } 999 1000 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, 1001 struct qfq_class **cl, 1002 unsigned int *len) 1003 { 1004 struct sk_buff *skb; 1005 1006 *cl = list_first_entry(&agg->active, struct qfq_class, alist); 1007 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); 1008 if (skb == NULL) 1009 qdisc_warn_nonwc("qfq_dequeue", (*cl)->qdisc); 1010 else 1011 *len = qdisc_pkt_len(skb); 1012 1013 return skb; 1014 } 1015 1016 /* Update F according to the actual service received by the aggregate. */ 1017 static inline void charge_actual_service(struct qfq_aggregate *agg) 1018 { 1019 /* Compute the service received by the aggregate, taking into 1020 * account that, after decreasing the number of classes in 1021 * agg, it may happen that 1022 * agg->initial_budget - agg->budget > agg->bugdetmax 1023 */ 1024 u32 service_received = min(agg->budgetmax, 1025 agg->initial_budget - agg->budget); 1026 1027 agg->F = agg->S + (u64)service_received * agg->inv_w; 1028 } 1029 1030 /* Assign a reasonable start time for a new aggregate in group i. 1031 * Admissible values for \hat(F) are multiples of \sigma_i 1032 * no greater than V+\sigma_i . Larger values mean that 1033 * we had a wraparound so we consider the timestamp to be stale. 1034 * 1035 * If F is not stale and F >= V then we set S = F. 1036 * Otherwise we should assign S = V, but this may violate 1037 * the ordering in EB (see [2]). So, if we have groups in ER, 1038 * set S to the F_j of the first group j which would be blocking us. 1039 * We are guaranteed not to move S backward because 1040 * otherwise our group i would still be blocked. 1041 */ 1042 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) 1043 { 1044 unsigned long mask; 1045 u64 limit, roundedF; 1046 int slot_shift = agg->grp->slot_shift; 1047 1048 roundedF = qfq_round_down(agg->F, slot_shift); 1049 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 1050 1051 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { 1052 /* timestamp was stale */ 1053 mask = mask_from(q->bitmaps[ER], agg->grp->index); 1054 if (mask) { 1055 struct qfq_group *next = qfq_ffs(q, mask); 1056 if (qfq_gt(roundedF, next->F)) { 1057 if (qfq_gt(limit, next->F)) 1058 agg->S = next->F; 1059 else /* preserve timestamp correctness */ 1060 agg->S = limit; 1061 return; 1062 } 1063 } 1064 agg->S = q->V; 1065 } else /* timestamp is not stale */ 1066 agg->S = agg->F; 1067 } 1068 1069 /* Update the timestamps of agg before scheduling/rescheduling it for 1070 * service. In particular, assign to agg->F its maximum possible 1071 * value, i.e., the virtual finish time with which the aggregate 1072 * should be labeled if it used all its budget once in service. 1073 */ 1074 static inline void 1075 qfq_update_agg_ts(struct qfq_sched *q, 1076 struct qfq_aggregate *agg, enum update_reason reason) 1077 { 1078 if (reason != requeue) 1079 qfq_update_start(q, agg); 1080 else /* just charge agg for the service received */ 1081 agg->S = agg->F; 1082 1083 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; 1084 } 1085 1086 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); 1087 1088 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 1089 { 1090 struct qfq_sched *q = qdisc_priv(sch); 1091 struct qfq_aggregate *in_serv_agg = q->in_serv_agg; 1092 struct qfq_class *cl; 1093 struct sk_buff *skb = NULL; 1094 /* next-packet len, 0 means no more active classes in in-service agg */ 1095 unsigned int len = 0; 1096 1097 if (in_serv_agg == NULL) 1098 return NULL; 1099 1100 if (!list_empty(&in_serv_agg->active)) 1101 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1102 1103 /* 1104 * If there are no active classes in the in-service aggregate, 1105 * or if the aggregate has not enough budget to serve its next 1106 * class, then choose the next aggregate to serve. 1107 */ 1108 if (len == 0 || in_serv_agg->budget < len) { 1109 charge_actual_service(in_serv_agg); 1110 1111 /* recharge the budget of the aggregate */ 1112 in_serv_agg->initial_budget = in_serv_agg->budget = 1113 in_serv_agg->budgetmax; 1114 1115 if (!list_empty(&in_serv_agg->active)) { 1116 /* 1117 * Still active: reschedule for 1118 * service. Possible optimization: if no other 1119 * aggregate is active, then there is no point 1120 * in rescheduling this aggregate, and we can 1121 * just keep it as the in-service one. This 1122 * should be however a corner case, and to 1123 * handle it, we would need to maintain an 1124 * extra num_active_aggs field. 