1 /* 2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler. 3 * 4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 5 * Copyright (c) 2012 Paolo Valente. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * version 2 as published by the Free Software Foundation. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/bitops.h> 15 #include <linux/errno.h> 16 #include <linux/netdevice.h> 17 #include <linux/pkt_sched.h> 18 #include <net/sch_generic.h> 19 #include <net/pkt_sched.h> 20 #include <net/pkt_cls.h> 21 22 23 /* Quick Fair Queueing Plus 24 ======================== 25 26 Sources: 27 28 [1] Paolo Valente, 29 "Reducing the Execution Time of Fair-Queueing Schedulers." 30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf 31 32 Sources for QFQ: 33 34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 35 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 36 37 See also: 38 http://retis.sssup.it/~fabio/linux/qfq/ 39 */ 40 41 /* 42 43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES 44 classes. Each aggregate is timestamped with a virtual start time S 45 and a virtual finish time F, and scheduled according to its 46 timestamps. S and F are computed as a function of a system virtual 47 time function V. The classes within each aggregate are instead 48 scheduled with DRR. 49 50 To speed up operations, QFQ+ divides also aggregates into a limited 51 number of groups. Which group a class belongs to depends on the 52 ratio between the maximum packet length for the class and the weight 53 of the class. Groups have their own S and F. In the end, QFQ+ 54 schedules groups, then aggregates within groups, then classes within 55 aggregates. See [1] and [2] for a full description. 56 57 Virtual time computations. 58 59 S, F and V are all computed in fixed point arithmetic with 60 FRAC_BITS decimal bits. 61 62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 63 one bit per index. 64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 65 66 The layout of the bits is as below: 67 68 [ MTU_SHIFT ][ FRAC_BITS ] 69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 70 ^.__grp->index = 0 71 *.__grp->slot_shift 72 73 where MIN_SLOT_SHIFT is derived by difference from the others. 74 75 The max group index corresponds to Lmax/w_min, where 76 Lmax=1<<MTU_SHIFT, w_min = 1 . 77 From this, and knowing how many groups (MAX_INDEX) we want, 78 we can derive the shift corresponding to each group. 79 80 Because we often need to compute 81 F = S + len/w_i and V = V + len/wsum 82 instead of storing w_i store the value 83 inv_w = (1<<FRAC_BITS)/w_i 84 so we can do F = S + len * inv_w * wsum. 85 We use W_TOT in the formulas so we can easily move between 86 static and adaptive weight sum. 87 88 The per-scheduler-instance data contain all the data structures 89 for the scheduler: bitmaps and bucket lists. 90 91 */ 92 93 /* 94 * Maximum number of consecutive slots occupied by backlogged classes 95 * inside a group. 96 */ 97 #define QFQ_MAX_SLOTS 32 98 99 /* 100 * Shifts used for aggregate<->group mapping. We allow class weights that are 101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the 102 * group with the smallest index that can support the L_i / r_i configured 103 * for the classes in the aggregate. 104 * 105 * grp->index is the index of the group; and grp->slot_shift 106 * is the shift for the corresponding (scaled) sigma_i. 107 */ 108 #define QFQ_MAX_INDEX 24 109 #define QFQ_MAX_WSHIFT 10 110 111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ 112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT) 113 114 #define FRAC_BITS 30 /* fixed point arithmetic */ 115 #define ONE_FP (1UL << FRAC_BITS) 116 117 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 118 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */ 119 120 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */ 121 122 /* 123 * Possible group states. These values are used as indexes for the bitmaps 124 * array of struct qfq_queue. 125 */ 126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 127 128 struct qfq_group; 129 130 struct qfq_aggregate; 131 132 struct qfq_class { 133 struct Qdisc_class_common common; 134 135 unsigned int refcnt; 136 unsigned int filter_cnt; 137 138 struct gnet_stats_basic_packed bstats; 139 struct gnet_stats_queue qstats; 140 struct gnet_stats_rate_est64 rate_est; 141 struct Qdisc *qdisc; 142 struct list_head alist; /* Link for active-classes list. */ 143 struct qfq_aggregate *agg; /* Parent aggregate. */ 144 int deficit; /* DRR deficit counter. */ 145 }; 146 147 struct qfq_aggregate { 148 struct hlist_node next; /* Link for the slot list. */ 149 u64 S, F; /* flow timestamps (exact) */ 150 151 /* group we belong to. In principle we would need the index, 152 * which is log_2(lmax/weight), but we never reference it 153 * directly, only the group. 154 */ 155 struct qfq_group *grp; 156 157 /* these are copied from the flowset. */ 158 u32 class_weight; /* Weight of each class in this aggregate. */ 159 /* Max pkt size for the classes in this aggregate, DRR quantum. */ 160 int lmax; 161 162 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */ 163 u32 budgetmax; /* Max budget for this aggregate. */ 164 u32 initial_budget, budget; /* Initial and current budget. */ 165 166 int num_classes; /* Number of classes in this aggr. */ 167 struct list_head active; /* DRR queue of active classes. */ 168 169 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */ 170 }; 171 172 struct qfq_group { 173 u64 S, F; /* group timestamps (approx). */ 174 unsigned int slot_shift; /* Slot shift. */ 175 unsigned int index; /* Group index. */ 176 unsigned int front; /* Index of the front slot. */ 177 unsigned long full_slots; /* non-empty slots */ 178 179 /* Array of RR lists of active aggregates. */ 180 struct hlist_head slots[QFQ_MAX_SLOTS]; 181 }; 182 183 struct qfq_sched { 184 struct tcf_proto __rcu *filter_list; 185 struct Qdisc_class_hash clhash; 186 187 u64 oldV, V; /* Precise virtual times. */ 188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */ 189 u32 wsum; /* weight sum */ 190 u32 iwsum; /* inverse weight sum */ 191 192 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 193 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 194 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */ 195 196 u32 max_agg_classes; /* Max number of classes per aggr. */ 197 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ 198 }; 199 200 /* 201 * Possible reasons why the timestamps of an aggregate are updated 202 * enqueue: the aggregate switches from idle to active and must scheduled 203 * for service 204 * requeue: the aggregate finishes its budget, so it stops being served and 205 * must be rescheduled for service 206 */ 207 enum update_reason {enqueue, requeue}; 208 209 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 210 { 211 struct qfq_sched *q = qdisc_priv(sch); 212 struct Qdisc_class_common *clc; 213 214 clc = qdisc_class_find(&q->clhash, classid); 215 if (clc == NULL) 216 return NULL; 217 return container_of(clc, struct qfq_class, common); 218 } 219 220 static void qfq_purge_queue(struct qfq_class *cl) 221 { 222 unsigned int len = cl->qdisc->q.qlen; 223 unsigned int backlog = cl->qdisc->qstats.backlog; 224 225 qdisc_reset(cl->qdisc); 226 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog); 227 } 228 229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, 231 [TCA_QFQ_LMAX] = { .type = NLA_U32 }, 232 }; 233 234 /* 235 * Calculate a flow index, given its weight and maximum packet length. 236 * index = log_2(maxlen/weight) but we need to apply the scaling. 237 * This is used only once at flow creation. 238 */ 239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) 240 { 241 u64 slot_size = (u64)maxlen * inv_w; 242 unsigned long size_map; 243 int index = 0; 244 245 size_map = slot_size >> min_slot_shift; 246 if (!size_map) 247 goto out; 248 249 index = __fls(size_map) + 1; /* basically a log_2 */ 250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); 251 252 if (index < 0) 253 index = 0; 254 out: 255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 256 (unsigned long) ONE_FP/inv_w, maxlen, index); 257 258 return index; 259 } 260 261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); 262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, 263 enum update_reason); 264 265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 266 u32 lmax, u32 weight) 267 { 268 INIT_LIST_HEAD(&agg->active); 269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 270 271 agg->lmax = lmax; 272 agg->class_weight = weight; 273 } 274 275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, 276 u32 lmax, u32 weight) 277 { 278 struct qfq_aggregate *agg; 279 280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) 281 if (agg->lmax == lmax && agg->class_weight == weight) 282 return agg; 283 284 return NULL; 285 } 286 287 288 /* Update aggregate as a function of the new number of classes. */ 289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 290 int new_num_classes) 291 { 292 u32 new_agg_weight; 293 294 if (new_num_classes == q->max_agg_classes) 295 hlist_del_init(&agg->nonfull_next); 296 297 if (agg->num_classes > new_num_classes && 298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */ 299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 300 301 /* The next assignment may let 302 * agg->initial_budget > agg->budgetmax 303 * hold, we will take it into account in charge_actual_service(). 304 */ 305 agg->budgetmax = new_num_classes * agg->lmax; 306 new_agg_weight = agg->class_weight * new_num_classes; 307 agg->inv_w = ONE_FP/new_agg_weight; 308 309 if (agg->grp == NULL) { 310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax, 311 q->min_slot_shift); 312 agg->grp = &q->groups[i]; 313 } 314 315 q->wsum += 316 (int) agg->class_weight * (new_num_classes - agg->num_classes); 317 q->iwsum = ONE_FP / q->wsum; 318 319 agg->num_classes = new_num_classes; 320 } 321 322 /* Add class to aggregate. */ 323 static void qfq_add_to_agg(struct qfq_sched *q, 324 struct qfq_aggregate *agg, 325 struct qfq_class *cl) 326 { 327 cl->agg = agg; 328 329 qfq_update_agg(q, agg, agg->num_classes+1); 330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */ 331 list_add_tail(&cl->alist, &agg->active); 332 if (list_first_entry(&agg->active, struct qfq_class, alist) == 333 cl && q->in_serv_agg != agg) /* agg was inactive */ 334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */ 335 } 336 } 337 338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); 339 340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 341 { 342 hlist_del_init(&agg->nonfull_next); 343 q->wsum -= agg->class_weight; 344 if (q->wsum != 0) 345 q->iwsum = ONE_FP / q->wsum; 346 347 if (q->in_serv_agg == agg) 348 q->in_serv_agg = qfq_choose_next_agg(q); 349 kfree(agg); 350 } 351 352 /* Deschedule class from within its parent aggregate. */ 353 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 354 { 355 struct qfq_aggregate *agg = cl->agg; 356 357 358 list_del(&cl->alist); /* remove from RR queue of the aggregate */ 359 if (list_empty(&agg->active)) /* agg is now inactive */ 360 qfq_deactivate_agg(q, agg); 361 } 362 363 /* Remove class from its parent aggregate. */ 364 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 365 { 366 struct qfq_aggregate *agg = cl->agg; 367 368 cl->agg = NULL; 369 if (agg->num_classes == 1) { /* agg being emptied, destroy it */ 370 qfq_destroy_agg(q, agg); 371 return; 372 } 373 qfq_update_agg(q, agg, agg->num_classes-1); 374 } 375 376 /* Deschedule class and remove it from its parent aggregate. */ 377 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 378 { 379 if (cl->qdisc->q.qlen > 0) /* class is active */ 380 qfq_deactivate_class(q, cl); 381 382 qfq_rm_from_agg(q, cl); 