1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler. 4 * 5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 6 * Copyright (c) 2012 Paolo Valente. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/bitops.h> 12 #include <linux/errno.h> 13 #include <linux/netdevice.h> 14 #include <linux/pkt_sched.h> 15 #include <net/sch_generic.h> 16 #include <net/pkt_sched.h> 17 #include <net/pkt_cls.h> 18 19 20 /* Quick Fair Queueing Plus 21 ======================== 22 23 Sources: 24 25 [1] Paolo Valente, 26 "Reducing the Execution Time of Fair-Queueing Schedulers." 27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf 28 29 Sources for QFQ: 30 31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 32 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 33 34 See also: 35 http://retis.sssup.it/~fabio/linux/qfq/ 36 */ 37 38 /* 39 40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES 41 classes. Each aggregate is timestamped with a virtual start time S 42 and a virtual finish time F, and scheduled according to its 43 timestamps. S and F are computed as a function of a system virtual 44 time function V. The classes within each aggregate are instead 45 scheduled with DRR. 46 47 To speed up operations, QFQ+ divides also aggregates into a limited 48 number of groups. Which group a class belongs to depends on the 49 ratio between the maximum packet length for the class and the weight 50 of the class. Groups have their own S and F. In the end, QFQ+ 51 schedules groups, then aggregates within groups, then classes within 52 aggregates. See [1] and [2] for a full description. 53 54 Virtual time computations. 55 56 S, F and V are all computed in fixed point arithmetic with 57 FRAC_BITS decimal bits. 58 59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 60 one bit per index. 61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 62 63 The layout of the bits is as below: 64 65 [ MTU_SHIFT ][ FRAC_BITS ] 66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 67 ^.__grp->index = 0 68 *.__grp->slot_shift 69 70 where MIN_SLOT_SHIFT is derived by difference from the others. 71 72 The max group index corresponds to Lmax/w_min, where 73 Lmax=1<<MTU_SHIFT, w_min = 1 . 74 From this, and knowing how many groups (MAX_INDEX) we want, 75 we can derive the shift corresponding to each group. 76 77 Because we often need to compute 78 F = S + len/w_i and V = V + len/wsum 79 instead of storing w_i store the value 80 inv_w = (1<<FRAC_BITS)/w_i 81 so we can do F = S + len * inv_w * wsum. 82 We use W_TOT in the formulas so we can easily move between 83 static and adaptive weight sum. 84 85 The per-scheduler-instance data contain all the data structures 86 for the scheduler: bitmaps and bucket lists. 87 88 */ 89 90 /* 91 * Maximum number of consecutive slots occupied by backlogged classes 92 * inside a group. 93 */ 94 #define QFQ_MAX_SLOTS 32 95 96 /* 97 * Shifts used for aggregate<->group mapping. We allow class weights that are 98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the 99 * group with the smallest index that can support the L_i / r_i configured 100 * for the classes in the aggregate. 101 * 102 * grp->index is the index of the group; and grp->slot_shift 103 * is the shift for the corresponding (scaled) sigma_i. 104 */ 105 #define QFQ_MAX_INDEX 24 106 #define QFQ_MAX_WSHIFT 10 107 108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ 109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT) 110 111 #define FRAC_BITS 30 /* fixed point arithmetic */ 112 #define ONE_FP (1UL << FRAC_BITS) 113 114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */ 116 #define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT) 117 118 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */ 119 120 /* 121 * Possible group states. These values are used as indexes for the bitmaps 122 * array of struct qfq_queue. 123 */ 124 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 125 126 struct qfq_group; 127 128 struct qfq_aggregate; 129 130 struct qfq_class { 131 struct Qdisc_class_common common; 132 133 struct gnet_stats_basic_sync bstats; 134 struct gnet_stats_queue qstats; 135 struct net_rate_estimator __rcu *rate_est; 136 struct Qdisc *qdisc; 137 struct list_head alist; /* Link for active-classes list. */ 138 struct qfq_aggregate *agg; /* Parent aggregate. */ 139 int deficit; /* DRR deficit counter. */ 140 }; 141 142 struct qfq_aggregate { 143 struct hlist_node next; /* Link for the slot list. */ 144 u64 S, F; /* flow timestamps (exact) */ 145 146 /* group we belong to. In principle we would need the index, 147 * which is log_2(lmax/weight), but we never reference it 148 * directly, only the group. 149 */ 150 struct qfq_group *grp; 151 152 /* these are copied from the flowset. */ 153 u32 class_weight; /* Weight of each class in this aggregate. */ 154 /* Max pkt size for the classes in this aggregate, DRR quantum. */ 155 int lmax; 156 157 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */ 158 u32 budgetmax; /* Max budget for this aggregate. */ 159 u32 initial_budget, budget; /* Initial and current budget. */ 160 161 int num_classes; /* Number of classes in this aggr. */ 162 struct list_head active; /* DRR queue of active classes. */ 163 164 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */ 165 }; 166 167 struct qfq_group { 168 u64 S, F; /* group timestamps (approx). */ 169 unsigned int slot_shift; /* Slot shift. */ 170 unsigned int index; /* Group index. */ 171 unsigned int front; /* Index of the front slot. */ 172 unsigned long full_slots; /* non-empty slots */ 173 174 /* Array of RR lists of active aggregates. */ 175 struct hlist_head slots[QFQ_MAX_SLOTS]; 176 }; 177 178 struct qfq_sched { 179 struct tcf_proto __rcu *filter_list; 180 struct tcf_block *block; 181 