xref: /linux/net/sched/sch_netem.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * net/sched/sch_netem.c	Network emulator
3  *
4  * 		This program is free software; you can redistribute it and/or
5  * 		modify it under the terms of the GNU General Public License
6  * 		as published by the Free Software Foundation; either version
7  * 		2 of the License.
8  *
9  *  		Many of the algorithms and ideas for this came from
10  *		NIST Net which is not copyrighted.
11  *
12  * Authors:	Stephen Hemminger <shemminger@osdl.org>
13  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27 
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31 
32 #define VERSION "1.3"
33 
34 /*	Network Emulation Queuing algorithm.
35 	====================================
36 
37 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 		 Network Emulation Tool
39 		 [2] Luigi Rizzo, DummyNet for FreeBSD
40 
41 	 ----------------------------------------------------------------
42 
43 	 This started out as a simple way to delay outgoing packets to
44 	 test TCP but has grown to include most of the functionality
45 	 of a full blown network emulator like NISTnet. It can delay
46 	 packets and add random jitter (and correlation). The random
47 	 distribution can be loaded from a table as well to provide
48 	 normal, Pareto, or experimental curves. Packet loss,
49 	 duplication, and reordering can also be emulated.
50 
51 	 This qdisc does not do classification that can be handled in
52 	 layering other disciplines.  It does not need to do bandwidth
53 	 control either since that can be handled by using token
54 	 bucket or other rate control.
55 
56      Correlated Loss Generator models
57 
58 	Added generation of correlated loss according to the
59 	"Gilbert-Elliot" model, a 4-state markov model.
60 
61 	References:
62 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 	and intuitive loss model for packet networks and its implementation
65 	in the Netem module in the Linux kernel", available in [1]
66 
67 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70 
71 struct netem_sched_data {
72 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 	struct rb_root t_root;
74 
75 	/* optional qdisc for classful handling (NULL at netem init) */
76 	struct Qdisc	*qdisc;
77 
78 	struct qdisc_watchdog watchdog;
79 
80 	psched_tdiff_t latency;
81 	psched_tdiff_t jitter;
82 
83 	u32 loss;
84 	u32 ecn;
85 	u32 limit;
86 	u32 counter;
87 	u32 gap;
88 	u32 duplicate;
89 	u32 reorder;
90 	u32 corrupt;
91 	u64 rate;
92 	s32 packet_overhead;
93 	u32 cell_size;
94 	struct reciprocal_value cell_size_reciprocal;
95 	s32 cell_overhead;
96 
97 	struct crndstate {
98 		u32 last;
99 		u32 rho;
100 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
101 
102 	struct disttable {
103 		u32  size;
104 		s16 table[0];
105 	} *delay_dist;
106 
107 	enum  {
108 		CLG_RANDOM,
109 		CLG_4_STATES,
110 		CLG_GILB_ELL,
111 	} loss_model;
112 
113 	enum {
114 		TX_IN_GAP_PERIOD = 1,
115 		TX_IN_BURST_PERIOD,
116 		LOST_IN_GAP_PERIOD,
117 		LOST_IN_BURST_PERIOD,
118 	} _4_state_model;
119 
120 	enum {
121 		GOOD_STATE = 1,
122 		BAD_STATE,
123 	} GE_state_model;
124 
125 	/* Correlated Loss Generation models */
126 	struct clgstate {
127 		/* state of the Markov chain */
128 		u8 state;
129 
130 		/* 4-states and Gilbert-Elliot models */
131 		u32 a1;	/* p13 for 4-states or p for GE */
132 		u32 a2;	/* p31 for 4-states or r for GE */
133 		u32 a3;	/* p32 for 4-states or h for GE */
134 		u32 a4;	/* p14 for 4-states or 1-k for GE */
135 		u32 a5; /* p23 used only in 4-states */
136 	} clg;
137 
138 };
139 
140 /* Time stamp put into socket buffer control block
141  * Only valid when skbs are in our internal t(ime)fifo queue.
142  *
143  * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
144  * and skb->next & skb->prev are scratch space for a qdisc,
145  * we save skb->tstamp value in skb->cb[] before destroying it.
146  */
147 struct netem_skb_cb {
148 	psched_time_t	time_to_send;
149 	ktime_t		tstamp_save;
150 };
151 
152 
153 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
154 {
155 	return container_of(rb, struct sk_buff, rbnode);
156 }
157 
158 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
159 {
160 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
161 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
162 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
163 }
164 
165 /* init_crandom - initialize correlated random number generator
166  * Use entropy source for initial seed.