1125 */ 1126 qfq_update_agg_ts(q, in_serv_agg, requeue); 1127 qfq_schedule_agg(q, in_serv_agg); 1128 } else if (sch->q.qlen == 0) { /* no aggregate to serve */ 1129 q->in_serv_agg = NULL; 1130 return NULL; 1131 } 1132 1133 /* 1134 * If we get here, there are other aggregates queued: 1135 * choose the new aggregate to serve. 1136 */ 1137 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); 1138 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1139 } 1140 if (!skb) 1141 return NULL; 1142 1143 sch->q.qlen--; 1144 1145 skb = agg_dequeue(in_serv_agg, cl, len); 1146 1147 if (!skb) { 1148 sch->q.qlen++; 1149 return NULL; 1150 } 1151 1152 qdisc_qstats_backlog_dec(sch, skb); 1153 qdisc_bstats_update(sch, skb); 1154 1155 /* If lmax is lowered, through qfq_change_class, for a class 1156 * owning pending packets with larger size than the new value 1157 * of lmax, then the following condition may hold. 1158 */ 1159 if (unlikely(in_serv_agg->budget < len)) 1160 in_serv_agg->budget = 0; 1161 else 1162 in_serv_agg->budget -= len; 1163 1164 q->V += (u64)len * q->iwsum; 1165 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 1166 len, (unsigned long long) in_serv_agg->F, 1167 (unsigned long long) q->V); 1168 1169 return skb; 1170 } 1171 1172 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) 1173 { 1174 struct qfq_group *grp; 1175 struct qfq_aggregate *agg, *new_front_agg; 1176 u64 old_F; 1177 1178 qfq_update_eligible(q); 1179 q->oldV = q->V; 1180 1181 if (!q->bitmaps[ER]) 1182 return NULL; 1183 1184 grp = qfq_ffs(q, q->bitmaps[ER]); 1185 old_F = grp->F; 1186 1187 agg = qfq_slot_head(grp); 1188 1189 /* agg starts to be served, remove it from schedule */ 1190 qfq_front_slot_remove(grp); 1191 1192 new_front_agg = qfq_slot_scan(grp); 1193 1194 if (new_front_agg == NULL) /* group is now inactive, remove from ER */ 1195 __clear_bit(grp->index, &q->bitmaps[ER]); 1196 else { 1197 u64 roundedS = qfq_round_down(new_front_agg->S, 1198 grp->slot_shift); 1199 unsigned int s; 1200 1201 if (grp->S == roundedS) 1202 return agg; 1203 grp->S = roundedS; 1204 grp->F = roundedS + (2ULL << grp->slot_shift); 1205 __clear_bit(grp->index, &q->bitmaps[ER]); 1206 s = qfq_calc_state(q, grp); 1207 __set_bit(grp->index, &q->bitmaps[s]); 1208 } 1209 1210 qfq_unblock_groups(q, grp->index, old_F); 1211 1212 return agg; 1213 } 1214 1215 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, 1216 struct sk_buff **to_free) 1217 { 1218 unsigned int len = qdisc_pkt_len(skb), gso_segs; 1219 struct qfq_sched *q = qdisc_priv(sch); 1220 struct qfq_class *cl; 1221 struct qfq_aggregate *agg; 1222 int err = 0; 1223 1224 cl = qfq_classify(skb, sch, &err); 1225 if (cl == NULL) { 1226 if (err & __NET_XMIT_BYPASS) 1227 qdisc_qstats_drop(sch); 1228 __qdisc_drop(skb, to_free); 1229 return err; 1230 } 1231 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 1232 1233 if (unlikely(cl->agg->lmax < len)) { 1234 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 1235 cl->agg->lmax, len, cl->common.classid); 1236 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len); 1237 if (err) { 1238 cl->qstats.drops++; 1239 return qdisc_drop(skb, sch, to_free); 1240 } 1241 } 1242 1243 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1; 1244 err = qdisc_enqueue(skb, cl->qdisc, to_free); 1245 if (unlikely(err != NET_XMIT_SUCCESS)) { 1246 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 1247 if (net_xmit_drop_count(err)) { 1248 cl->qstats.drops++; 1249 qdisc_qstats_drop(sch); 1250 } 1251 return err; 1252 } 1253 1254 _bstats_update(&cl->bstats, len, gso_segs); 1255 sch->qstats.backlog += len; 1256 ++sch->q.qlen; 1257 1258 agg = cl->agg; 1259 /* if the class is active, then done here */ 1260 if (cl_is_active(cl)) { 1261 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && 1262 list_first_entry(&agg->active, struct qfq_class, alist) 1263 == cl && cl->deficit < len) 1264 list_move_tail(&cl->alist, &agg->active); 1265 1266 return err; 1267 } 1268 1269 /* schedule class for service within the aggregate */ 1270 cl->deficit = agg->lmax; 1271 list_add_tail(&cl->alist, &agg->active); 1272 1273 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || 1274 q->in_serv_agg == agg) 1275 return err; /* non-empty or in service, nothing else to do */ 1276 1277 qfq_activate_agg(q, agg, enqueue); 1278 1279 return err; 1280 } 1281 1282 /* 1283 * Schedule aggregate according to its timestamps. 