struct Qdisc_class_hash clhash; 182 183 u64 oldV, V; /* Precise virtual times. */ 184 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */ 185 u32 wsum; /* weight sum */ 186 u32 iwsum; /* inverse weight sum */ 187 188 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 189 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 190 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */ 191 192 u32 max_agg_classes; /* Max number of classes per aggr. */ 193 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ 194 }; 195 196 /* 197 * Possible reasons why the timestamps of an aggregate are updated 198 * enqueue: the aggregate switches from idle to active and must scheduled 199 * for service 200 * requeue: the aggregate finishes its budget, so it stops being served and 201 * must be rescheduled for service 202 */ 203 enum update_reason {enqueue, requeue}; 204 205 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 206 { 207 struct qfq_sched *q = qdisc_priv(sch); 208 struct Qdisc_class_common *clc; 209 210 clc = qdisc_class_find(&q->clhash, classid); 211 if (clc == NULL) 212 return NULL; 213 return container_of(clc, struct qfq_class, common); 214 } 215 216 static const struct netlink_range_validation lmax_range = { 217 .min = QFQ_MIN_LMAX, 218 .max = QFQ_MAX_LMAX, 219 }; 220 221 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 222 [TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT), 223 [TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range), 224 }; 225 226 /* 227 * Calculate a flow index, given its weight and maximum packet length. 228 * index = log_2(maxlen/weight) but we need to apply the scaling. 229 * This is used only once at flow creation. 230 */ 231 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) 232 { 233 u64 slot_size = (u64)maxlen * inv_w; 234 unsigned long size_map; 235 int index = 0; 236 237 size_map = slot_size >> min_slot_shift; 238 if (!size_map) 239 goto out; 240 241 index = __fls(size_map) + 1; /* basically a log_2 */ 242 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); 243 244 if (index < 0) 245 index = 0; 246 out: 247 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 248 (unsigned long) ONE_FP/inv_w, maxlen, index); 249 250 return index; 251 } 252 253 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); 254 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, 255 enum update_reason); 256 257 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 258 u32 lmax, u32 weight) 259 { 260 INIT_LIST_HEAD(&agg->active); 261 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 262 263 agg->lmax = lmax; 264 agg->class_weight = weight; 265 } 266 267 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, 268 u32 lmax, u32 weight) 269 { 270 struct qfq_aggregate *agg; 271 272 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) 273 if (agg->lmax == lmax && agg->class_weight == weight) 274 return agg; 275 276 return NULL; 277 } 278 279 280 /* Update aggregate as a function of the new number of classes. */ 281 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 282 int new_num_classes) 283 { 284 u32 new_agg_weight; 285 286 if (new_num_classes == q->max_agg_classes) 287 hlist_del_init(&agg->nonfull_next); 288 289 if (agg->num_classes > new_num_classes && 290 new_num_classes == q->max_agg_classes - 1) /* agg no more full */ 291 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 292 293 /* The next assignment may let 294 * agg->initial_budget > agg->budgetmax 295 * hold, we will take it into account in charge_actual_service(). 296 */ 297 agg->budgetmax = new_num_classes * agg->lmax; 298 new_agg_weight = agg->class_weight * new_num_classes; 299 agg->inv_w = ONE_FP/new_agg_weight; 300 301 if (agg->grp == NULL) { 302 int i = qfq_calc_index(agg->inv_w, agg->budgetmax, 303 q->min_slot_shift); 304 agg->grp = &q->groups[i]; 305 } 306 307 q->wsum += 308 (int) agg->class_weight * (new_num_classes - agg->num_classes); 309 q->iwsum = ONE_FP / q->wsum; 310 311 agg->num_classes = new_num_classes; 312 } 313 314 /* Add class to aggregate. */ 315 static void qfq_add_to_agg(struct qfq_sched *q, 316 struct qfq_aggregate *agg, 317 struct qfq_class *cl) 318 { 319 cl->agg = agg; 320 321 qfq_update_agg(q, agg, agg->num_classes+1); 322 if (cl->qdisc->q.qlen > 0) { /* adding an active class */ 323 list_add_tail(&cl->alist, &agg->active); 324 if (list_first_entry(&agg->active, struct qfq_class, alist) == 325 cl && q->in_serv_agg != agg) /* agg was inactive */ 326 qfq_activate_agg(q, agg, enqueue); /* schedule agg */ 327 } 328 } 329 330 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); 331 332 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 333 { 334 hlist_del_init(&agg->nonfull_next); 335 q->wsum -= agg->class_weight; 336 if (q->wsum != 0) 337 q->iwsum = ONE_FP / q->wsum; 338 339 if (q->in_serv_agg == agg) 340 q->in_serv_agg = qfq_choose_next_agg(q); 341 kfree(agg); 342 } 343 344 /* Deschedule class from within its parent aggregate. */ 345 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 346 { 347 struct qfq_aggregate *agg = cl->agg; 348 349 350 list_del_init(&cl->alist); /* remove from RR queue of the aggregate */ 351 if (list_empty(&agg->active)) /* agg is now inactive */ 352 qfq_deactivate_agg(q, agg); 353 } 354 355 /* Remove class from its parent aggregate. */ 356 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 357 { 358 struct qfq_aggregate *agg = cl->agg; 359 360 cl->agg = NULL; 361 if (agg->num_classes == 1) { /* agg being emptied, destroy it */ 362 qfq_destroy_agg(q, agg); 363 return; 364 } 365 qfq_update_agg(q, agg, agg->num_classes-1); 366 } 367 368 /* Deschedule class and remove it from its parent aggregate. */ 369 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 370 { 371 if (cl->qdisc->q.qlen > 