xref: /linux/net/sched/sch_netem.c (revision a06c3fad49a50d5d5eb078f93e70f4d3eca5d5a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sched/sch_netem.c	Network emulator
4  *
5  *  		Many of the algorithms and ideas for this came from
6  *		NIST Net which is not copyrighted.
7  *
8  * Authors:	Stephen Hemminger <shemminger@osdl.org>
9  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/skbuff.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/reciprocal_div.h>
22 #include <linux/rbtree.h>
23 
24 #include <net/gso.h>
25 #include <net/netlink.h>
26 #include <net/pkt_sched.h>
27 #include <net/inet_ecn.h>
28 
29 #define VERSION "1.3"
30 
31 /*	Network Emulation Queuing algorithm.
32 	====================================
33 
34 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
35 		 Network Emulation Tool
36 		 [2] Luigi Rizzo, DummyNet for FreeBSD
37 
38 	 ----------------------------------------------------------------
39 
40 	 This started out as a simple way to delay outgoing packets to
41 	 test TCP but has grown to include most of the functionality
42 	 of a full blown network emulator like NISTnet. It can delay
43 	 packets and add random jitter (and correlation). The random
44 	 distribution can be loaded from a table as well to provide
45 	 normal, Pareto, or experimental curves. Packet loss,
46 	 duplication, and reordering can also be emulated.
47 
48 	 This qdisc does not do classification that can be handled in
49 	 layering other disciplines.  It does not need to do bandwidth
50 	 control either since that can be handled by using token
51 	 bucket or other rate control.
52 
53      Correlated Loss Generator models
54 
55 	Added generation of correlated loss according to the
56 	"Gilbert-Elliot" model, a 4-state markov model.
57 
58 	References:
59 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
60 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
61 	and intuitive loss model for packet networks and its implementation
62 	in the Netem module in the Linux kernel", available in [1]
63 
64 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
65 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
66 */
67 
68 struct disttable {
69 	u32  size;
70 	s16 table[] __counted_by(size);
71 };
72 
73 struct netem_sched_data {
74 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
75 	struct rb_root t_root;
76 
77 	/* a linear queue; reduces rbtree rebalancing when jitter is low */
78 	struct sk_buff	*t_head;
79 	struct sk_buff	*t_tail;
80 
81 	/* optional qdisc for classful handling (NULL at netem init) */
82 	struct Qdisc	*qdisc;
83 
84 	struct qdisc_watchdog watchdog;
85 
86 	s64 latency;
87 	s64 jitter;
88 
89 	u32 loss;
90 	u32 ecn;
91 	u32 limit;
92 	u32 counter;
93 	u32 gap;
94 	u32 duplicate;
95 	u32 reorder;
96 	u32 corrupt;
97 	u64 rate;
98 	s32 packet_overhead;
99 	u32 cell_size;
100 	struct reciprocal_value cell_size_reciprocal;
101 	s32 cell_overhead;
102 
103 	struct crndstate {
104 		u32 last;
105 		u32 rho;
106 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
107 
108 	struct prng  {
109 		u64 seed;
110 		struct rnd_state prng_state;
111 	} prng;
112 
113 	struct disttable *delay_dist;
114 
115 	enum  {
116 		CLG_RANDOM,
117 		CLG_4_STATES,
118 		CLG_GILB_ELL,
119 	} loss_model;
120 
121 	enum {
122 		TX_IN_GAP_PERIOD = 1,
123 		TX_IN_BURST_PERIOD,
124 		LOST_IN_GAP_PERIOD,
125 		LOST_IN_BURST_PERIOD,
126 	} _4_state_model;
127 
128 	enum {
129 		GOOD_STATE = 1,
130 		BAD_STATE,
131 	} GE_state_model;
132 
133 	/* Correlated Loss Generation models */
134 	struct clgstate {
135 		/* state of the Markov chain */
136 		u8 state;
137 
138 		/* 4-states and Gilbert-Elliot models */
139 		u32 a1;	/* p13 for 4-states or p for GE */
140 		u32 a2;	/* p31 for 4-states or r for GE */
141 		u32 a3;	/* p32 for 4-states or h for GE */
142 		u32 a4;	/* p14 for 4-states or 1-k for GE */
143 		u32 a5; /* p23 used only in 4-states */
144 	} clg;
145 
146 	struct tc_netem_slot slot_config;
147 	struct slotstate {
148 		u64 slot_next;
149 		s32 packets_left;
150 		s32 bytes_left;
151 	} slot;
152 
153 	struct disttable *slot_dist;
154 };
155 
156 /* Time stamp put into socket buffer control block
157  * Only valid when skbs are in our internal t(ime)fifo queue.
158  *
159  * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
160  * and skb->next & skb->prev are scratch space for a qdisc,
161  * we save skb->tstamp value in skb->cb[] before destroying it.
162  */
163 struct netem_skb_cb {
164 	u64	        time_to_send;
165 };
166 
167 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
168 {
169 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
170 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
171 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
172 }
173 
174 /* init_crandom - initialize correlated random number generator
175  * Use entropy source for initial seed.
176  */
177 static void init_crandom(struct crndstate *state, unsigned long rho)
178 {
179 	state->rho = rho;
180 	state->last = get_random_u32();
181 }
182 
183 /* get_crandom - correlated random number generator
184  * Next number depends on last value.
185  * rho is scaled to avoid floating point.