383 } 384 385 /* Move class to a new aggregate, matching the new class weight and/or lmax */ 386 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, 387 u32 lmax) 388 { 389 struct qfq_sched *q = qdisc_priv(sch); 390 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight); 391 392 if (new_agg == NULL) { /* create new aggregate */ 393 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); 394 if (new_agg == NULL) 395 return -ENOBUFS; 396 qfq_init_agg(q, new_agg, lmax, weight); 397 } 398 qfq_deact_rm_from_agg(q, cl); 399 qfq_add_to_agg(q, new_agg, cl); 400 401 return 0; 402 } 403 404 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 405 struct nlattr **tca, unsigned long *arg) 406 { 407 struct qfq_sched *q = qdisc_priv(sch); 408 struct qfq_class *cl = (struct qfq_class *)*arg; 409 bool existing = false; 410 struct nlattr *tb[TCA_QFQ_MAX + 1]; 411 struct qfq_aggregate *new_agg = NULL; 412 u32 weight, lmax, inv_w; 413 int err; 414 int delta_w; 415 416 if (tca[TCA_OPTIONS] == NULL) { 417 pr_notice("qfq: no options\n"); 418 return -EINVAL; 419 } 420 421 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy); 422 if (err < 0) 423 return err; 424 425 if (tb[TCA_QFQ_WEIGHT]) { 426 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); 427 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { 428 pr_notice("qfq: invalid weight %u\n", weight); 429 return -EINVAL; 430 } 431 } else 432 weight = 1; 433 434 if (tb[TCA_QFQ_LMAX]) { 435 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 436 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) { 437 pr_notice("qfq: invalid max length %u\n", lmax); 438 return -EINVAL; 439 } 440 } else 441 lmax = psched_mtu(qdisc_dev(sch)); 442 443 inv_w = ONE_FP / weight; 444 weight = ONE_FP / inv_w; 445 446 if (cl != NULL && 447 lmax == cl->agg->lmax && 448 weight == cl->agg->class_weight) 449 return 0; /* nothing to change */ 450 451 delta_w = weight - (cl ? cl->agg->class_weight : 0); 452 453 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 454 pr_notice("qfq: total weight out of range (%d + %u)\n", 455 delta_w, q->wsum); 456 return -EINVAL; 457 } 458 459 if (cl != NULL) { /* modify existing class */ 460 if (tca[TCA_RATE]) { 461 err = gen_replace_estimator(&cl->bstats, NULL, 462 &cl->rate_est, 463 qdisc_root_sleeping_lock(sch), 464 tca[TCA_RATE]); 465 if (err) 466 return err; 467 } 468 existing = true; 469 goto set_change_agg; 470 } 471 472 /* create and init new class */ 473 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 474 if (cl == NULL) 475 return -ENOBUFS; 476 477 cl->refcnt = 1; 478 cl->common.classid = classid; 479 cl->deficit = lmax; 480 481 cl->qdisc = qdisc_create_dflt(sch->dev_queue, 482 &pfifo_qdisc_ops, classid); 483 if (cl->qdisc == NULL) 484 cl->qdisc = &noop_qdisc; 485 486 if (tca[TCA_RATE]) { 487 err = gen_new_estimator(&cl->bstats, NULL, 488 &cl->rate_est, 489 qdisc_root_sleeping_lock(sch), 490 tca[TCA_RATE]); 491 if (err) 492 goto destroy_class; 493 } 494 495 sch_tree_lock(sch); 496 qdisc_class_hash_insert(&q->clhash, &cl->common); 497 sch_tree_unlock(sch); 498 499 qdisc_class_hash_grow(sch, &q->clhash); 500 501 set_change_agg: 502 sch_tree_lock(sch); 503 new_agg = qfq_find_agg(q, lmax, weight); 504 if (new_agg == NULL) { /* create new aggregate */ 505 sch_tree_unlock(sch); 506 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); 507 if (new_agg == NULL) { 508 err = -ENOBUFS; 509 gen_kill_estimator(&cl->bstats, &cl->rate_est); 510 goto destroy_class; 511 } 512 sch_tree_lock(sch); 513 qfq_init_agg(q, new_agg, lmax, weight); 514 } 515 if (existing) 516 qfq_deact_rm_from_agg(q, cl); 517 qfq_add_to_agg(q, new_agg, cl); 518 sch_tree_unlock(sch); 519 520 *arg = (unsigned long)cl; 521 return 0; 522 523 destroy_class: 524 qdisc_destroy(cl->qdisc); 525 kfree(cl); 526 return err; 527 } 528 529 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 530 { 531 struct qfq_sched *q = qdisc_priv(sch); 532 533 qfq_rm_from_agg(q, cl); 534 gen_kill_estimator(&cl->bstats, &cl->rate_est); 535 qdisc_destroy(cl->qdisc); 536 kfree(cl); 537 } 538 539 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg) 540 { 541 struct qfq_sched *q = qdisc_priv(sch); 542 struct qfq_class *cl = (struct qfq_class *)arg; 543 544 if (cl->filter_cnt > 0) 545 return -EBUSY; 546 547 sch_tree_lock(sch); 548 549 qfq_purge_queue(cl); 550 qdisc_class_hash_remove(&q->clhash, &cl->common); 551 552 BUG_ON(--cl->refcnt == 0); 553 /* 554 * This shouldn't happen: we "hold" one cops->get() when called 555 * from tc_ctl_tclass; the destroy method is done from cops->put(). 556 */ 557 558 sch_tree_unlock(sch); 559 return 0; 560 } 561 562 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid) 563 { 564 struct qfq_class *cl = qfq_find_class(sch, classid); 565 566 if (cl != NULL) 567 cl->refcnt++; 568 569 return (unsigned long)cl; 570 } 571 572 static void qfq_put_class(struct Qdisc *sch, unsigned long arg) 573 { 574 struct qfq_class *cl = (struct qfq_class *)arg; 575 576 if (--cl->refcnt == 0) 577 qfq_destroy_class(sch, cl); 578 } 579 580 static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch, 581 unsigned long cl) 582 { 583 struct qfq_sched *q = qdisc_priv(sch); 584 585 if (cl) 586 return NULL; 587 588 return &q->filter_list; 589 } 590 591 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 592 u32 classid) 593 { 594 struct qfq_class *cl = qfq_find_class(sch, classid); 595 596 if (cl != NULL) 597 cl->filter_cnt++; 598 599 return (unsigned long)cl; 600 } 601 602 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 603 { 604 struct qfq_class *cl = (struct qfq_class *)arg; 605 606 cl->filter_cnt--; 607 } 608 609 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 610 struct Qdisc *new, struct Qdisc **old) 611 { 612 struct qfq_class *cl = (struct qfq_class *)arg; 613 614 if (new == NULL) { 615 new = qdisc_create_dflt(sch->dev_queue, 616 &pfifo_qdisc_ops, cl->common.classid); 617 if (new == NULL) 618 new = &noop_qdisc; 619 } 620 621 *old = qdisc_replace(sch, new, &cl->qdisc); 622 return 0; 623 } 624 625 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 626 { 627 struct qfq_class *cl = (struct qfq_class *)arg; 628 629 return cl->qdisc; 630 } 631 632 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 633 struct sk_buff *skb, struct tcmsg *tcm) 634 { 635 struct qfq_class *cl = (struct qfq_class *)arg; 636 struct nlattr *nest; 637 638 tcm->tcm_parent = TC_H_ROOT; 639 tcm->tcm_handle = cl->common.classid; 640 tcm->tcm_info = cl->qdisc->handle; 641 642 nest = nla_nest_start(skb, TCA_OPTIONS); 643 if (nest == NULL) 644 goto nla_put_failure; 645 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || 646 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) 647 goto nla_put_failure; 648 return nla_nest_end(skb, nest); 649 650 nla_put_failure: 651 nla_nest_cancel(skb, nest); 652 return -EMSGSIZE; 653 } 654 655 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 656 struct gnet_dump *d) 657 { 658 struct qfq_class *cl = (struct qfq_class *)arg; 659 struct tc_qfq_stats xstats; 660 661 memset(&xstats, 0, sizeof(xstats)); 662 663 xstats.weight = cl->agg->class_weight; 664 xstats.lmax = cl->agg->lmax; 665 666 if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 || 667 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 || 668 gnet_stats_copy_queue(d, NULL, 669 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0) 670 return -1; 671 672 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 673 } 674 675 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 676 { 677 struct qfq_sched *q = qdisc_priv(sch); 678 struct qfq_class *cl; 679 unsigned int i; 680 681 if (arg->stop) 682 return; 683 684 for (i = 0; i < q->clhash.hashsize; i++) { 685 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 686 if (arg->count < arg->skip) { 687 arg->count++; 688 continue; 689 } 690 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 691 arg->stop = 1; 692 return; 693 } 694 arg->count++; 695 } 696 } 697 } 698 699 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 700 int *qerr) 701 { 702 struct qfq_sched *q = qdisc_priv(sch); 703 struct qfq_class *cl; 704 struct tcf_result res; 705 struct tcf_proto *fl; 706 int result; 707 708 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 709 pr_debug("qfq_classify: found %d\n", skb->priority); 710 cl = qfq_find_class(sch, skb->priority); 711 if (cl != NULL) 712 return cl; 713 } 714 715 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 716 fl = rcu_dereference_bh(q->filter_list); 717 result = tc_classify(skb, fl, &res, false); 718 if (result >= 0) { 719 #ifdef CONFIG_NET_CLS_ACT 720 switch (result) { 721 case TC_ACT_QUEUED: 722 case TC_ACT_STOLEN: 723 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 724 case TC_ACT_SHOT: 725 return NULL; 726 } 727 #endif 728 cl = (struct qfq_class *)res.class; 729 if (cl == NULL) 730 cl = qfq_find_class(sch, res.classid); 731 return cl; 732 } 733 734 return NULL; 735 } 736 737 /* Generic comparison function, handling wraparound. */ 738 static inline int qfq_gt(u64 a, u64 b) 739 { 740 return (s64)(a - b) > 0; 741 } 742 743 /* Round a precise timestamp to its slotted value. */ 744 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 745 { 746 return ts & ~((1ULL << shift) - 1); 747 } 748 749 /* return the pointer to the group with lowest index in the bitmap */ 750 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 751 unsigned long bitmap) 752 { 753 int index = __ffs(bitmap); 754 return &q->groups[index]; 755 } 756 /* Calculate a mask to mimic what would be ffs_from(). */ 757 static inline unsigned long mask_from(unsigned long bitmap, int from) 758 { 759 return bitmap & ~((1UL << from) - 1); 760 } 761 762 /* 763 * The state computation relies on ER=0, IR=1, EB=2, IB=3 764 * First compute eligibility comparing grp->S, q->V, 765 * then check if someone is blocking us and possibly add EB 766 */ 767 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 768 { 769 /* if S > V we are not eligible */ 770 unsigned int state = qfq_gt(grp->S, q->V); 771 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 772 struct qfq_group *next; 773 774 if (mask) { 775 next = qfq_ffs(q, mask); 776 if (qfq_gt(grp->F, next->F)) 777 state |= EB; 778 } 779 780 return state; 781 } 782 783 784 /* 785 * In principle 786 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 787 * q->bitmaps[src] &= ~mask; 788 * but we should make sure that src != dst 789 */ 790 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 791 int src, int dst) 792 { 793 q->bitmaps[dst] |= q->bitmaps[src] & mask; 794 q->bitmaps[src] &= ~mask; 795 } 796 797 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 798 { 799 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 800 struct qfq_group *next; 801 802 if (mask) { 803 next = qfq_ffs(q, mask); 804 if (!qfq_gt(next->F, old_F)) 805 return; 806 } 807 808 mask = (1UL << index) - 1; 809 qfq_move_groups(q, mask, EB, ER); 810 qfq_move_groups(q, mask, IB, IR); 811 } 812 813 /* 814 * perhaps 815 * 816 old_V ^= q->V; 817 old_V >>= q->min_slot_shift; 818 if (old_V) { 819 ... 820 } 821 * 822 */ 823 static void qfq_make_eligible(struct qfq_sched *q) 824 { 825 unsigned long vslot = q->V >> q->min_slot_shift; 826 unsigned long old_vslot = q->oldV >> q->min_slot_shift; 827 828 if (vslot != old_vslot) { 829 unsigned long mask; 830 int last_flip_pos = fls(vslot ^ old_vslot); 831 832 if (last_flip_pos > 31) /* higher than the number of groups */ 833 mask = ~0UL; /* make all groups eligible */ 834 else 835 mask = (1UL << last_flip_pos) - 1; 836 837 qfq_move_groups(q, mask, IR, ER); 838 qfq_move_groups(q, mask, IB, EB); 839 } 840 } 841 842 /* 843 * The index of the slot in which the input aggregate agg is to be 844 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' 845 * and not a '-1' because the start time of the group may be moved 846 * backward by one slot after the aggregate has been inserted, and 847 * this would cause non-empty slots to be right-shifted by one 848 * position. 