0) /* class is active */ 372 qfq_deactivate_class(q, cl); 373 374 qfq_rm_from_agg(q, cl); 375 } 376 377 /* Move class to a new aggregate, matching the new class weight and/or lmax */ 378 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, 379 u32 lmax) 380 { 381 struct qfq_sched *q = qdisc_priv(sch); 382 struct qfq_aggregate *new_agg; 383 384 /* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */ 385 if (lmax > QFQ_MAX_LMAX) 386 return -EINVAL; 387 388 new_agg = qfq_find_agg(q, lmax, weight); 389 if (new_agg == NULL) { /* create new aggregate */ 390 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); 391 if (new_agg == NULL) 392 return -ENOBUFS; 393 qfq_init_agg(q, new_agg, lmax, weight); 394 } 395 qfq_deact_rm_from_agg(q, cl); 396 qfq_add_to_agg(q, new_agg, cl); 397 398 return 0; 399 } 400 401 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 402 struct nlattr **tca, unsigned long *arg, 403 struct netlink_ext_ack *extack) 404 { 405 struct qfq_sched *q = qdisc_priv(sch); 406 struct qfq_class *cl = (struct qfq_class *)*arg; 407 bool existing = false; 408 struct nlattr *tb[TCA_QFQ_MAX + 1]; 409 struct qfq_aggregate *new_agg = NULL; 410 u32 weight, lmax, inv_w; 411 int err; 412 int delta_w; 413 414 if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) { 415 NL_SET_ERR_MSG_MOD(extack, "missing options"); 416 return -EINVAL; 417 } 418 419 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], 420 qfq_policy, extack); 421 if (err < 0) 422 return err; 423 424 weight = nla_get_u32_default(tb[TCA_QFQ_WEIGHT], 1); 425 426 if (tb[TCA_QFQ_LMAX]) { 427 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 428 } else { 429 /* MTU size is user controlled */ 430 lmax = psched_mtu(qdisc_dev(sch)); 431 if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) { 432 NL_SET_ERR_MSG_MOD(extack, 433 "MTU size out of bounds for qfq"); 434 return -EINVAL; 435 } 436 } 437 438 inv_w = ONE_FP / weight; 439 weight = ONE_FP / inv_w; 440 441 if (cl != NULL && 442 lmax == cl->agg->lmax && 443 weight == cl->agg->class_weight) 444 return 0; /* nothing to change */ 445 446 delta_w = weight - (cl ? cl->agg->class_weight : 0); 447 448 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 449 NL_SET_ERR_MSG_FMT_MOD(extack, 450 "total weight out of range (%d + %u)", 451 delta_w, q->wsum); 452 return -EINVAL; 453 } 454 455 if (cl != NULL) { /* modify existing class */ 456 if (tca[TCA_RATE]) { 457 err = gen_replace_estimator(&cl->bstats, NULL, 458 &cl->rate_est, 459 NULL, 460 true, 461 tca[TCA_RATE]); 462 if (err) 463 return err; 464 } 465 existing = true; 466 goto set_change_agg; 467 } 468 469 /* create and init new class */ 470 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 471 if (cl == NULL) 472 return -ENOBUFS; 473 474 gnet_stats_basic_sync_init(&cl->bstats); 475 cl->common.classid = classid; 476 cl->deficit = lmax; 477 INIT_LIST_HEAD(&cl->alist); 478 479 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 480 classid, NULL); 481 if (cl->qdisc == NULL) 482 cl->qdisc = &noop_qdisc; 483 484 if (tca[TCA_RATE]) { 485 err = gen_new_estimator(&cl->bstats, NULL, 486 &cl->rate_est, 487 NULL, 488 true, 489 tca[TCA_RATE]); 490 if (err) 491 goto destroy_class; 492 } 493 494 if (cl->qdisc != &noop_qdisc) 495 qdisc_hash_add(cl->qdisc, true); 496 497 set_change_agg: 498 sch_tree_lock(sch); 499 new_agg = qfq_find_agg(q, lmax, weight); 500 if (new_agg == NULL) { /* create new aggregate */ 501 sch_tree_unlock(sch); 502 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); 503 if (new_agg == NULL) { 504 err = -ENOBUFS; 505 gen_kill_estimator(&cl->rate_est); 506 goto destroy_class; 507 } 508 sch_tree_lock(sch); 509 qfq_init_agg(q, new_agg, lmax, weight); 510 } 511 if (existing) 512 qfq_deact_rm_from_agg(q, cl); 513 else 514 qdisc_class_hash_insert(&q->clhash, &cl->common); 515 qfq_add_to_agg(q, new_agg, cl); 516 sch_tree_unlock(sch); 517 qdisc_class_hash_grow(sch, &q->clhash); 518 519 *arg = (unsigned long)cl; 520 return 0; 521 522 destroy_class: 523 qdisc_put(cl->qdisc); 524 kfree(cl); 525 return err; 526 } 527 528 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 529 { 530 struct qfq_sched *q = qdisc_priv(sch); 531 532 qfq_rm_from_agg(q, cl); 533 gen_kill_estimator(&cl->rate_est); 534 qdisc_put(cl->qdisc); 535 kfree(cl); 536 } 537 538 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg, 539 struct netlink_ext_ack *extack) 540 { 541 struct qfq_sched *q = qdisc_priv(sch); 542 struct qfq_class *cl = (struct qfq_class *)arg; 543 544 if (qdisc_class_in_use(&cl->common)) { 545 NL_SET_ERR_MSG_MOD(extack, "QFQ class in use"); 546 return -EBUSY; 547 } 548 549 sch_tree_lock(sch); 550 551 qdisc_purge_queue(cl->qdisc); 552 qdisc_class_hash_remove(&q->clhash, &cl->common); 553 554 sch_tree_unlock(sch); 555 556 qfq_destroy_class(sch, cl); 557 return 0; 558 } 559 560 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid) 561 { 562 return (unsigned long)qfq_find_class(sch, classid); 563 } 564 565 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl, 566 struct netlink_ext_ack *extack) 567 { 568 struct qfq_sched *q = qdisc_priv(sch); 569 570 if (cl) 571 return NULL; 572 573 return q->block; 574 } 575 576 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 577 u32 classid) 578 { 579 struct qfq_class *cl = qfq_find_class(sch, classid); 580 581 if (cl) 582 qdisc_class_get(&cl->common); 583 584 return (unsigned long)cl; 585 } 586 587 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 588 { 589 struct qfq_class *cl = (struct qfq_class *)arg; 590 591 qdisc_class_put(&cl->common); 592 } 593 594 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 595 struct Qdisc *new, struct Qdisc **old, 596 struct netlink_ext_ack *extack) 597 { 598 struct qfq_class *cl = (struct qfq_class *)arg; 599 600 