1 /* 2 * net/sched/sch_netem.c Network emulator 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License. 8 * 9 * Many of the algorithms and ideas for this came from 10 * NIST Net which is not copyrighted. 11 * 12 * Authors: Stephen Hemminger <shemminger@osdl.org> 13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro> 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/kernel.h> 21 #include <linux/errno.h> 22 #include <linux/skbuff.h> 23 #include <linux/vmalloc.h> 24 #include <linux/rtnetlink.h> 25 #include <linux/reciprocal_div.h> 26 #include <linux/rbtree.h> 27 28 #include <net/netlink.h> 29 #include <net/pkt_sched.h> 30 #include <net/inet_ecn.h> 31 32 #define VERSION "1.3" 33 34 /* Network Emulation Queuing algorithm. 35 ==================================== 36 37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based 38 Network Emulation Tool 39 [2] Luigi Rizzo, DummyNet for FreeBSD 40 41 ---------------------------------------------------------------- 42 43 This started out as a simple way to delay outgoing packets to 44 test TCP but has grown to include most of the functionality 45 of a full blown network emulator like NISTnet. It can delay 46 packets and add random jitter (and correlation). The random 47 distribution can be loaded from a table as well to provide 48 normal, Pareto, or experimental curves. Packet loss, 49 duplication, and reordering can also be emulated. 50 51 This qdisc does not do classification that can be handled in 52 layering other disciplines. It does not need to do bandwidth 53 control either since that can be handled by using token 54 bucket or other rate control. 55 56 Correlated Loss Generator models 57 58 Added generation of correlated loss according to the 59 "Gilbert-Elliot" model, a 4-state markov model. 60 61 References: 62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG 63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general 64 and intuitive loss model for packet networks and its implementation 65 in the Netem module in the Linux kernel", available in [1] 66 67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it 68 Fabio Ludovici <fabio.ludovici at yahoo.it> 69 */ 70 71 struct netem_sched_data { 72 /* internal t(ime)fifo qdisc uses t_root and sch->limit */ 73 struct rb_root t_root; 74 75 /* optional qdisc for classful handling (NULL at netem init) */ 76 struct Qdisc *qdisc; 77 78 struct qdisc_watchdog watchdog; 79 80 psched_tdiff_t latency; 81 psched_tdiff_t jitter; 82 83 u32 loss; 84 u32 ecn; 85 u32 limit; 86 u32 counter; 87 u32 gap; 88 u32 duplicate; 89 u32 reorder; 90 u32 corrupt; 91 u64 rate; 92 s32 packet_overhead; 93 u32 cell_size; 94 struct reciprocal_value cell_size_reciprocal; 95 s32 cell_overhead; 96 97 struct crndstate { 98 u32 last; 99 u32 rho; 100 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor; 101 102 struct disttable { 103 u32 size; 104 s16 table[0]; 105 } *delay_dist; 106 107 enum { 108 CLG_RANDOM, 109 CLG_4_STATES, 110 CLG_GILB_ELL, 111 } loss_model; 112 113 enum { 114 TX_IN_GAP_PERIOD = 1, 115 TX_IN_BURST_PERIOD, 116 LOST_IN_GAP_PERIOD, 117 LOST_IN_BURST_PERIOD, 118 } _4_state_model; 119 120 enum { 121 GOOD_STATE = 1, 122 BAD_STATE, 123 } GE_state_model; 124 125 /* Correlated Loss Generation models */ 126 struct clgstate { 127 /* state of the Markov chain */ 128 u8 state; 129 130 /* 4-states and Gilbert-Elliot models */ 131 u32 a1; /* p13 for 4-states or p for GE */ 132 u32 a2; /* p31 for 4-states or r for GE */ 133 u32 a3; /* p32 for 4-states or h for GE */ 134 u32 a4; /* p14 for 4-states or 1-k for GE */ 135 u32 a5; /* p23 used only in 4-states */ 136 } clg; 137 138 }; 139 140 /* Time stamp put into socket buffer control block 141 * Only valid when skbs are in our internal t(ime)fifo queue. 