xref: /linux/net/sched/sch_pie.c (revision 0ad9617c78acbc71373fb341a6f75d4012b01d69)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2013 Cisco Systems, Inc, 2013.
3  *
4  * Author: Vijay Subramanian <vijaynsu@cisco.com>
5  * Author: Mythili Prabhu <mysuryan@cisco.com>
6  *
7  * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
8  * University of Oslo, Norway.
9  *
10  * References:
11  * RFC 8033: https://tools.ietf.org/html/rfc8033
12  */
13 
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/skbuff.h>
20 #include <net/pkt_sched.h>
21 #include <net/inet_ecn.h>
22 #include <net/pie.h>
23 
24 /* private data for the Qdisc */
25 struct pie_sched_data {
26 	struct pie_vars vars;
27 	struct pie_params params;
28 	struct pie_stats stats;
29 	struct timer_list adapt_timer;
30 	struct Qdisc *sch;
31 };
32 
33 bool pie_drop_early(struct Qdisc *sch, struct pie_params *params,
34 		    struct pie_vars *vars, u32 backlog, u32 packet_size)
35 {
36 	u64 rnd;
37 	u64 local_prob = vars->prob;
38 	u32 mtu = psched_mtu(qdisc_dev(sch));
39 
40 	/* If there is still burst allowance left skip random early drop */
41 	if (vars->burst_time > 0)
42 		return false;
43 
44 	/* If current delay is less than half of target, and
45 	 * if drop prob is low already, disable early_drop
46 	 */
47 	if ((vars->qdelay < params->target / 2) &&
48 	    (vars->prob < MAX_PROB / 5))
49 		return false;
50 
51 	/* If we have fewer than 2 mtu-sized packets, disable pie_drop_early,
52 	 * similar to min_th in RED
53 	 */
54 	if (backlog < 2 * mtu)
55 		return false;
56 
57 	/* If bytemode is turned on, use packet size to compute new
58 	 * probablity. Smaller packets will have lower drop prob in this case
59 	 */
60 	if (params->bytemode && packet_size <= mtu)
61 		local_prob = (u64)packet_size * div_u64(local_prob, mtu);
62 	else
63 		local_prob = vars->prob;
64 
65 	if (local_prob == 0)
66 		vars->accu_prob = 0;
67 	else
68 		vars->accu_prob += local_prob;
69 
70 	if (vars->accu_prob < (MAX_PROB / 100) * 85)
71 		return false;
72 	if (vars->accu_prob >= (MAX_PROB / 2) * 17)
73 		return true;
74 
75 	get_random_bytes(&rnd, 8);
76 	if ((rnd >> BITS_PER_BYTE) < local_prob) {
77 		vars->accu_prob = 0;
78 		return true;
79 	}
80 
81 	return false;
82 }
83 EXPORT_SYMBOL_GPL(pie_drop_early);
84 
85 static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
86 			     struct sk_buff **to_free)
87 {
88 	enum skb_drop_reason reason = SKB_DROP_REASON_QDISC_OVERLIMIT;
89 	struct pie_sched_data *q = qdisc_priv(sch);
90 	bool enqueue = false;
91 
92 	if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
93 		q->stats.overlimit++;
94 		goto out;
95 	}
96 
97 	reason = SKB_DROP_REASON_QDISC_CONGESTED;
98 
99 	if (!pie_drop_early(sch, &q->params, &q->vars, sch->qstats.backlog,
100 			    skb->len)) {
101 		enqueue = true;
102 	} else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
103 		   INET_ECN_set_ce(skb)) {
104 		/* If packet is ecn capable, mark it if drop probability
105 		 * is lower than 10%, else drop it.
