xref: /linux/net/sched/sch_qfq.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
3  *
4  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5  * Copyright (c) 2012 Paolo Valente.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21 
22 
23 /*  Quick Fair Queueing Plus
24     ========================
25 
26     Sources:
27 
28     [1] Paolo Valente,
29     "Reducing the Execution Time of Fair-Queueing Schedulers."
30     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31 
32     Sources for QFQ:
33 
34     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36 
37     See also:
38     http://retis.sssup.it/~fabio/linux/qfq/
39  */
40 
41 /*
42 
43   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44   classes. Each aggregate is timestamped with a virtual start time S
45   and a virtual finish time F, and scheduled according to its
46   timestamps. S and F are computed as a function of a system virtual
47   time function V. The classes within each aggregate are instead
48   scheduled with DRR.
49 
50   To speed up operations, QFQ+ divides also aggregates into a limited
51   number of groups. Which group a class belongs to depends on the
52   ratio between the maximum packet length for the class and the weight
53   of the class. Groups have their own S and F. In the end, QFQ+
54   schedules groups, then aggregates within groups, then classes within
55   aggregates. See [1] and [2] for a full description.
56 
57   Virtual time computations.
58 
59   S, F and V are all computed in fixed point arithmetic with
60   FRAC_BITS decimal bits.
61 
62   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 	one bit per index.
64   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65 
66   The layout of the bits is as below:
67 
68                    [ MTU_SHIFT ][      FRAC_BITS    ]
69                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
70 				 ^.__grp->index = 0
71 				 *.__grp->slot_shift
72 
73   where MIN_SLOT_SHIFT is derived by difference from the others.
74 
75   The max group index corresponds to Lmax/w_min, where
76   Lmax=1<<MTU_SHIFT, w_min = 1 .
77   From this, and knowing how many groups (MAX_INDEX) we want,
78   we can derive the shift corresponding to each group.
79 
80   Because we often need to compute
81 	F = S + len/w_i  and V = V + len/wsum
82   instead of storing w_i store the value
83 	inv_w = (1<<FRAC_BITS)/w_i
84   so we can do F = S + len * inv_w * wsum.
85   We use W_TOT in the formulas so we can easily move between
86   static and adaptive weight sum.
87 
88   The per-scheduler-instance data contain all the data structures
89   for the scheduler: bitmaps and bucket lists.
90 
91  */
92 
93 /*
94  * Maximum number of consecutive slots occupied by backlogged classes
95  * inside a group.
96  */
97 #define QFQ_MAX_SLOTS	32
98 
99 /*
100  * Shifts used for aggregate<->group mapping.  We allow class weights that are
101  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102  * group with the smallest index that can support the L_i / r_i configured
103  * for the classes in the aggregate.
104  *
105  * grp->index is the index of the group; and grp->slot_shift
106  * is the shift for the corresponding (scaled) sigma_i.
107  */
108 #define QFQ_MAX_INDEX		24
109 #define QFQ_MAX_WSHIFT		10
110 
111 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
113 
114 #define FRAC_BITS		30	/* fixed point arithmetic */
115 #define ONE_FP			(1UL << FRAC_BITS)
116 #define IWSUM			(ONE_FP/QFQ_MAX_WSUM)
117 
118 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
119 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
120 
121 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
122 
123 /*
124  * Possible group states.  These values are used as indexes for the bitmaps
125  * array of struct qfq_queue.
126  */
127 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
128 
129 struct qfq_group;
130 
131 struct qfq_aggregate;
132 
133 struct qfq_class {
134 	struct Qdisc_class_common common;
135 
136 	unsigned int refcnt;
137 	unsigned int filter_cnt;
138 
139 	struct gnet_stats_basic_packed bstats;
140 	struct gnet_stats_queue qstats;
141 	struct gnet_stats_rate_est rate_est;
142 	struct Qdisc *qdisc;
143 	struct list_head alist;		/* Link for active-classes list. */
144 	struct qfq_aggregate *agg;	/* Parent aggregate. */
145 	int deficit;			/* DRR deficit counter. */
146 };
147 
148 struct qfq_aggregate {
149 	struct hlist_node next;	/* Link for the slot list. */
150 	u64 S, F;		/* flow timestamps (exact) */
151 
152 	/* group we belong to. In principle we would need the index,
153 	 * which is log_2(lmax/weight), but we never reference it
154 	 * directly, only the group.
155 	 */
156 	struct qfq_group *grp;
157 
158 	/* these are copied from the flowset. */
159 	u32	class_weight; /* Weight of each class in this aggregate. */
160 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
161 	int	lmax;
162 
163 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
164 	u32	budgetmax;  /* Max budget for this aggregate. */
165 	u32	initial_budget, budget;     /* Initial and current budget. */
166 
167 	int		  num_classes;	/* Number of classes in this aggr. */
168 	struct list_head  active;	/* DRR queue of active classes. */
169 
170 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
171 };
172 
173 struct qfq_group {
174 	u64 S, F;			/* group timestamps (approx). */
175 	unsigned int slot_shift;	/* Slot shift. */
176 	unsigned int index;		/* Group index. */
177 	unsigned int front;		/* Index of the front slot. */
178 	unsigned long full_slots;	/* non-empty slots */
179 
180 	/* Array of RR lists of active aggregates. */
181 	struct hlist_head slots[QFQ_MAX_SLOTS];
182 };
183 
184 struct qfq_sched {
185 	struct tcf_proto *filter_list;
186 	struct Qdisc_class_hash clhash;
187 
188 	u64			oldV, V;	/* Precise virtual times. */
189 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
190 	u32			num_active_agg; /* Num. of active aggregates */
191 	u32			wsum;		/* weight sum */
192 
193 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
194 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
195 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
196 
197 	u32 max_agg_classes;		/* Max number of classes per aggr. */
198 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
199 };
200 
201 /*
202  * Possible reasons why the timestamps of an aggregate are updated
203  * enqueue: the aggregate switches from idle to active and must scheduled
204  *	    for service
205  * requeue: the aggregate finishes its budget, so it stops being served and
206  *	    must be rescheduled for service
207  */
208 enum update_reason {enqueue, requeue};
209 
210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 	struct qfq_sched *q = qdisc_priv(sch);
213 	struct Qdisc_class_common *clc;
214 
215 	clc = qdisc_class_find(&q->clhash, classid);
216 	if (clc == NULL)
217 		return NULL;
218 	return container_of(clc, struct qfq_class, common);
219 }
220 
221 static void qfq_purge_queue(struct qfq_class *cl)
222 {
223 	unsigned int len = cl->qdisc->q.qlen;
224 
225 	qdisc_reset(cl->qdisc);
226 	qdisc_tree_decrease_qlen(cl->qdisc, len);
227 }
228 
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
232 };
233 
234 /*
235  * Calculate a flow index, given its weight and maximum packet length.