if (new == NULL) { 601 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 602 cl->common.classid, NULL); 603 if (new == NULL) 604 new = &noop_qdisc; 605 } 606 607 *old = qdisc_replace(sch, new, &cl->qdisc); 608 return 0; 609 } 610 611 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 612 { 613 struct qfq_class *cl = (struct qfq_class *)arg; 614 615 return cl->qdisc; 616 } 617 618 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 619 struct sk_buff *skb, struct tcmsg *tcm) 620 { 621 struct qfq_class *cl = (struct qfq_class *)arg; 622 struct nlattr *nest; 623 624 tcm->tcm_parent = TC_H_ROOT; 625 tcm->tcm_handle = cl->common.classid; 626 tcm->tcm_info = cl->qdisc->handle; 627 628 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 629 if (nest == NULL) 630 goto nla_put_failure; 631 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || 632 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) 633 goto nla_put_failure; 634 return nla_nest_end(skb, nest); 635 636 nla_put_failure: 637 nla_nest_cancel(skb, nest); 638 return -EMSGSIZE; 639 } 640 641 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 642 struct gnet_dump *d) 643 { 644 struct qfq_class *cl = (struct qfq_class *)arg; 645 struct tc_qfq_stats xstats; 646 647 memset(&xstats, 0, sizeof(xstats)); 648 649 xstats.weight = cl->agg->class_weight; 650 xstats.lmax = cl->agg->lmax; 651 652 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 || 653 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 654 qdisc_qstats_copy(d, cl->qdisc) < 0) 655 return -1; 656 657 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 658 } 659 660 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 661 { 662 struct qfq_sched *q = qdisc_priv(sch); 663 struct qfq_class *cl; 664 unsigned int i; 665 666 if (arg->stop) 667 return; 668 669 for (i = 0; i < q->clhash.hashsize; i++) { 670 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 671 if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg)) 672 return; 673 } 674 } 675 } 676 677 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 678 int *qerr) 679 { 680 struct qfq_sched *q = qdisc_priv(sch); 681 struct qfq_class *cl; 682 struct tcf_result res; 683 struct tcf_proto *fl; 684 int result; 685 686 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 687 pr_debug("qfq_classify: found %d\n", skb->priority); 688 cl = qfq_find_class(sch, skb->priority); 689 if (cl != NULL) 690 return cl; 691 } 692 693 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 694 fl = rcu_dereference_bh(q->filter_list); 695 result = tcf_classify(skb, NULL, fl, &res, false); 696 if (result >= 0) { 697 #ifdef CONFIG_NET_CLS_ACT 698 switch (result) { 699 case TC_ACT_QUEUED: 700 case TC_ACT_STOLEN: 701 case TC_ACT_TRAP: 702 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 703 fallthrough; 704 case TC_ACT_SHOT: 705 return NULL; 706 } 707 #endif 708 cl = (struct qfq_class *)res.class; 709 if (cl == NULL) 710 cl = qfq_find_class(sch, res.classid); 711 return cl; 712 } 713 714 return NULL; 715 } 716 717 /* Generic comparison function, handling wraparound. */ 718 static inline int qfq_gt(u64 a, u64 b) 719 { 720 return (s64)(a - b) > 0; 721 } 722 723 /* Round a precise timestamp to its slotted value. */ 724 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 725 { 726 return ts & ~((1ULL << shift) - 1); 727 } 728 729 /* return the pointer to the group with lowest index in the bitmap */ 730 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 731 unsigned long bitmap) 732 { 733 int index = __ffs(bitmap); 734 return &q->groups[index]; 735 } 736 /* Calculate a mask to mimic what would be ffs_from(). */ 737 static inline unsigned long mask_from(unsigned long bitmap, int from) 738 { 739 return bitmap & ~((1UL << from) - 1); 740 } 741 742 /* 743 * The state computation relies on ER=0, IR=1, EB=2, IB=3 744 * First compute eligibility comparing grp->S, q->V, 745 * then check if someone is blocking us and possibly add EB 746 */ 747 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 748 { 749 /* if S > V we are not eligible */ 750 unsigned int state = qfq_gt(grp->S, q->V); 751 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 752 struct qfq_group *next; 753 754 if (mask) { 755 next = qfq_ffs(q, mask); 756 if (qfq_gt(grp->F, next->F)) 757 state |= EB; 758 } 759 760 return state; 761 } 762 763 764 /* 765 * In principle 766 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 767 * q->bitmaps[src] &= ~mask; 768 * but we should make sure that src != dst 769 */ 770 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 771 int src, int dst) 772 { 773 q->bitmaps[dst] |= q->bitmaps[src] & mask; 774 q->bitmaps[src] &= ~mask; 775 } 776 777 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 778 { 779 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 780 struct qfq_group *next; 781 782 if (mask) { 783 next = qfq_ffs(q, mask); 784 if (!qfq_gt(next->F, old_F)) 785 return; 786 } 787 788 mask = (1UL << index) - 1; 789 qfq_move_groups(q, mask, EB, ER); 790 qfq_move_groups(q, mask, IB, IR); 791 } 792 793 /* 794 * perhaps 795 * 796 old_V ^= q->V; 797 old_V >>= q->min_slot_shift; 798 if (old_V) { 799 ... 800 } 801 * 802 */ 803 static void qfq_make_eligible(struct qfq_sched *q) 804 { 805 unsigned long vslot = q->V >> q->min_slot_shift; 806 unsigned long old_vslot = q->oldV >> q->min_slot_shift; 807 808 if (vslot != old_vslot) { 809 unsigned long mask; 810 int last_flip_pos = fls(vslot ^ old_vslot); 811 812 if (last_flip_pos > 31) /* higher than the number of groups */ 813 mask = ~0UL; /* make all groups eligible */ 814 else 815 mask = (1UL << last_flip_pos) - 1; 816 817 qfq_move_groups(q, mask, IR, ER); 818 qfq_move_groups(q, mask, IB, EB); 819 } 820 } 821 822 /* 823 * The index of the slot in which the input aggregate agg is to be 824 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' 825 * and not a '-1' because the start time of the group may be moved 826 * backward by one slot after the aggregate has been inserted, and 827 * this would cause non-empty slots to be right-shifted by one 828 * position. 