142 * 143 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp, 144 * and skb->next & skb->prev are scratch space for a qdisc, 145 * we save skb->tstamp value in skb->cb[] before destroying it. 146 */ 147 struct netem_skb_cb { 148 psched_time_t time_to_send; 149 ktime_t tstamp_save; 150 }; 151 152 153 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb) 154 { 155 return container_of(rb, struct sk_buff, rbnode); 156 } 157 158 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb) 159 { 160 /* we assume we can use skb next/prev/tstamp as storage for rb_node */ 161 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb)); 162 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data; 163 } 164 165 /* init_crandom - initialize correlated random number generator 166 * Use entropy source for initial seed. 167 */ 168 static void init_crandom(struct crndstate *state, unsigned long rho) 169 { 170 state->rho = rho; 171 state->last = prandom_u32(); 172 } 173 174 /* get_crandom - correlated random number generator 175 * Next number depends on last value. 176 * rho is scaled to avoid floating point. 177 */ 178 static u32 get_crandom(struct crndstate *state) 179 { 180 u64 value, rho; 181 unsigned long answer; 182 183 if (state->rho == 0) /* no correlation */ 184 return prandom_u32(); 185 186 value = prandom_u32(); 187 rho = (u64)state->rho + 1; 188 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32; 189 state->last = answer; 190 return answer; 191 } 192 193 /* loss_4state - 4-state model loss generator 194 * Generates losses according to the 4-state Markov chain adopted in 195 * the GI (General and Intuitive) loss model. 196 */ 197 static bool loss_4state(struct netem_sched_data *q) 198 { 199 struct clgstate *clg = &q->clg; 200 u32 rnd = prandom_u32(); 201 202 /* 203 * Makes a comparison between rnd and the transition 204 * probabilities outgoing from the current state, then decides the 205 * next state and if the next packet has to be transmitted or lost. 206 * The four states correspond to: 207 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period 208 * LOST_IN_BURST_PERIOD => isolated losses within a gap period 209 * LOST_IN_GAP_PERIOD => lost packets within a burst period 210 * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period 211 */ 212 switch (clg->state) { 213 case TX_IN_GAP_PERIOD: 214 if (rnd < clg->a4) { 215 clg->state = LOST_IN_BURST_PERIOD; 216 return true; 217 } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) { 218 clg->state = LOST_IN_GAP_PERIOD; 219 return true; 220 } else if (clg->a1 + clg->a4 < rnd) { 221 clg->state = TX_IN_GAP_PERIOD; 222 } 223 224 break; 225 case TX_IN_BURST_PERIOD: 226 if (rnd < clg->a5) { 227 clg->state = LOST_IN_GAP_PERIOD; 228 return true; 229 } else { 230 clg->state = TX_IN_BURST_PERIOD; 231 } 232 233 break; 234 case LOST_IN_GAP_PERIOD: 235 if (rnd < clg->a3) 236 clg->state = TX_IN_BURST_PERIOD; 237 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) { 238 clg->state = TX_IN_GAP_PERIOD; 239 } else if (clg->a2 + clg->a3 < rnd) { 240 clg->state = LOST_IN_GAP_PERIOD; 241 return true; 242 } 243 break; 244 case LOST_IN_BURST_PERIOD: 245 clg->state = TX_IN_GAP_PERIOD; 246 break; 247 } 248 249 return false; 250 } 251 252 /* loss_gilb_ell - Gilbert-Elliot model loss generator 253 * Generates losses according to the Gilbert-Elliot loss model or 254 * its special cases (Gilbert or Simple Gilbert) 255 * 256 * Makes a comparison between random number and the transition 257 * probabilities outgoing from the current state, then decides the 258 * next state. A second random number is extracted and the comparison 259 * with the loss probability of the current state decides if the next 260 * packet will be transmitted or lost. 261 */ 262 static bool loss_gilb_ell(struct netem_sched_data *q) 263 { 264 struct