xref: /linux/net/sched/sch_netem.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sched/sch_netem.c	Network emulator
4  *
5  *  		Many of the algorithms and ideas for this came from
6  *		NIST Net which is not copyrighted.
7  *
8  * Authors:	Stephen Hemminger <shemminger@osdl.org>
9  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/skbuff.h>
19 #include <linux/vmalloc.h>
20 #include <linux/prandom.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/reciprocal_div.h>
23 #include <linux/rbtree.h>
24 
25 #include <net/gso.h>
26 #include <net/netlink.h>
27 #include <net/pkt_sched.h>
28 #include <net/inet_ecn.h>
29 
30 #define VERSION "1.3"
31 
32 /*	Network Emulation Queuing algorithm.
33 	====================================
34 
35 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
36 		 Network Emulation Tool
37 		 [2] Luigi Rizzo, DummyNet for FreeBSD
38 
39 	 ----------------------------------------------------------------
40 
41 	 This started out as a simple way to delay outgoing packets to
42 	 test TCP but has grown to include most of the functionality
43 	 of a full blown network emulator like NISTnet. It can delay
44 	 packets and add random jitter (and correlation). The random
45 	 distribution can be loaded from a table as well to provide
46 	 normal, Pareto, or experimental curves. Packet loss,
47 	 duplication, and reordering can also be emulated.
48 
49 	 This qdisc does not do classification that can be handled in
50 	 layering other disciplines.  It does not need to do bandwidth
51 	 control either since that can be handled by using token
52 	 bucket or other rate control.
53 
54      Correlated Loss Generator models
55 
56 	Added generation of correlated loss according to the
57 	"Gilbert-Elliot" model, a 4-state markov model.
58 
59 	References:
60 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
61 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
62 	and intuitive loss model for packet networks and its implementation
63 	in the Netem module in the Linux kernel", available in [1]
64 
65 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
66 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
67 */
68 
69 struct disttable {
70 	u32  size;
71 	s16 table[] __counted_by(size);
72 };
73 
74 struct netem_sched_data {
75 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
76 	struct rb_root t_root;
77 
78 	/* a linear queue; reduces rbtree rebalancing when jitter is low */
79 	struct sk_buff	*t_head;
80 	struct sk_buff	*t_tail;
81 
82 	/* optional qdisc for classful handling (NULL at netem init) */
83 	struct Qdisc	*qdisc;
84 
85 	struct qdisc_watchdog watchdog;
86 
87 	s64 latency;
88 	s64 jitter;
89 
90 	u32 loss;
91 	u32 ecn;
92 	u32 limit;
93 	u32 counter;
94 	u32 gap;
95 	u32 duplicate;
96 	u32 reorder;
97 	u32 corrupt;
98 	u64 rate;
99 	s32 packet_overhead;
100 	u32 cell_size;
101 	struct reciprocal_value cell_size_reciprocal;
102 	s32 cell_overhead;
103 
104 	struct crndstate {
105 		u32 last;
106 		u32 rho;
107 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
108 
109 	struct prng  {
110 		u64 seed;
111 		struct rnd_state prng_state;
112 	} prng;
113 
114 	struct disttable *delay_dist;
115 
116 	enum  {
117 		CLG_RANDOM,
118 		CLG_4_STATES,
119 		CLG_GILB_ELL,
120 	} loss_model;
121 
122 	enum {
123 		TX_IN_GAP_PERIOD = 1,
124 		TX_IN_BURST_PERIOD,
125 		LOST_IN_GAP_PERIOD,
126 		LOST_IN_BURST_PERIOD,
127 	} _4_state_model;
128 
129 	enum {
130 		GOOD_STATE = 1,
131 		BAD_STATE,
132 	} GE_state_model;
133 
134 	/* Correlated Loss Generation models */
135 	struct clgstate {
136 		/* state of the Markov chain */
137 		u8 state;
138 
139 		/* 4-states and Gilbert-Elliot models */
140 		u32 a1;	/* p13 for 4-states or p for GE */
141 		u32 a2;	/* p31 for 4-states or r for GE */
142 		u32 a3;	/* p32 for 4-states or h for GE */
143 		u32 a4;	/* p14 for 4-states or 1-k for GE */
144 		u32 a5; /* p23 used only in 4-states */
145 	} clg;
146 
147 	struct tc_netem_slot slot_config;
148 	struct slotstate {
149 		u64 slot_next;
150 		s32 packets_left;
151 		s32 bytes_left;
152 	} slot;
153 
154 	struct disttable *slot_dist;
155 };
156 
157 /* Time stamp put into socket buffer control block
158  * Only valid when skbs are in our internal t(ime)fifo queue.
159  *
160  * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
161  * and skb->next & skb->prev are scratch space for a qdisc,
162  * we save skb->tstamp value in skb->cb[] before destroying it.
163  */
164 struct netem_skb_cb {
165 	u64	        time_to_send;
166 };
167 
168 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
169 {
170 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
171 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
172 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
173 }
174 
175 /* init_crandom - initialize correlated random number generator
176  * Use entropy source for initial seed.
177  */
178 static void init_crandom(struct crndstate *state, unsigned long rho)
179 {
180 	state->rho = rho;
181 	state->last = get_random_u32();
182 }
183 
184 /* get_crandom - correlated random number generator
185  * Next number depends on last value.
186  * rho is scaled to avoid floating point.