236  * index = log_2(maxlen/weight) but we need to apply the scaling.
237  * This is used only once at flow creation.
238  */
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240 {
241 	u64 slot_size = (u64)maxlen * inv_w;
242 	unsigned long size_map;
243 	int index = 0;
244 
245 	size_map = slot_size >> min_slot_shift;
246 	if (!size_map)
247 		goto out;
248 
249 	index = __fls(size_map) + 1;	/* basically a log_2 */
250 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251 
252 	if (index < 0)
253 		index = 0;
254 out:
255 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
257 
258 	return index;
259 }
260 
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 			     enum update_reason);
264 
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 			 u32 lmax, u32 weight)
267 {
268 	INIT_LIST_HEAD(&agg->active);
269 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270 
271 	agg->lmax = lmax;
272 	agg->class_weight = weight;
273 }
274 
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 					  u32 lmax, u32 weight)
277 {
278 	struct qfq_aggregate *agg;
279 	struct hlist_node *n;
280 
281 	hlist_for_each_entry(agg, n, &q->nonfull_aggs, nonfull_next)
282 		if (agg->lmax == lmax && agg->class_weight == weight)
283 			return agg;
284 
285 	return NULL;
286 }
287 
288 
289 /* Update aggregate as a function of the new number of classes. */
290 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
291 			   int new_num_classes)
292 {
293 	u32 new_agg_weight;
294 
295 	if (new_num_classes == q->max_agg_classes)
296 		hlist_del_init(&agg->nonfull_next);
297 
298 	if (agg->num_classes > new_num_classes &&
299 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
300 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
301 
302 	agg->budgetmax = new_num_classes * agg->lmax;
303 	new_agg_weight = agg->class_weight * new_num_classes;
304 	agg->inv_w = ONE_FP/new_agg_weight;
305 
306 	if (agg->grp == NULL) {
307 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
308 				       q->min_slot_shift);
309 		agg->grp = &q->groups[i];
310 	}
311 
312 	q->wsum +=
313 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
314 
315 	agg->num_classes = new_num_classes;
316 }
317 
318 /* Add class to aggregate. */
319 static void qfq_add_to_agg(struct qfq_sched *q,
320 			   struct qfq_aggregate *agg,
321 			   struct qfq_class *cl)
322 {
323 	cl->agg = agg;
324 
325 	qfq_update_agg(q, agg, agg->num_classes+1);
326 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
327 		list_add_tail(&cl->alist, &agg->active);
328 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
329 		    cl && q->in_serv_agg != agg) /* agg was inactive */
330 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
331 	}
332 }
333 
334 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
335 
336 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
337 {
338 	if (!hlist_unhashed(&agg->nonfull_next))
339 		hlist_del_init(&agg->nonfull_next);
340 	if (q->in_serv_agg == agg)
341 		q->in_serv_agg = qfq_choose_next_agg(q);
342 	kfree(agg);
343 }
344 
345 /* Deschedule class from within its parent aggregate. */
346 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
347 {
348 	struct qfq_aggregate *agg = cl->agg;
349 
350 
351 	list_del(&cl->alist); /* remove from RR queue of the aggregate */
352 	if (list_empty(&agg->active)) /* agg is now inactive */
353 		qfq_deactivate_agg(q, agg);
354 }
355 
356 /* Remove class from its parent aggregate. */
357 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
358 {
359 	struct qfq_aggregate *agg = cl->agg;
360 
361 	cl->agg = NULL;
362 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
363 		qfq_destroy_agg(q, agg);
364 		return;
365 	}
366 	qfq_update_agg(q, agg, agg->num_classes-1);
367 }
368 
369 /* Deschedule class and remove it from its parent aggregate. */
370 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
371 {
372 	if (cl->qdisc->q.qlen > 0) /* class is active */
373 		qfq_deactivate_class(q, cl);
374 
375 	qfq_rm_from_agg(q, cl);
376 }
377 
378 /* Move class to a new aggregate, matching the new class weight and/or lmax */
379 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
380 			   u32 lmax)
381 {
382 	struct qfq_sched *q = qdisc_priv(sch);
383 	struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
384 
385 	if (new_agg == NULL) { /* create new aggregate */
386 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
387 		if (new_agg == NULL)
388 			return -ENOBUFS;
389 		qfq_init_agg(q, new_agg, lmax, weight);
390 	}
391 	qfq_deact_rm_from_agg(q, cl);
392 	qfq_add_to_agg(q, new_agg, cl);
393 
394 	return 0;
395 }
396 
397 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
398 			    struct nlattr **tca, unsigned long *arg)
399 {
400 	struct qfq_sched *q = qdisc_priv(sch);
401 	struct qfq_class *cl = (struct qfq_class *)*arg;
402 	bool existing = false;
403 	struct nlattr *tb[TCA_QFQ_MAX + 1];
404 	struct qfq_aggregate *new_agg = NULL;
405 	u32 weight, lmax, inv_w;
406 	int err;
407 	int delta_w;
408 
409 	if (tca[TCA_OPTIONS] == NULL) {
410 		pr_notice("qfq: no options\n");
411 		return -EINVAL;
412 	}
413 
414 	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
415 	if (err < 0)
416 		return err;
417 
418 	if (tb[TCA_QFQ_WEIGHT]) {
419 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
420 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
421 			pr_notice("qfq: invalid weight %u\n", weight);
422 			return -EINVAL;