clgstate *clg = &q->clg; 265 266 switch (clg->state) { 267 case GOOD_STATE: 268 if (prandom_u32() < clg->a1) 269 clg->state = BAD_STATE; 270 if (prandom_u32() < clg->a4) 271 return true; 272 break; 273 case BAD_STATE: 274 if (prandom_u32() < clg->a2) 275 clg->state = GOOD_STATE; 276 if (prandom_u32() > clg->a3) 277 return true; 278 } 279 280 return false; 281 } 282 283 static bool loss_event(struct netem_sched_data *q) 284 { 285 switch (q->loss_model) { 286 case CLG_RANDOM: 287 /* Random packet drop 0 => none, ~0 => all */ 288 return q->loss && q->loss >= get_crandom(&q->loss_cor); 289 290 case CLG_4_STATES: 291 /* 4state loss model algorithm (used also for GI model) 292 * Extracts a value from the markov 4 state loss generator, 293 * if it is 1 drops a packet and if needed writes the event in 294 * the kernel logs 295 */ 296 return loss_4state(q); 297 298 case CLG_GILB_ELL: 299 /* Gilbert-Elliot loss model algorithm 300 * Extracts a value from the Gilbert-Elliot loss generator, 301 * if it is 1 drops a packet and if needed writes the event in 302 * the kernel logs 303 */ 304 return loss_gilb_ell(q); 305 } 306 307 return false; /* not reached */ 308 } 309 310 311 /* tabledist - return a pseudo-randomly distributed value with mean mu and 312 * std deviation sigma. Uses table lookup to approximate the desired 313 * distribution, and a uniformly-distributed pseudo-random source. 314 */ 315 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma, 316 struct crndstate *state, 317 const struct disttable *dist) 318 { 319 psched_tdiff_t x; 320 long t; 321 u32 rnd; 322 323 if (sigma == 0) 324 return mu; 325 326 rnd = get_crandom(state); 327 328 /* default uniform distribution */ 329 if (dist == NULL) 330 return (rnd % (2*sigma)) - sigma + mu; 331 332 t = dist->table[rnd % dist->size]; 333 x = (sigma % NETEM_DIST_SCALE) * t; 334 if (x >= 0) 335 x += NETEM_DIST_SCALE/2; 336 else 337 x -= NETEM_DIST_SCALE/2; 338 339 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu; 340 } 341 342 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q) 343 { 344 u64 ticks; 345 346 len += q->packet_overhead; 347 348 if (q->cell_size) { 349 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal); 350 351 if (len > cells * q->cell_size) /* extra cell needed for remainder */ 352 cells++; 353 len = cells * (q->cell_size + q->cell_overhead); 354 } 355 356 ticks = (u64)len * NSEC_PER_SEC; 357 358 do_div(ticks, q->rate); 359 return PSCHED_NS2TICKS(ticks); 360 } 361 362 static void tfifo_reset(struct Qdisc *sch) 363 { 364 struct netem_sched_data *q = qdisc_priv(sch); 365 struct rb_node *p; 366 367 while ((p = rb_first(&q->t_root))) { 368 struct sk_buff *skb = netem_rb_to_skb(p); 369 370 rb_erase(p, &q->t_root); 371 rtnl_kfree_skbs(skb, skb); 372 } 373 } 374 375 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch) 376 { 377 struct netem_sched_data *q = qdisc_priv(sch); 378 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send; 379 struct rb_node **p = &q->t_root.rb_node, *parent = NULL; 380 381 while (*p) { 382 struct sk_buff *skb; 383 384 parent = *p; 385 skb = netem_rb_to_skb(parent); 386 if (tnext >= netem_skb_cb(skb)->time_to_send) 387 p = &parent->rb_right; 388 else 389 p = &parent->rb_left; 390 } 391 rb_link_node(&nskb->rbnode, parent, p); 392 rb_insert_color(&nskb->rbnode, &q->t_root); 393 sch->q.qlen++; 394 } 395 396 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead 397 * when we statistically choose to corrupt one, we instead segment it, returning 398 * the first packet to be corrupted, and re-enqueue the remaining frames 399 */ 400 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch, 401 struct sk_buff **to_free) 402 { 403 struct sk_buff *segs; 404 netdev_features_t features = netif_skb_features(skb); 405 406 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 407 408 if (IS_ERR_OR_NULL(segs)) { 409 qdisc_drop(skb, sch, to_free); 410 return NULL; 411 } 412 consume_skb(skb); 413 return segs; 414 } 415 416 static void netem_enqueue_skb_head(struct qdisc_skb_head *qh, struct sk_buff *skb) 417 { 418 skb->next = qh->head; 419 420 if (!qh->head) 421 qh->tail = skb; 422 qh->head = skb; 423 qh->qlen++; 424 } 425 426 /* 427 * Insert one skb into qdisc. 