187  */
188 static u32 get_crandom(struct crndstate *state, struct prng *p)
189 {
190 	u64 value, rho;
191 	unsigned long answer;
192 	struct rnd_state *s = &p->prng_state;
193 
194 	if (!state || state->rho == 0)	/* no correlation */
195 		return prandom_u32_state(s);
196 
197 	value = prandom_u32_state(s);
198 	rho = (u64)state->rho + 1;
199 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
200 	state->last = answer;
201 	return answer;
202 }
203 
204 /* loss_4state - 4-state model loss generator
205  * Generates losses according to the 4-state Markov chain adopted in
206  * the GI (General and Intuitive) loss model.
207  */
208 static bool loss_4state(struct netem_sched_data *q)
209 {
210 	struct clgstate *clg = &q->clg;
211 	u32 rnd = prandom_u32_state(&q->prng.prng_state);
212 
213 	/*
214 	 * Makes a comparison between rnd and the transition
215 	 * probabilities outgoing from the current state, then decides the
216 	 * next state and if the next packet has to be transmitted or lost.
217 	 * The four states correspond to:
218 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
219 	 *   LOST_IN_GAP_PERIOD => isolated losses within a gap period
220 	 *   LOST_IN_BURST_PERIOD => lost packets within a burst period
221 	 *   TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period
222 	 */
223 	switch (clg->state) {
224 	case TX_IN_GAP_PERIOD:
225 		if (rnd < clg->a4) {
226 			clg->state = LOST_IN_GAP_PERIOD;
227 			return true;
228 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
229 			clg->state = LOST_IN_BURST_PERIOD;
230 			return true;
231 		} else if (clg->a1 + clg->a4 < rnd) {
232 			clg->state = TX_IN_GAP_PERIOD;
233 		}
234 
235 		break;
236 	case TX_IN_BURST_PERIOD:
237 		if (rnd < clg->a5) {
238 			clg->state = LOST_IN_BURST_PERIOD;
239 			return true;
240 		} else {
241 			clg->state = TX_IN_BURST_PERIOD;
242 		}
243 
244 		break;
245 	case LOST_IN_BURST_PERIOD:
246 		if (rnd < clg->a3)
247 			clg->state = TX_IN_BURST_PERIOD;
248 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
249 			clg->state = TX_IN_GAP_PERIOD;
250 		} else if (clg->a2 + clg->a3 < rnd) {
251 			clg->state = LOST_IN_BURST_PERIOD;
252 			return true;
253 		}
254 		break;
255 	case LOST_IN_GAP_PERIOD:
256 		clg->state = TX_IN_GAP_PERIOD;
257 		break;
258 	}
259 
260 	return false;
261 }
262 
263 /* loss_gilb_ell - Gilbert-Elliot model loss generator
264  * Generates losses according to the Gilbert-Elliot loss model or
265  * its special cases  (Gilbert or Simple Gilbert)
266  *
267  * Makes a comparison between random number and the transition
268  * probabilities outgoing from the current state, then decides the
269  * next state. A second random number is extracted and the comparison
270  * with the loss probability of the current state decides if the next
271  * packet will be transmitted or lost.
272  */
273 static bool loss_gilb_ell(struct netem_sched_data *q)
274 {
275 	struct clgstate *clg = &q->clg;
276 	struct rnd_state *s = &q->prng.prng_state;
277 
278 	switch (clg->state) {
279 	case GOOD_STATE:
280 		if (prandom_u32_state(s) < clg->a1)
281 			clg->state = BAD_STATE;
282 		if (prandom_u32_state(s) < clg->a4)
283 			return true;
284 		break;
285 	case BAD_STATE:
286 		if (prandom_u32_state(s) < clg->a2)
287 			clg->state = GOOD_STATE;
288 		if (prandom_u32_state(s) > clg->a3)
289 			return true;
290 	}
291 
292 	return false;
293 }
294 
295 static bool loss_event(struct netem_sched_data *q)
296 {
297 	switch (q->loss_model) {
298 	case CLG_RANDOM:
299 		/* Random packet drop 0 => none, ~0 => all */
300 		return q->loss && q->loss >= get_crandom(&q->loss_cor, &q->prng);
301 
302 	case CLG_4_STATES:
303 		/* 4state loss model algorithm (used also for GI model)
304 		* Extracts a value from the markov 4 state loss generator,
305 		* if it is 1 drops a packet and if needed writes the event in
306 		* the kernel logs
307 		*/
308 		return loss_4state(q);
309 
310 	case CLG_GILB_ELL:
311 		/* Gilbert-Elliot loss model algorithm
312 		* Extracts a value from the Gilbert-Elliot loss generator,
313 		* if it is 1 drops a packet and if needed writes the event in
314 		* the kernel logs
315 		*/
316 		return loss_gilb_ell(q);
317 	}
318 
319 	return false;	/* not reached */
320 }
321 
322 
323 /* tabledist - return a pseudo-randomly distributed value with mean mu and
324  * std deviation sigma.  Uses table lookup to approximate the desired
325  * distribution, and a uniformly-distributed pseudo-random source.