423 		}
424 	} else
425 		weight = 1;
426 
427 	if (tb[TCA_QFQ_LMAX]) {
428 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
429 		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
430 			pr_notice("qfq: invalid max length %u\n", lmax);
431 			return -EINVAL;
432 		}
433 	} else
434 		lmax = psched_mtu(qdisc_dev(sch));
435 
436 	inv_w = ONE_FP / weight;
437 	weight = ONE_FP / inv_w;
438 
439 	if (cl != NULL &&
440 	    lmax == cl->agg->lmax &&
441 	    weight == cl->agg->class_weight)
442 		return 0; /* nothing to change */
443 
444 	delta_w = weight - (cl ? cl->agg->class_weight : 0);
445 
446 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
447 		pr_notice("qfq: total weight out of range (%d + %u)\n",
448 			  delta_w, q->wsum);
449 		return -EINVAL;
450 	}
451 
452 	if (cl != NULL) { /* modify existing class */
453 		if (tca[TCA_RATE]) {
454 			err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
455 						    qdisc_root_sleeping_lock(sch),
456 						    tca[TCA_RATE]);
457 			if (err)
458 				return err;
459 		}
460 		existing = true;
461 		goto set_change_agg;
462 	}
463 
464 	/* create and init new class */
465 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
466 	if (cl == NULL)
467 		return -ENOBUFS;
468 
469 	cl->refcnt = 1;
470 	cl->common.classid = classid;
471 	cl->deficit = lmax;
472 
473 	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
474 				      &pfifo_qdisc_ops, classid);
475 	if (cl->qdisc == NULL)
476 		cl->qdisc = &noop_qdisc;
477 
478 	if (tca[TCA_RATE]) {
479 		err = gen_new_estimator(&cl->bstats, &cl->rate_est,
480 					qdisc_root_sleeping_lock(sch),
481 					tca[TCA_RATE]);
482 		if (err)
483 			goto destroy_class;
484 	}
485 
486 	sch_tree_lock(sch);
487 	qdisc_class_hash_insert(&q->clhash, &cl->common);
488 	sch_tree_unlock(sch);
489 
490 	qdisc_class_hash_grow(sch, &q->clhash);
491 
492 set_change_agg:
493 	sch_tree_lock(sch);
494 	new_agg = qfq_find_agg(q, lmax, weight);
495 	if (new_agg == NULL) { /* create new aggregate */
496 		sch_tree_unlock(sch);
497 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
498 		if (new_agg == NULL) {
499 			err = -ENOBUFS;
500 			gen_kill_estimator(&cl->bstats, &cl->rate_est);
501 			goto destroy_class;
502 		}
503 		sch_tree_lock(sch);
504 		qfq_init_agg(q, new_agg, lmax, weight);
505 	}
506 	if (existing)
507 		qfq_deact_rm_from_agg(q, cl);
508 	qfq_add_to_agg(q, new_agg, cl);
509 	sch_tree_unlock(sch);
510 
511 	*arg = (unsigned long)cl;
512 	return 0;
513 
514 destroy_class:
515 	qdisc_destroy(cl->qdisc);
516 	kfree(cl);
517 	return err;
518 }
519 
520 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
521 {
522 	struct qfq_sched *q = qdisc_priv(sch);
523 
524 	qfq_rm_from_agg(q, cl);
525 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
526 	qdisc_destroy(cl->qdisc);
527 	kfree(cl);
528 }
529 
530 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
531 {
532 	struct qfq_sched *q = qdisc_priv(sch);
533 	struct qfq_class *cl = (struct qfq_class *)arg;
534 
535 	if (cl->filter_cnt > 0)
536 		return -EBUSY;
537 
538 	sch_tree_lock(sch);
539 
540 	qfq_purge_queue(cl);
541 	qdisc_class_hash_remove(&q->clhash, &cl->common);
542 
543 	BUG_ON(--cl->refcnt == 0);
544 	/*
545 	 * This shouldn't happen: we "hold" one cops->get() when called
546 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
547 	 */
548 
549 	sch_tree_unlock(sch);
550 	return 0;
551 }
552 
553 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
554 {
555 	struct qfq_class *cl = qfq_find_class(sch, classid);
556 
557 	if (cl != NULL)
558 		cl->refcnt++;
559 
560 	return (unsigned long)cl;
561 }
562 
563 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
564 {
565 	struct qfq_class *cl = (struct qfq_class *)arg;
566 
567 	if (--cl->refcnt == 0)
568 		qfq_destroy_class(sch, cl);
569 }
570 
571 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
572 {
573 	struct qfq_sched *q = qdisc_priv(sch);
574 
575 	if (cl)
576 		return NULL;
577 
578 	return &q->filter_list;
579 }
580 
581 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
582 				  u32 classid)
583 {
584 	struct qfq_class *cl = qfq_find_class(sch, classid);
585 
586 	if (cl != NULL)
587 		cl->filter_cnt++;
588 
589 	return (unsigned long)cl;
590 }
591 
592 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
593 {
594 	struct qfq_class *cl = (struct qfq_class *)arg;
595 
596 	cl->filter_cnt--;
597 }
598 
599 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
600 			   struct Qdisc *new, struct Qdisc **old)
601 {
602 	struct qfq_class *cl = (struct qfq_class *)arg;
603 
604 	if (new == NULL) {
605 		new = qdisc_create_dflt(sch->dev_queue,
606 					&pfifo_qdisc_ops, cl->common.classid);
607 		if (new == NULL)
608 			new = &noop_qdisc;
609 	}
610 
611 	sch_tree_lock(sch);
612 	qfq_purge_queue(cl);
613 	*old = cl->qdisc;
614 	cl->qdisc = new;
615 	sch_tree_unlock(sch);
616 	return 0;
617 }
618 
619 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
620 {
621 	struct qfq_class *cl = (struct qfq_class *)arg;
622 
623 	return cl->qdisc;
624 }
625 
626 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
627 			  struct sk_buff *skb, struct tcmsg *tcm)
628 {
629 	struct qfq_class *cl = (struct qfq_class *)arg;
630 	struct nlattr *nest;
631 
632 	tcm->tcm_parent	= TC_H_ROOT;
633 	tcm->tcm_handle	= cl->common.classid;
634 	tcm->tcm_info	= cl->qdisc->handle;
635 
636 	nest = nla_nest_start(skb, TCA_OPTIONS);
637 	if (nest == NULL)