167  */
168 static void init_crandom(struct crndstate *state, unsigned long rho)
169 {
170 	state->rho = rho;
171 	state->last = prandom_u32();
172 }
173 
174 /* get_crandom - correlated random number generator
175  * Next number depends on last value.
176  * rho is scaled to avoid floating point.
177  */
178 static u32 get_crandom(struct crndstate *state)
179 {
180 	u64 value, rho;
181 	unsigned long answer;
182 
183 	if (state->rho == 0)	/* no correlation */
184 		return prandom_u32();
185 
186 	value = prandom_u32();
187 	rho = (u64)state->rho + 1;
188 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
189 	state->last = answer;
190 	return answer;
191 }
192 
193 /* loss_4state - 4-state model loss generator
194  * Generates losses according to the 4-state Markov chain adopted in
195  * the GI (General and Intuitive) loss model.
196  */
197 static bool loss_4state(struct netem_sched_data *q)
198 {
199 	struct clgstate *clg = &q->clg;
200 	u32 rnd = prandom_u32();
201 
202 	/*
203 	 * Makes a comparison between rnd and the transition
204 	 * probabilities outgoing from the current state, then decides the
205 	 * next state and if the next packet has to be transmitted or lost.
206 	 * The four states correspond to:
207 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
208 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
209 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
210 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
211 	 */
212 	switch (clg->state) {
213 	case TX_IN_GAP_PERIOD:
214 		if (rnd < clg->a4) {
215 			clg->state = LOST_IN_BURST_PERIOD;
216 			return true;
217 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
218 			clg->state = LOST_IN_GAP_PERIOD;
219 			return true;
220 		} else if (clg->a1 + clg->a4 < rnd) {
221 			clg->state = TX_IN_GAP_PERIOD;
222 		}
223 
224 		break;
225 	case TX_IN_BURST_PERIOD:
226 		if (rnd < clg->a5) {
227 			clg->state = LOST_IN_GAP_PERIOD;
228 			return true;
229 		} else {
230 			clg->state = TX_IN_BURST_PERIOD;
231 		}
232 
233 		break;
234 	case LOST_IN_GAP_PERIOD:
235 		if (rnd < clg->a3)
236 			clg->state = TX_IN_BURST_PERIOD;
237 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
238 			clg->state = TX_IN_GAP_PERIOD;
239 		} else if (clg->a2 + clg->a3 < rnd) {
240 			clg->state = LOST_IN_GAP_PERIOD;
241 			return true;
242 		}
243 		break;
244 	case LOST_IN_BURST_PERIOD:
245 		clg->state = TX_IN_GAP_PERIOD;
246 		break;
247 	}
248 
249 	return false;
250 }
251 
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253  * Generates losses according to the Gilbert-Elliot loss model or
254  * its special cases  (Gilbert or Simple Gilbert)
255  *
256  * Makes a comparison between random number and the transition
257  * probabilities outgoing from the current state, then decides the
258  * next state. A second random number is extracted and the comparison
259  * with the loss probability of the current state decides if the next
260  * packet will be transmitted or lost.
261  */
262 static bool loss_gilb_ell(struct netem_sched_data *q)
263 {
264 	struct clgstate *clg = &q->clg;
265 
266 	switch (clg->state) {
267 	case GOOD_STATE:
268 		if (prandom_u32() < clg->a1)
269 			clg->state = BAD_STATE;
270 		if (prandom_u32() < clg->a4)
271 			return true;
272 		break;
273 	case BAD_STATE:
274 		if (prandom_u32() < clg->a2)
275 			clg->state = GOOD_STATE;
276 		if (prandom_u32() > clg->a3)
277 			return true;
278 	}
279 
280 	return false;
281 }
282 
283 static bool loss_event(struct netem_sched_data *q)
284 {
285 	switch (q->loss_model) {
286 	case CLG_RANDOM:
287 		/* Random packet drop 0 => none, ~0 => all */
288 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
289 
290 	case CLG_4_STATES:
291 		/* 4state loss model algorithm (used also for GI model)
292 		* Extracts a value from the markov 4 state loss generator,
293 		* if it is 1 drops a packet and if needed writes the event in
294 		* the kernel logs
295 		*/
296 		return loss_4state(q);
297 
298 	case CLG_GILB_ELL:
299 		/* Gilbert-Elliot loss model algorithm
300 		* Extracts a value from the Gilbert-Elliot loss generator,
301 		* if it is 1 drops a packet and if needed writes the event in
302 		* the kernel logs
303 		*/
304 		return loss_gilb_ell(q);
305 	}
306 
307 	return false;	/* not reached */
308 }
309 
310 
311 /* tabledist - return a pseudo-randomly distributed value with mean mu and
312  * std deviation sigma.  Uses table lookup to approximate the desired
313  * distribution, and a uniformly-distributed pseudo-random source.