326  */
327 static s64 tabledist(s64 mu, s32 sigma,
328 		     struct crndstate *state,
329 		     struct prng *prng,
330 		     const struct disttable *dist)
331 {
332 	s64 x;
333 	long t;
334 	u32 rnd;
335 
336 	if (sigma == 0)
337 		return mu;
338 
339 	rnd = get_crandom(state, prng);
340 
341 	/* default uniform distribution */
342 	if (dist == NULL)
343 		return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
344 
345 	t = dist->table[rnd % dist->size];
346 	x = (sigma % NETEM_DIST_SCALE) * t;
347 	if (x >= 0)
348 		x += NETEM_DIST_SCALE/2;
349 	else
350 		x -= NETEM_DIST_SCALE/2;
351 
352 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
353 }
354 
355 static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
356 {
357 	len += q->packet_overhead;
358 
359 	if (q->cell_size) {
360 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
361 
362 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
363 			cells++;
364 		len = cells * (q->cell_size + q->cell_overhead);
365 	}
366 
367 	return div64_u64(len * NSEC_PER_SEC, q->rate);
368 }
369 
370 static void tfifo_reset(struct Qdisc *sch)
371 {
372 	struct netem_sched_data *q = qdisc_priv(sch);
373 	struct rb_node *p = rb_first(&q->t_root);
374 
375 	while (p) {
376 		struct sk_buff *skb = rb_to_skb(p);
377 
378 		p = rb_next(p);
379 		rb_erase(&skb->rbnode, &q->t_root);
380 		rtnl_kfree_skbs(skb, skb);
381 	}
382 
383 	rtnl_kfree_skbs(q->t_head, q->t_tail);
384 	q->t_head = NULL;
385 	q->t_tail = NULL;
386 }
387 
388 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
389 {
390 	struct netem_sched_data *q = qdisc_priv(sch);
391 	u64 tnext = netem_skb_cb(nskb)->time_to_send;
392 
393 	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
394 		if (q->t_tail)
395 			q->t_tail->next = nskb;
396 		else
397 			q->t_head = nskb;
398 		q->t_tail = nskb;
399 	} else {
400 		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
401 
402 		while (*p) {
403 			struct sk_buff *skb;
404 
405 			parent = *p;
406 			skb = rb_to_skb(parent);
407 			if (tnext >= netem_skb_cb(skb)->time_to_send)
408 				p = &parent->rb_right;
409 			else
410 				p = &parent->rb_left;
411 		}
412 		rb_link_node(&nskb->rbnode, parent, p);
413 		rb_insert_color(&nskb->rbnode, &q->t_root);
414 	}
415 	sch->q.qlen++;
416 }
417 
418 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
419  * when we statistically choose to corrupt one, we instead segment it, returning
420  * the first packet to be corrupted, and re-enqueue the remaining frames
421  */
422 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
423 				     struct sk_buff **to_free)
424 {
425 	struct sk_buff *segs;
426 	netdev_features_t features = netif_skb_features(skb);
427 
428 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
429 
430 	if (IS_ERR_OR_NULL(segs)) {
431 		qdisc_drop(skb, sch, to_free);
432 		return NULL;
433 	}
434 	consume_skb(skb);
435 	return segs;
436 }
437 
438 /*
439  * Insert one skb into qdisc.
440  * Note: parent depends on return value to account for queue length.
441  * 	NET_XMIT_DROP: queue length didn't change.
442  *      NET_XMIT_SUCCESS: one skb was queued.
443  */
444 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
445 			 struct sk_buff **to_free)
446 {
447 	struct netem_sched_data *q = qdisc_priv(sch);
448 	/* We don't fill cb now as skb_unshare() may invalidate it */
449 	struct netem_skb_cb *cb;
450 	struct sk_buff *skb2 = NULL;
451 	struct sk_buff *segs = NULL;
452 	unsigned int prev_len = qdisc_pkt_len(skb);
453 	int count = 1;
454 
455 	/* Do not fool qdisc_drop_all() */
456 	skb->prev = NULL;
457 
458 	/* Random duplication */
459 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor, &q->prng))
460 		++count;
461 
462 	/* Drop packet? */
463 	if (loss_event(q)) {
464 		if (q->ecn && INET_ECN_set_ce(skb))
465 			qdisc_qstats_drop(sch); /* mark packet */
466 		else
467 			--count;
468 	}
469 	if (count == 0) {
470 		qdisc_qstats_drop(sch);
471 		__qdisc_drop(skb, to_free);
472 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
473 	}
474 
475 	/* If a delay is expected, orphan the skb. (orphaning usually takes
476 	 * place at TX completion time, so _before_ the link transit delay)
477 	 */
478 	if (q->latency || q->jitter || q->rate)
479 		skb_orphan_partial(skb);
480 
481 	/*
482 	 * If we need to duplicate packet, then clone it before
483 	 * original is modified.
484 	 */
485 	if (count > 1)
486 		skb2 = skb_clone(skb, GFP_ATOMIC);
487 
488 	/*
489 	 * Randomized packet corruption.
490 	 * Make copy if needed since we are modifying
491 	 * If packet is going to be hardware checksummed, then
492 	 * do it now in software before we mangle it.