428 * Note: parent depends on return value to account for queue length. 429 * NET_XMIT_DROP: queue length didn't change. 430 * NET_XMIT_SUCCESS: one skb was queued. 431 */ 432 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch, 433 struct sk_buff **to_free) 434 { 435 struct netem_sched_data *q = qdisc_priv(sch); 436 /* We don't fill cb now as skb_unshare() may invalidate it */ 437 struct netem_skb_cb *cb; 438 struct sk_buff *skb2; 439 struct sk_buff *segs = NULL; 440 unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb); 441 int nb = 0; 442 int count = 1; 443 int rc = NET_XMIT_SUCCESS; 444 445 /* Random duplication */ 446 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor)) 447 ++count; 448 449 /* Drop packet? */ 450 if (loss_event(q)) { 451 if (q->ecn && INET_ECN_set_ce(skb)) 452 qdisc_qstats_drop(sch); /* mark packet */ 453 else 454 --count; 455 } 456 if (count == 0) { 457 qdisc_qstats_drop(sch); 458 __qdisc_drop(skb, to_free); 459 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 460 } 461 462 /* If a delay is expected, orphan the skb. (orphaning usually takes 463 * place at TX completion time, so _before_ the link transit delay) 464 */ 465 if (q->latency || q->jitter) 466 skb_orphan_partial(skb); 467 468 /* 469 * If we need to duplicate packet, then re-insert at top of the 470 * qdisc tree, since parent queuer expects that only one 471 * skb will be queued. 472 */ 473 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) { 474 struct Qdisc *rootq = qdisc_root(sch); 475 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */ 476 477 q->duplicate = 0; 478 rootq->enqueue(skb2, rootq, to_free); 479 q->duplicate = dupsave; 480 } 481 482 /* 483 * Randomized packet corruption. 484 * Make copy if needed since we are modifying 485 * If packet is going to be hardware checksummed, then 486 * do it now in software before we mangle it. 487 */ 488 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) { 489 if (skb_is_gso(skb)) { 490 segs = netem_segment(skb, sch, to_free); 491 if (!segs) 492 return NET_XMIT_DROP; 493 } else { 494 segs = skb; 495 } 496 497 skb = segs; 498 segs = segs->next; 499 500 skb = skb_unshare(skb, GFP_ATOMIC); 501 if (unlikely(!skb)) { 502 qdisc_qstats_drop(sch); 503 goto finish_segs; 504 } 505 if (skb->ip_summed == CHECKSUM_PARTIAL && 506 skb_checksum_help(skb)) { 507 qdisc_drop(skb, sch, to_free); 508 goto finish_segs; 509 } 510 511 skb->data[prandom_u32() % skb_headlen(skb)] ^= 512 1<<(prandom_u32() % 8); 513 } 514 515 if (unlikely(sch->q.qlen >= sch->limit)) 516 return qdisc_drop(skb, sch, to_free); 517 518 qdisc_qstats_backlog_inc(sch, skb); 519 520 cb = netem_skb_cb(skb); 521 if (q->gap == 0 || /* not doing reordering */ 522 q->counter < q->gap - 1 || /* inside last reordering gap */ 523 q->reorder < get_crandom(&q->reorder_cor)) { 524 psched_time_t now; 525 psched_tdiff_t delay; 526 527 delay = tabledist(q->latency, q->jitter, 528 &q->delay_cor, q->delay_dist); 529 530 now = psched_get_time(); 531 532 if (q->rate) { 533 struct sk_buff *last; 534 535 if (sch->q.qlen) 536 last = sch->q.tail; 537 else 538 last = netem_rb_to_skb(rb_last(&q->t_root)); 539 if (last) { 540 /* 541 * Last packet in queue is reference point (now), 542 * calculate this time bonus and subtract 543 * from delay. 