638 		goto nla_put_failure;
639 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
640 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
641 		goto nla_put_failure;
642 	return nla_nest_end(skb, nest);
643 
644 nla_put_failure:
645 	nla_nest_cancel(skb, nest);
646 	return -EMSGSIZE;
647 }
648 
649 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
650 				struct gnet_dump *d)
651 {
652 	struct qfq_class *cl = (struct qfq_class *)arg;
653 	struct tc_qfq_stats xstats;
654 
655 	memset(&xstats, 0, sizeof(xstats));
656 	cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
657 
658 	xstats.weight = cl->agg->class_weight;
659 	xstats.lmax = cl->agg->lmax;
660 
661 	if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
662 	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
663 	    gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
664 		return -1;
665 
666 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
667 }
668 
669 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
670 {
671 	struct qfq_sched *q = qdisc_priv(sch);
672 	struct qfq_class *cl;
673 	struct hlist_node *n;
674 	unsigned int i;
675 
676 	if (arg->stop)
677 		return;
678 
679 	for (i = 0; i < q->clhash.hashsize; i++) {
680 		hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) {
681 			if (arg->count < arg->skip) {
682 				arg->count++;
683 				continue;
684 			}
685 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
686 				arg->stop = 1;
687 				return;
688 			}
689 			arg->count++;
690 		}
691 	}
692 }
693 
694 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
695 				      int *qerr)
696 {
697 	struct qfq_sched *q = qdisc_priv(sch);
698 	struct qfq_class *cl;
699 	struct tcf_result res;
700 	int result;
701 
702 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
703 		pr_debug("qfq_classify: found %d\n", skb->priority);
704 		cl = qfq_find_class(sch, skb->priority);
705 		if (cl != NULL)
706 			return cl;
707 	}
708 
709 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
710 	result = tc_classify(skb, q->filter_list, &res);
711 	if (result >= 0) {
712 #ifdef CONFIG_NET_CLS_ACT
713 		switch (result) {
714 		case TC_ACT_QUEUED:
715 		case TC_ACT_STOLEN:
716 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
717 		case TC_ACT_SHOT:
718 			return NULL;
719 		}
720 #endif
721 		cl = (struct qfq_class *)res.class;
722 		if (cl == NULL)
723 			cl = qfq_find_class(sch, res.classid);
724 		return cl;
725 	}
726 
727 	return NULL;
728 }
729 
730 /* Generic comparison function, handling wraparound. */
731 static inline int qfq_gt(u64 a, u64 b)
732 {
733 	return (s64)(a - b) > 0;
734 }
735 
736 /* Round a precise timestamp to its slotted value. */
737 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
738 {
739 	return ts & ~((1ULL << shift) - 1);
740 }
741 
742 /* return the pointer to the group with lowest index in the bitmap */
743 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
744 					unsigned long bitmap)
745 {
746 	int index = __ffs(bitmap);
747 	return &q->groups[index];
748 }
749 /* Calculate a mask to mimic what would be ffs_from(). */
750 static inline unsigned long mask_from(unsigned long bitmap, int from)
751 {
752 	return bitmap & ~((1UL << from) - 1);
753 }
754 
755 /*
756  * The state computation relies on ER=0, IR=1, EB=2, IB=3
757  * First compute eligibility comparing grp->S, q->V,
758  * then check if someone is blocking us and possibly add EB
759  */
760 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
761 {
762 	/* if S > V we are not eligible */
763 	unsigned int state = qfq_gt(grp->S, q->V);
764 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
765 	struct qfq_group *next;
766 
767 	if (mask) {
768 		next = qfq_ffs(q, mask);
769 		if (qfq_gt(grp->F, next->F))
770 			state |= EB;
771 	}
772 
773 	return state;
774 }
775 
776 
777 /*
778  * In principle
779  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
780  *	q->bitmaps[src] &= ~mask;
781  * but we should make sure that src != dst
782  */
783 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
784 				   int src, int dst)
785 {
786 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
787 	q->bitmaps[src] &= ~mask;
788 }
789 
790 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
791 {
792 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
793 	struct qfq_group *next;
794 
795 	if (mask) {
796 		next = qfq_ffs(q, mask);
797 		if (!qfq_gt(next->F, old_F))
798 			return;
799 	}
800 
801 	mask = (1UL << index) - 1;
802 	qfq_move_groups(q, mask, EB, ER);
803 	qfq_move_groups(q, mask, IB, IR);
804 }
805 
806 /*
807  * perhaps
808  *
809 	old_V ^= q->V;
810 	old_V >>= q->min_slot_shift;
811 	if (old_V) {
812 		...
813 	}
814  *
815  */
816 static void qfq_make_eligible(struct qfq_sched *q)
817 {
818 	unsigned long vslot = q->V >> q->min_slot_shift;
819 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
820 
821 	if (vslot != old_vslot) {
822 		unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1;
823 		qfq_move_groups(q, mask, IR, ER);
824 		qfq_move_groups(q, mask, IB, EB);
825 	}
826 }
827 
828 
829 /*
830  * The index of the slot in which the aggregate is to be inserted must
831  * not be higher than QFQ_MAX_SLOTS-2. There is a '-2' and not a '-1'
832  * because the start time of the group may be moved backward by one
833  * slot after the aggregate has been inserted, and this would cause
834  * non-empty slots to be right-shifted by one position.