106 		 */
107 		q->stats.ecn_mark++;
108 		enqueue = true;
109 	}
110 
111 	/* we can enqueue the packet */
112 	if (enqueue) {
113 		/* Set enqueue time only when dq_rate_estimator is disabled. */
114 		if (!q->params.dq_rate_estimator)
115 			pie_set_enqueue_time(skb);
116 
117 		q->stats.packets_in++;
118 		if (qdisc_qlen(sch) > q->stats.maxq)
119 			q->stats.maxq = qdisc_qlen(sch);
120 
121 		return qdisc_enqueue_tail(skb, sch);
122 	}
123 
124 out:
125 	q->stats.dropped++;
126 	q->vars.accu_prob = 0;
127 	return qdisc_drop_reason(skb, sch, to_free, reason);
128 }
129 
130 static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
131 	[TCA_PIE_TARGET]		= {.type = NLA_U32},
132 	[TCA_PIE_LIMIT]			= {.type = NLA_U32},
133 	[TCA_PIE_TUPDATE]		= {.type = NLA_U32},
134 	[TCA_PIE_ALPHA]			= {.type = NLA_U32},
135 	[TCA_PIE_BETA]			= {.type = NLA_U32},
136 	[TCA_PIE_ECN]			= {.type = NLA_U32},
137 	[TCA_PIE_BYTEMODE]		= {.type = NLA_U32},
138 	[TCA_PIE_DQ_RATE_ESTIMATOR]	= {.type = NLA_U32},
139 };
140 
141 static int pie_change(struct Qdisc *sch, struct nlattr *opt,
142 		      struct netlink_ext_ack *extack)
143 {
144 	struct pie_sched_data *q = qdisc_priv(sch);
145 	struct nlattr *tb[TCA_PIE_MAX + 1];
146 	unsigned int qlen, dropped = 0;
147 	int err;
148 
149 	err = nla_parse_nested_deprecated(tb, TCA_PIE_MAX, opt, pie_policy,
150 					  NULL);
151 	if (err < 0)
152 		return err;
153 
154 	sch_tree_lock(sch);
155 
156 	/* convert from microseconds to pschedtime */
157 	if (tb[TCA_PIE_TARGET]) {
158 		/* target is in us */
159 		u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);
160 
161 		/* convert to pschedtime */
162 		WRITE_ONCE(q->params.target,
163 			   PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC));
164 	}
165 
166 	/* tupdate is in jiffies */
167 	if (tb[TCA_PIE_TUPDATE])
168 		WRITE_ONCE(q->params.tupdate,
169 			   usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE])));
170 
171 	if (tb[TCA_PIE_LIMIT]) {
172 		u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);
173 
174 		WRITE_ONCE(q->params.limit, limit);
175 		WRITE_ONCE(sch->limit, limit);
176 	}
177 
178 	if (tb[TCA_PIE_ALPHA])
179 		WRITE_ONCE(q->params.alpha, nla_get_u32(tb[TCA_PIE_ALPHA]));
180 
181 	if (tb[TCA_PIE_BETA])
182 		WRITE_ONCE(q->params.beta, nla_get_u32(tb[TCA_PIE_BETA]));
183 
184 	if (tb[TCA_PIE_ECN])
185 		WRITE_ONCE(q->params.ecn, nla_get_u32(tb[TCA_PIE_ECN]));
186 
187 	if (tb[TCA_PIE_BYTEMODE])
188 		WRITE_ONCE(q->params.bytemode,
189 			   nla_get_u32(tb[TCA_PIE_BYTEMODE]));
190 
191 	if (tb[TCA_PIE_DQ_RATE_ESTIMATOR])
192 		WRITE_ONCE(q->params.dq_rate_estimator,
193 			   nla_get_u32(tb[TCA_PIE_DQ_RATE_ESTIMATOR]));
194 
195 	/* Drop excess packets if new limit is lower */
196 	qlen = sch->q.qlen;
197 	while (sch->q.qlen > sch->limit) {
198 		struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
199 
200 		dropped += qdisc_pkt_len(skb);
201 		qdisc_qstats_backlog_dec(sch, skb);
202 		rtnl_qdisc_drop(skb, sch);
203 	}
204 	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
205 
206 	sch_tree_unlock(sch);
207 	return 0;
208 }
209 
210 void pie_process_dequeue(struct sk_buff *skb, struct pie_params *params,
211 			 struct pie_vars *vars, u32 backlog)
212 {
213 	psched_time_t now = psched_get_time();
214 	u32 dtime = 0;
215 
216 	/* If dq_rate_estimator is disabled, calculate qdelay using the
217 	 * packet timestamp.
218 	 */
219 	if (!params->dq_rate_estimator) {
220 		vars->qdelay = now - pie_get_enqueue_time(skb);
221 
222 		if (vars->dq_tstamp != DTIME_INVALID)
223 			dtime = now - vars->dq_tstamp;
224 
225 		vars->dq_tstamp = now;
226 
227 		if (backlog == 0)
228 			vars->qdelay = 0;
229 
230 		if (dtime == 0)
231 			return;
232 
233 		goto burst_allowance_reduction;
234 	}
235 
236 	/* If current queue is about 10 packets or more and dq_count is unset
237 	 * we have enough packets to calculate the drain rate. Save
238 	 * current time as dq_tstamp and start measurement cycle.