544 */ 545 delay -= netem_skb_cb(last)->time_to_send - now; 546 delay = max_t(psched_tdiff_t, 0, delay); 547 now = netem_skb_cb(last)->time_to_send; 548 } 549 550 delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q); 551 } 552 553 cb->time_to_send = now + delay; 554 cb->tstamp_save = skb->tstamp; 555 ++q->counter; 556 tfifo_enqueue(skb, sch); 557 } else { 558 /* 559 * Do re-ordering by putting one out of N packets at the front 560 * of the queue. 561 */ 562 cb->time_to_send = psched_get_time(); 563 q->counter = 0; 564 565 netem_enqueue_skb_head(&sch->q, skb); 566 sch->qstats.requeues++; 567 } 568 569 finish_segs: 570 if (segs) { 571 while (segs) { 572 skb2 = segs->next; 573 segs->next = NULL; 574 qdisc_skb_cb(segs)->pkt_len = segs->len; 575 last_len = segs->len; 576 rc = qdisc_enqueue(segs, sch, to_free); 577 if (rc != NET_XMIT_SUCCESS) { 578 if (net_xmit_drop_count(rc)) 579 qdisc_qstats_drop(sch); 580 } else { 581 nb++; 582 len += last_len; 583 } 584 segs = skb2; 585 } 586 sch->q.qlen += nb; 587 if (nb > 1) 588 qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len); 589 } 590 return NET_XMIT_SUCCESS; 591 } 592 593 static struct sk_buff *netem_dequeue(struct Qdisc *sch) 594 { 595 struct netem_sched_data *q = qdisc_priv(sch); 596 struct sk_buff *skb; 597 struct rb_node *p; 598 599 tfifo_dequeue: 600 skb = __qdisc_dequeue_head(&sch->q); 601 if (skb) { 602 qdisc_qstats_backlog_dec(sch, skb); 603 deliver: 604 qdisc_bstats_update(sch, skb); 605 return skb; 606 } 607 p = rb_first(&q->t_root); 608 if (p) { 609 psched_time_t time_to_send; 610 611 skb = netem_rb_to_skb(p); 612 613 /* if more time remaining? */ 614 time_to_send = netem_skb_cb(skb)->time_to_send; 615 if (time_to_send <= psched_get_time()) { 616 rb_erase(p, &q->t_root); 617 618 sch->q.qlen--; 619 qdisc_qstats_backlog_dec(sch, skb); 620 skb->next = NULL; 621 skb->prev = NULL; 622 skb->tstamp = netem_skb_cb(skb)->tstamp_save; 623 624 #ifdef CONFIG_NET_CLS_ACT 625 /* 626 * If it's at ingress let's pretend the delay is 627 * from the network (tstamp will be updated). 628 */ 629 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS) 630 skb->tstamp.tv64 = 0; 631 #endif 632 633 if (q->qdisc) { 634 unsigned int pkt_len = qdisc_pkt_len(skb); 635 struct sk_buff *to_free = NULL; 636 int err; 637 638 err = qdisc_enqueue(skb, q->qdisc, &to_free); 639 kfree_skb_list(to_free); 640 if (err != NET_XMIT_SUCCESS && 641 net_xmit_drop_count(err)) { 642 qdisc_qstats_drop(sch); 643 qdisc_tree_reduce_backlog(sch, 1, 644 pkt_len); 645 } 646 goto tfifo_dequeue; 647 } 648 goto deliver; 649 } 650 651 if (q->qdisc) { 652 skb = q->qdisc->ops->dequeue(q->qdisc); 653 if (skb) 654 goto deliver; 655 } 656 qdisc_watchdog_schedule(&q->watchdog, time_to_send); 657 } 658 659 if (q->qdisc) { 660 skb = q->qdisc->ops->dequeue(q->qdisc); 661 if (skb) 662 goto deliver; 663 } 664 return NULL; 665 } 666 667 static void netem_reset(struct Qdisc *sch) 668 { 669 struct netem_sched_data *q = qdisc_priv(sch); 670 671 qdisc_reset_queue(sch); 672 tfifo_reset(sch); 673 if (q->qdisc) 674 qdisc_reset(q->qdisc); 675 qdisc_watchdog_cancel(&q->watchdog); 676 } 677 678 static void dist_free(struct disttable *d) 679 { 680 kvfree(d); 681 } 682 683 /* 684 * Distribution data is a variable size payload containing 685 * signed 16 bit values. 