835  *
836  * If the weight and lmax (max_pkt_size) of the classes do not change,
837  * then QFQ+ does meet the above contraint according to the current
838  * values of its parameters. In fact, if the weight and lmax of the
839  * classes do not change, then, from the theory, QFQ+ guarantees that
840  * the slot index is never higher than
841  * 2 + QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
842  * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM) = 2 + 8 * 128 * (1 / 64) = 18
843  *
844  * When the weight of a class is increased or the lmax of the class is
845  * decreased, a new aggregate with smaller slot size than the original
846  * parent aggregate of the class may happen to be activated. The
847  * activation of this aggregate should be properly delayed to when the
848  * service of the class has finished in the ideal system tracked by
849  * QFQ+. If the activation of the aggregate is not delayed to this
850  * reference time instant, then this aggregate may be unjustly served
851  * before other aggregates waiting for service. This may cause the
852  * above bound to the slot index to be violated for some of these
853  * unlucky aggregates.
854  *
855  * Instead of delaying the activation of the new aggregate, which is
856  * quite complex, the following inaccurate but simple solution is used:
857  * if the slot index is higher than QFQ_MAX_SLOTS-2, then the
858  * timestamps of the aggregate are shifted backward so as to let the
859  * slot index become equal to QFQ_MAX_SLOTS-2.
860  */
861 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
862 			    u64 roundedS)
863 {
864 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
865 	unsigned int i; /* slot index in the bucket list */
866 
867 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
868 		u64 deltaS = roundedS - grp->S -
869 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
870 		agg->S -= deltaS;
871 		agg->F -= deltaS;
872 		slot = QFQ_MAX_SLOTS - 2;
873 	}
874 
875 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
876 
877 	hlist_add_head(&agg->next, &grp->slots[i]);
878 	__set_bit(slot, &grp->full_slots);
879 }
880 
881 /* Maybe introduce hlist_first_entry?? */
882 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
883 {
884 	return hlist_entry(grp->slots[grp->front].first,
885 			   struct qfq_aggregate, next);
886 }
887 
888 /*
889  * remove the entry from the slot
890  */
891 static void qfq_front_slot_remove(struct qfq_group *grp)
892 {
893 	struct qfq_aggregate *agg = qfq_slot_head(grp);
894 
895 	BUG_ON(!agg);
896 	hlist_del(&agg->next);
897 	if (hlist_empty(&grp->slots[grp->front]))
898 		__clear_bit(0, &grp->full_slots);
899 }
900 
901 /*
902  * Returns the first aggregate in the first non-empty bucket of the
903  * group. As a side effect, adjusts the bucket list so the first
904  * non-empty bucket is at position 0 in full_slots.
905  */
906 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
907 {
908 	unsigned int i;
909 
910 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
911 		 grp->index, grp->full_slots);
912 
913 	if (grp->full_slots == 0)
914 		return NULL;
915 
916 	i = __ffs(grp->full_slots);  /* zero based */
917 	if (i > 0) {
918 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
919 		grp->full_slots >>= i;
920 	}
921 
922 	return qfq_slot_head(grp);
923 }
924 
925 /*
926  * adjust the bucket list. When the start time of a group decreases,
927  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
928  * move the objects. The mask of occupied slots must be shifted
929  * because we use ffs() to find the first non-empty slot.
930  * This covers decreases in the group's start time, but what about
931  * increases of the start time ?
932  * Here too we should make sure that i is less than 32
933  */
934 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
935 {
936 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
937 
938 	grp->full_slots <<= i;
939 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
940 }
941 
942 static void qfq_update_eligible(struct qfq_sched *q)
943 {
944 	struct qfq_group *grp;
945 	unsigned long ineligible;
946 
947 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
948 	if (ineligible) {
949 		if (!q->bitmaps[ER]) {
950 			grp = qfq_ffs(q, ineligible);
951 			if (qfq_gt(grp->S, q->V))
952 				q->V = grp->S;
953 		}
954 		qfq_make_eligible(q);
955 	}
956 }
957 
958 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
959 static void agg_dequeue(struct qfq_aggregate *agg,
960 			struct qfq_class *cl, unsigned int len)
961 {
962 	qdisc_dequeue_peeked(cl->qdisc);
963 
964 	cl->deficit -= (int) len;
965 
966 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
967 		list_del(&cl->alist);
968 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
969 		cl->deficit += agg->lmax;
970 		list_move_tail(&cl->alist, &agg->active);
971 	}
972 }
973 
974 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
975 					   struct qfq_class **cl,
976 					   unsigned int *len)
977 {
978 	struct sk_buff *skb;
979 
980 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
981 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
982 	if (skb == NULL)
983 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
984 	else
985 		*len = qdisc_pkt_len(skb);
986 
987 	return skb;
988 }
989 
990 /* Update F according to the actual service received by the aggregate. */
991 static inline void charge_actual_service(struct qfq_aggregate *agg)
992 {
993 	/* compute the service received by the aggregate */
994 	u32 service_received = agg->initial_budget - agg->budget;
995 
996 	agg->F = agg->S + (u64)service_received * agg->inv_w;
997 }
998 
999 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1000 {
1001 	struct qfq_sched *q = qdisc_priv(sch);
1002 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1003 	struct qfq_class *cl;
1004 	struct sk_buff *skb = NULL;
1005 	/* next-packet len, 0 means no more active classes in in-service agg */
1006 	unsigned int len = 0;
1007 
1008 	if (in_serv_agg == NULL)
1009 		return NULL;
1010 
1011 	if (!list_empty(&in_serv_agg->active))
1012 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1013 
1014 	/*
1015 	 * If there are no active classes in the in-service aggregate,
1016 	 * or if the aggregate has not enough budget to serve its next
1017 	 * class, then choose the next aggregate to serve.