829 * 830 * QFQ+ fully satisfies this bound to the slot index if the parameters 831 * of the classes are not changed dynamically, and if QFQ+ never 832 * happens to postpone the service of agg unjustly, i.e., it never 833 * happens that the aggregate becomes backlogged and eligible, or just 834 * eligible, while an aggregate with a higher approximated finish time 835 * is being served. In particular, in this case QFQ+ guarantees that 836 * the timestamps of agg are low enough that the slot index is never 837 * higher than 2. Unfortunately, QFQ+ cannot provide the same 838 * guarantee if it happens to unjustly postpone the service of agg, or 839 * if the parameters of some class are changed. 840 * 841 * As for the first event, i.e., an out-of-order service, the 842 * upper bound to the slot index guaranteed by QFQ+ grows to 843 * 2 + 844 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * 845 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. 846 * 847 * The following function deals with this problem by backward-shifting 848 * the timestamps of agg, if needed, so as to guarantee that the slot 849 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may 850 * cause the service of other aggregates to be postponed, yet the 851 * worst-case guarantees of these aggregates are not violated. In 852 * fact, in case of no out-of-order service, the timestamps of agg 853 * would have been even lower than they are after the backward shift, 854 * because QFQ+ would have guaranteed a maximum value equal to 2 for 855 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose 856 * service is postponed because of the backward-shift would have 857 * however waited for the service of agg before being served. 858 * 859 * The other event that may cause the slot index to be higher than 2 860 * for agg is a recent change of the parameters of some class. If the 861 * weight of a class is increased or the lmax (max_pkt_size) of the 862 * class is decreased, then a new aggregate with smaller slot size 863 * than the original parent aggregate of the class may happen to be 864 * activated. The activation of this aggregate should be properly 865 * delayed to when the service of the class has finished in the ideal 866 * system tracked by QFQ+. If the activation of the aggregate is not 867 * delayed to this reference time instant, then this aggregate may be 868 * unjustly served before other aggregates waiting for service. This 869 * may cause the above bound to the slot index to be violated for some 870 * of these unlucky aggregates. 871 * 872 * Instead of delaying the activation of the new aggregate, which is 873 * quite complex, the above-discussed capping of the slot index is 874 * used to handle also the consequences of a change of the parameters 875 * of a class. 876 */ 877 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, 878 u64 roundedS) 879 { 880 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 881 unsigned int i; /* slot index in the bucket list */ 882 883 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 884 u64 deltaS = roundedS - grp->S - 885 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 886 agg->S -= deltaS; 887 agg->F -= deltaS; 888 slot = QFQ_MAX_SLOTS - 2; 889 } 890 891 i = (grp->front + slot) % QFQ_MAX_SLOTS; 892 893 hlist_add_head(&agg->next, &grp->slots[i]); 894 __set_bit(slot, &grp->full_slots); 895 } 896 897 /* Maybe introduce hlist_first_entry?? */ 898 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) 899 { 900 return hlist_entry(grp->slots[grp->front].first, 901 struct qfq_aggregate, next); 902 } 903 904 /* 905 * remove the entry from the slot 906 */ 907 static void qfq_front_slot_remove(struct qfq_group *grp) 908 { 909 struct qfq_aggregate *agg = qfq_slot_head(grp); 910 911 BUG_ON(!agg); 912 hlist_del(&agg->next); 913 if (hlist_empty(&grp->slots[grp->front])) 914 __clear_bit(0, &grp->full_slots); 915 } 916 917 /* 918 * Returns the first aggregate in the first non-empty bucket of the 919 * group. As a side effect, adjusts the bucket list so the first 920 * non-empty bucket is at position 0 in full_slots. 921 */ 922 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) 923 { 924 unsigned int i; 925 926 pr_debug("qfq slot_scan: grp %u full %#lx\n", 927 grp->index, grp->full_slots); 928 929 if (grp->full_slots == 0) 930 return NULL; 931 932 i = __ffs(grp->full_slots); /* zero based */ 933 if (i > 0) { 934 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 935 grp->full_slots >>= i; 936 } 937 938 return qfq_slot_head(grp); 939 } 940 941 /* 942 * adjust the bucket list. When the start time of a group decreases, 943 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 944 * move the objects. The mask of occupied slots must be shifted 945 * because we use ffs() to find the first non-empty slot. 946 * This covers decreases in the group's start time, but what about 947 * increases of the start time ? 