314  */
315 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
316 				struct crndstate *state,
317 				const struct disttable *dist)
318 {
319 	psched_tdiff_t x;
320 	long t;
321 	u32 rnd;
322 
323 	if (sigma == 0)
324 		return mu;
325 
326 	rnd = get_crandom(state);
327 
328 	/* default uniform distribution */
329 	if (dist == NULL)
330 		return (rnd % (2*sigma)) - sigma + mu;
331 
332 	t = dist->table[rnd % dist->size];
333 	x = (sigma % NETEM_DIST_SCALE) * t;
334 	if (x >= 0)
335 		x += NETEM_DIST_SCALE/2;
336 	else
337 		x -= NETEM_DIST_SCALE/2;
338 
339 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
340 }
341 
342 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
343 {
344 	u64 ticks;
345 
346 	len += q->packet_overhead;
347 
348 	if (q->cell_size) {
349 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
350 
351 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
352 			cells++;
353 		len = cells * (q->cell_size + q->cell_overhead);
354 	}
355 
356 	ticks = (u64)len * NSEC_PER_SEC;
357 
358 	do_div(ticks, q->rate);
359 	return PSCHED_NS2TICKS(ticks);
360 }
361 
362 static void tfifo_reset(struct Qdisc *sch)
363 {
364 	struct netem_sched_data *q = qdisc_priv(sch);
365 	struct rb_node *p;
366 
367 	while ((p = rb_first(&q->t_root))) {
368 		struct sk_buff *skb = netem_rb_to_skb(p);
369 
370 		rb_erase(p, &q->t_root);
371 		skb->next = NULL;
372 		skb->prev = NULL;
373 		kfree_skb(skb);
374 	}
375 }
376 
377 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
378 {
379 	struct netem_sched_data *q = qdisc_priv(sch);
380 	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
381 	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
382 
383 	while (*p) {
384 		struct sk_buff *skb;
385 
386 		parent = *p;
387 		skb = netem_rb_to_skb(parent);
388 		if (tnext >= netem_skb_cb(skb)->time_to_send)
389 			p = &parent->rb_right;
390 		else
391 			p = &parent->rb_left;
392 	}
393 	rb_link_node(&nskb->rbnode, parent, p);
394 	rb_insert_color(&nskb->rbnode, &q->t_root);
395 	sch->q.qlen++;
396 }
397 
398 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
399  * when we statistically choose to corrupt one, we instead segment it, returning
400  * the first packet to be corrupted, and re-enqueue the remaining frames
401  */
402 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch)
403 {
404 	struct sk_buff *segs;
405 	netdev_features_t features = netif_skb_features(skb);
406 
407 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
408 
409 	if (IS_ERR_OR_NULL(segs)) {
410 		qdisc_reshape_fail(skb, sch);
411 		return NULL;
412 	}
413 	consume_skb(skb);
414 	return segs;
415 }
416 
417 /*
418  * Insert one skb into qdisc.
419  * Note: parent depends on return value to account for queue length.
420  * 	NET_XMIT_DROP: queue length didn't change.
421  *      NET_XMIT_SUCCESS: one skb was queued.
422  */
423 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
424 {
425 	struct netem_sched_data *q = qdisc_priv(sch);
426 	/* We don't fill cb now as skb_unshare() may invalidate it */
427 	struct netem_skb_cb *cb;
428 	struct sk_buff *skb2;
429 	struct sk_buff *segs = NULL;
430 	unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
431 	int nb = 0;
432 	int count = 1;
433 	int rc = NET_XMIT_SUCCESS;
434 
435 	/* Random duplication */
436 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
437 		++count;
438 
439 	/* Drop packet? */
440 	if (loss_event(q)) {
441 		if (q->ecn && INET_ECN_set_ce(skb))
442 			qdisc_qstats_drop(sch); /* mark packet */
443 		else
444 			--count;
445 	}
446 	if (count == 0) {
447 		qdisc_qstats_drop(sch);
448 		kfree_skb(skb);
449 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
450 	}
451 
452 	/* If a delay is expected, orphan the skb. (orphaning usually takes
453 	 * place at TX completion time, so _before_ the link transit delay)
454 	 */
455 	if (q->latency || q->jitter)
456 		skb_orphan_partial(skb);
457 
458 	/*
459 	 * If we need to duplicate packet, then re-insert at top of the
460 	 * qdisc tree, since parent queuer expects that only one
461 	 * skb will be queued.