186  */
187 static u32 get_crandom(struct crndstate *state, struct prng *p)
188 {
189 	u64 value, rho;
190 	unsigned long answer;
191 	struct rnd_state *s = &p->prng_state;
192 
193 	if (!state || state->rho == 0)	/* no correlation */
194 		return prandom_u32_state(s);
195 
196 	value = prandom_u32_state(s);
197 	rho = (u64)state->rho + 1;
198 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
199 	state->last = answer;
200 	return answer;
201 }
202 
203 /* loss_4state - 4-state model loss generator
204  * Generates losses according to the 4-state Markov chain adopted in
205  * the GI (General and Intuitive) loss model.
206  */
207 static bool loss_4state(struct netem_sched_data *q)
208 {
209 	struct clgstate *clg = &q->clg;
210 	u32 rnd = prandom_u32_state(&q->prng.prng_state);
211 
212 	/*
213 	 * Makes a comparison between rnd and the transition
214 	 * probabilities outgoing from the current state, then decides the
215 	 * next state and if the next packet has to be transmitted or lost.
216 	 * The four states correspond to:
217 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
218 	 *   LOST_IN_GAP_PERIOD => isolated losses within a gap period
219 	 *   LOST_IN_BURST_PERIOD => lost packets within a burst period
220 	 *   TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period
221 	 */
222 	switch (clg->state) {
223 	case TX_IN_GAP_PERIOD:
224 		if (rnd < clg->a4) {
225 			clg->state = LOST_IN_GAP_PERIOD;
226 			return true;
227 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
228 			clg->state = LOST_IN_BURST_PERIOD;
229 			return true;
230 		} else if (clg->a1 + clg->a4 < rnd) {
231 			clg->state = TX_IN_GAP_PERIOD;
232 		}
233 
234 		break;
235 	case TX_IN_BURST_PERIOD:
236 		if (rnd < clg->a5) {
237 			clg->state = LOST_IN_BURST_PERIOD;
238 			return true;
239 		} else {
240 			clg->state = TX_IN_BURST_PERIOD;
241 		}
242 
243 		break;
244 	case LOST_IN_BURST_PERIOD:
245 		if (rnd < clg->a3)
246 			clg->state = TX_IN_BURST_PERIOD;
247 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
248 			clg->state = TX_IN_GAP_PERIOD;
249 		} else if (clg->a2 + clg->a3 < rnd) {
250 			clg->state = LOST_IN_BURST_PERIOD;
251 			return true;
252 		}
253 		break;
254 	case LOST_IN_GAP_PERIOD:
255 		clg->state = TX_IN_GAP_PERIOD;
256 		break;
257 	}
258 
259 	return false;
260 }
261 
262 /* loss_gilb_ell - Gilbert-Elliot model loss generator
263  * Generates losses according to the Gilbert-Elliot loss model or
264  * its special cases  (Gilbert or Simple Gilbert)
265  *
266  * Makes a comparison between random number and the transition
267  * probabilities outgoing from the current state, then decides the
268  * next state. A second random number is extracted and the comparison
269  * with the loss probability of the current state decides if the next
270  * packet will be transmitted or lost.
271  */
272 static bool loss_gilb_ell(struct netem_sched_data *q)
273 {
274 	struct clgstate *clg = &q->clg;
275 	struct rnd_state *s = &q->prng.prng_state;
276 
277 	switch (clg->state) {
278 	case GOOD_STATE:
279 		if (prandom_u32_state(s) < clg->a1)
280 			clg->state = BAD_STATE;
281 		if (prandom_u32_state(s) < clg->a4)
282 			return true;
283 		break;
284 	case BAD_STATE:
285 		if (prandom_u32_state(s) < clg->a2)
286 			clg->state = GOOD_STATE;
287 		if (prandom_u32_state(s) > clg->a3)
288 			return true;
289 	}
290 
291 	return false;
292 }
293 
294 static bool loss_event(struct netem_sched_data *q)
295 {
296 	switch (q->loss_model) {
297 	case CLG_RANDOM:
298 		/* Random packet drop 0 => none, ~0 => all */
299 		return q->loss && q->loss >= get_crandom(&q->loss_cor, &q->prng);
300 
301 	case CLG_4_STATES:
302 		/* 4state loss model algorithm (used also for GI model)
303 		* Extracts a value from the markov 4 state loss generator,
304 		* if it is 1 drops a packet and if needed writes the event in
305 		* the kernel logs
306 		*/
307 		return loss_4state(q);
308 
309 	case CLG_GILB_ELL:
310 		/* Gilbert-Elliot loss model algorithm
311 		* Extracts a value from the Gilbert-Elliot loss generator,
312 		* if it is 1 drops a packet and if needed writes the event in
313 		* the kernel logs
314 		*/
315 		return loss_gilb_ell(q);
316 	}
317 
318 	return false;	/* not reached */
319 }
320 
321 
322 /* tabledist - return a pseudo-randomly distributed value with mean mu and
323  * std deviation sigma.  Uses table lookup to approximate the desired
324  * distribution, and a uniformly-distributed pseudo-random source.