686 */ 687 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr) 688 { 689 struct netem_sched_data *q = qdisc_priv(sch); 690 size_t n = nla_len(attr)/sizeof(__s16); 691 const __s16 *data = nla_data(attr); 692 spinlock_t *root_lock; 693 struct disttable *d; 694 int i; 695 size_t s; 696 697 if (n > NETEM_DIST_MAX) 698 return -EINVAL; 699 700 s = sizeof(struct disttable) + n * sizeof(s16); 701 d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN); 702 if (!d) 703 d = vmalloc(s); 704 if (!d) 705 return -ENOMEM; 706 707 d->size = n; 708 for (i = 0; i < n; i++) 709 d->table[i] = data[i]; 710 711 root_lock = qdisc_root_sleeping_lock(sch); 712 713 spin_lock_bh(root_lock); 714 swap(q->delay_dist, d); 715 spin_unlock_bh(root_lock); 716 717 dist_free(d); 718 return 0; 719 } 720 721 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr) 722 { 723 const struct tc_netem_corr *c = nla_data(attr); 724 725 init_crandom(&q->delay_cor, c->delay_corr); 726 init_crandom(&q->loss_cor, c->loss_corr); 727 init_crandom(&q->dup_cor, c->dup_corr); 728 } 729 730 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr) 731 { 732 const struct tc_netem_reorder *r = nla_data(attr); 733 734 q->reorder = r->probability; 735 init_crandom(&q->reorder_cor, r->correlation); 736 } 737 738 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr) 739 { 740 const struct tc_netem_corrupt *r = nla_data(attr); 741 742 q->corrupt = r->probability; 743 init_crandom(&q->corrupt_cor, r->correlation); 744 } 745 746 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr) 747 { 748 const struct tc_netem_rate *r = nla_data(attr); 749 750 q->rate = r->rate; 751 q->packet_overhead = r->packet_overhead; 752 q->cell_size = r->cell_size; 753 q->cell_overhead = r->cell_overhead; 754 if (q->cell_size) 755 q->cell_size_reciprocal = reciprocal_value(q->cell_size); 756 else 757 q->cell_size_reciprocal = (struct reciprocal_value) { 0 }; 758 } 759 760 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr) 761 { 762 const struct nlattr *la; 763 int rem; 764 765 nla_for_each_nested(la, attr, rem) { 766 u16 type = nla_type(la); 767 768 switch (type) { 769 case NETEM_LOSS_GI: { 770 const struct tc_netem_gimodel *gi = nla_data(la); 771 772 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) { 773 pr_info("netem: incorrect gi model size\n"); 774 return -EINVAL; 775 } 776 777 q->loss_model = CLG_4_STATES; 778 779 q->clg.state = TX_IN_GAP_PERIOD; 780 q->clg.a1 = gi->p13; 781 q->clg.a2 = gi->p31; 782 q->clg.a3 = gi->p32; 783 q->clg.a4 = gi->p14; 784 q->clg.a5 = gi->p23; 785 break; 786 } 787 788 case NETEM_LOSS_GE: { 789 const struct tc_netem_gemodel *ge = nla_data(la); 790 791 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) { 792 pr_info("netem: incorrect ge model size\n"); 793 return -EINVAL; 794 } 795 796 q->loss_model = CLG_GILB_ELL; 797 q->clg.state = GOOD_STATE; 798 q->clg.a1 = ge->p; 799 q->clg.a2 = ge->r; 800 q->clg.a3 = ge->h; 801 q->clg.a4 = ge->k1; 802 break; 803 } 804 805 default: 806 pr_info("netem: unknown loss type %u\n", type); 807 return -EINVAL; 808 } 809 } 810 811 return 0; 812 } 813 814 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = { 815 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) }, 816 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) }, 817 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) }, 818 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) }, 819 [TCA_NETEM_LOSS] = { .type = NLA_NESTED }, 820 [TCA_NETEM_ECN] = { .type = NLA_U32 }, 821 [TCA_NETEM_RATE64] = { .type = NLA_U64 }, 822 }; 823 824 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla, 825 const struct nla_policy *policy, int len) 826 { 827 int nested_len = nla_len(nla) - NLA_ALIGN(len); 828 829 if (nested_len < 0) { 830 pr_info("netem: invalid attributes len %d\n", nested_len); 831 return -EINVAL; 832 } 833 834 if (nested_len >= nla_attr_size(0)) 835 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len), 836 nested_len, policy); 837 838 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); 839 return 0; 840 } 841 842 /* Parse netlink message to set options */ 843 static int netem_change(struct Qdisc *sch, struct nlattr *opt) 844 { 845 struct netem_sched_data *q = qdisc_priv(sch); 846 struct nlattr *tb[TCA_NETEM_MAX + 1]; 847 struct tc_netem_qopt *qopt; 848 struct clgstate old_clg; 849 