462 	 */
463 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
464 		struct Qdisc *rootq = qdisc_root(sch);
465 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
466 
467 		q->duplicate = 0;
468 		rootq->enqueue(skb2, rootq);
469 		q->duplicate = dupsave;
470 	}
471 
472 	/*
473 	 * Randomized packet corruption.
474 	 * Make copy if needed since we are modifying
475 	 * If packet is going to be hardware checksummed, then
476 	 * do it now in software before we mangle it.
477 	 */
478 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
479 		if (skb_is_gso(skb)) {
480 			segs = netem_segment(skb, sch);
481 			if (!segs)
482 				return NET_XMIT_DROP;
483 		} else {
484 			segs = skb;
485 		}
486 
487 		skb = segs;
488 		segs = segs->next;
489 
490 		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
491 		    (skb->ip_summed == CHECKSUM_PARTIAL &&
492 		     skb_checksum_help(skb))) {
493 			rc = qdisc_drop(skb, sch);
494 			goto finish_segs;
495 		}
496 
497 		skb->data[prandom_u32() % skb_headlen(skb)] ^=
498 			1<<(prandom_u32() % 8);
499 	}
500 
501 	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
502 		return qdisc_reshape_fail(skb, sch);
503 
504 	qdisc_qstats_backlog_inc(sch, skb);
505 
506 	cb = netem_skb_cb(skb);
507 	if (q->gap == 0 ||		/* not doing reordering */
508 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
509 	    q->reorder < get_crandom(&q->reorder_cor)) {
510 		psched_time_t now;
511 		psched_tdiff_t delay;
512 
513 		delay = tabledist(q->latency, q->jitter,
514 				  &q->delay_cor, q->delay_dist);
515 
516 		now = psched_get_time();
517 
518 		if (q->rate) {
519 			struct sk_buff *last;
520 
521 			if (!skb_queue_empty(&sch->q))
522 				last = skb_peek_tail(&sch->q);
523 			else
524 				last = netem_rb_to_skb(rb_last(&q->t_root));
525 			if (last) {
526 				/*
527 				 * Last packet in queue is reference point (now),
528 				 * calculate this time bonus and subtract
529 				 * from delay.
530 				 */
531 				delay -= netem_skb_cb(last)->time_to_send - now;
532 				delay = max_t(psched_tdiff_t, 0, delay);
533 				now = netem_skb_cb(last)->time_to_send;
534 			}
535 
536 			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
537 		}
538 
539 		cb->time_to_send = now + delay;
540 		cb->tstamp_save = skb->tstamp;
541 		++q->counter;
542 		tfifo_enqueue(skb, sch);
543 	} else {
544 		/*
545 		 * Do re-ordering by putting one out of N packets at the front
546 		 * of the queue.