325  */
326 static s64 tabledist(s64 mu, s32 sigma,
327 		     struct crndstate *state,
328 		     struct prng *prng,
329 		     const struct disttable *dist)
330 {
331 	s64 x;
332 	long t;
333 	u32 rnd;
334 
335 	if (sigma == 0)
336 		return mu;
337 
338 	rnd = get_crandom(state, prng);
339 
340 	/* default uniform distribution */
341 	if (dist == NULL)
342 		return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
343 
344 	t = dist->table[rnd % dist->size];
345 	x = (sigma % NETEM_DIST_SCALE) * t;
346 	if (x >= 0)
347 		x += NETEM_DIST_SCALE/2;
348 	else
349 		x -= NETEM_DIST_SCALE/2;
350 
351 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
352 }
353 
354 static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
355 {
356 	len += q->packet_overhead;
357 
358 	if (q->cell_size) {
359 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
360 
361 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
362 			cells++;
363 		len = cells * (q->cell_size + q->cell_overhead);
364 	}
365 
366 	return div64_u64(len * NSEC_PER_SEC, q->rate);
367 }
368 
369 static void tfifo_reset(struct Qdisc *sch)
370 {
371 	struct netem_sched_data *q = qdisc_priv(sch);
372 	struct rb_node *p = rb_first(&q->t_root);
373 
374 	while (p) {
375 		struct sk_buff *skb = rb_to_skb(p);
376 
377 		p = rb_next(p);
378 		rb_erase(&skb->rbnode, &q->t_root);
379 		rtnl_kfree_skbs(skb, skb);
380 	}
381 
382 	rtnl_kfree_skbs(q->t_head, q->t_tail);
383 	q->t_head = NULL;
384 	q->t_tail = NULL;
385 }
386 
387 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
388 {
389 	struct netem_sched_data *q = qdisc_priv(sch);
390 	u64 tnext = netem_skb_cb(nskb)->time_to_send;
391 
392 	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
393 		if (q->t_tail)
394 			q->t_tail->next = nskb;
395 		else
396 			q->t_head = nskb;
397 		q->t_tail = nskb;
398 	} else {
399 		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
400 
401 		while (*p) {
402 			struct sk_buff *skb;
403 
404 			parent = *p;
405 			skb = rb_to_skb(parent);
406 			if (tnext >= netem_skb_cb(skb)->time_to_send)
407 				p = &parent->rb_right;
408 			else
409 				p = &parent->rb_left;
410 		}
411 		rb_link_node(&nskb->rbnode, parent, p);
412 		rb_insert_color(&nskb->rbnode, &q->t_root);
413 	}
414 	sch->q.qlen++;
415 }
416 
417 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
418  * when we statistically choose to corrupt one, we instead segment it, returning
419  * the first packet to be corrupted, and re-enqueue the remaining frames
420  */
421 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
422 				     struct sk_buff **to_free)
423 {
424 	struct sk_buff *segs;
425 	netdev_features_t features = netif_skb_features(skb);
426 
427 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
428 
429 	if (IS_ERR_OR_NULL(segs)) {
430 		qdisc_drop(skb, sch, to_free);
431 		return NULL;
432 	}
433 	consume_skb(skb);
434 	return segs;
435 }
436 
437 /*
438  * Insert one skb into qdisc.
439  * Note: parent depends on return value to account for queue length.
440  * 	NET_XMIT_DROP: queue length didn't change.
441  *      NET_XMIT_SUCCESS: one skb was queued.
442  */
443 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
444 			 struct sk_buff **to_free)
445 {
446 	struct netem_sched_data *q = qdisc_priv(sch);
447 	/* We don't fill cb now as skb_unshare() may invalidate it */
448 	struct netem_skb_cb *cb;
449 	struct sk_buff *skb2;
450 	struct sk_buff *segs = NULL;
451 	unsigned int prev_len = qdisc_pkt_len(skb);
452 	int count = 1;
453 	int rc = NET_XMIT_SUCCESS;
454 	int rc_drop = NET_XMIT_DROP;
455 
456 	/* Do not fool qdisc_drop_all() */
457 	skb->prev = NULL;
458 
459 	/* Random duplication */
460 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor, &q->prng))
461 		++count;
462 
463 	/* Drop packet? */
464 	if (loss_event(q)) {
465 		if (q->ecn && INET_ECN_set_ce(skb))
466 			qdisc_qstats_drop(sch); /* mark packet */
467 		else
468 			--count;
469 	}
470 	if (count == 0) {
471 		qdisc_qstats_drop(sch);
472 		__qdisc_drop(skb, to_free);
473 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
474 	}
475 
476 	/* If a delay is expected, orphan the skb. (orphaning usually takes
477 	 * place at TX completion time, so _before_ the link transit delay)
478 	 */
479 	if (q->latency || q->jitter || q->rate)
480 		skb_orphan_partial(skb);
481 
482 	/*
483 	 * If we need to duplicate packet, then re-insert at top of the
484 	 * qdisc tree, since parent queuer expects that only one
485 	 * skb will be queued.
486 	 */
487 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
488 		struct Qdisc *rootq = qdisc_root_bh(sch);
489 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
490 
491 		q->duplicate = 0;
492 		rootq->enqueue(skb2, rootq, to_free);
493 		q->duplicate = dupsave;
494 		rc_drop = NET_XMIT_SUCCESS;
495 	}
496 
497 	/*
498 	 * Randomized packet corruption.
499 	 * Make copy if needed since we are modifying
500 	 * If packet is going to be hardware checksummed, then
501 	 * do it now in software before we mangle it.