493 	 */
494 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor, &q->prng)) {
495 		if (skb_is_gso(skb)) {
496 			skb = netem_segment(skb, sch, to_free);
497 			if (!skb)
498 				goto finish_segs;
499 
500 			segs = skb->next;
501 			skb_mark_not_on_list(skb);
502 			qdisc_skb_cb(skb)->pkt_len = skb->len;
503 		}
504 
505 		skb = skb_unshare(skb, GFP_ATOMIC);
506 		if (unlikely(!skb)) {
507 			qdisc_qstats_drop(sch);
508 			goto finish_segs;
509 		}
510 		if (skb->ip_summed == CHECKSUM_PARTIAL &&
511 		    skb_checksum_help(skb)) {
512 			qdisc_drop(skb, sch, to_free);
513 			skb = NULL;
514 			goto finish_segs;
515 		}
516 
517 		skb->data[get_random_u32_below(skb_headlen(skb))] ^=
518 			1<<get_random_u32_below(8);
519 	}
520 
521 	if (unlikely(sch->q.qlen >= sch->limit)) {
522 		/* re-link segs, so that qdisc_drop_all() frees them all */
523 		skb->next = segs;
524 		qdisc_drop_all(skb, sch, to_free);
525 		if (skb2)
526 			__qdisc_drop(skb2, to_free);
527 		return NET_XMIT_DROP;
528 	}
529 
530 	/*
531 	 * If doing duplication then re-insert at top of the
532 	 * qdisc tree, since parent queuer expects that only one
533 	 * skb will be queued.
534 	 */
535 	if (skb2) {
536 		struct Qdisc *rootq = qdisc_root_bh(sch);
537 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
538 
539 		q->duplicate = 0;
540 		rootq->enqueue(skb2, rootq, to_free);
541 		q->duplicate = dupsave;
542 		skb2 = NULL;
543 	}
544 
545 	qdisc_qstats_backlog_inc(sch, skb);
546 
547 	cb = netem_skb_cb(skb);
548 	if (q->gap == 0 ||		/* not doing reordering */
549 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
550 	    q->reorder < get_crandom(&q->reorder_cor, &q->prng)) {
551 		u64 now;
552 		s64 delay;
553 
554 		delay = tabledist(q->latency, q->jitter,
555 				  &q->delay_cor, &q->prng, q->delay_dist);
556 
557 		now = ktime_get_ns();
558 
559 		if (q->rate) {
560 			struct netem_skb_cb *last = NULL;
561 
562 			if (sch->q.tail)
563 				last = netem_skb_cb(sch->q.tail);
564 			if (q->t_root.rb_node) {
565 				struct sk_buff *t_skb;
566 				struct netem_skb_cb *t_last;
567 
568 				t_skb = skb_rb_last(&q->t_root);
569 				t_last = netem_skb_cb(t_skb);
570 				if (!last ||
571 				    t_last->time_to_send > last->time_to_send)
572 					last = t_last;
573 			}
574 			if (q->t_tail) {
575 				struct netem_skb_cb *t_last =
576 					netem_skb_cb(q->t_tail);
577 
578 				if (!last ||
579 				    t_last->time_to_send > last->time_to_send)
580 					last = t_last;
581 			}
582 
583 			if (last) {
584 				/*
585 				 * Last packet in queue is reference point (now),
586 				 * calculate this time bonus and subtract
587 				 * from delay.
588 				 */
589 				delay -= last->time_to_send - now;
590 				delay = max_t(s64, 0, delay);
591 				now = last->time_to_send;
592 			}
593 
594 			delay += packet_time_ns(qdisc_pkt_len(skb), q);
595 		}
596 
597 		cb->time_to_send = now + delay;
598 		++q->counter;
599 		tfifo_enqueue(skb, sch);
600 	} else {
601 		/*
602 		 * Do re-ordering by putting one out of N packets at the front
603 		 * of the queue.
604 		 */
605 		cb->time_to_send = ktime_get_ns();
606 		q->counter = 0;
607 
608 		__qdisc_enqueue_head(skb, &sch->q);
609 		sch->qstats.requeues++;
610 	}
611 
612 finish_segs:
613 	if (skb2)
614 		__qdisc_drop(skb2, to_free);
615 
616 	if (segs) {
617 		unsigned int len, last_len;
618 		int rc, nb;
619 
620 		len = skb ? skb->len : 0;
621 		nb = skb ? 1 : 0;
622 
623 		while (segs) {
624 			skb2 = segs->next;
625 			skb_mark_not_on_list(segs);
626 			qdisc_skb_cb(segs)->pkt_len = segs->len;
627 			last_len = segs->len;
628 			rc = qdisc_enqueue(segs, sch, to_free);
629 			if (rc != NET_XMIT_SUCCESS) {
630 				if (net_xmit_drop_count(rc))
631 					qdisc_qstats_drop(sch);
632 			} else {
633 				nb++;
634 				len += last_len;
635 			}
636 			segs = skb2;
637 		}
638 		/* Parent qdiscs accounted for 1 skb of size @prev_len */
639 		qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
640 	} else if (!skb) {
641 		return NET_XMIT_DROP;
642 	}
643 	return NET_XMIT_SUCCESS;
644 }
645 
646 /* Delay the next round with a new future slot with a
647  * correct number of bytes and packets.