948 * Here too we should make sure that i is less than 32 949 */ 950 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 951 { 952 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 953 954 grp->full_slots <<= i; 955 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 956 } 957 958 static void qfq_update_eligible(struct qfq_sched *q) 959 { 960 struct qfq_group *grp; 961 unsigned long ineligible; 962 963 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 964 if (ineligible) { 965 if (!q->bitmaps[ER]) { 966 grp = qfq_ffs(q, ineligible); 967 if (qfq_gt(grp->S, q->V)) 968 q->V = grp->S; 969 } 970 qfq_make_eligible(q); 971 } 972 } 973 974 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ 975 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg, 976 struct qfq_class *cl, unsigned int len) 977 { 978 struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc); 979 980 if (!skb) 981 return NULL; 982 983 cl->deficit -= (int) len; 984 985 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ 986 list_del_init(&cl->alist); 987 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { 988 cl->deficit += agg->lmax; 989 list_move_tail(&cl->alist, &agg->active); 990 } 991 992 return skb; 993 } 994 995 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, 996 struct qfq_class **cl, 997 unsigned int *len) 998 { 999 struct sk_buff *skb; 1000 1001 *cl = list_first_entry(&agg->active, struct qfq_class, alist); 1002 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); 1003 if (skb == NULL) 1004 qdisc_warn_nonwc("qfq_dequeue", (*cl)->qdisc); 1005 else 1006 *len = qdisc_pkt_len(skb); 1007 1008 return skb; 1009 } 1010 1011 /* Update F according to the actual service received by the aggregate. */ 1012 static inline void charge_actual_service(struct qfq_aggregate *agg) 1013 { 1014 /* Compute the service received by the aggregate, taking into 1015 * account that, after decreasing the number of classes in 1016 * agg, it may happen that 1017 * agg->initial_budget - agg->budget > agg->bugdetmax 1018 */ 1019 u32 service_received = min(agg->budgetmax, 1020 agg->initial_budget - agg->budget); 1021 1022 agg->F = agg->S + (u64)service_received * agg->inv_w; 1023 } 1024 1025 /* Assign a reasonable start time for a new aggregate in group i. 1026 * Admissible values for \hat(F) are multiples of \sigma_i 1027 * no greater than V+\sigma_i . Larger values mean that 1028 * we had a wraparound so we consider the timestamp to be stale. 1029 * 1030 * If F is not stale and F >= V then we set S = F. 1031 * Otherwise we should assign S = V, but this may violate 1032 * the ordering in EB (see [2]). So, if we have groups in ER, 1033 * set S to the F_j of the first group j which would be blocking us. 1034 * We are guaranteed not to move S backward because 1035 * otherwise our group i would still be blocked. 1036 */ 1037 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) 1038 { 1039 unsigned long mask; 1040 u64 limit, roundedF; 1041 int slot_shift = agg->grp->slot_shift; 1042 1043 roundedF = qfq_round_down(agg->F, slot_shift); 1044 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 1045 1046 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { 1047 /* timestamp was stale */ 1048 mask = mask_from(q->bitmaps[ER], agg->grp->index); 1049 if (mask) { 1050 struct qfq_group *next = qfq_ffs(q, mask); 1051 if (qfq_gt(roundedF, next->F)) { 1052 if (qfq_gt(limit, next->F)) 1053 agg->S = next->F; 1054 else /* preserve timestamp correctness */ 1055 agg->S = limit; 1056 return; 1057 } 1058 } 1059 agg->S = q->V; 1060 } else /* timestamp is not stale */ 1061 agg->S = agg->F; 1062 } 1063 1064 /* Update the timestamps of agg before scheduling/rescheduling it for 1065 * service. In particular, assign to agg->F its maximum possible 1066 * value, i.e., the virtual finish time with which the aggregate 1067 * should be labeled if it used all its budget once in service. 1068 */ 1069 static inline void 1070 qfq_update_agg_ts(struct qfq_sched *q, 1071 struct qfq_aggregate *agg, enum update_reason reason) 1072 { 1073 if (reason != requeue) 1074 qfq_update_start(q, agg); 1075 else /* just charge agg for the service received */ 1076 agg->S = agg->F; 1077 1078 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; 1079 } 1080 1081 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); 1082 1083 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 1084 { 1085 struct qfq_sched *q = qdisc_priv(sch); 1086 struct qfq_aggregate *in_serv_agg = q->in_serv_agg; 1087 struct qfq_class *cl; 1088 struct sk_buff *skb = NULL; 1089 /* next-packet len, 0 means no more active classes in in-service agg */ 1090 unsigned int len = 0; 1091 1092 if (in_serv_agg == NULL) 1093 return NULL; 1094 1095 if (!list_empty(&in_serv_agg->active)) 1096 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1097 1098 /* 1099 * If there are no active classes in the in-service aggregate, 1100 * or if the aggregate has not enough budget to serve its next 1101 * class, then choose the next aggregate to serve. 1102 */ 1103 if (len == 0 || in_serv_agg->budget < len) { 1104 charge_actual_service(in_serv_agg); 1105 1106 /* recharge the budget of the aggregate */ 1107 in_serv_agg->initial_budget = in_serv_agg->budget = 1108 in_serv_agg->budgetmax; 1109 1110 if (!list_empty(&in_serv_agg->active)) { 1111 /* 1112 * Still active: reschedule for 1113 * service. Possible optimization: if no other 1114 * aggregate is active, then there is no point 1115 * in rescheduling this aggregate, and we can 1116 * just keep it as the in-service one. This 1117 * should be however a corner case, and to 1118 * handle it, we would need to maintain an 1119 * extra num_active_aggs field. 1120 */ 1121 qfq_update_agg_ts(q, in_serv_agg, requeue); 1122 qfq_schedule_agg(q, in_serv_agg); 1123 } else if (sch->q.qlen == 0) { /* no aggregate to serve */ 1124 q->in_serv_agg = NULL; 1125 return NULL; 1126 } 1127 1128 /* 1129 * If we get here, there are other aggregates queued: 1130 * choose the new aggregate to serve. 