502 	 */
503 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor, &q->prng)) {
504 		if (skb_is_gso(skb)) {
505 			skb = netem_segment(skb, sch, to_free);
506 			if (!skb)
507 				return rc_drop;
508 			segs = skb->next;
509 			skb_mark_not_on_list(skb);
510 			qdisc_skb_cb(skb)->pkt_len = skb->len;
511 		}
512 
513 		skb = skb_unshare(skb, GFP_ATOMIC);
514 		if (unlikely(!skb)) {
515 			qdisc_qstats_drop(sch);
516 			goto finish_segs;
517 		}
518 		if (skb->ip_summed == CHECKSUM_PARTIAL &&
519 		    skb_checksum_help(skb)) {
520 			qdisc_drop(skb, sch, to_free);
521 			skb = NULL;
522 			goto finish_segs;
523 		}
524 
525 		skb->data[get_random_u32_below(skb_headlen(skb))] ^=
526 			1<<get_random_u32_below(8);
527 	}
528 
529 	if (unlikely(sch->q.qlen >= sch->limit)) {
530 		/* re-link segs, so that qdisc_drop_all() frees them all */
531 		skb->next = segs;
532 		qdisc_drop_all(skb, sch, to_free);
533 		return rc_drop;
534 	}
535 
536 	qdisc_qstats_backlog_inc(sch, skb);
537 
538 	cb = netem_skb_cb(skb);
539 	if (q->gap == 0 ||		/* not doing reordering */
540 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
541 	    q->reorder < get_crandom(&q->reorder_cor, &q->prng)) {
542 		u64 now;
543 		s64 delay;
544 
545 		delay = tabledist(q->latency, q->jitter,
546 				  &q->delay_cor, &q->prng, q->delay_dist);
547 
548 		now = ktime_get_ns();
549 
550 		if (q->rate) {
551 			struct netem_skb_cb *last = NULL;
552 
553 			if (sch->q.tail)
554 				last = netem_skb_cb(sch->q.tail);
555 			if (q->t_root.rb_node) {
556 				struct sk_buff *t_skb;
557 				struct netem_skb_cb *t_last;
558 
559 				t_skb = skb_rb_last(&q->t_root);
560 				t_last = netem_skb_cb(t_skb);
561 				if (!last ||
562 				    t_last->time_to_send > last->time_to_send)
563 					last = t_last;
564 			}
565 			if (q->t_tail) {
566 				struct netem_skb_cb *t_last =
567 					netem_skb_cb(q->t_tail);
568 
569 				if (!last ||
570 				    t_last->time_to_send > last->time_to_send)
571 					last = t_last;
572 			}
573 
574 			if (last) {
575 				/*
576 				 * Last packet in queue is reference point (now),
577 				 * calculate this time bonus and subtract
578 				 * from delay.
579 				 */
580 				delay -= last->time_to_send - now;
581 				delay = max_t(s64, 0, delay);
582 				now = last->time_to_send;
583 			}
584 
585 			delay += packet_time_ns(qdisc_pkt_len(skb), q);
586 		}
587 
588 		cb->time_to_send = now + delay;
589 		++q->counter;
590 		tfifo_enqueue(skb, sch);
591 	} else {
592 		/*
593 		 * Do re-ordering by putting one out of N packets at the front
594 		 * of the queue.
595 		 */
596 		cb->time_to_send = ktime_get_ns();
597 		q->counter = 0;
598 
599 		__qdisc_enqueue_head(skb, &sch->q);
600 		sch->qstats.requeues++;
601 	}
602 
603 finish_segs:
604 	if (segs) {
605 		unsigned int len, last_len;
606 		int nb;
607 
608 		len = skb ? skb->len : 0;
609 		nb = skb ? 1 : 0;
610 
611 		while (segs) {
612 			skb2 = segs->next;
613 			skb_mark_not_on_list(segs);
614 			qdisc_skb_cb(segs)->pkt_len = segs->len;
615 			last_len = segs->len;
616 			rc = qdisc_enqueue(segs, sch, to_free);
617 			if (rc != NET_XMIT_SUCCESS) {
618 				if (net_xmit_drop_count(rc))
619 					qdisc_qstats_drop(sch);
620 			} else {
621 				nb++;
622 				len += last_len;
623 			}
624 			segs = skb2;
625 		}
626 		/* Parent qdiscs accounted for 1 skb of size @prev_len */
627 		qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
628 	} else if (!skb) {
629 		return NET_XMIT_DROP;
630 	}
631 	return NET_XMIT_SUCCESS;
632 }
633 
634 /* Delay the next round with a new future slot with a
635  * correct number of bytes and packets.