547 		 */
548 		cb->time_to_send = psched_get_time();
549 		q->counter = 0;
550 
551 		__skb_queue_head(&sch->q, skb);
552 		sch->qstats.requeues++;
553 	}
554 
555 finish_segs:
556 	if (segs) {
557 		while (segs) {
558 			skb2 = segs->next;
559 			segs->next = NULL;
560 			qdisc_skb_cb(segs)->pkt_len = segs->len;
561 			last_len = segs->len;
562 			rc = qdisc_enqueue(segs, sch);
563 			if (rc != NET_XMIT_SUCCESS) {
564 				if (net_xmit_drop_count(rc))
565 					qdisc_qstats_drop(sch);
566 			} else {
567 				nb++;
568 				len += last_len;
569 			}
570 			segs = skb2;
571 		}
572 		sch->q.qlen += nb;
573 		if (nb > 1)
574 			qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
575 	}
576 	return NET_XMIT_SUCCESS;
577 }
578 
579 static unsigned int netem_drop(struct Qdisc *sch)
580 {
581 	struct netem_sched_data *q = qdisc_priv(sch);
582 	unsigned int len;
583 
584 	len = qdisc_queue_drop(sch);
585 
586 	if (!len) {
587 		struct rb_node *p = rb_first(&q->t_root);
588 
589 		if (p) {
590 			struct sk_buff *skb = netem_rb_to_skb(p);
591 
592 			rb_erase(p, &q->t_root);
593 			sch->q.qlen--;
594 			skb->next = NULL;
595 			skb->prev = NULL;
596 			qdisc_qstats_backlog_dec(sch, skb);
597 			kfree_skb(skb);
598 		}
599 	}
600 	if (!len && q->qdisc && q->qdisc->ops->drop)
601 	    len = q->qdisc->ops->drop(q->qdisc);
602 	if (len)
603 		qdisc_qstats_drop(sch);
604 
605 	return len;
606 }
607 
608 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
609 {
610 	struct netem_sched_data *q = qdisc_priv(sch);
611 	struct sk_buff *skb;
612 	struct rb_node *p;
613 
614 	if (qdisc_is_throttled(sch))
615 		return NULL;
616 
617 tfifo_dequeue:
618 	skb = __skb_dequeue(&sch->q);
619 	if (skb) {
620 		qdisc_qstats_backlog_dec(sch, skb);
621 deliver:
622 		qdisc_unthrottled(sch);
623 		qdisc_bstats_update(sch, skb);
624 		return skb;
625 	}
626 	p = rb_first(&q->t_root);
627 	if (p) {
628 		psched_time_t time_to_send;
629 
630 		skb = netem_rb_to_skb(p);
631 
632 		/* if more time remaining? */
633 		time_to_send = netem_skb_cb(skb)->time_to_send;
634 		if (time_to_send <= psched_get_time()) {
635 			rb_erase(p, &q->t_root);
636 
637 			sch->q.qlen--;
638 			qdisc_qstats_backlog_dec(sch, skb);
639 			skb->next = NULL;
640 			skb->prev = NULL;
641 			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
642 
643 #ifdef CONFIG_NET_CLS_ACT
644 			/*
645 			 * If it's at ingress let's pretend the delay is
646 			 * from the network (tstamp will be updated).
647 			 */
648 			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
649 				skb->tstamp.tv64 = 0;
650 #endif
651 
652 			if (q->qdisc) {
653 				int err = qdisc_enqueue(skb, q->qdisc);
654 
655 				if (unlikely(err != NET_XMIT_SUCCESS)) {
656 					if (net_xmit_drop_count(err)) {
657 						qdisc_qstats_drop(sch);
658 						qdisc_tree_reduce_backlog(sch, 1,
659 									  qdisc_pkt_len(skb));
660 					}
661 				}
662 				goto tfifo_dequeue;
663 			}
664 			goto deliver;
665 		}
666 
667 		if (q->qdisc) {
668 			skb = q->qdisc->ops->dequeue(q->qdisc);
669 			if (skb)
670 				goto deliver;
671 		}
672 		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
673 	}
674 
675 	if (q->qdisc) {
676 		skb = q->qdisc->ops->dequeue(q->qdisc);
677 		if (skb)
678 			goto deliver;
679 	}
680 	return NULL;
681 }
682 
683 static void netem_reset(struct Qdisc *sch)
684 {
685 	struct netem_sched_data *q = qdisc_priv(sch);
686 
687 	qdisc_reset_queue(sch);
688 	tfifo_reset(sch);
689 	if (q->qdisc)
690 		qdisc_reset(q->qdisc);
691 	qdisc_watchdog_cancel(&q->watchdog);
692 }
693 
694 static void dist_free(struct disttable *d)
695 {
696 	kvfree(d);
697 }
698 
699 /*
700  * Distribution data is a variable size payload containing
701  * signed 16 bit values.