1284 */ 1285 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1286 { 1287 struct qfq_group *grp = agg->grp; 1288 u64 roundedS; 1289 int s; 1290 1291 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1292 1293 /* 1294 * Insert agg in the correct bucket. 1295 * If agg->S >= grp->S we don't need to adjust the 1296 * bucket list and simply go to the insertion phase. 1297 * Otherwise grp->S is decreasing, we must make room 1298 * in the bucket list, and also recompute the group state. 1299 * Finally, if there were no flows in this group and nobody 1300 * was in ER make sure to adjust V. 1301 */ 1302 if (grp->full_slots) { 1303 if (!qfq_gt(grp->S, agg->S)) 1304 goto skip_update; 1305 1306 /* create a slot for this agg->S */ 1307 qfq_slot_rotate(grp, roundedS); 1308 /* group was surely ineligible, remove */ 1309 __clear_bit(grp->index, &q->bitmaps[IR]); 1310 __clear_bit(grp->index, &q->bitmaps[IB]); 1311 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && 1312 q->in_serv_agg == NULL) 1313 q->V = roundedS; 1314 1315 grp->S = roundedS; 1316 grp->F = roundedS + (2ULL << grp->slot_shift); 1317 s = qfq_calc_state(q, grp); 1318 __set_bit(grp->index, &q->bitmaps[s]); 1319 1320 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1321 s, q->bitmaps[s], 1322 (unsigned long long) agg->S, 1323 (unsigned long long) agg->F, 1324 (unsigned long long) q->V); 1325 1326 skip_update: 1327 qfq_slot_insert(grp, agg, roundedS); 1328 } 1329 1330 1331 /* Update agg ts and schedule agg for service */ 1332 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 1333 enum update_reason reason) 1334 { 1335 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ 1336 1337 qfq_update_agg_ts(q, agg, reason); 1338 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ 1339 q->in_serv_agg = agg; /* start serving this aggregate */ 1340 /* update V: to be in service, agg must be eligible */ 1341 q->oldV = q->V = agg->S; 1342 } else if (agg != q->in_serv_agg) 1343 qfq_schedule_agg(q, agg); 1344 } 1345 1346 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1347 struct qfq_aggregate *agg) 1348 { 1349 unsigned int i, offset; 1350 u64 roundedS; 1351 1352 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1353 offset = (roundedS - grp->S) >> grp->slot_shift; 1354 1355 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1356 1357 hlist_del(&agg->next); 1358 if (hlist_empty(&grp->slots[i])) 1359 __clear_bit(offset, &grp->full_slots); 1360 } 1361 1362 /* 1363 * Called to forcibly deschedule an aggregate. If the aggregate is 1364 * not in the front bucket, or if the latter has other aggregates in 1365 * the front bucket, we can simply remove the aggregate with no other 1366 * side effects. 1367 * Otherwise we must propagate the event up. 1368 */ 1369 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1370 { 1371 struct qfq_group *grp = agg->grp; 1372 unsigned long mask; 1373 u64 roundedS; 1374 int s; 1375 1376 if (agg == q->in_serv_agg) { 1377 charge_actual_service(agg); 1378 q->in_serv_agg = qfq_choose_next_agg(q); 1379 return; 1380 } 1381 1382 agg->F = agg->S; 1383 qfq_slot_remove(q, grp, agg); 1384 1385 if (!grp->full_slots) { 1386 __clear_bit(grp->index, &q->bitmaps[IR]); 1387 __clear_bit(grp->index, &q->bitmaps[EB]); 1388 __clear_bit(grp->index, &q->bitmaps[IB]); 1389 1390 if (test_bit(grp->index, &q->bitmaps[ER]) && 1391 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1392 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1393 if (mask) 1394 mask = ~((1UL << __fls(mask)) - 1); 1395 else 1396 mask = ~0UL; 1397 qfq_move_groups(q, mask, EB, ER); 