636  */
637 
638 static void get_slot_next(struct netem_sched_data *q, u64 now)
639 {
640 	s64 next_delay;
641 
642 	if (!q->slot_dist)
643 		next_delay = q->slot_config.min_delay +
644 				(get_random_u32() *
645 				 (q->slot_config.max_delay -
646 				  q->slot_config.min_delay) >> 32);
647 	else
648 		next_delay = tabledist(q->slot_config.dist_delay,
649 				       (s32)(q->slot_config.dist_jitter),
650 				       NULL, &q->prng, q->slot_dist);
651 
652 	q->slot.slot_next = now + next_delay;
653 	q->slot.packets_left = q->slot_config.max_packets;
654 	q->slot.bytes_left = q->slot_config.max_bytes;
655 }
656 
657 static struct sk_buff *netem_peek(struct netem_sched_data *q)
658 {
659 	struct sk_buff *skb = skb_rb_first(&q->t_root);
660 	u64 t1, t2;
661 
662 	if (!skb)
663 		return q->t_head;
664 	if (!q->t_head)
665 		return skb;
666 
667 	t1 = netem_skb_cb(skb)->time_to_send;
668 	t2 = netem_skb_cb(q->t_head)->time_to_send;
669 	if (t1 < t2)
670 		return skb;
671 	return q->t_head;
672 }
673 
674 static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
675 {
676 	if (skb == q->t_head) {
677 		q->t_head = skb->next;
678 		if (!q->t_head)
679 			q->t_tail = NULL;
680 	} else {
681 		rb_erase(&skb->rbnode, &q->t_root);
682 	}
683 }
684 
685 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
686 {
687 	struct netem_sched_data *q = qdisc_priv(sch);
688 	struct sk_buff *skb;
689 
690 tfifo_dequeue:
691 	skb = __qdisc_dequeue_head(&sch->q);
692 	if (skb) {
693 		qdisc_qstats_backlog_dec(sch, skb);
694 deliver:
695 		qdisc_bstats_update(sch, skb);
696 		return skb;
697 	}
698 	skb = netem_peek(q);
699 	if (skb) {
700 		u64 time_to_send;
701 		u64 now = ktime_get_ns();
702 
703 		/* if more time remaining? */
704 		time_to_send = netem_skb_cb(skb)->time_to_send;
705 		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
706 			get_slot_next(q, now);
707 
708 		if (time_to_send <= now && q->slot.slot_next <= now) {
709 			netem_erase_head(q, skb);
710 			sch->q.qlen--;
711 			qdisc_qstats_backlog_dec(sch, skb);
712 			skb->next = NULL;
713 			skb->prev = NULL;
714 			/* skb->dev shares skb->rbnode area,
715 			 * we need to restore its value.
716 			 */
717 			skb->dev = qdisc_dev(sch);
718 
719 			if (q->slot.slot_next) {
720 				q->slot.packets_left--;
721 				q->slot.bytes_left -= qdisc_pkt_len(skb);
722 				if (q->slot.packets_left <= 0 ||
723 				    q->slot.bytes_left <= 0)
724 					get_slot_next(q, now);
725 			}
726 
727 			if (q->qdisc) {
728 				unsigned int pkt_len = qdisc_pkt_len(skb);
729 				struct sk_buff *to_free = NULL;
730 				int err;
731 
732 				err = qdisc_enqueue(skb, q->qdisc, &to_free);
733 				kfree_skb_list(to_free);
734 				if (err != NET_XMIT_SUCCESS &&
735 				    net_xmit_drop_count(err)) {
736 					qdisc_qstats_drop(sch);
737 					qdisc_tree_reduce_backlog(sch, 1,
738 								  pkt_len);
739 				}
740 				goto tfifo_dequeue;
741 			}
742 			goto deliver;
743 		}
744 
745 		if (q->qdisc) {
746 			skb = q->qdisc->ops->dequeue(q->qdisc);
747 			if (skb)
748 				goto deliver;
749 		}
750 
751 		qdisc_watchdog_schedule_ns(&q->watchdog,
752 					   max(time_to_send,
753 					       q->slot.slot_next));
754 	}
755 
756 	if (q->qdisc) {
757 		skb = q->qdisc->ops->dequeue(q->qdisc);
758 		if (skb)
759 			goto deliver;
760 	}
761 	return NULL;
762 }
763 
764 static void netem_reset(struct Qdisc *sch)
765 {
766 	struct netem_sched_data *q = qdisc_priv(sch);
767 
768 	qdisc_reset_queue(sch);
769 	tfifo_reset(sch);
770 	if (q->qdisc)
771 		qdisc_reset(q->qdisc);
772 	qdisc_watchdog_cancel(&q->watchdog);
773 }
774 
775 static void dist_free(struct disttable *d)
776 {
777 	kvfree(d);
778 }
779 
780 /*
781  * Distribution data is a variable size payload containing
782  * signed 16 bit values.