1131 */ 1132 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); 1133 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1134 } 1135 if (!skb) 1136 return NULL; 1137 1138 sch->q.qlen--; 1139 1140 skb = agg_dequeue(in_serv_agg, cl, len); 1141 1142 if (!skb) { 1143 sch->q.qlen++; 1144 return NULL; 1145 } 1146 1147 qdisc_qstats_backlog_dec(sch, skb); 1148 qdisc_bstats_update(sch, skb); 1149 1150 /* If lmax is lowered, through qfq_change_class, for a class 1151 * owning pending packets with larger size than the new value 1152 * of lmax, then the following condition may hold. 1153 */ 1154 if (unlikely(in_serv_agg->budget < len)) 1155 in_serv_agg->budget = 0; 1156 else 1157 in_serv_agg->budget -= len; 1158 1159 q->V += (u64)len * q->iwsum; 1160 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 1161 len, (unsigned long long) in_serv_agg->F, 1162 (unsigned long long) q->V); 1163 1164 return skb; 1165 } 1166 1167 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) 1168 { 1169 struct qfq_group *grp; 1170 struct qfq_aggregate *agg, *new_front_agg; 1171 u64 old_F; 1172 1173 qfq_update_eligible(q); 1174 q->oldV = q->V; 1175 1176 if (!q->bitmaps[ER]) 1177 return NULL; 1178 1179 grp = qfq_ffs(q, q->bitmaps[ER]); 1180 old_F = grp->F; 1181 1182 agg = qfq_slot_head(grp); 1183 1184 /* agg starts to be served, remove it from schedule */ 1185 qfq_front_slot_remove(grp); 1186 1187 new_front_agg = qfq_slot_scan(grp); 1188 1189 if (new_front_agg == NULL) /* group is now inactive, remove from ER */ 1190 __clear_bit(grp->index, &q->bitmaps[ER]); 1191 else { 1192 u64 roundedS = qfq_round_down(new_front_agg->S, 1193 grp->slot_shift); 1194 unsigned int s; 1195 1196 if (grp->S == roundedS) 1197 return agg; 1198 grp->S = roundedS; 1199 grp->F = roundedS + (2ULL << grp->slot_shift); 1200 __clear_bit(grp->index, &q->bitmaps[ER]); 1201 s = qfq_calc_state(q, grp); 1202 __set_bit(grp->index, &q->bitmaps[s]); 1203 } 1204 1205 qfq_unblock_groups(q, grp->index, old_F); 1206 1207 return agg; 1208 } 1209 1210 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, 1211 struct sk_buff **to_free) 1212 { 1213 unsigned int len = qdisc_pkt_len(skb), gso_segs; 1214 struct qfq_sched *q = qdisc_priv(sch); 1215 struct qfq_class *cl; 1216 struct qfq_aggregate *agg; 1217 int err = 0; 1218 bool first; 1219 1220 cl = qfq_classify(skb, sch, &err); 1221 if (cl == NULL) { 1222 if (err & __NET_XMIT_BYPASS) 1223 qdisc_qstats_drop(sch); 1224 __qdisc_drop(skb, to_free); 1225 return err; 1226 } 1227 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 1228 1229 if (unlikely(cl->agg->lmax < len)) { 1230 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 1231 cl->agg->lmax, len, cl->common.classid); 1232 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len); 1233 if (err) { 1234 cl->qstats.drops++; 1235 return qdisc_drop(skb, sch, to_free); 1236 } 1237 } 1238 1239 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1; 1240 first = !cl->qdisc->q.qlen; 1241 err = qdisc_enqueue(skb, cl->qdisc, to_free); 1242 if (unlikely(err != NET_XMIT_SUCCESS)) { 1243 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 1244 if (net_xmit_drop_count(err)) { 1245 cl->qstats.drops++; 1246 qdisc_qstats_drop(sch); 1247 } 1248 return err; 1249 } 1250 1251 _bstats_update(&cl->bstats, len, gso_segs); 1252 sch->qstats.backlog += len; 1253 ++sch->q.qlen; 1254 1255 agg = cl->agg; 1256 /* if the queue was not empty, then done here */ 1257 if (!first) { 1258 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && 1259 list_first_entry(&agg->active, struct qfq_class, alist) 1260 == cl && cl->deficit < len) 1261 list_move_tail(&cl->alist, &agg->active); 1262 1263 return err; 1264 } 1265 1266 /* schedule class for service within the aggregate */ 1267 cl->deficit = agg->lmax; 1268 list_add_tail(&cl->alist, &agg->active); 1269 1270 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || 1271 q->in_serv_agg == agg) 1272 return err; /* non-empty or in service, nothing else to do */ 1273 1274 qfq_activate_agg(q, agg, enqueue); 1275 1276 return err; 1277 } 1278 1279 /* 1280 * Schedule aggregate according to its timestamps. 1281 */ 1282 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1283 { 1284 struct qfq_group *grp = agg->grp; 1285 u64 roundedS; 1286 int s; 1287 1288 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1289 1290 /* 1291 * Insert agg in the correct bucket. 1292 * If agg->S >= grp->S we don't need to adjust the 1293 * bucket list and simply go to the insertion phase. 1294 * Otherwise grp->S is decreasing, we must make room 1295 * in the bucket list, and also recompute the group state. 1296 * Finally, if there were no flows in this group and nobody 1297 * was in ER make sure to adjust V. 1298 */ 1299 if (grp->full_slots) { 1300 if (!qfq_gt(grp->S, agg->S)) 1301 goto skip_update; 1302 1303 /* create a slot for this agg->S */ 1304 qfq_slot_rotate(grp, roundedS); 1305 /* group was surely ineligible, remove */ 1306 __clear_bit(grp->index, &q->bitmaps[IR]); 1307 __clear_bit(grp->index, &q->bitmaps[IB]); 1308 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && 1309 q->in_serv_agg == NULL) 1310 q->V = roundedS; 1311 1312 grp->S = roundedS; 1313 grp->F = roundedS + (2ULL << grp->slot_shift); 1314 s = qfq_calc_state(q, grp); 1315 __set_bit(grp->index, &q->bitmaps[s]); 1316 1317 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1318 s, q->bitmaps[s], 1319 (unsigned long long) agg->S, 1320 (unsigned long long) agg->F, 1321 (unsigned long long) q->V); 1322 1323 skip_update: 1324 qfq_slot_insert(grp, agg, roundedS); 1325 } 1326 1327 1328 /* Update agg ts and schedule agg for service */ 1329 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 1330 enum update_reason reason) 1331 { 1332 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ 1333 1334 qfq_update_agg_ts(q, agg, reason); 1335 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ 1336 q->in_serv_agg = agg; /* start serving this aggregate */ 1337 /* update V: to be in service, agg must be eligible */ 1338 q->oldV = q->V = agg->S; 1339 } else if (agg != q->in_serv_agg) 1340 qfq_schedule_agg(q, agg); 1341 } 1342 1343 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1344 struct qfq_aggregate *agg) 1345 { 1346 unsigned int i, offset; 1347 u64 roundedS; 1348 1349 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1350 offset = (roundedS - grp->S) >> grp->slot_shift; 1351 1352 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1353 1354 hlist_del(&agg->next); 1355 if (hlist_empty(&grp->slots[i])) 1356 __clear_bit(offset, &grp->full_slots); 1357 } 1358 1359 /* 1360 * Called to forcibly deschedule an aggregate. If the aggregate is 1361 * not in the front bucket, or if the latter has other aggregates in 1362 * the front bucket, we can simply remove the aggregate with no other 1363 * side effects. 