1018 	 */
1019 	if (len == 0 || in_serv_agg->budget < len) {
1020 		charge_actual_service(in_serv_agg);
1021 
1022 		/* recharge the budget of the aggregate */
1023 		in_serv_agg->initial_budget = in_serv_agg->budget =
1024 			in_serv_agg->budgetmax;
1025 
1026 		if (!list_empty(&in_serv_agg->active))
1027 			/*
1028 			 * Still active: reschedule for
1029 			 * service. Possible optimization: if no other
1030 			 * aggregate is active, then there is no point
1031 			 * in rescheduling this aggregate, and we can
1032 			 * just keep it as the in-service one. This
1033 			 * should be however a corner case, and to
1034 			 * handle it, we would need to maintain an
1035 			 * extra num_active_aggs field.
1036 			*/
1037 			qfq_activate_agg(q, in_serv_agg, requeue);
1038 		else if (sch->q.qlen == 0) { /* no aggregate to serve */
1039 			q->in_serv_agg = NULL;
1040 			return NULL;
1041 		}
1042 
1043 		/*
1044 		 * If we get here, there are other aggregates queued:
1045 		 * choose the new aggregate to serve.
1046 		 */
1047 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1048 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1049 	}
1050 	if (!skb)
1051 		return NULL;
1052 
1053 	sch->q.qlen--;
1054 	qdisc_bstats_update(sch, skb);
1055 
1056 	agg_dequeue(in_serv_agg, cl, len);
1057 	in_serv_agg->budget -= len;
1058 	q->V += (u64)len * IWSUM;
1059 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1060 		 len, (unsigned long long) in_serv_agg->F,
1061 		 (unsigned long long) q->V);
1062 
1063 	return skb;
1064 }
1065 
1066 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1067 {
1068 	struct qfq_group *grp;
1069 	struct qfq_aggregate *agg, *new_front_agg;
1070 	u64 old_F;
1071 
1072 	qfq_update_eligible(q);
1073 	q->oldV = q->V;
1074 
1075 	if (!q->bitmaps[ER])
1076 		return NULL;
1077 
1078 	grp = qfq_ffs(q, q->bitmaps[ER]);
1079 	old_F = grp->F;
1080 
1081 	agg = qfq_slot_head(grp);
1082 
1083 	/* agg starts to be served, remove it from schedule */
1084 	qfq_front_slot_remove(grp);
1085 
1086 	new_front_agg = qfq_slot_scan(grp);
1087 
1088 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1089 		__clear_bit(grp->index, &q->bitmaps[ER]);
1090 	else {
1091 		u64 roundedS = qfq_round_down(new_front_agg->S,
1092 					      grp->slot_shift);
1093 		unsigned int s;
1094 
1095 		if (grp->S == roundedS)
1096 			return agg;
1097 		grp->S = roundedS;
1098 		grp->F = roundedS + (2ULL << grp->slot_shift);
1099 		__clear_bit(grp->index, &q->bitmaps[ER]);
1100 		s = qfq_calc_state(q, grp);
1101 		__set_bit(grp->index, &q->bitmaps[s]);
1102 	}
1103 
1104 	qfq_unblock_groups(q, grp->index, old_F);
1105 
1106 	return agg;
1107 }
1108 
1109 /*
1110  * Assign a reasonable start time for a new aggregate in group i.
1111  * Admissible values for \hat(F) are multiples of \sigma_i
1112  * no greater than V+\sigma_i . Larger values mean that
1113  * we had a wraparound so we consider the timestamp to be stale.
1114  *
1115  * If F is not stale and F >= V then we set S = F.
1116  * Otherwise we should assign S = V, but this may violate
1117  * the ordering in EB (see [2]). So, if we have groups in ER,
1118  * set S to the F_j of the first group j which would be blocking us.
1119  * We are guaranteed not to move S backward because
1120  * otherwise our group i would still be blocked.
1121  */
1122 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1123 {
1124 	unsigned long mask;
1125 	u64 limit, roundedF;
1126 	int slot_shift = agg->grp->slot_shift;
1127 
1128 	roundedF = qfq_round_down(agg->F, slot_shift);
1129 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1130 
1131 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1132 		/* timestamp was stale */
1133 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1134 		if (mask) {
1135 			struct qfq_group *next = qfq_ffs(q, mask);
1136 			if (qfq_gt(roundedF, next->F)) {
1137 				if (qfq_gt(limit, next->F))
1138 					agg->S = next->F;
1139 				else /* preserve timestamp correctness */
1140 					agg->S = limit;
1141 				return;
1142 			}
1143 		}
1144 		agg->S = q->V;
1145 	} else  /* timestamp is not stale */
1146 		agg->S = agg->F;
1147 }
1148 
1149 /*
1150  * Update the timestamps of agg before scheduling/rescheduling it for
1151  * service.  In particular, assign to agg->F its maximum possible
1152  * value, i.e., the virtual finish time with which the aggregate
1153  * should be labeled if it used all its budget once in service.