702  */
703 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
704 {
705 	struct netem_sched_data *q = qdisc_priv(sch);
706 	size_t n = nla_len(attr)/sizeof(__s16);
707 	const __s16 *data = nla_data(attr);
708 	spinlock_t *root_lock;
709 	struct disttable *d;
710 	int i;
711 	size_t s;
712 
713 	if (n > NETEM_DIST_MAX)
714 		return -EINVAL;
715 
716 	s = sizeof(struct disttable) + n * sizeof(s16);
717 	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
718 	if (!d)
719 		d = vmalloc(s);
720 	if (!d)
721 		return -ENOMEM;
722 
723 	d->size = n;
724 	for (i = 0; i < n; i++)
725 		d->table[i] = data[i];
726 
727 	root_lock = qdisc_root_sleeping_lock(sch);
728 
729 	spin_lock_bh(root_lock);
730 	swap(q->delay_dist, d);
731 	spin_unlock_bh(root_lock);
732 
733 	dist_free(d);
734 	return 0;
735 }
736 
737 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
738 {
739 	const struct tc_netem_corr *c = nla_data(attr);
740 
741 	init_crandom(&q->delay_cor, c->delay_corr);
742 	init_crandom(&q->loss_cor, c->loss_corr);
743 	init_crandom(&q->dup_cor, c->dup_corr);
744 }
745 
746 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
747 {
748 	const struct tc_netem_reorder *r = nla_data(attr);
749 
750 	q->reorder = r->probability;
751 	init_crandom(&q->reorder_cor, r->correlation);
752 }
753 
754 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
755 {
756 	const struct tc_netem_corrupt *r = nla_data(attr);
757 
758 	q->corrupt = r->probability;
759 	init_crandom(&q->corrupt_cor, r->correlation);
760 }
761 
762 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
763 {
764 	const struct tc_netem_rate *r = nla_data(attr);
765 
766 	q->rate = r->rate;
767 	q->packet_overhead = r->packet_overhead;
768 	q->cell_size = r->cell_size;
769 	q->cell_overhead = r->cell_overhead;
770 	if (q->cell_size)
771 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
772 	else
773 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
774 }
775 
776 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
777 {
778 	const struct nlattr *la;
779 	int rem;
780 
781 	nla_for_each_nested(la, attr, rem) {
782 		u16 type = nla_type(la);
783 
784 		switch (type) {
785 		case NETEM_LOSS_GI: {
786 			const struct tc_netem_gimodel *gi = nla_data(la);
787 
788 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
789 				pr_info("netem: incorrect gi model size\n");
790 				return -EINVAL;
791 			}
792 
793 			q->loss_model = CLG_4_STATES;
794 
795 			q->clg.state = TX_IN_GAP_PERIOD;
796 			q->clg.a1 = gi->p13;
797 			q->clg.a2 = gi->p31;
798 			q->clg.a3 = gi->p32;
799 			q->clg.a4 = gi->p14;
800 			q->clg.a5 = gi->p23;
801 			break;
802 		}
803 
804 		case NETEM_LOSS_GE: {
805 			const struct tc_netem_gemodel *ge = nla_data(la);
806 
807 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
808 				pr_info("netem: incorrect ge model size\n");
809 				return -EINVAL;
810 			}
811 
812 			q->loss_model = CLG_GILB_ELL;
813 			q->clg.state = GOOD_STATE;
814 			q->clg.a1 = ge->p;
815 			q->clg.a2 = ge->r;
816 			q->clg.a3 = ge->h;
817 			q->clg.a4 = ge->k1;
818 			break;
819 		}
820 
821 		default:
822 			pr_info("netem: unknown loss type %u\n", type);
823 			return -EINVAL;
824 		}
825 	}
826 
827 	return 0;
828 }
829 
830 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
831 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
832 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
833 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
834 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
835 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
836 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
837 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
838 };
839 
840 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
841 		      const struct nla_policy *policy, int len)
842 {
843 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
844 
845 	if (nested_len < 0) {
846 		pr_info("netem: invalid attributes len %d\n", nested_len);
847 		return -EINVAL;
848 	}
849 
850 	if (nested_len >= nla_attr_size(0))
851 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
852 				 nested_len, policy);
853 
854 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
855 	return 0;
856 }
857 
858 /* Parse netlink message to set options */
859 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
860 {
861 	struct netem_sched_data *q = qdisc_priv(sch);
862 	struct nlattr *tb[TCA_NETEM_MAX + 1];
863 	struct tc_netem_qopt *qopt;
864 	struct clgstate old_clg;
865 	int old_loss_model = CLG_RANDOM;
866 	int ret;
867 
868 	if (opt == NULL)
869 		return -EINVAL;
870 
871 	qopt = nla_data(opt);
872 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
873 	if (ret < 0)
874 		return ret;
875 
876 	/* backup q->clg and q->loss_model */
877 	old_clg = q->clg;
878 	old_loss_model = q->loss_model;
879 
880 	if (tb[TCA_NETEM_LOSS]) {
881 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
882 		if (ret) {
883 			q->loss_model = old_loss_model;
884 			return ret;
885 		}
886 	} else {
887 		q->loss_model = CLG_RANDOM;
888 	}
889 
890 	if (tb[TCA_NETEM_DELAY_DIST]) {
891 		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
892 		if (ret) {
893 			/* recover clg and loss_model, in case of
894 			 * q->clg and q->loss_model were modified
895 			 * in get_loss_clg()
896 			 */
897 			q->clg = old_clg;
898 			q->loss_model = old_loss_model;
899 			return ret;
900 		}
901 	}
902 
903 	sch->limit = qopt->limit;
904 
905 	q->latency = qopt->latency;
906 	q->jitter = qopt->jitter;
907 	q->limit = qopt->limit;
908 	q->gap = qopt->gap;
909 	q->counter = 0;
910 	q->loss = qopt->loss;
911 	q->duplicate = qopt->duplicate;
912 
913 	/* for compatibility with earlier versions.