648  */
649 
650 static void get_slot_next(struct netem_sched_data *q, u64 now)
651 {
652 	s64 next_delay;
653 
654 	if (!q->slot_dist)
655 		next_delay = q->slot_config.min_delay +
656 				(get_random_u32() *
657 				 (q->slot_config.max_delay -
658 				  q->slot_config.min_delay) >> 32);
659 	else
660 		next_delay = tabledist(q->slot_config.dist_delay,
661 				       (s32)(q->slot_config.dist_jitter),
662 				       NULL, &q->prng, q->slot_dist);
663 
664 	q->slot.slot_next = now + next_delay;
665 	q->slot.packets_left = q->slot_config.max_packets;
666 	q->slot.bytes_left = q->slot_config.max_bytes;
667 }
668 
669 static struct sk_buff *netem_peek(struct netem_sched_data *q)
670 {
671 	struct sk_buff *skb = skb_rb_first(&q->t_root);
672 	u64 t1, t2;
673 
674 	if (!skb)
675 		return q->t_head;
676 	if (!q->t_head)
677 		return skb;
678 
679 	t1 = netem_skb_cb(skb)->time_to_send;
680 	t2 = netem_skb_cb(q->t_head)->time_to_send;
681 	if (t1 < t2)
682 		return skb;
683 	return q->t_head;
684 }
685 
686 static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
687 {
688 	if (skb == q->t_head) {
689 		q->t_head = skb->next;
690 		if (!q->t_head)
691 			q->t_tail = NULL;
692 	} else {
693 		rb_erase(&skb->rbnode, &q->t_root);
694 	}
695 }
696 
697 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
698 {
699 	struct netem_sched_data *q = qdisc_priv(sch);
700 	struct sk_buff *skb;
701 
702 tfifo_dequeue:
703 	skb = __qdisc_dequeue_head(&sch->q);
704 	if (skb) {
705 		qdisc_qstats_backlog_dec(sch, skb);
706 deliver:
707 		qdisc_bstats_update(sch, skb);
708 		return skb;
709 	}
710 	skb = netem_peek(q);
711 	if (skb) {
712 		u64 time_to_send;
713 		u64 now = ktime_get_ns();
714 
715 		/* if more time remaining? */
716 		time_to_send = netem_skb_cb(skb)->time_to_send;
717 		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
718 			get_slot_next(q, now);
719 
720 		if (time_to_send <= now && q->slot.slot_next <= now) {
721 			netem_erase_head(q, skb);
722 			sch->q.qlen--;
723 			qdisc_qstats_backlog_dec(sch, skb);
724 			skb->next = NULL;
725 			skb->prev = NULL;
726 			/* skb->dev shares skb->rbnode area,
727 			 * we need to restore its value.
728 			 */
729 			skb->dev = qdisc_dev(sch);
730 
731 			if (q->slot.slot_next) {
732 				q->slot.packets_left--;
733 				q->slot.bytes_left -= qdisc_pkt_len(skb);
734 				if (q->slot.packets_left <= 0 ||
735 				    q->slot.bytes_left <= 0)
736 					get_slot_next(q, now);
737 			}
738 
739 			if (q->qdisc) {
740 				unsigned int pkt_len = qdisc_pkt_len(skb);
741 				struct sk_buff *to_free = NULL;
742 				int err;
743 
744 				err = qdisc_enqueue(skb, q->qdisc, &to_free);
745 				kfree_skb_list(to_free);
746 				if (err != NET_XMIT_SUCCESS) {
747 					if (net_xmit_drop_count(err))
748 						qdisc_qstats_drop(sch);
749 					qdisc_tree_reduce_backlog(sch, 1, pkt_len);
750 				}
751 				goto tfifo_dequeue;
752 			}
753 			goto deliver;
754 		}
755 
756 		if (q->qdisc) {
757 			skb = q->qdisc->ops->dequeue(q->qdisc);
758 			if (skb)
759 				goto deliver;
760 		}
761 
762 		qdisc_watchdog_schedule_ns(&q->watchdog,
763 					   max(time_to_send,
764 					       q->slot.slot_next));
765 	}
766 
767 	if (q->qdisc) {
768 		skb = q->qdisc->ops->dequeue(q->qdisc);
769 		if (skb)
770 			goto deliver;
771 	}
772 	return NULL;
773 }
774 
775 static void netem_reset(struct Qdisc *sch)
776 {
777 	struct netem_sched_data *q = qdisc_priv(sch);
778 
779 	qdisc_reset_queue(sch);
780 	tfifo_reset(sch);
781 	if (q->qdisc)
782 		qdisc_reset(q->qdisc);
783 	qdisc_watchdog_cancel(&q->watchdog);
784 }
785 
786 static void dist_free(struct disttable *d)
787 {
788 	kvfree(d);
789 }
790 
791 /*
792  * Distribution data is a variable size payload containing
793  * signed 16 bit values.