239 	 */
240 	if (backlog >= QUEUE_THRESHOLD && vars->dq_count == DQCOUNT_INVALID) {
241 		vars->dq_tstamp = psched_get_time();
242 		vars->dq_count = 0;
243 	}
244 
245 	/* Calculate the average drain rate from this value. If queue length
246 	 * has receded to a small value viz., <= QUEUE_THRESHOLD bytes, reset
247 	 * the dq_count to -1 as we don't have enough packets to calculate the
248 	 * drain rate anymore. The following if block is entered only when we
249 	 * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
250 	 * and we calculate the drain rate for the threshold here.  dq_count is
251 	 * in bytes, time difference in psched_time, hence rate is in
252 	 * bytes/psched_time.
253 	 */
254 	if (vars->dq_count != DQCOUNT_INVALID) {
255 		vars->dq_count += skb->len;
256 
257 		if (vars->dq_count >= QUEUE_THRESHOLD) {
258 			u32 count = vars->dq_count << PIE_SCALE;
259 
260 			dtime = now - vars->dq_tstamp;
261 
262 			if (dtime == 0)
263 				return;
264 
265 			count = count / dtime;
266 
267 			if (vars->avg_dq_rate == 0)
268 				vars->avg_dq_rate = count;
269 			else
270 				vars->avg_dq_rate =
271 				    (vars->avg_dq_rate -
272 				     (vars->avg_dq_rate >> 3)) + (count >> 3);
273 
274 			/* If the queue has receded below the threshold, we hold
275 			 * on to the last drain rate calculated, else we reset
276 			 * dq_count to 0 to re-enter the if block when the next
277 			 * packet is dequeued
278 			 */
279 			if (backlog < QUEUE_THRESHOLD) {
280 				vars->dq_count = DQCOUNT_INVALID;
281 			} else {
282 				vars->dq_count = 0;
283 				vars->dq_tstamp = psched_get_time();
284 			}
285 
286 			goto burst_allowance_reduction;
287 		}
288 	}
289 
290 	return;
291 
292 burst_allowance_reduction:
293 	if (vars->burst_time > 0) {
294 		if (vars->burst_time > dtime)
295 			vars->burst_time -= dtime;
296 		else
297 			vars->burst_time = 0;
298 	}
299 }
300 EXPORT_SYMBOL_GPL(pie_process_dequeue);
301 
302 void pie_calculate_probability(struct pie_params *params, struct pie_vars *vars,
303 			       u32 backlog)
304 {
305 	psched_time_t qdelay = 0;	/* in pschedtime */
306 	psched_time_t qdelay_old = 0;	/* in pschedtime */
307 	s64 delta = 0;		/* determines the change in probability */
308 	u64 oldprob;
309 	u64 alpha, beta;
310 	u32 power;
311 	bool update_prob = true;
312 
313 	if (params->dq_rate_estimator) {
314 		qdelay_old = vars->qdelay;
315 		vars->qdelay_old = vars->qdelay;
316 
317 		if (vars->avg_dq_rate > 0)
318 			qdelay = (backlog << PIE_SCALE) / vars->avg_dq_rate;
319 		else
320 			qdelay = 0;
321 	} else {
322 		qdelay = vars->qdelay;
323 		qdelay_old = vars->qdelay_old;
324 	}
325 
326 	/* If qdelay is zero and backlog is not, it means backlog is very small,
327 	 * so we do not update probability in this round.
328 	 */
329 	if (qdelay == 0 && backlog != 0)
330 		update_prob = false;
331 
332 	/* In the algorithm, alpha and beta are between 0 and 2 with typical
333 	 * value for alpha as 0.125. In this implementation, we use values 0-32
334 	 * passed from user space to represent this. Also, alpha and beta have
335 	 * unit of HZ and need to be scaled before they can used to update
336 	 * probability. alpha/beta are updated locally below by scaling down
337 	 * by 16 to come to 0-2 range.
338 	 */
339 	alpha = ((u64)params->alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
340 	beta = ((u64)params->beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
341 
342 	/* We scale alpha and beta differently depending on how heavy the
343 	 * congestion is. Please see RFC 8033 for details.