914 	 * if gap is set, need to assume 100% probability
915 	 */
916 	if (q->gap)
917 		q->reorder = ~0;
918 
919 	if (tb[TCA_NETEM_CORR])
920 		get_correlation(q, tb[TCA_NETEM_CORR]);
921 
922 	if (tb[TCA_NETEM_REORDER])
923 		get_reorder(q, tb[TCA_NETEM_REORDER]);
924 
925 	if (tb[TCA_NETEM_CORRUPT])
926 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
927 
928 	if (tb[TCA_NETEM_RATE])
929 		get_rate(q, tb[TCA_NETEM_RATE]);
930 
931 	if (tb[TCA_NETEM_RATE64])
932 		q->rate = max_t(u64, q->rate,
933 				nla_get_u64(tb[TCA_NETEM_RATE64]));
934 
935 	if (tb[TCA_NETEM_ECN])
936 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
937 
938 	return ret;
939 }
940 
941 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
942 {
943 	struct netem_sched_data *q = qdisc_priv(sch);
944 	int ret;
945 
946 	if (!opt)
947 		return -EINVAL;
948 
949 	qdisc_watchdog_init(&q->watchdog, sch);
950 
951 	q->loss_model = CLG_RANDOM;
952 	ret = netem_change(sch, opt);
953 	if (ret)
954 		pr_info("netem: change failed\n");
955 	return ret;
956 }
957 
958 static void netem_destroy(struct Qdisc *sch)
959 {
960 	struct netem_sched_data *q = qdisc_priv(sch);
961 
962 	qdisc_watchdog_cancel(&q->watchdog);
963 	if (q->qdisc)
964 		qdisc_destroy(q->qdisc);
965 	dist_free(q->delay_dist);
966 }
967 
968 static int dump_loss_model(const struct netem_sched_data *q,
969 			   struct sk_buff *skb)
970 {
971 	struct nlattr *nest;
972 
973 	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
974 	if (nest == NULL)
975 		goto nla_put_failure;
976 
977 	switch (q->loss_model) {
978 	case CLG_RANDOM:
979 		/* legacy loss model */
980 		nla_nest_cancel(skb, nest);
981 		return 0;	/* no data */
982 
983 	case CLG_4_STATES: {
984 		struct tc_netem_gimodel gi = {
985 			.p13 = q->clg.a1,
986 			.p31 = q->clg.a2,
987 			.p32 = q->clg.a3,
988 			.p14 = q->clg.a4,
989 			.p23 = q->clg.a5,
990 		};
991 
992 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
993 			goto nla_put_failure;
994 		break;
995 	}
996 	case CLG_GILB_ELL: {
997 		struct tc_netem_gemodel ge = {
998 			.p = q->clg.a1,
999 			.r = q->clg.a2,
1000 			.h = q->clg.a3,
1001 			.k1 = q->clg.a4,
1002 		};
1003 
1004 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1005 			goto nla_put_failure;
1006 		break;
1007 	}
1008 	}
1009 
1010 	nla_nest_end(skb, nest);
1011 	return 0;
1012 
1013 nla_put_failure:
1014 	nla_nest_cancel(skb, nest);
1015 	return -1;
1016 }
1017 
1018 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1019 {
1020 	const struct netem_sched_data *q = qdisc_priv(sch);
1021 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1022 	struct tc_netem_qopt qopt;
1023 	struct tc_netem_corr cor;
1024 	struct tc_netem_reorder reorder;
1025 	struct tc_netem_corrupt corrupt;
1026 	struct tc_netem_rate rate;
1027 
1028 	qopt.latency = q->latency;
1029 	qopt.jitter = q->jitter;
1030 	qopt.limit = q->limit;
1031 	qopt.loss = q->loss;
1032 	qopt.gap = q->gap;
1033 	qopt.duplicate = q->duplicate;
1034 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1035 		goto nla_put_failure;
1036 
1037 	cor.delay_corr = q->delay_cor.rho;
1038 	cor.loss_corr = q->loss_cor.rho;
1039 	cor.dup_corr = q->dup_cor.rho;
1040 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1041 		goto nla_put_failure;
1042 
1043 	reorder.probability = q->reorder;