794  */
795 
796 static int get_dist_table(struct disttable **tbl, const struct nlattr *attr)
797 {
798 	size_t n = nla_len(attr)/sizeof(__s16);
799 	const __s16 *data = nla_data(attr);
800 	struct disttable *d;
801 	int i;
802 
803 	if (!n || n > NETEM_DIST_MAX)
804 		return -EINVAL;
805 
806 	d = kvmalloc(struct_size(d, table, n), GFP_KERNEL);
807 	if (!d)
808 		return -ENOMEM;
809 
810 	d->size = n;
811 	for (i = 0; i < n; i++)
812 		d->table[i] = data[i];
813 
814 	*tbl = d;
815 	return 0;
816 }
817 
818 static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
819 {
820 	const struct tc_netem_slot *c = nla_data(attr);
821 
822 	q->slot_config = *c;
823 	if (q->slot_config.max_packets == 0)
824 		q->slot_config.max_packets = INT_MAX;
825 	if (q->slot_config.max_bytes == 0)
826 		q->slot_config.max_bytes = INT_MAX;
827 
828 	/* capping dist_jitter to the range acceptable by tabledist() */
829 	q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
830 
831 	q->slot.packets_left = q->slot_config.max_packets;
832 	q->slot.bytes_left = q->slot_config.max_bytes;
833 	if (q->slot_config.min_delay | q->slot_config.max_delay |
834 	    q->slot_config.dist_jitter)
835 		q->slot.slot_next = ktime_get_ns();
836 	else
837 		q->slot.slot_next = 0;
838 }
839 
840 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
841 {
842 	const struct tc_netem_corr *c = nla_data(attr);
843 
844 	init_crandom(&q->delay_cor, c->delay_corr);
845 	init_crandom(&q->loss_cor, c->loss_corr);
846 	init_crandom(&q->dup_cor, c->dup_corr);
847 }
848 
849 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
850 {
851 	const struct tc_netem_reorder *r = nla_data(attr);
852 
853 	q->reorder = r->probability;
854 	init_crandom(&q->reorder_cor, r->correlation);
855 }
856 
857 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
858 {
859 	const struct tc_netem_corrupt *r = nla_data(attr);
860 
861 	q->corrupt = r->probability;
862 	init_crandom(&q->corrupt_cor, r->correlation);
863 }
864 
865 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
866 {
867 	const struct tc_netem_rate *r = nla_data(attr);
868 
869 	q->rate = r->rate;
870 	q->packet_overhead = r->packet_overhead;
871 	q->cell_size = r->cell_size;
872 	q->cell_overhead = r->cell_overhead;
873 	if (q->cell_size)
874 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
875 	else
876 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
877 }
878 
879 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
880 {
881 	const struct nlattr *la;
882 	int rem;
883 
884 	nla_for_each_nested(la, attr, rem) {
885 		u16 type = nla_type(la);
886 
887 		switch (type) {
888 		case NETEM_LOSS_GI: {
889 			const struct tc_netem_gimodel *gi = nla_data(la);
890 
891 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
892 				pr_info("netem: incorrect gi model size\n");
893 				return -EINVAL;
894 			}
895 
896 			q->loss_model = CLG_4_STATES;
897 
898 			q->clg.state = TX_IN_GAP_PERIOD;
899 			q->clg.a1 = gi->p13;
900 			q->clg.a2 = gi->p31;
901 			q->clg.a3 = gi->p32;
902 			q->clg.a4 = gi->p14;
903 			q->clg.a5 = gi->p23;
904 			break;
905 		}
906 
907 		case NETEM_LOSS_GE: {
908 			const struct tc_netem_gemodel *ge = nla_data(la);
909 
910 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
911 				pr_info("netem: incorrect ge model size\n");
912 				return -EINVAL;
913 			}
914 
915 			q->loss_model = CLG_GILB_ELL;
916 			q->clg.state = GOOD_STATE;
917 			q->clg.a1 = ge->p;
918 			q->clg.a2 = ge->r;
919 			q->clg.a3 = ge->h;
920 			q->clg.a4 = ge->k1;
921 			break;
922 		}
923 
924 		default:
925 			pr_info("netem: unknown loss type %u\n", type);
926 			return -EINVAL;
927 		}
928 	}
929 
930 	return 0;
931 }
932 
933 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
934 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
935 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
936 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
937 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
938 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
939 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
940 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
941 	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
942 	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
943 	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
944 	[TCA_NETEM_PRNG_SEED]	= { .type = NLA_U64 },
945 };
946 
947 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
948 		      const struct nla_policy *policy, int len)
949 {
950 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
951 
952 	if (nested_len < 0) {
953 		pr_info("netem: invalid attributes len %d\n", nested_len);
954 		return -EINVAL;
955 	}
956 
957 	if (nested_len >= nla_attr_size(0))
958 		return nla_parse_deprecated(tb, maxtype,
959 					    nla_data(nla) + NLA_ALIGN(len),
960 					    nested_len, policy, NULL);
961 
962 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
963 	return 0;
964 }
965 
966 /* Parse netlink message to set options */
967 static int netem_change(struct Qdisc *sch, struct nlattr *opt,
968 			struct netlink_ext_ack *extack)
969 {
970 	struct netem_sched_data *q = qdisc_priv(sch);
971 	struct nlattr *tb[TCA_NETEM_MAX + 1];
972 	struct disttable *delay_dist = NULL;
973 	struct disttable *slot_dist = NULL;
974 	struct tc_netem_qopt *qopt;
975 	struct clgstate old_clg;
976 	int old_loss_model = CLG_RANDOM;
977 	int ret;
978 
979 	qopt = nla_data(opt);
980 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
981 	if (ret < 0)
982 		return ret;
983 
984 	if (tb[TCA_NETEM_DELAY_DIST]) {
985 		ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]);
986 		if (ret)
987 			goto table_free;
988 	}
989 
990 	if (tb[TCA_NETEM_SLOT_DIST]) {
991 		ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]);
992 		if (ret)
993 			goto table_free;
994 	}
995 
996 	sch_tree_lock(sch);
997 	/* backup q->clg and q->loss_model */
998 	old_clg = q->clg;
999 	old_loss_model = q->loss_model;
1000 
1001 	if (tb[TCA_NETEM_LOSS]) {
1002 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
1003 		if (ret) {
1004 			q->loss_model = old_loss_model;
1005 			q->clg = old_clg;
1006 			goto unlock;
1007 		}
1008 	} else {
1009 		q->loss_model = CLG_RANDOM;
1010 	}
1011 
1012 	if (delay_dist)
1013 		swap(q->delay_dist, delay_dist);
1014 	if (slot_dist)
1015 		swap(q->slot_dist, slot_dist);
1016 	sch->limit = qopt->limit;
1017 
1018 	q->latency = PSCHED_TICKS2NS(qopt->latency);
1019 	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
1020 	q->limit = qopt->limit;
1021 	q->gap = qopt->gap;
1022 	q->counter = 0;
1023 	q->loss = qopt->loss;
1024 	q->duplicate = qopt->duplicate;
1025 
1026 	/* for compatibility with earlier versions.