783  */
784 
785 static int get_dist_table(struct disttable **tbl, const struct nlattr *attr)
786 {
787 	size_t n = nla_len(attr)/sizeof(__s16);
788 	const __s16 *data = nla_data(attr);
789 	struct disttable *d;
790 	int i;
791 
792 	if (!n || n > NETEM_DIST_MAX)
793 		return -EINVAL;
794 
795 	d = kvmalloc(struct_size(d, table, n), GFP_KERNEL);
796 	if (!d)
797 		return -ENOMEM;
798 
799 	d->size = n;
800 	for (i = 0; i < n; i++)
801 		d->table[i] = data[i];
802 
803 	*tbl = d;
804 	return 0;
805 }
806 
807 static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
808 {
809 	const struct tc_netem_slot *c = nla_data(attr);
810 
811 	q->slot_config = *c;
812 	if (q->slot_config.max_packets == 0)
813 		q->slot_config.max_packets = INT_MAX;
814 	if (q->slot_config.max_bytes == 0)
815 		q->slot_config.max_bytes = INT_MAX;
816 
817 	/* capping dist_jitter to the range acceptable by tabledist() */
818 	q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
819 
820 	q->slot.packets_left = q->slot_config.max_packets;
821 	q->slot.bytes_left = q->slot_config.max_bytes;
822 	if (q->slot_config.min_delay | q->slot_config.max_delay |
823 	    q->slot_config.dist_jitter)
824 		q->slot.slot_next = ktime_get_ns();
825 	else
826 		q->slot.slot_next = 0;
827 }
828 
829 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
830 {
831 	const struct tc_netem_corr *c = nla_data(attr);
832 
833 	init_crandom(&q->delay_cor, c->delay_corr);
834 	init_crandom(&q->loss_cor, c->loss_corr);
835 	init_crandom(&q->dup_cor, c->dup_corr);
836 }
837 
838 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
839 {
840 	const struct tc_netem_reorder *r = nla_data(attr);
841 
842 	q->reorder = r->probability;
843 	init_crandom(&q->reorder_cor, r->correlation);
844 }
845 
846 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
847 {
848 	const struct tc_netem_corrupt *r = nla_data(attr);
849 
850 	q->corrupt = r->probability;
851 	init_crandom(&q->corrupt_cor, r->correlation);
852 }
853 
854 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
855 {
856 	const struct tc_netem_rate *r = nla_data(attr);
857 
858 	q->rate = r->rate;
859 	q->packet_overhead = r->packet_overhead;
860 	q->cell_size = r->cell_size;
861 	q->cell_overhead = r->cell_overhead;
862 	if (q->cell_size)
863 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
864 	else
865 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
866 }
867 
868 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
869 {
870 	const struct nlattr *la;
871 	int rem;
872 
873 	nla_for_each_nested(la, attr, rem) {
874 		u16 type = nla_type(la);
875 
876 		switch (type) {
877 		case NETEM_LOSS_GI: {
878 			const struct tc_netem_gimodel *gi = nla_data(la);
879 
880 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
881 				pr_info("netem: incorrect gi model size\n");
882 				return -EINVAL;
883 			}
884 
885 			q->loss_model = CLG_4_STATES;
886 
887 			q->clg.state = TX_IN_GAP_PERIOD;
888 			q->clg.a1 = gi->p13;
889 			q->clg.a2 = gi->p31;
890 			q->clg.a3 = gi->p32;
891 			q->clg.a4 = gi->p14;
892 			q->clg.a5 = gi->p23;
893 			break;
894 		}
895 
896 		case NETEM_LOSS_GE: {
897 			const struct tc_netem_gemodel *ge = nla_data(la);
898 
899 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
900 				pr_info("netem: incorrect ge model size\n");
901 				return -EINVAL;
902 			}
903 
904 			q->loss_model = CLG_GILB_ELL;
905 			q->clg.state = GOOD_STATE;
906 			q->clg.a1 = ge->p;
907 			q->clg.a2 = ge->r;
908 			q->clg.a3 = ge->h;
909 			q->clg.a4 = ge->k1;
910 			break;
911 		}
912 
913 		default:
914 			pr_info("netem: unknown loss type %u\n", type);
915 			return -EINVAL;
916 		}
917 	}
918 
919 	return 0;
920 }
921 
922 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
923 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
924 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
925 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
926 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
927 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
928 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
929 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
930 	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
931 	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
932 	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
933 	[TCA_NETEM_PRNG_SEED]	= { .type = NLA_U64 },
934 };
935 
936 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
937 		      const struct nla_policy *policy, int len)
938 {
939 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
940 
941 	if (nested_len < 0) {
942 		pr_info("netem: invalid attributes len %d\n", nested_len);
943 		return -EINVAL;
944 	}
945 
946 	if (nested_len >= nla_attr_size(0))
947 		return nla_parse_deprecated(tb, maxtype,
948 					    nla_data(nla) + NLA_ALIGN(len),
949 					    nested_len, policy, NULL);
950 
951 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
952 	return 0;
953 }
954 
955 /* Parse netlink message to set options */
956 static int netem_change(struct Qdisc *sch, struct nlattr *opt,
957 			struct netlink_ext_ack *extack)
958 {
959 	struct netem_sched_data *q = qdisc_priv(sch);
960 	struct nlattr *tb[TCA_NETEM_MAX + 1];
961 	struct disttable *delay_dist = NULL;
962 	struct disttable *slot_dist = NULL;
963 	struct tc_netem_qopt *qopt;
964 	struct clgstate old_clg;
965 	int old_loss_model = CLG_RANDOM;
966 	int ret;
967 
968 	qopt = nla_data(opt);
969 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
970 	if (ret < 0)
971 		return ret;
972 
973 	if (tb[TCA_NETEM_DELAY_DIST]) {
974 		ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]);
975 		if (ret)
976 			goto table_free;
977 	}
978 
979 	if (tb[TCA_NETEM_SLOT_DIST]) {
980 		ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]);
981 		if (ret)
982 			goto table_free;
983 	}
984 
985 	sch_tree_lock(sch);
986 	/* backup q->clg and q->loss_model */
987 	old_clg = q->clg;
988 	old_loss_model = q->loss_model;
989 
990 	if (tb[TCA_NETEM_LOSS]) {
991 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
992 		if (ret) {
993 			q->loss_model = old_loss_model;
994 			q->clg = old_clg;
995 			goto unlock;
996 		}
997 	} else {
998 		q->loss_model = CLG_RANDOM;
999 	}
1000 
1001 	if (delay_dist)
1002 		swap(q->delay_dist, delay_dist);
1003 	if (slot_dist)
1004 		swap(q->slot_dist, slot_dist);
1005 	sch->limit = qopt->limit;
1006 
1007 	q->latency = PSCHED_TICKS2NS(qopt->latency);
1008 	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
1009 	q->limit = qopt->limit;
1010 	q->gap = qopt->gap;
1011 	q->counter = 0;
1012 	q->loss = qopt->loss;
1013 	q->duplicate = qopt->duplicate;
1014 
1015 	/* for compatibility with earlier versions.