344 	 */
345 	if (vars->prob < MAX_PROB / 10) {
346 		alpha >>= 1;
347 		beta >>= 1;
348 
349 		power = 100;
350 		while (vars->prob < div_u64(MAX_PROB, power) &&
351 		       power <= 1000000) {
352 			alpha >>= 2;
353 			beta >>= 2;
354 			power *= 10;
355 		}
356 	}
357 
358 	/* alpha and beta should be between 0 and 32, in multiples of 1/16 */
359 	delta += alpha * (qdelay - params->target);
360 	delta += beta * (qdelay - qdelay_old);
361 
362 	oldprob = vars->prob;
363 
364 	/* to ensure we increase probability in steps of no more than 2% */
365 	if (delta > (s64)(MAX_PROB / (100 / 2)) &&
366 	    vars->prob >= MAX_PROB / 10)
367 		delta = (MAX_PROB / 100) * 2;
368 
369 	/* Non-linear drop:
370 	 * Tune drop probability to increase quickly for high delays(>= 250ms)
371 	 * 250ms is derived through experiments and provides error protection
372 	 */
373 
374 	if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
375 		delta += MAX_PROB / (100 / 2);
376 
377 	vars->prob += delta;
378 
379 	if (delta > 0) {
380 		/* prevent overflow */
381 		if (vars->prob < oldprob) {
382 			vars->prob = MAX_PROB;
383 			/* Prevent normalization error. If probability is at
384 			 * maximum value already, we normalize it here, and
385 			 * skip the check to do a non-linear drop in the next
386 			 * section.
387 			 */
388 			update_prob = false;
389 		}
390 	} else {
391 		/* prevent underflow */
392 		if (vars->prob > oldprob)
393 			vars->prob = 0;
394 	}
395 
396 	/* Non-linear drop in probability: Reduce drop probability quickly if
397 	 * delay is 0 for 2 consecutive Tupdate periods.
398 	 */
399 
400 	if (qdelay == 0 && qdelay_old == 0 && update_prob)
401 		/* Reduce drop probability to 98.4% */
402 		vars->prob -= vars->prob / 64;
403 
404 	vars->qdelay = qdelay;
405 	vars->backlog_old = backlog;
406 
407 	/* We restart the measurement cycle if the following conditions are met
408 	 * 1. If the delay has been low for 2 consecutive Tupdate periods
409 	 * 2. Calculated drop probability is zero
410 	 * 3. If average dq_rate_estimator is enabled, we have at least one
411 	 *    estimate for the avg_dq_rate ie., is a non-zero value
412 	 */
413 	if ((vars->qdelay < params->target / 2) &&
414 	    (vars->qdelay_old < params->target / 2) &&
415 	    vars->prob == 0 &&
416 	    (!params->dq_rate_estimator || vars->avg_dq_rate > 0)) {
417 		pie_vars_init(vars);
418 	}
419 
420 	if (!params->dq_rate_estimator)
421 		vars->qdelay_old = qdelay;
422 }
423 EXPORT_SYMBOL_GPL(pie_calculate_probability);
424 
425 static void pie_timer(struct timer_list *t)
426 {
427 	struct pie_sched_data *q = from_timer(q, t, adapt_timer);
428 	struct Qdisc *sch = q->sch;
429 	spinlock_t *root_lock;
430 
431 	rcu_read_lock();
432 	root_lock = qdisc_lock(qdisc_root_sleeping(sch));
433 	spin_lock(root_lock);
434 	pie_calculate_probability(&q->params, &q->vars, sch->qstats.backlog);
435 
436 	/* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
437 	if (q->params.tupdate)
438 		mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
439 	spin_unlock(root_lock);
440 	rcu_read_unlock();
441 }
442 
443 static int pie_init(struct Qdisc *sch, struct nlattr *opt,
444 		    struct netlink_ext_ack *extack)
445 {
446 	struct pie_sched_data *q = qdisc_priv(sch);
447 
448 	pie_params_init(&q->params);
449 	pie_vars_init(&q->vars);
450 	sch->limit = q->params.limit;
451 
452 	q->sch = sch;
453 	timer_setup(&q->adapt_timer, pie_timer, 0);
454 
455 	if (opt) {
456 		int err = pie_change(sch, opt, extack);
457 
458 		if (err)
459 			return err;
460 	}
461 
462 	mod_timer(&q->adapt_timer, jiffies + HZ / 2);
463 	return 0;