849 * 850 * QFQ+ fully satisfies this bound to the slot index if the parameters 851 * of the classes are not changed dynamically, and if QFQ+ never 852 * happens to postpone the service of agg unjustly, i.e., it never 853 * happens that the aggregate becomes backlogged and eligible, or just 854 * eligible, while an aggregate with a higher approximated finish time 855 * is being served. In particular, in this case QFQ+ guarantees that 856 * the timestamps of agg are low enough that the slot index is never 857 * higher than 2. Unfortunately, QFQ+ cannot provide the same 858 * guarantee if it happens to unjustly postpone the service of agg, or 859 * if the parameters of some class are changed. 860 * 861 * As for the first event, i.e., an out-of-order service, the 862 * upper bound to the slot index guaranteed by QFQ+ grows to 863 * 2 + 864 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * 865 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. 866 * 867 * The following function deals with this problem by backward-shifting 868 * the timestamps of agg, if needed, so as to guarantee that the slot 869 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may 870 * cause the service of other aggregates to be postponed, yet the 871 * worst-case guarantees of these aggregates are not violated. In 872 * fact, in case of no out-of-order service, the timestamps of agg 873 * would have been even lower than they are after the backward shift, 874 * because QFQ+ would have guaranteed a maximum value equal to 2 for 875 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose 876 * service is postponed because of the backward-shift would have 877 * however waited for the service of agg before being served. 878 * 879 * The other event that may cause the slot index to be higher than 2 880 * for agg is a recent change of the parameters of some class. If the 881 * weight of a class is increased or the lmax (max_pkt_size) of the 882 * class is decreased, then a new aggregate with smaller slot size 883 * than the original parent aggregate of the class may happen to be 884 * activated. The activation of this aggregate should be properly 885 * delayed to when the service of the class has finished in the ideal 886 * system tracked by QFQ+. If the activation of the aggregate is not 887 * delayed to this reference time instant, then this aggregate may be 888 * unjustly served before other aggregates waiting for service. This 889 * may cause the above bound to the slot index to be violated for some 890 * of these unlucky aggregates. 891 * 892 * Instead of delaying the activation of the new aggregate, which is 893 * quite complex, the above-discussed capping of the slot index is 894 * used to handle also the consequences of a change of the parameters 895 * of a class. 896 */ 897 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, 898 u64 roundedS) 899 { 900 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 901 unsigned int i; /* slot index in the bucket list */ 902 903 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 904 u64 deltaS = roundedS - grp->S - 905 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 906 agg->S -= deltaS; 907 agg->F -= deltaS; 908 slot = QFQ_MAX_SLOTS - 2; 909 } 910 911 i = (grp->front + slot) % QFQ_MAX_SLOTS; 912 913 hlist_add_head(&agg->next, &grp->slots[i]); 914 __set_bit(slot, &grp->full_slots); 915 } 916 917 /* Maybe introduce hlist_first_entry?? */ 918 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) 919 { 920 return hlist_entry(grp->slots[grp->front].first, 921 struct qfq_aggregate, next); 922 } 923 924 /* 925 * remove the entry from the slot 926 */ 927 static void qfq_front_slot_remove(struct qfq_group *grp) 928 { 929 struct qfq_aggregate *agg = qfq_slot_head(grp); 930 931 BUG_ON(!agg); 932 hlist_del(&agg->next); 933 if (hlist_empty(&grp->slots[grp->front])) 934 __clear_bit(0, &grp->full_slots); 935 } 936 937 /* 938 * Returns the first aggregate in the first non-empty bucket of the 939 * group. As a side effect, adjusts the bucket list so the first 940 * non-empty bucket is at position 0 in full_slots. 941 */ 942 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) 943 { 944 unsigned int i; 945 946 pr_debug("qfq slot_scan: grp %u full %#lx\n", 947 grp->index, grp->full_slots); 948 949 if (grp->full_slots == 0) 950 return NULL; 951 952 i = __ffs(grp->full_slots); /* zero based */ 953 if (i > 0) { 954 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 955 grp->full_slots >>= i; 956 } 957 958 return qfq_slot_head(grp); 959 } 960 961 /* 962 * adjust the bucket list. When the start time of a group decreases, 963 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 964 * move the objects. The mask of occupied slots must be shifted 965 * because we use ffs() to find the first non-empty slot. 966 * This covers decreases in the group's start time, but what about 967 * increases of the start time ? 