1398 qfq_move_groups(q, mask, IB, IR); 1399 } 1400 __clear_bit(grp->index, &q->bitmaps[ER]); 1401 } else if (hlist_empty(&grp->slots[grp->front])) { 1402 agg = qfq_slot_scan(grp); 1403 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1404 if (grp->S != roundedS) { 1405 __clear_bit(grp->index, &q->bitmaps[ER]); 1406 __clear_bit(grp->index, &q->bitmaps[IR]); 1407 __clear_bit(grp->index, &q->bitmaps[EB]); 1408 __clear_bit(grp->index, &q->bitmaps[IB]); 1409 grp->S = roundedS; 1410 grp->F = roundedS + (2ULL << grp->slot_shift); 1411 s = qfq_calc_state(q, grp); 1412 __set_bit(grp->index, &q->bitmaps[s]); 1413 } 1414 } 1415 } 1416 1417 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1418 { 1419 struct qfq_sched *q = qdisc_priv(sch); 1420 struct qfq_class *cl = (struct qfq_class *)arg; 1421 1422 if (list_empty(&cl->alist)) 1423 return; 1424 qfq_deactivate_class(q, cl); 1425 } 1426 1427 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt, 1428 struct netlink_ext_ack *extack) 1429 { 1430 struct qfq_sched *q = qdisc_priv(sch); 1431 struct qfq_group *grp; 1432 int i, j, err; 1433 u32 max_cl_shift, maxbudg_shift, max_classes; 1434 1435 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 1436 if (err) 1437 return err; 1438 1439 err = qdisc_class_hash_init(&q->clhash); 1440 if (err < 0) 1441 return err; 1442 1443 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1, 1444 QFQ_MAX_AGG_CLASSES); 1445 /* max_cl_shift = floor(log_2(max_classes)) */ 1446 max_cl_shift = __fls(max_classes); 1447 q->max_agg_classes = 1<<max_cl_shift; 1448 1449 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ 1450 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; 1451 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; 1452 1453 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1454 grp = &q->groups[i]; 1455 grp->index = i; 1456 grp->slot_shift = q->min_slot_shift + i; 1457 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1458 INIT_HLIST_HEAD(&grp->slots[j]); 1459 } 1460 1461 INIT_HLIST_HEAD(&q->nonfull_aggs); 1462 1463 return 0; 1464 } 1465 1466 static void qfq_reset_qdisc(struct Qdisc *sch) 1467 { 1468 struct qfq_sched *q = qdisc_priv(sch); 1469 struct qfq_class *cl; 1470 unsigned int i; 1471 1472 for (i = 0; i < q->clhash.hashsize; i++) { 1473 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1474 if (cl->qdisc->q.qlen > 0) 1475 qfq_deactivate_class(q, cl); 1476 1477 qdisc_reset(cl->qdisc); 1478 } 1479 } 1480 } 1481 1482 static void qfq_destroy_qdisc(struct Qdisc *sch) 1483 { 1484 struct qfq_sched *q = qdisc_priv(sch); 1485 struct qfq_class *cl; 1486 struct hlist_node *next; 1487 unsigned int i; 1488 1489 tcf_block_put(q->block); 1490 1491 for (i = 0; i < q->clhash.hashsize; i++) { 1492 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1493 common.hnode) { 1494 qfq_destroy_class(sch, cl); 1495 } 1496 } 1497 qdisc_class_hash_destroy(&q->clhash); 1498 } 1499 1500 static const struct Qdisc_class_ops qfq_class_ops = { 1501 .change = qfq_change_class, 1502 .delete = qfq_delete_class, 1503 .find = qfq_search_class, 1504 .tcf_block = qfq_tcf_block, 1505 .bind_tcf = qfq_bind_tcf, 1506 .unbind_tcf = qfq_unbind_tcf, 1507 .graft = qfq_graft_class, 1508 .leaf = qfq_class_leaf, 1509 .qlen_notify = qfq_qlen_notify, 1510 .dump = qfq_dump_class, 1511 .dump_stats = qfq_dump_class_stats, 1512 .walk = qfq_walk, 1513 }; 1514 1515 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1516 .cl_ops = &qfq_class_ops, 1517 .id = "qfq", 1518 .priv_size = sizeof(struct qfq_sched), 1519 .enqueue = qfq_enqueue, 1520 .dequeue = qfq_dequeue, 1521 .peek = qdisc_peek_dequeued, 1522 .init = qfq_init_qdisc, 1523 .reset = qfq_reset_qdisc, 1524 .destroy = qfq_destroy_qdisc, 1525 .owner = THIS_MODULE, 1526 }; 1527 MODULE_ALIAS_NET_SCH("qfq"); 1528 1529 static int __init qfq_init(void) 1530 { 1531 return register_qdisc(&qfq_qdisc_ops); 1532 } 1533 1534 static void __exit qfq_exit(void) 1535 { 1536 unregister_qdisc(&qfq_qdisc_ops); 1537 } 1538 1539 module_init(qfq_init); 1540 module_exit(qfq_exit); 1541 MODULE_LICENSE("GPL"); 1542 MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc"); 1543