int old_loss_model = CLG_RANDOM; 850 int ret; 851 852 if (opt == NULL) 853 return -EINVAL; 854 855 qopt = nla_data(opt); 856 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt)); 857 if (ret < 0) 858 return ret; 859 860 /* backup q->clg and q->loss_model */ 861 old_clg = q->clg; 862 old_loss_model = q->loss_model; 863 864 if (tb[TCA_NETEM_LOSS]) { 865 ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]); 866 if (ret) { 867 q->loss_model = old_loss_model; 868 return ret; 869 } 870 } else { 871 q->loss_model = CLG_RANDOM; 872 } 873 874 if (tb[TCA_NETEM_DELAY_DIST]) { 875 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]); 876 if (ret) { 877 /* recover clg and loss_model, in case of 878 * q->clg and q->loss_model were modified 879 * in get_loss_clg() 880 */ 881 q->clg = old_clg; 882 q->loss_model = old_loss_model; 883 return ret; 884 } 885 } 886 887 sch->limit = qopt->limit; 888 889 q->latency = qopt->latency; 890 q->jitter = qopt->jitter; 891 q->limit = qopt->limit; 892 q->gap = qopt->gap; 893 q->counter = 0; 894 q->loss = qopt->loss; 895 q->duplicate = qopt->duplicate; 896 897 /* for compatibility with earlier versions. 898 * if gap is set, need to assume 100% probability 899 */ 900 if (q->gap) 901 q->reorder = ~0; 902 903 if (tb[TCA_NETEM_CORR]) 904 get_correlation(q, tb[TCA_NETEM_CORR]); 905 906 if (tb[TCA_NETEM_REORDER]) 907 get_reorder(q, tb[TCA_NETEM_REORDER]); 908 909 if (tb[TCA_NETEM_CORRUPT]) 910 get_corrupt(q, tb[TCA_NETEM_CORRUPT]); 911 912 if (tb[TCA_NETEM_RATE]) 913 get_rate(q, tb[TCA_NETEM_RATE]); 914 915 if (tb[TCA_NETEM_RATE64]) 916 q->rate = max_t(u64, q->rate, 917 nla_get_u64(tb[TCA_NETEM_RATE64])); 918 919 if (tb[TCA_NETEM_ECN]) 920 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]); 921 922 return ret; 923 } 924 925 static int netem_init(struct Qdisc *sch, struct nlattr *opt) 926 { 927 struct netem_sched_data *q = qdisc_priv(sch); 928 int ret; 929 930 if (!opt) 931 return -EINVAL; 932 933 qdisc_watchdog_init(&q->watchdog, sch); 934 935 q->loss_model = CLG_RANDOM; 936 ret = netem_change(sch, opt); 937 if (ret) 938 pr_info("netem: change failed\n"); 939 return ret; 940 } 941 942 static void netem_destroy(struct Qdisc *sch) 943 { 944 struct netem_sched_data *q = qdisc_priv(sch); 945 946 qdisc_watchdog_cancel(&q->watchdog); 947 if (q->qdisc) 948 qdisc_destroy(q->qdisc); 949 dist_free(q->delay_dist); 950 } 951 952 static int dump_loss_model(const struct netem_sched_data *q, 953 struct sk_buff *skb) 954 { 955 struct nlattr *nest; 956 957 nest = nla_nest_start(skb, TCA_NETEM_LOSS); 958 if (nest == NULL) 959 goto nla_put_failure; 960 961 switch (q->loss_model) { 962 case CLG_RANDOM: 963 /* legacy loss model */ 964 nla_nest_cancel(skb, nest); 965 return 0; /* no data */ 966 967 case CLG_4_STATES: { 968 struct tc_netem_gimodel gi = { 969 .p13 = q->clg.a1, 970 .p31 = q->clg.a2, 971 .p32 = q->clg.a3, 972 .p14 = q->clg.a4, 973 .p23 = q->clg.a5, 974 }; 975 976 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi)) 977 goto nla_put_failure; 978 break; 979 } 980 case CLG_GILB_ELL: { 981 struct tc_netem_gemodel ge = { 982 .p = q->clg.a1, 983 .r = q->clg.a2, 984 .h = q->clg.a3, 985 .k1 = q->clg.a4, 986 }; 987 988 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge)) 989 goto nla_put_failure; 990 break; 991 } 992 } 993 994 nla_nest_end(skb, nest); 995 return 0; 996 997 nla_put_failure: 998 nla_nest_cancel(skb, nest); 999 return -1; 1000 } 1001 1002 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb) 1003 { 1004 const struct netem_sched_data *q = qdisc_priv(sch); 1005 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb); 1006 struct tc_netem_qopt qopt; 1007 struct tc_netem_corr cor; 1008 struct tc_netem_reorder reorder; 1009 struct tc_netem_corrupt corrupt; 1010 struct tc_netem_rate rate; 