968 * Here too we should make sure that i is less than 32 969 */ 970 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 971 { 972 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 973 974 grp->full_slots <<= i; 975 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 976 } 977 978 static void qfq_update_eligible(struct qfq_sched *q) 979 { 980 struct qfq_group *grp; 981 unsigned long ineligible; 982 983 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 984 if (ineligible) { 985 if (!q->bitmaps[ER]) { 986 grp = qfq_ffs(q, ineligible); 987 if (qfq_gt(grp->S, q->V)) 988 q->V = grp->S; 989 } 990 qfq_make_eligible(q); 991 } 992 } 993 994 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ 995 static void agg_dequeue(struct qfq_aggregate *agg, 996 struct qfq_class *cl, unsigned int len) 997 { 998 qdisc_dequeue_peeked(cl->qdisc); 999 1000 cl->deficit -= (int) len; 1001 1002 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ 1003 list_del(&cl->alist); 1004 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { 1005 cl->deficit += agg->lmax; 1006 list_move_tail(&cl->alist, &agg->active); 1007 } 1008 } 1009 1010 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, 1011 struct qfq_class **cl, 1012 unsigned int *len) 1013 { 1014 struct sk_buff *skb; 1015 1016 *cl = list_first_entry(&agg->active, struct qfq_class, alist); 1017 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); 1018 if (skb == NULL) 1019 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); 1020 else 1021 *len = qdisc_pkt_len(skb); 1022 1023 return skb; 1024 } 1025 1026 /* Update F according to the actual service received by the aggregate. */ 1027 static inline void charge_actual_service(struct qfq_aggregate *agg) 1028 { 1029 /* Compute the service received by the aggregate, taking into 1030 * account that, after decreasing the number of classes in 1031 * agg, it may happen that 1032 * agg->initial_budget - agg->budget > agg->bugdetmax 1033 */ 1034 u32 service_received = min(agg->budgetmax, 1035 agg->initial_budget - agg->budget); 1036 1037 agg->F = agg->S + (u64)service_received * agg->inv_w; 1038 } 1039 1040 /* Assign a reasonable start time for a new aggregate in group i. 1041 * Admissible values for \hat(F) are multiples of \sigma_i 1042 * no greater than V+\sigma_i . Larger values mean that 1043 * we had a wraparound so we consider the timestamp to be stale. 1044 * 1045 * If F is not stale and F >= V then we set S = F. 1046 * Otherwise we should assign S = V, but this may violate 1047 * the ordering in EB (see [2]). So, if we have groups in ER, 1048 * set S to the F_j of the first group j which would be blocking us. 1049 * We are guaranteed not to move S backward because 1050 * otherwise our group i would still be blocked. 1051 */ 1052 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) 1053 { 1054 unsigned long mask; 1055 u64 limit, roundedF; 1056 int slot_shift = agg->grp->slot_shift; 1057 1058 roundedF = qfq_round_down(agg->F, slot_shift); 1059 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 1060 1061 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { 1062 /* timestamp was stale */ 1063 mask = mask_from(q->bitmaps[ER], agg->grp->index); 1064 if (mask) { 1065 struct qfq_group *next = qfq_ffs(q, mask); 1066 if (qfq_gt(roundedF, next->F)) { 1067 if (qfq_gt(limit, next->F)) 1068 agg->S = next->F; 1069 else /* preserve timestamp correctness */ 1070 agg->S = limit; 1071 return; 1072 } 1073 } 1074 agg->S = q->V; 1075 } else /* timestamp is not stale */ 1076 agg->S = agg->F; 1077 } 1078 1079 /* Update the timestamps of agg before scheduling/rescheduling it for 1080 * service. In particular, assign to agg->F its maximum possible 1081 * value, i.e., the virtual finish time with which the aggregate 1082 * should be labeled if it used all its budget once in service. 1083 */ 1084 static inline void 1085 qfq_update_agg_ts(struct qfq_sched *q, 1086 struct qfq_aggregate *agg, enum update_reason reason) 1087 { 1088 if (reason != requeue) 1089 qfq_update_start(q, agg); 1090 else /* just charge agg for the service received */ 1091 agg->S = agg->F; 1092 1093 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; 1094 } 1095 1096 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); 1097 1098 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 1099 { 1100 struct qfq_sched *q = qdisc_priv(sch); 1101 struct qfq_aggregate *in_serv_agg = q->in_serv_agg; 1102 struct qfq_class *cl; 1103 struct sk_buff *skb = NULL; 1104 /* next-packet len, 0 means no more active classes in in-service agg */ 1105 unsigned int len = 0; 1106 1107 if (in_serv_agg == NULL) 1108 return NULL; 1109 1110 if (!list_empty(&in_serv_agg->active)) 1111 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1112 1113 /* 1114 * If there are no active classes in the in-service aggregate, 1115 * or if the aggregate has not enough budget to serve its next 1116 * class, then choose the next aggregate to serve. 1117 */ 1118 if (len == 0 || in_serv_agg->budget < len) { 1119 charge_actual_service(in_serv_agg); 1120 1121 /* recharge the budget of the aggregate */ 1122 in_serv_agg->initial_budget = in_serv_agg->budget = 1123 in_serv_agg->budgetmax; 1124 1125 if (!list_empty(&in_serv_agg->active)) { 1126 /* 1127 * Still active: reschedule for 1128 * service. Possible optimization: if no other 1129 * aggregate is active, then there is no point 1130 * in rescheduling this aggregate, and we can 1131 * just keep it as the in-service one. This 1132 * should be however a corner case, and to 1133 * handle it, we would need to maintain an 1134 * extra num_active_aggs field. 1135 */ 1136 qfq_update_agg_ts(q, in_serv_agg, requeue); 1137 qfq_schedule_agg(q, in_serv_agg); 1138 } else if (sch->q.qlen == 0) { /* no aggregate to serve */ 1139 q->in_serv_agg = NULL; 1140 return NULL; 1141 } 1142 1143 /* 1144 * If we get here, there are other aggregates queued: 1145 * choose the new aggregate to serve. 