1016 	 * if gap is set, need to assume 100% probability
1017 	 */
1018 	if (q->gap)
1019 		q->reorder = ~0;
1020 
1021 	if (tb[TCA_NETEM_CORR])
1022 		get_correlation(q, tb[TCA_NETEM_CORR]);
1023 
1024 	if (tb[TCA_NETEM_REORDER])
1025 		get_reorder(q, tb[TCA_NETEM_REORDER]);
1026 
1027 	if (tb[TCA_NETEM_CORRUPT])
1028 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1029 
1030 	if (tb[TCA_NETEM_RATE])
1031 		get_rate(q, tb[TCA_NETEM_RATE]);
1032 
1033 	if (tb[TCA_NETEM_RATE64])
1034 		q->rate = max_t(u64, q->rate,
1035 				nla_get_u64(tb[TCA_NETEM_RATE64]));
1036 
1037 	if (tb[TCA_NETEM_LATENCY64])
1038 		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1039 
1040 	if (tb[TCA_NETEM_JITTER64])
1041 		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1042 
1043 	if (tb[TCA_NETEM_ECN])
1044 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1045 
1046 	if (tb[TCA_NETEM_SLOT])
1047 		get_slot(q, tb[TCA_NETEM_SLOT]);
1048 
1049 	/* capping jitter to the range acceptable by tabledist() */
1050 	q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
1051 
1052 	if (tb[TCA_NETEM_PRNG_SEED])
1053 		q->prng.seed = nla_get_u64(tb[TCA_NETEM_PRNG_SEED]);
1054 	else
1055 		q->prng.seed = get_random_u64();
1056 	prandom_seed_state(&q->prng.prng_state, q->prng.seed);
1057 
1058 unlock:
1059 	sch_tree_unlock(sch);
1060 
1061 table_free:
1062 	dist_free(delay_dist);
1063 	dist_free(slot_dist);
1064 	return ret;
1065 }
1066 
1067 static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1068 		      struct netlink_ext_ack *extack)
1069 {
1070 	struct netem_sched_data *q = qdisc_priv(sch);
1071 	int ret;
1072 
1073 	qdisc_watchdog_init(&q->watchdog, sch);
1074 
1075 	if (!opt)
1076 		return -EINVAL;
1077 
1078 	q->loss_model = CLG_RANDOM;
1079 	ret = netem_change(sch, opt, extack);
1080 	if (ret)
1081 		pr_info("netem: change failed\n");
1082 	return ret;
1083 }
1084 
1085 static void netem_destroy(struct Qdisc *sch)
1086 {
1087 	struct netem_sched_data *q = qdisc_priv(sch);
1088 
1089 	qdisc_watchdog_cancel(&q->watchdog);
1090 	if (q->qdisc)
1091 		qdisc_put(q->qdisc);
1092 	dist_free(q->delay_dist);
1093 	dist_free(q->slot_dist);
1094 }
1095 
1096 static int dump_loss_model(const struct netem_sched_data *q,
1097 			   struct sk_buff *skb)
1098 {
1099 	struct nlattr *nest;
1100 
1101 	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1102 	if (nest == NULL)
1103 		goto nla_put_failure;
1104 
1105 	switch (q->loss_model) {
1106 	case CLG_RANDOM:
1107 		/* legacy loss model */
1108 		nla_nest_cancel(skb, nest);
1109 		return 0;	/* no data */
1110 
1111 	case CLG_4_STATES: {
1112 		struct tc_netem_gimodel gi = {
1113 			.p13 = q->clg.a1,
1114 			.p31 = q->clg.a2,
1115 			.p32 = q->clg.a3,
1116 			.p14 = q->clg.a4,
1117 			.p23 = q->clg.a5,
1118 		};
1119 
1120 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1121 			goto nla_put_failure;
1122 		break;
1123 	}
1124 	case CLG_GILB_ELL: {
1125 		struct tc_netem_gemodel ge = {
1126 			.p = q->clg.a1,
1127 			.r = q->clg.a2,
1128 			.h = q->clg.a3,
1129 			.k1 = q->clg.a4,
1130 		};
1131 
1132 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1133 			goto nla_put_failure;
1134 		break;
1135 	}
1136 	}
1137 
1138 	nla_nest_end(skb, nest);
1139 	return 0;
1140 
1141 nla_put_failure:
1142 	nla_nest_cancel(skb, nest);
1143 	return -1;
1144 }
1145 
1146 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1147 {
1148 	const struct netem_sched_data *q = qdisc_priv(sch);
1149 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1150 	struct tc_netem_qopt qopt;
1151 	struct tc_netem_corr cor;
1152 	struct tc_netem_reorder reorder;
1153 	struct tc_netem_corrupt corrupt;
1154 	struct tc_netem_rate rate;
1155 	struct tc_netem_slot slot;
1156 
1157 	qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency),
1158 			     UINT_MAX);
1159 	qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter),
1160 			    UINT_MAX);
1161 	qopt.limit = q->limit;
1162 	qopt.loss = q->loss;
1163 	qopt.gap = q->gap;
1164 	qopt.duplicate = q->duplicate;
1165 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1166 		goto nla_put_failure;
1167 