1027 	 * if gap is set, need to assume 100% probability
1028 	 */
1029 	if (q->gap)
1030 		q->reorder = ~0;
1031 
1032 	if (tb[TCA_NETEM_CORR])
1033 		get_correlation(q, tb[TCA_NETEM_CORR]);
1034 
1035 	if (tb[TCA_NETEM_REORDER])
1036 		get_reorder(q, tb[TCA_NETEM_REORDER]);
1037 
1038 	if (tb[TCA_NETEM_CORRUPT])
1039 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1040 
1041 	if (tb[TCA_NETEM_RATE])
1042 		get_rate(q, tb[TCA_NETEM_RATE]);
1043 
1044 	if (tb[TCA_NETEM_RATE64])
1045 		q->rate = max_t(u64, q->rate,
1046 				nla_get_u64(tb[TCA_NETEM_RATE64]));
1047 
1048 	if (tb[TCA_NETEM_LATENCY64])
1049 		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1050 
1051 	if (tb[TCA_NETEM_JITTER64])
1052 		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1053 
1054 	if (tb[TCA_NETEM_ECN])
1055 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1056 
1057 	if (tb[TCA_NETEM_SLOT])
1058 		get_slot(q, tb[TCA_NETEM_SLOT]);
1059 
1060 	/* capping jitter to the range acceptable by tabledist() */
1061 	q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
1062 
1063 	if (tb[TCA_NETEM_PRNG_SEED])
1064 		q->prng.seed = nla_get_u64(tb[TCA_NETEM_PRNG_SEED]);
1065 	else
1066 		q->prng.seed = get_random_u64();
1067 	prandom_seed_state(&q->prng.prng_state, q->prng.seed);
1068 
1069 unlock:
1070 	sch_tree_unlock(sch);
1071 
1072 table_free:
1073 	dist_free(delay_dist);
1074 	dist_free(slot_dist);
1075 	return ret;
1076 }
1077 
1078 static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1079 		      struct netlink_ext_ack *extack)
1080 {
1081 	struct netem_sched_data *q = qdisc_priv(sch);
1082 	int ret;
1083 
1084 	qdisc_watchdog_init(&q->watchdog, sch);
1085 
1086 	if (!opt)
1087 		return -EINVAL;
1088 
1089 	q->loss_model = CLG_RANDOM;
1090 	ret = netem_change(sch, opt, extack);
1091 	if (ret)
1092 		pr_info("netem: change failed\n");
1093 	return ret;
1094 }
1095 
1096 static void netem_destroy(struct Qdisc *sch)
1097 {
1098 	struct netem_sched_data *q = qdisc_priv(sch);
1099 
1100 	qdisc_watchdog_cancel(&q->watchdog);
1101 	if (q->qdisc)
1102 		qdisc_put(q->qdisc);
1103 	dist_free(q->delay_dist);
1104 	dist_free(q->slot_dist);
1105 }
1106 
1107 static int dump_loss_model(const struct netem_sched_data *q,
1108 			   struct sk_buff *skb)
1109 {
1110 	struct nlattr *nest;
1111 
1112 	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1113 	if (nest == NULL)
1114 		goto nla_put_failure;
1115 
1116 	switch (q->loss_model) {
1117 	case CLG_RANDOM:
1118 		/* legacy loss model */
1119 		nla_nest_cancel(skb, nest);
1120 		return 0;	/* no data */
1121 
1122 	case CLG_4_STATES: {
1123 		struct tc_netem_gimodel gi = {
1124 			.p13 = q->clg.a1,
1125 			.p31 = q->clg.a2,
1126 			.p32 = q->clg.a3,
1127 			.p14 = q->clg.a4,
1128 			.p23 = q->clg.a5,
1129 		};
1130 
1131 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1132 			goto nla_put_failure;
1133 		break;
1134 	}
1135 	case CLG_GILB_ELL: {
1136 		struct tc_netem_gemodel ge = {
1137 			.p = q->clg.a1,
1138 			.r = q->clg.a2,
1139 			.h = q->clg.a3,
1140 			.k1 = q->clg.a4,
1141 		};
1142 
1143 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1144 			goto nla_put_failure;
1145 		break;
1146 	}
1147 	}
1148 
1149 	nla_nest_end(skb, nest);
1150 	return 0;
1151 
1152 nla_put_failure:
1153 	nla_nest_cancel(skb, nest);
1154 	return -1;
1155 }
1156 
1157 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1158 {
1159 	const struct netem_sched_data *q = qdisc_priv(sch);
1160 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1161 	struct tc_netem_qopt qopt;
1162 	struct tc_netem_corr cor;
1163 	struct tc_netem_reorder reorder;
1164 	struct tc_netem_corrupt corrupt;
1165 	struct tc_netem_rate rate;
1166 	struct tc_netem_slot slot;
1167 
1168 	qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency),
1169 			     UINT_MAX);
1170 	qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter),
1171 			    UINT_MAX);
1172 	qopt.limit = q->limit;
1173 	qopt.loss = q->loss;
1174 	qopt.gap = q->gap;
1175 	qopt.duplicate = q->duplicate;
1176 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1177 		goto nla_put_failure;
1178 