1146 */ 1147 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); 1148 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1149 } 1150 if (!skb) 1151 return NULL; 1152 1153 sch->q.qlen--; 1154 qdisc_bstats_update(sch, skb); 1155 1156 agg_dequeue(in_serv_agg, cl, len); 1157 /* If lmax is lowered, through qfq_change_class, for a class 1158 * owning pending packets with larger size than the new value 1159 * of lmax, then the following condition may hold. 1160 */ 1161 if (unlikely(in_serv_agg->budget < len)) 1162 in_serv_agg->budget = 0; 1163 else 1164 in_serv_agg->budget -= len; 1165 1166 q->V += (u64)len * q->iwsum; 1167 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 1168 len, (unsigned long long) in_serv_agg->F, 1169 (unsigned long long) q->V); 1170 1171 return skb; 1172 } 1173 1174 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) 1175 { 1176 struct qfq_group *grp; 1177 struct qfq_aggregate *agg, *new_front_agg; 1178 u64 old_F; 1179 1180 qfq_update_eligible(q); 1181 q->oldV = q->V; 1182 1183 if (!q->bitmaps[ER]) 1184 return NULL; 1185 1186 grp = qfq_ffs(q, q->bitmaps[ER]); 1187 old_F = grp->F; 1188 1189 agg = qfq_slot_head(grp); 1190 1191 /* agg starts to be served, remove it from schedule */ 1192 qfq_front_slot_remove(grp); 1193 1194 new_front_agg = qfq_slot_scan(grp); 1195 1196 if (new_front_agg == NULL) /* group is now inactive, remove from ER */ 1197 __clear_bit(grp->index, &q->bitmaps[ER]); 1198 else { 1199 u64 roundedS = qfq_round_down(new_front_agg->S, 1200 grp->slot_shift); 1201 unsigned int s; 1202 1203 if (grp->S == roundedS) 1204 return agg; 1205 grp->S = roundedS; 1206 grp->F = roundedS + (2ULL << grp->slot_shift); 1207 __clear_bit(grp->index, &q->bitmaps[ER]); 1208 s = qfq_calc_state(q, grp); 1209 __set_bit(grp->index, &q->bitmaps[s]); 1210 } 1211 1212 qfq_unblock_groups(q, grp->index, old_F); 1213 1214 return agg; 1215 } 1216 1217 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch) 1218 { 1219 struct qfq_sched *q = qdisc_priv(sch); 1220 struct qfq_class *cl; 1221 struct qfq_aggregate *agg; 1222 int err = 0; 1223 1224 cl = qfq_classify(skb, sch, &err); 1225 if (cl == NULL) { 1226 if (err & __NET_XMIT_BYPASS) 1227 qdisc_qstats_drop(sch); 1228 kfree_skb(skb); 1229 return err; 1230 } 1231 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 1232 1233 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) { 1234 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 1235 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid); 1236 err = qfq_change_agg(sch, cl, cl->agg->class_weight, 1237 qdisc_pkt_len(skb)); 1238 if (err) { 1239 cl->qstats.drops++; 1240 return qdisc_drop(skb, sch); 1241 } 1242 } 1243 1244 err = qdisc_enqueue(skb, cl->qdisc); 1245 if (unlikely(err != NET_XMIT_SUCCESS)) { 1246 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 1247 if (net_xmit_drop_count(err)) { 1248 cl->qstats.drops++; 1249 qdisc_qstats_drop(sch); 1250 } 1251 return err; 1252 } 1253 1254 bstats_update(&cl->bstats, skb); 1255 ++sch->q.qlen; 1256 1257 agg = cl->agg; 1258 /* if the queue was not empty, then done here */ 1259 if (cl->qdisc->q.qlen != 1) { 1260 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && 1261 list_first_entry(&agg->active, struct qfq_class, alist) 1262 == cl && cl->deficit < qdisc_pkt_len(skb)) 1263 list_move_tail(&cl->alist, &agg->active); 1264 1265 return err; 1266 } 1267 1268 /* schedule class for service within the aggregate */ 1269 cl->deficit = agg->lmax; 1270 list_add_tail(&cl->alist, &agg->active); 1271 1272 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || 1273 q->in_serv_agg == agg) 1274 return err; /* non-empty or in service, nothing else to do */ 1275 1276 qfq_activate_agg(q, agg, enqueue); 1277 1278 return err; 1279 } 1280 1281 /* 1282 * Schedule aggregate according to its timestamps. 1283 */ 1284 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1285 { 1286 struct qfq_group *grp = agg->grp; 1287 u64 roundedS; 1288 int s; 1289 1290 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1291 1292 /* 1293 * Insert agg in the correct bucket. 1294 * If agg->S >= grp->S we don't need to adjust the 1295 * bucket list and simply go to the insertion phase. 1296 * Otherwise grp->S is decreasing, we must make room 1297 * in the bucket list, and also recompute the group state. 1298 * Finally, if there were no flows in this group and nobody 1299 * was in ER make sure to adjust V. 1300 */ 1301 if (grp->full_slots) { 1302 if (!qfq_gt(grp->S, agg->S)) 1303 goto skip_update; 1304 1305 /* create a slot for this agg->S */ 1306 qfq_slot_rotate(grp, roundedS); 1307 /* group was surely ineligible, remove */ 1308 __clear_bit(grp->index, &q->bitmaps[IR]); 1309 __clear_bit(grp->index, &q->bitmaps[IB]); 1310 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && 1311 q->in_serv_agg == NULL) 1312 q->V = roundedS; 1313 1314 grp->S = roundedS; 1315 grp->F = roundedS + (2ULL << grp->slot_shift); 1316 s = qfq_calc_state(q, grp); 1317 __set_bit(grp->index, &q->bitmaps[s]); 1318 1319 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1320 s, q->bitmaps[s], 1321 (unsigned long long) agg->S, 1322 (unsigned long long) agg->F, 1323 (unsigned long long) q->V); 1324 1325 skip_update: 1326 qfq_slot_insert(grp, agg, roundedS); 1327 } 1328 1329 1330 /* Update agg ts and schedule agg for service */ 1331 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 1332 enum update_reason reason) 1333 { 1334 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ 1335 1336 qfq_update_agg_ts(q, agg, reason); 1337 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ 1338 q->in_serv_agg = agg; /* start serving this aggregate */ 1339 /* update V: to be in service, agg must be eligible */ 1340 q->oldV = q->V = agg->S; 1341 } else if (agg != q->in_serv_agg) 1342 qfq_schedule_agg(q, agg); 1343 } 1344 1345 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1346 struct qfq_aggregate *agg) 1347 { 1348 unsigned int i, offset; 1349 u64 roundedS; 1350 1351 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1352 offset = (roundedS - grp->S) >> grp->slot_shift; 1353 1354 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1355 1356 hlist_del(&agg->next); 1357 if (hlist_empty(&grp->slots[i])) 1358 __clear_bit(offset, &grp->full_slots); 1359 } 1360 1361 /* 1362 * Called to forcibly deschedule an aggregate. If the aggregate is 1363 * not in the front bucket, or if the latter has other aggregates in 1364 * the front bucket, we can simply remove the aggregate with no other 1365 * side effects. 