1154  */
1155 static inline void
1156 qfq_update_agg_ts(struct qfq_sched *q,
1157 		    struct qfq_aggregate *agg, enum update_reason reason)
1158 {
1159 	if (reason != requeue)
1160 		qfq_update_start(q, agg);
1161 	else /* just charge agg for the service received */
1162 		agg->S = agg->F;
1163 
1164 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1165 }
1166 
1167 static void qfq_schedule_agg(struct qfq_sched *, struct qfq_aggregate *);
1168 
1169 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1170 {
1171 	struct qfq_sched *q = qdisc_priv(sch);
1172 	struct qfq_class *cl;
1173 	struct qfq_aggregate *agg;
1174 	int err = 0;
1175 
1176 	cl = qfq_classify(skb, sch, &err);
1177 	if (cl == NULL) {
1178 		if (err & __NET_XMIT_BYPASS)
1179 			sch->qstats.drops++;
1180 		kfree_skb(skb);
1181 		return err;
1182 	}
1183 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1184 
1185 	if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1186 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1187 			 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1188 		err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1189 				     qdisc_pkt_len(skb));
1190 		if (err)
1191 			return err;
1192 	}
1193 
1194 	err = qdisc_enqueue(skb, cl->qdisc);
1195 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1196 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1197 		if (net_xmit_drop_count(err)) {
1198 			cl->qstats.drops++;
1199 			sch->qstats.drops++;
1200 		}
1201 		return err;
1202 	}
1203 
1204 	bstats_update(&cl->bstats, skb);
1205 	++sch->q.qlen;
1206 
1207 	agg = cl->agg;
1208 	/* if the queue was not empty, then done here */
1209 	if (cl->qdisc->q.qlen != 1) {
1210 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1211 		    list_first_entry(&agg->active, struct qfq_class, alist)
1212 		    == cl && cl->deficit < qdisc_pkt_len(skb))
1213 			list_move_tail(&cl->alist, &agg->active);
1214 
1215 		return err;
1216 	}
1217 
1218 	/* schedule class for service within the aggregate */
1219 	cl->deficit = agg->lmax;
1220 	list_add_tail(&cl->alist, &agg->active);
1221 
1222 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl)
1223 		return err; /* aggregate was not empty, nothing else to do */
1224 
1225 	/* recharge budget */
1226 	agg->initial_budget = agg->budget = agg->budgetmax;
1227 
1228 	qfq_update_agg_ts(q, agg, enqueue);
1229 	if (q->in_serv_agg == NULL)
1230 		q->in_serv_agg = agg;
1231 	else if (agg != q->in_serv_agg)
1232 		qfq_schedule_agg(q, agg);
1233 
1234 	return err;
1235 }
1236 
1237 /*
1238  * Schedule aggregate according to its timestamps.
1239  */
1240 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1241 {
1242 	struct qfq_group *grp = agg->grp;
1243 	u64 roundedS;
1244 	int s;
1245 
1246 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1247 
1248 	/*
1249 	 * Insert agg in the correct bucket.
1250 	 * If agg->S >= grp->S we don't need to adjust the
1251 	 * bucket list and simply go to the insertion phase.
1252 	 * Otherwise grp->S is decreasing, we must make room
1253 	 * in the bucket list, and also recompute the group state.
1254 	 * Finally, if there were no flows in this group and nobody
1255 	 * was in ER make sure to adjust V.
1256 	 */
1257 	if (grp->full_slots) {
1258 		if (!qfq_gt(grp->S, agg->S))
1259 			goto skip_update;
1260 
1261 		/* create a slot for this agg->S */
1262 		qfq_slot_rotate(grp, roundedS);
1263 		/* group was surely ineligible, remove */
1264 		__clear_bit(grp->index, &q->bitmaps[IR]);
1265 		__clear_bit(grp->index, &q->bitmaps[IB]);
1266 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
1267 		q->V = roundedS;
1268 
1269 	grp->S = roundedS;
1270 	grp->F = roundedS + (2ULL << grp->slot_shift);
1271 	s = qfq_calc_state(q, grp);
1272 	__set_bit(grp->index, &q->bitmaps[s]);
1273 
1274 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1275 		 s, q->bitmaps[s],
1276 		 (unsigned long long) agg->S,
1277 		 (unsigned long long) agg->F,
1278 		 (unsigned long long) q->V);
1279 
1280 skip_update:
1281 	qfq_slot_insert(grp, agg, roundedS);
1282 }
1283 
1284 
1285 /* Update agg ts and schedule agg for service */
1286 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1287 			     enum update_reason reason)
1288 {
1289 	qfq_update_agg_ts(q, agg, reason);
1290 	qfq_schedule_agg(q, agg);
1291 }
1292 
1293 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1294 			    struct qfq_aggregate *agg)
1295 {
1296 	unsigned int i, offset;
1297 	u64 roundedS;
1298 
1299 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1300 	offset = (roundedS - grp->S) >> grp->slot_shift;
1301 
1302 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1303 
1304 	hlist_del(&agg->next);
1305 	if (hlist_empty(&grp->slots[i]))
1306 		__clear_bit(offset, &grp->full_slots);
1307 }
1308 
1309 /*
1310  * Called to forcibly deschedule an aggregate.  If the aggregate is
1311  * not in the front bucket, or if the latter has other aggregates in
1312  * the front bucket, we can simply remove the aggregate with no other
1313  * side effects.
1314  * Otherwise we must propagate the event up.