1364 * Otherwise we must propagate the event up. 1365 */ 1366 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1367 { 1368 struct qfq_group *grp = agg->grp; 1369 unsigned long mask; 1370 u64 roundedS; 1371 int s; 1372 1373 if (agg == q->in_serv_agg) { 1374 charge_actual_service(agg); 1375 q->in_serv_agg = qfq_choose_next_agg(q); 1376 return; 1377 } 1378 1379 agg->F = agg->S; 1380 qfq_slot_remove(q, grp, agg); 1381 1382 if (!grp->full_slots) { 1383 __clear_bit(grp->index, &q->bitmaps[IR]); 1384 __clear_bit(grp->index, &q->bitmaps[EB]); 1385 __clear_bit(grp->index, &q->bitmaps[IB]); 1386 1387 if (test_bit(grp->index, &q->bitmaps[ER]) && 1388 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1389 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1390 if (mask) 1391 mask = ~((1UL << __fls(mask)) - 1); 1392 else 1393 mask = ~0UL; 1394 qfq_move_groups(q, mask, EB, ER); 1395 qfq_move_groups(q, mask, IB, IR); 1396 } 1397 __clear_bit(grp->index, &q->bitmaps[ER]); 1398 } else if (hlist_empty(&grp->slots[grp->front])) { 1399 agg = qfq_slot_scan(grp); 1400 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1401 if (grp->S != roundedS) { 1402 __clear_bit(grp->index, &q->bitmaps[ER]); 1403 __clear_bit(grp->index, &q->bitmaps[IR]); 1404 __clear_bit(grp->index, &q->bitmaps[EB]); 1405 __clear_bit(grp->index, &q->bitmaps[IB]); 1406 grp->S = roundedS; 1407 grp->F = roundedS + (2ULL << grp->slot_shift); 1408 s = qfq_calc_state(q, grp); 1409 __set_bit(grp->index, &q->bitmaps[s]); 1410 } 1411 } 1412 } 1413 1414 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1415 { 1416 struct qfq_sched *q = qdisc_priv(sch); 1417 struct qfq_class *cl = (struct qfq_class *)arg; 1418 1419 if (list_empty(&cl->alist)) 1420 return; 1421 qfq_deactivate_class(q, cl); 1422 } 1423 1424 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt, 1425 struct netlink_ext_ack *extack) 1426 { 1427 struct qfq_sched *q = qdisc_priv(sch); 1428 struct qfq_group *grp; 1429 int i, j, err; 1430 u32 max_cl_shift, maxbudg_shift, max_classes; 1431 1432 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 1433 if (err) 1434 return err; 1435 1436 err = qdisc_class_hash_init(&q->clhash); 1437 if (err < 0) 1438 return err; 1439 1440 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1, 1441 QFQ_MAX_AGG_CLASSES); 1442 /* max_cl_shift = floor(log_2(max_classes)) */ 1443 max_cl_shift = __fls(max_classes); 1444 q->max_agg_classes = 1<<max_cl_shift; 1445 1446 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ 1447 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; 1448 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; 1449 1450 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1451 grp = &q->groups[i]; 1452 grp->index = i; 1453 grp->slot_shift = q->min_slot_shift + i; 1454 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1455 INIT_HLIST_HEAD(&grp->slots[j]); 1456 } 1457 1458 INIT_HLIST_HEAD(&q->nonfull_aggs); 1459 1460 return 0; 1461 } 1462 1463 static void qfq_reset_qdisc(struct Qdisc *sch) 1464 { 1465 struct qfq_sched *q = qdisc_priv(sch); 1466 struct qfq_class *cl; 1467 unsigned int i; 1468 1469 for (i = 0; i < q->clhash.hashsize; i++) { 1470 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1471 if (cl->qdisc->q.qlen > 0) 1472 qfq_deactivate_class(q, cl); 1473 1474 qdisc_reset(cl->qdisc); 1475 } 1476 } 1477 } 1478 1479 static void qfq_destroy_qdisc(struct Qdisc *sch) 1480 { 1481 struct qfq_sched *q = qdisc_priv(sch); 1482 struct qfq_class *cl; 1483 struct hlist_node *next; 1484 unsigned int i; 1485 1486 tcf_block_put(q->block); 1487 1488 for (i = 0; i < q->clhash.hashsize; i++) { 1489 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1490 common.hnode) { 1491 qfq_destroy_class(sch, cl); 1492 } 1493 } 1494 qdisc_class_hash_destroy(&q->clhash); 1495 } 1496 1497 static const struct Qdisc_class_ops qfq_class_ops = { 1498 .change = qfq_change_class, 1499 .delete = qfq_delete_class, 1500 .find = qfq_search_class, 1501 .tcf_block = qfq_tcf_block, 1502 .bind_tcf = qfq_bind_tcf, 1503 .unbind_tcf = qfq_unbind_tcf, 1504 .graft = qfq_graft_class, 1505 .leaf = qfq_class_leaf, 1506 .qlen_notify = qfq_qlen_notify, 1507 .dump = qfq_dump_class, 1508 .dump_stats = qfq_dump_class_stats, 1509 .walk = qfq_walk, 1510 }; 1511 1512 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1513 .cl_ops = &qfq_class_ops, 1514 .id = "qfq", 1515 .priv_size = sizeof(struct qfq_sched), 1516 .enqueue = qfq_enqueue, 1517 .dequeue = qfq_dequeue, 1518 .peek = qdisc_peek_dequeued, 1519 .init = qfq_init_qdisc, 1520 .reset = qfq_reset_qdisc, 1521 .destroy = qfq_destroy_qdisc, 1522 .owner = THIS_MODULE, 1523 }; 1524 MODULE_ALIAS_NET_SCH("qfq"); 1525 1526 static int __init qfq_init(void) 1527 { 1528 return register_qdisc(&qfq_qdisc_ops); 1529 } 1530 1531 static void __exit qfq_exit(void) 1532 { 1533 unregister_qdisc(&qfq_qdisc_ops); 1534 } 1535 1536 module_init(qfq_init); 1537 module_exit(qfq_exit); 1538 MODULE_LICENSE("GPL"); 1539 MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc"); 1540