1366 * Otherwise we must propagate the event up. 1367 */ 1368 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1369 { 1370 struct qfq_group *grp = agg->grp; 1371 unsigned long mask; 1372 u64 roundedS; 1373 int s; 1374 1375 if (agg == q->in_serv_agg) { 1376 charge_actual_service(agg); 1377 q->in_serv_agg = qfq_choose_next_agg(q); 1378 return; 1379 } 1380 1381 agg->F = agg->S; 1382 qfq_slot_remove(q, grp, agg); 1383 1384 if (!grp->full_slots) { 1385 __clear_bit(grp->index, &q->bitmaps[IR]); 1386 __clear_bit(grp->index, &q->bitmaps[EB]); 1387 __clear_bit(grp->index, &q->bitmaps[IB]); 1388 1389 if (test_bit(grp->index, &q->bitmaps[ER]) && 1390 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1391 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1392 if (mask) 1393 mask = ~((1UL << __fls(mask)) - 1); 1394 else 1395 mask = ~0UL; 1396 qfq_move_groups(q, mask, EB, ER); 1397 qfq_move_groups(q, mask, IB, IR); 1398 } 1399 __clear_bit(grp->index, &q->bitmaps[ER]); 1400 } else if (hlist_empty(&grp->slots[grp->front])) { 1401 agg = qfq_slot_scan(grp); 1402 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1403 if (grp->S != roundedS) { 1404 __clear_bit(grp->index, &q->bitmaps[ER]); 1405 __clear_bit(grp->index, &q->bitmaps[IR]); 1406 __clear_bit(grp->index, &q->bitmaps[EB]); 1407 __clear_bit(grp->index, &q->bitmaps[IB]); 1408 grp->S = roundedS; 1409 grp->F = roundedS + (2ULL << grp->slot_shift); 1410 s = qfq_calc_state(q, grp); 1411 __set_bit(grp->index, &q->bitmaps[s]); 1412 } 1413 } 1414 } 1415 1416 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1417 { 1418 struct qfq_sched *q = qdisc_priv(sch); 1419 struct qfq_class *cl = (struct qfq_class *)arg; 1420 1421 if (cl->qdisc->q.qlen == 0) 1422 qfq_deactivate_class(q, cl); 1423 } 1424 1425 static unsigned int qfq_drop_from_slot(struct qfq_sched *q, 1426 struct hlist_head *slot) 1427 { 1428 struct qfq_aggregate *agg; 1429 struct qfq_class *cl; 1430 unsigned int len; 1431 1432 hlist_for_each_entry(agg, slot, next) { 1433 list_for_each_entry(cl, &agg->active, alist) { 1434 1435 if (!cl->qdisc->ops->drop) 1436 continue; 1437 1438 len = cl->qdisc->ops->drop(cl->qdisc); 1439 if (len > 0) { 1440 if (cl->qdisc->q.qlen == 0) 1441 qfq_deactivate_class(q, cl); 1442 1443 return len; 1444 } 1445 } 1446 } 1447 return 0; 1448 } 1449 1450 static unsigned int qfq_drop(struct Qdisc *sch) 1451 { 1452 struct qfq_sched *q = qdisc_priv(sch); 1453 struct qfq_group *grp; 1454 unsigned int i, j, len; 1455 1456 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1457 grp = &q->groups[i]; 1458 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 1459 len = qfq_drop_from_slot(q, &grp->slots[j]); 1460 if (len > 0) { 1461 sch->q.qlen--; 1462 return len; 1463 } 1464 } 1465 1466 } 1467 1468 return 0; 1469 } 1470 1471 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt) 1472 { 1473 struct qfq_sched *q = qdisc_priv(sch); 1474 struct qfq_group *grp; 1475 int i, j, err; 1476 u32 max_cl_shift, maxbudg_shift, max_classes; 1477 1478 err = qdisc_class_hash_init(&q->clhash); 1479 if (err < 0) 1480 return err; 1481 1482 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES) 1483 max_classes = QFQ_MAX_AGG_CLASSES; 1484 else 1485 max_classes = qdisc_dev(sch)->tx_queue_len + 1; 1486 /* max_cl_shift = floor(log_2(max_classes)) */ 1487 max_cl_shift = __fls(max_classes); 1488 q->max_agg_classes = 1<<max_cl_shift; 1489 1490 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ 1491 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; 1492 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; 1493 1494 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1495 grp = &q->groups[i]; 1496 grp->index = i; 1497 grp->slot_shift = q->min_slot_shift + i; 1498 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1499 INIT_HLIST_HEAD(&grp->slots[j]); 1500 } 1501 1502 INIT_HLIST_HEAD(&q->nonfull_aggs); 1503 1504 return 0; 1505 } 1506 1507 static void qfq_reset_qdisc(struct Qdisc *sch) 1508 { 1509 struct qfq_sched *q = qdisc_priv(sch); 1510 struct qfq_class *cl; 1511 unsigned int i; 1512 1513 for (i = 0; i < q->clhash.hashsize; i++) { 1514 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1515 if (cl->qdisc->q.qlen > 0) 1516 qfq_deactivate_class(q, cl); 1517 1518 qdisc_reset(cl->qdisc); 1519 } 1520 } 1521 sch->q.qlen = 0; 1522 } 1523 1524 static void qfq_destroy_qdisc(struct Qdisc *sch) 1525 { 1526 struct qfq_sched *q = qdisc_priv(sch); 1527 struct qfq_class *cl; 1528 struct hlist_node *next; 1529 unsigned int i; 1530 1531 tcf_destroy_chain(&q->filter_list); 1532 1533 for (i = 0; i < q->clhash.hashsize; i++) { 1534 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1535 common.hnode) { 1536 qfq_destroy_class(sch, cl); 1537 } 1538 } 1539 qdisc_class_hash_destroy(&q->clhash); 1540 } 1541 1542 static const struct Qdisc_class_ops qfq_class_ops = { 1543 .change = qfq_change_class, 1544 .delete = qfq_delete_class, 1545 .get = qfq_get_class, 1546 .put = qfq_put_class, 1547 .tcf_chain = qfq_tcf_chain, 1548 .bind_tcf = qfq_bind_tcf, 1549 .unbind_tcf = qfq_unbind_tcf, 1550 .graft = qfq_graft_class, 1551 .leaf = qfq_class_leaf, 1552 .qlen_notify = qfq_qlen_notify, 1553 .dump = qfq_dump_class, 1554 .dump_stats = qfq_dump_class_stats, 1555 .walk = qfq_walk, 1556 }; 1557 1558 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1559 .cl_ops = &qfq_class_ops, 1560 .id = "qfq", 1561 .priv_size = sizeof(struct qfq_sched), 1562 .enqueue = qfq_enqueue, 1563 .dequeue = qfq_dequeue, 1564 .peek = qdisc_peek_dequeued, 1565 .drop = qfq_drop, 1566 .init = qfq_init_qdisc, 1567 .reset = qfq_reset_qdisc, 1568 .destroy = qfq_destroy_qdisc, 1569 .owner = THIS_MODULE, 1570 }; 1571 1572 static int __init qfq_init(void) 1573 { 1574 return register_qdisc(&qfq_qdisc_ops); 1575 } 1576 1577 static void __exit qfq_exit(void) 1578 { 1579 unregister_qdisc(&qfq_qdisc_ops); 1580 } 1581 1582 module_init(qfq_init); 1583 module_exit(qfq_exit); 1584 MODULE_LICENSE("GPL"); 1585