1315  */
1316 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1317 {
1318 	struct qfq_group *grp = agg->grp;
1319 	unsigned long mask;
1320 	u64 roundedS;
1321 	int s;
1322 
1323 	if (agg == q->in_serv_agg) {
1324 		charge_actual_service(agg);
1325 		q->in_serv_agg = qfq_choose_next_agg(q);
1326 		return;
1327 	}
1328 
1329 	agg->F = agg->S;
1330 	qfq_slot_remove(q, grp, agg);
1331 
1332 	if (!grp->full_slots) {
1333 		__clear_bit(grp->index, &q->bitmaps[IR]);
1334 		__clear_bit(grp->index, &q->bitmaps[EB]);
1335 		__clear_bit(grp->index, &q->bitmaps[IB]);
1336 
1337 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1338 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1339 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1340 			if (mask)
1341 				mask = ~((1UL << __fls(mask)) - 1);
1342 			else
1343 				mask = ~0UL;
1344 			qfq_move_groups(q, mask, EB, ER);
1345 			qfq_move_groups(q, mask, IB, IR);
1346 		}
1347 		__clear_bit(grp->index, &q->bitmaps[ER]);
1348 	} else if (hlist_empty(&grp->slots[grp->front])) {
1349 		agg = qfq_slot_scan(grp);
1350 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1351 		if (grp->S != roundedS) {
1352 			__clear_bit(grp->index, &q->bitmaps[ER]);
1353 			__clear_bit(grp->index, &q->bitmaps[IR]);
1354 			__clear_bit(grp->index, &q->bitmaps[EB]);
1355 			__clear_bit(grp->index, &q->bitmaps[IB]);
1356 			grp->S = roundedS;
1357 			grp->F = roundedS + (2ULL << grp->slot_shift);
1358 			s = qfq_calc_state(q, grp);
1359 			__set_bit(grp->index, &q->bitmaps[s]);
1360 		}
1361 	}
1362 
1363 	qfq_update_eligible(q);
1364 }
1365 
1366 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1367 {
1368 	struct qfq_sched *q = qdisc_priv(sch);
1369 	struct qfq_class *cl = (struct qfq_class *)arg;
1370 
1371 	if (cl->qdisc->q.qlen == 0)
1372 		qfq_deactivate_class(q, cl);
1373 }
1374 
1375 static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1376 				       struct hlist_head *slot)
1377 {
1378 	struct qfq_aggregate *agg;
1379 	struct hlist_node *n;
1380 	struct qfq_class *cl;
1381 	unsigned int len;
1382 
1383 	hlist_for_each_entry(agg, n, slot, next) {
1384 		list_for_each_entry(cl, &agg->active, alist) {
1385 
1386 			if (!cl->qdisc->ops->drop)
1387 				continue;
1388 
1389 			len = cl->qdisc->ops->drop(cl->qdisc);
1390 			if (len > 0) {
1391 				if (cl->qdisc->q.qlen == 0)
1392 					qfq_deactivate_class(q, cl);
1393 
1394 				return len;
1395 			}
1396 		}
1397 	}
1398 	return 0;
1399 }
1400 
1401 static unsigned int qfq_drop(struct Qdisc *sch)
1402 {
1403 	struct qfq_sched *q = qdisc_priv(sch);
1404 	struct qfq_group *grp;
1405 	unsigned int i, j, len;
1406 
1407 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1408 		grp = &q->groups[i];
1409 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1410 			len = qfq_drop_from_slot(q, &grp->slots[j]);
1411 			if (len > 0) {
1412 				sch->q.qlen--;
1413 				return len;
1414 			}
1415 		}
1416 
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1423 {
1424 	struct qfq_sched *q = qdisc_priv(sch);
1425 	struct qfq_group *grp;
1426 	int i, j, err;
1427 	u32 max_cl_shift, maxbudg_shift, max_classes;
1428 
1429 	err = qdisc_class_hash_init(&q->clhash);
1430 	if (err < 0)
1431 		return err;
1432 
1433 	if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1434 		max_classes = QFQ_MAX_AGG_CLASSES;
1435 	else
1436 		max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1437 	/* max_cl_shift = floor(log_2(max_classes)) */
1438 	max_cl_shift = __fls(max_classes);
1439 	q->max_agg_classes = 1<<max_cl_shift;
1440 
1441 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1442 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1443 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1444 
1445 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1446 		grp = &q->groups[i];
1447 		grp->index = i;
1448 		grp->slot_shift = q->min_slot_shift + i;
1449 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1450 			INIT_HLIST_HEAD(&grp->slots[j]);
1451 	}
1452 
1453 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1454 
1455 	return 0;
1456 }
1457 
1458 static void qfq_reset_qdisc(struct Qdisc *sch)
1459 {
1460 	struct qfq_sched *q = qdisc_priv(sch);
1461 	struct qfq_class *cl;
1462 	struct hlist_node *n;
1463 	unsigned int i;
1464 
1465 	for (i = 0; i < q->clhash.hashsize; i++) {
1466 		hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) {
1467 			if (cl->qdisc->q.qlen > 0)
1468 				qfq_deactivate_class(q, cl);
1469 
1470 			qdisc_reset(cl->qdisc);
1471 		}
1472 	}
1473 	sch->q.qlen = 0;
1474 }
1475 
1476 static void qfq_destroy_qdisc(struct Qdisc *sch)
1477 {
1478 	struct qfq_sched *q = qdisc_priv(sch);
1479 	struct qfq_class *cl;
1480 	struct hlist_node *n, *next;
1481 	unsigned int i;
1482 
1483 	tcf_destroy_chain(&q->filter_list);
1484 
1485 	for (i = 0; i < q->clhash.hashsize; i++) {
1486 		hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i],
1487 					  common.hnode) {
1488 			qfq_destroy_class(sch, cl);
1489 		}
1490 	}
1491 	qdisc_class_hash_destroy(&q->clhash);
1492 }
1493 
1494 static const struct Qdisc_class_ops qfq_class_ops = {
1495 	.change		= qfq_change_class,
1496 	.delete		= qfq_delete_class,
1497 	.get		= qfq_get_class,
1498 	.put		= qfq_put_class,
1499 	.tcf_chain	= qfq_tcf_chain,
1500 	.bind_tcf	= qfq_bind_tcf,
1501 	.unbind_tcf	= qfq_unbind_tcf,
1502 	.graft		= qfq_graft_class,
1503 	.leaf		= qfq_class_leaf,
1504 	.qlen_notify	= qfq_qlen_notify,
1505 	.dump		= qfq_dump_class,
1506 	.dump_stats	= qfq_dump_class_stats,
1507 	.walk		= qfq_walk,
1508 };
1509 
1510 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1511 	.cl_ops		= &qfq_class_ops,
1512 	.id		= "qfq",
1513 	.priv_size	= sizeof(struct qfq_sched),
1514 	.enqueue	= qfq_enqueue,
1515 	.dequeue	= qfq_dequeue,
1516 	.peek		= qdisc_peek_dequeued,
1517 	.drop		= qfq_drop,
1518 	.init		= qfq_init_qdisc,
1519 	.reset		= qfq_reset_qdisc,
1520 	.destroy	= qfq_destroy_qdisc,
1521 	.owner		= THIS_MODULE,
1522 };
1523 
1524 static int __init qfq_init(void)
1525 {
1526 	return register_qdisc(&qfq_qdisc_ops);
1527 }
1528 
1529 static void __exit qfq_exit(void)
1530 {
1531 	unregister_qdisc(&qfq_qdisc_ops);
1532 }
1533 
1534 module_init(qfq_init);
1535 module_exit(qfq_exit);
1536 MODULE_LICENSE("GPL");
1537