1179 	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1180 		goto nla_put_failure;
1181 
1182 	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1183 		goto nla_put_failure;
1184 
1185 	cor.delay_corr = q->delay_cor.rho;
1186 	cor.loss_corr = q->loss_cor.rho;
1187 	cor.dup_corr = q->dup_cor.rho;
1188 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1189 		goto nla_put_failure;
1190 
1191 	reorder.probability = q->reorder;
1192 	reorder.correlation = q->reorder_cor.rho;
1193 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1194 		goto nla_put_failure;
1195 
1196 	corrupt.probability = q->corrupt;
1197 	corrupt.correlation = q->corrupt_cor.rho;
1198 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1199 		goto nla_put_failure;
1200 
1201 	if (q->rate >= (1ULL << 32)) {
1202 		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1203 				      TCA_NETEM_PAD))
1204 			goto nla_put_failure;
1205 		rate.rate = ~0U;
1206 	} else {
1207 		rate.rate = q->rate;
1208 	}
1209 	rate.packet_overhead = q->packet_overhead;
1210 	rate.cell_size = q->cell_size;
1211 	rate.cell_overhead = q->cell_overhead;
1212 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1213 		goto nla_put_failure;
1214 
1215 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1216 		goto nla_put_failure;
1217 
1218 	if (dump_loss_model(q, skb) != 0)
1219 		goto nla_put_failure;
1220 
1221 	if (q->slot_config.min_delay | q->slot_config.max_delay |
1222 	    q->slot_config.dist_jitter) {
1223 		slot = q->slot_config;
1224 		if (slot.max_packets == INT_MAX)
1225 			slot.max_packets = 0;
1226 		if (slot.max_bytes == INT_MAX)
1227 			slot.max_bytes = 0;
1228 		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1229 			goto nla_put_failure;
1230 	}
1231 
1232 	if (nla_put_u64_64bit(skb, TCA_NETEM_PRNG_SEED, q->prng.seed,
1233 			      TCA_NETEM_PAD))
1234 		goto nla_put_failure;
1235 
1236 	return nla_nest_end(skb, nla);
1237 
1238 nla_put_failure:
1239 	nlmsg_trim(skb, nla);
1240 	return -1;
1241 }
1242 
1243 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1244 			  struct sk_buff *skb, struct tcmsg *tcm)
1245 {
1246 	struct netem_sched_data *q = qdisc_priv(sch);
1247 
1248 	if (cl != 1 || !q->qdisc) 	/* only one class */
1249 		return -ENOENT;
1250 
1251 	tcm->tcm_handle |= TC_H_MIN(1);
1252 	tcm->tcm_info = q->qdisc->handle;
1253 
1254 	return 0;
1255 }
1256 
1257 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1258 		     struct Qdisc **old, struct netlink_ext_ack *extack)
1259 {
1260 	struct netem_sched_data *q = qdisc_priv(sch);
1261 
1262 	*old = qdisc_replace(sch, new, &q->qdisc);
1263 	return 0;
1264 }
1265 
1266 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1267 {
1268 	struct netem_sched_data *q = qdisc_priv(sch);
1269 	return q->qdisc;
1270 }
1271 
1272 static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1273 {
1274 	return 1;
1275 }
1276 
1277 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1278 {
1279 	if (!walker->stop) {
1280 		if (!tc_qdisc_stats_dump(sch, 1, walker))
1281 			return;
1282 	}
1283 }
1284 
1285 static const struct Qdisc_class_ops netem_class_ops = {
1286 	.graft		=	netem_graft,
1287 	.leaf		=	netem_leaf,
1288 	.find		=	netem_find,
1289 	.walk		=	netem_walk,
1290 	.dump		=	netem_dump_class,
1291 };
1292 
1293 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1294 	.id		=	"netem",
1295 	.cl_ops		=	&netem_class_ops,
1296 	.priv_size	=	sizeof(struct netem_sched_data),
1297 	.enqueue	=	netem_enqueue,
1298 	.dequeue	=	netem_dequeue,
1299 	.peek		=	qdisc_peek_dequeued,
1300 	.init		=	netem_init,
1301 	.reset		=	netem_reset,
1302 	.destroy	=	netem_destroy,
1303 	.change		=	netem_change,
1304 	.dump		=	netem_dump,
1305 	.owner		=	THIS_MODULE,
1306 };
1307 MODULE_ALIAS_NET_SCH("netem");
1308 
1309 
1310 static int __init netem_module_init(void)
1311 {
1312 	pr_info("netem: version " VERSION "\n");
1313 	return register_qdisc(&netem_qdisc_ops);
1314 }
1315 static void __exit netem_module_exit(void)
1316 {
1317 	unregister_qdisc(&netem_qdisc_ops);
1318 }
1319 module_init(netem_module_init)
1320 module_exit(netem_module_exit)
1321 MODULE_LICENSE("GPL");
1322 MODULE_DESCRIPTION("Network characteristics emulator qdisc");
1323