1011 1012 qopt.latency = q->latency; 1013 qopt.jitter = q->jitter; 1014 qopt.limit = q->limit; 1015 qopt.loss = q->loss; 1016 qopt.gap = q->gap; 1017 qopt.duplicate = q->duplicate; 1018 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) 1019 goto nla_put_failure; 1020 1021 cor.delay_corr = q->delay_cor.rho; 1022 cor.loss_corr = q->loss_cor.rho; 1023 cor.dup_corr = q->dup_cor.rho; 1024 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor)) 1025 goto nla_put_failure; 1026 1027 reorder.probability = q->reorder; 1028 reorder.correlation = q->reorder_cor.rho; 1029 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder)) 1030 goto nla_put_failure; 1031 1032 corrupt.probability = q->corrupt; 1033 corrupt.correlation = q->corrupt_cor.rho; 1034 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt)) 1035 goto nla_put_failure; 1036 1037 if (q->rate >= (1ULL << 32)) { 1038 if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate, 1039 TCA_NETEM_PAD)) 1040 goto nla_put_failure; 1041 rate.rate = ~0U; 1042 } else { 1043 rate.rate = q->rate; 1044 } 1045 rate.packet_overhead = q->packet_overhead; 1046 rate.cell_size = q->cell_size; 1047 rate.cell_overhead = q->cell_overhead; 1048 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate)) 1049 goto nla_put_failure; 1050 1051 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn)) 1052 goto nla_put_failure; 1053 1054 if (dump_loss_model(q, skb) != 0) 1055 goto nla_put_failure; 1056 1057 return nla_nest_end(skb, nla); 1058 1059 nla_put_failure: 1060 nlmsg_trim(skb, nla); 1061 return -1; 1062 } 1063 1064 static int netem_dump_class(struct Qdisc *sch, unsigned long cl, 1065 struct sk_buff *skb, struct tcmsg *tcm) 1066 { 1067 struct netem_sched_data *q = qdisc_priv(sch); 1068 1069 if (cl != 1 || !q->qdisc) /* only one class */ 1070 return -ENOENT; 1071 1072 tcm->tcm_handle |= TC_H_MIN(1); 1073 tcm->tcm_info = q->qdisc->handle; 1074 1075 return 0; 1076 } 1077 1078 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1079 struct Qdisc **old) 1080 { 1081 struct netem_sched_data *q = qdisc_priv(sch); 1082 1083 *old = qdisc_replace(sch, new, &q->qdisc); 1084 return 0; 1085 } 1086 1087 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg) 1088 { 1089 struct netem_sched_data *q = qdisc_priv(sch); 1090 return q->qdisc; 1091 } 1092 1093 static unsigned long netem_get(struct Qdisc *sch, u32 classid) 1094 { 1095 return 1; 1096 } 1097 1098 static void netem_put(struct Qdisc *sch, unsigned long arg) 1099 { 1100 } 1101 1102 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker) 1103 { 1104 if (!walker->stop) { 1105 if (walker->count >= walker->skip) 1106 if (walker->fn(sch, 1, walker) < 0) { 1107 walker->stop = 1; 1108 return; 1109 } 1110 walker->count++; 1111 } 1112 } 1113 1114 static const struct Qdisc_class_ops netem_class_ops = { 1115 .graft = netem_graft, 1116 .leaf = netem_leaf, 1117 .get = netem_get, 1118 .put = netem_put, 1119 .walk = netem_walk, 1120 .dump = netem_dump_class, 1121 }; 1122 1123 static struct Qdisc_ops netem_qdisc_ops __read_mostly = { 1124 .id = "netem", 1125 .cl_ops = &netem_class_ops, 1126 .priv_size = sizeof(struct netem_sched_data), 1127 .enqueue = netem_enqueue, 1128 .dequeue = netem_dequeue, 1129 .peek = qdisc_peek_dequeued, 1130 .init = netem_init, 1131 .reset = netem_reset, 1132 .destroy = netem_destroy, 1133 .change = netem_change, 1134 .dump = netem_dump, 1135 .owner = THIS_MODULE, 1136 }; 1137 1138 1139 static int __init netem_module_init(void) 1140 { 1141 pr_info("netem: version " VERSION "\n"); 1142 return register_qdisc(&netem_qdisc_ops); 1143 } 1144 static void __exit netem_module_exit(void) 1145 { 1146 unregister_qdisc(&netem_qdisc_ops); 1147 } 1148 module_init(netem_module_init) 1149 module_exit(netem_module_exit) 1150 MODULE_LICENSE("GPL"); 1151