464 }
465 
466 static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
467 {
468 	struct pie_sched_data *q = qdisc_priv(sch);
469 	struct nlattr *opts;
470 
471 	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
472 	if (!opts)
473 		goto nla_put_failure;
474 
475 	/* convert target from pschedtime to us */
476 	if (nla_put_u32(skb, TCA_PIE_TARGET,
477 			((u32)PSCHED_TICKS2NS(READ_ONCE(q->params.target))) /
478 			NSEC_PER_USEC) ||
479 	    nla_put_u32(skb, TCA_PIE_LIMIT, READ_ONCE(sch->limit)) ||
480 	    nla_put_u32(skb, TCA_PIE_TUPDATE,
481 			jiffies_to_usecs(READ_ONCE(q->params.tupdate))) ||
482 	    nla_put_u32(skb, TCA_PIE_ALPHA, READ_ONCE(q->params.alpha)) ||
483 	    nla_put_u32(skb, TCA_PIE_BETA, READ_ONCE(q->params.beta)) ||
484 	    nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
485 	    nla_put_u32(skb, TCA_PIE_BYTEMODE,
486 			READ_ONCE(q->params.bytemode)) ||
487 	    nla_put_u32(skb, TCA_PIE_DQ_RATE_ESTIMATOR,
488 			READ_ONCE(q->params.dq_rate_estimator)))
489 		goto nla_put_failure;
490 
491 	return nla_nest_end(skb, opts);
492 
493 nla_put_failure:
494 	nla_nest_cancel(skb, opts);
495 	return -1;
496 }
497 
498 static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
499 {
500 	struct pie_sched_data *q = qdisc_priv(sch);
501 	struct tc_pie_xstats st = {
502 		.prob		= q->vars.prob << BITS_PER_BYTE,
503 		.delay		= ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) /
504 				   NSEC_PER_USEC,
505 		.packets_in	= q->stats.packets_in,
506 		.overlimit	= q->stats.overlimit,
507 		.maxq		= q->stats.maxq,
508 		.dropped	= q->stats.dropped,
509 		.ecn_mark	= q->stats.ecn_mark,
510 	};
511 
512 	/* avg_dq_rate is only valid if dq_rate_estimator is enabled */
513 	st.dq_rate_estimating = q->params.dq_rate_estimator;
514 
515 	/* unscale and return dq_rate in bytes per sec */
516 	if (q->params.dq_rate_estimator)
517 		st.avg_dq_rate = q->vars.avg_dq_rate *
518 				 (PSCHED_TICKS_PER_SEC) >> PIE_SCALE;
519 
520 	return gnet_stats_copy_app(d, &st, sizeof(st));
521 }
522 
523 static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
524 {
525 	struct pie_sched_data *q = qdisc_priv(sch);
526 	struct sk_buff *skb = qdisc_dequeue_head(sch);
527 
528 	if (!skb)
529 		return NULL;
530 
531 	pie_process_dequeue(skb, &q->params, &q->vars, sch->qstats.backlog);
532 	return skb;
533 }
534 
535 static void pie_reset(struct Qdisc *sch)
536 {
537 	struct pie_sched_data *q = qdisc_priv(sch);
538 
539 	qdisc_reset_queue(sch);
540 	pie_vars_init(&q->vars);
541 }
542 
543 static void pie_destroy(struct Qdisc *sch)
544 {
545 	struct pie_sched_data *q = qdisc_priv(sch);
546 
547 	q->params.tupdate = 0;
548 	del_timer_sync(&q->adapt_timer);
549 }
550 
551 static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
552 	.id		= "pie",
553 	.priv_size	= sizeof(struct pie_sched_data),
554 	.enqueue	= pie_qdisc_enqueue,
555 	.dequeue	= pie_qdisc_dequeue,
556 	.peek		= qdisc_peek_dequeued,
557 	.init		= pie_init,
558 	.destroy	= pie_destroy,
559 	.reset		= pie_reset,
560 	.change		= pie_change,
561 	.dump		= pie_dump,
562 	.dump_stats	= pie_dump_stats,
563 	.owner		= THIS_MODULE,
564 };
565 MODULE_ALIAS_NET_SCH("pie");
566 
567 static int __init pie_module_init(void)
568 {
569 	return register_qdisc(&pie_qdisc_ops);
570 }
571 
572 static void __exit pie_module_exit(void)
573 {
574 	unregister_qdisc(&pie_qdisc_ops);
575 }
576 
577 module_init(pie_module_init);
578 module_exit(pie_module_exit);
579 
580 MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
581 MODULE_AUTHOR("Vijay Subramanian");
582 MODULE_AUTHOR("Mythili Prabhu");
583 MODULE_LICENSE("GPL");
584