1168 	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1169 		goto nla_put_failure;
1170 
1171 	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1172 		goto nla_put_failure;
1173 
1174 	cor.delay_corr = q->delay_cor.rho;
1175 	cor.loss_corr = q->loss_cor.rho;
1176 	cor.dup_corr = q->dup_cor.rho;
1177 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1178 		goto nla_put_failure;
1179 
1180 	reorder.probability = q->reorder;
1181 	reorder.correlation = q->reorder_cor.rho;
1182 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1183 		goto nla_put_failure;
1184 
1185 	corrupt.probability = q->corrupt;
1186 	corrupt.correlation = q->corrupt_cor.rho;
1187 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1188 		goto nla_put_failure;
1189 
1190 	if (q->rate >= (1ULL << 32)) {
1191 		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1192 				      TCA_NETEM_PAD))
1193 			goto nla_put_failure;
1194 		rate.rate = ~0U;
1195 	} else {
1196 		rate.rate = q->rate;
1197 	}
1198 	rate.packet_overhead = q->packet_overhead;
1199 	rate.cell_size = q->cell_size;
1200 	rate.cell_overhead = q->cell_overhead;
1201 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1202 		goto nla_put_failure;
1203 
1204 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1205 		goto nla_put_failure;
1206 
1207 	if (dump_loss_model(q, skb) != 0)
1208 		goto nla_put_failure;
1209 
1210 	if (q->slot_config.min_delay | q->slot_config.max_delay |
1211 	    q->slot_config.dist_jitter) {
1212 		slot = q->slot_config;
1213 		if (slot.max_packets == INT_MAX)
1214 			slot.max_packets = 0;
1215 		if (slot.max_bytes == INT_MAX)
1216 			slot.max_bytes = 0;
1217 		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1218 			goto nla_put_failure;
1219 	}
1220 
1221 	if (nla_put_u64_64bit(skb, TCA_NETEM_PRNG_SEED, q->prng.seed,
1222 			      TCA_NETEM_PAD))
1223 		goto nla_put_failure;
1224 
1225 	return nla_nest_end(skb, nla);
1226 
1227 nla_put_failure:
1228 	nlmsg_trim(skb, nla);
1229 	return -1;
1230 }
1231 
1232 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1233 			  struct sk_buff *skb, struct tcmsg *tcm)
1234 {
1235 	struct netem_sched_data *q = qdisc_priv(sch);
1236 
1237 	if (cl != 1 || !q->qdisc) 	/* only one class */
1238 		return -ENOENT;
1239 
1240 	tcm->tcm_handle |= TC_H_MIN(1);
1241 	tcm->tcm_info = q->qdisc->handle;
1242 
1243 	return 0;
1244 }
1245 
1246 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1247 		     struct Qdisc **old, struct netlink_ext_ack *extack)
1248 {
1249 	struct netem_sched_data *q = qdisc_priv(sch);
1250 
1251 	*old = qdisc_replace(sch, new, &q->qdisc);
1252 	return 0;
1253 }
1254 
1255 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1256 {
1257 	struct netem_sched_data *q = qdisc_priv(sch);
1258 	return q->qdisc;
1259 }
1260 
1261 static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1262 {
1263 	return 1;
1264 }
1265 
1266 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1267 {
1268 	if (!walker->stop) {
1269 		if (!tc_qdisc_stats_dump(sch, 1, walker))
1270 			return;
1271 	}
1272 }
1273 
1274 static const struct Qdisc_class_ops netem_class_ops = {
1275 	.graft		=	netem_graft,
1276 	.leaf		=	netem_leaf,
1277 	.find		=	netem_find,
1278 	.walk		=	netem_walk,
1279 	.dump		=	netem_dump_class,
1280 };
1281 
1282 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1283 	.id		=	"netem",
1284 	.cl_ops		=	&netem_class_ops,
1285 	.priv_size	=	sizeof(struct netem_sched_data),
1286 	.enqueue	=	netem_enqueue,
1287 	.dequeue	=	netem_dequeue,
1288 	.peek		=	qdisc_peek_dequeued,
1289 	.init		=	netem_init,
1290 	.reset		=	netem_reset,
1291 	.destroy	=	netem_destroy,
1292 	.change		=	netem_change,
1293 	.dump		=	netem_dump,
1294 	.owner		=	THIS_MODULE,
1295 };
1296 MODULE_ALIAS_NET_SCH("netem");
1297 
1298 
1299 static int __init netem_module_init(void)
1300 {
1301 	pr_info("netem: version " VERSION "\n");
1302 	return register_qdisc(&netem_qdisc_ops);
1303 }
1304 static void __exit netem_module_exit(void)
1305 {
1306 	unregister_qdisc(&netem_qdisc_ops);
1307 }
1308 module_init(netem_module_init)
1309 module_exit(netem_module_exit)
1310 MODULE_LICENSE("GPL");
1311 MODULE_DESCRIPTION("Network characteristics emulator qdisc");
1312