1044 	reorder.correlation = q->reorder_cor.rho;
1045 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1046 		goto nla_put_failure;
1047 
1048 	corrupt.probability = q->corrupt;
1049 	corrupt.correlation = q->corrupt_cor.rho;
1050 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1051 		goto nla_put_failure;
1052 
1053 	if (q->rate >= (1ULL << 32)) {
1054 		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1055 				      TCA_NETEM_PAD))
1056 			goto nla_put_failure;
1057 		rate.rate = ~0U;
1058 	} else {
1059 		rate.rate = q->rate;
1060 	}
1061 	rate.packet_overhead = q->packet_overhead;
1062 	rate.cell_size = q->cell_size;
1063 	rate.cell_overhead = q->cell_overhead;
1064 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1065 		goto nla_put_failure;
1066 
1067 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1068 		goto nla_put_failure;
1069 
1070 	if (dump_loss_model(q, skb) != 0)
1071 		goto nla_put_failure;
1072 
1073 	return nla_nest_end(skb, nla);
1074 
1075 nla_put_failure:
1076 	nlmsg_trim(skb, nla);
1077 	return -1;
1078 }
1079 
1080 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1081 			  struct sk_buff *skb, struct tcmsg *tcm)
1082 {
1083 	struct netem_sched_data *q = qdisc_priv(sch);
1084 
1085 	if (cl != 1 || !q->qdisc) 	/* only one class */
1086 		return -ENOENT;
1087 
1088 	tcm->tcm_handle |= TC_H_MIN(1);
1089 	tcm->tcm_info = q->qdisc->handle;
1090 
1091 	return 0;
1092 }
1093 
1094 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1095 		     struct Qdisc **old)
1096 {
1097 	struct netem_sched_data *q = qdisc_priv(sch);
1098 
1099 	*old = qdisc_replace(sch, new, &q->qdisc);
1100 	return 0;
1101 }
1102 
1103 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1104 {
1105 	struct netem_sched_data *q = qdisc_priv(sch);
1106 	return q->qdisc;
1107 }
1108 
1109 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1110 {
1111 	return 1;
1112 }
1113 
1114 static void netem_put(struct Qdisc *sch, unsigned long arg)
1115 {
1116 }
1117 
1118 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1119 {
1120 	if (!walker->stop) {
1121 		if (walker->count >= walker->skip)
1122 			if (walker->fn(sch, 1, walker) < 0) {
1123 				walker->stop = 1;
1124 				return;
1125 			}
1126 		walker->count++;
1127 	}
1128 }
1129 
1130 static const struct Qdisc_class_ops netem_class_ops = {
1131 	.graft		=	netem_graft,
1132 	.leaf		=	netem_leaf,
1133 	.get		=	netem_get,
1134 	.put		=	netem_put,
1135 	.walk		=	netem_walk,
1136 	.dump		=	netem_dump_class,
1137 };
1138 
1139 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1140 	.id		=	"netem",
1141 	.cl_ops		=	&netem_class_ops,
1142 	.priv_size	=	sizeof(struct netem_sched_data),
1143 	.enqueue	=	netem_enqueue,
1144 	.dequeue	=	netem_dequeue,
1145 	.peek		=	qdisc_peek_dequeued,
1146 	.drop		=	netem_drop,
1147 	.init		=	netem_init,
1148 	.reset		=	netem_reset,
1149 	.destroy	=	netem_destroy,
1150 	.change		=	netem_change,
1151 	.dump		=	netem_dump,
1152 	.owner		=	THIS_MODULE,
1153 };
1154 
1155 
1156 static int __init netem_module_init(void)
1157 {
1158 	pr_info("netem: version " VERSION "\n");
1159 	return register_qdisc(&netem_qdisc_ops);
1160 }
1161 static void __exit netem_module_exit(void)
1162 {
1163 	unregister_qdisc(&netem_qdisc_ops);
1164 }
1165 module_init(netem_module_init)
1166 module_exit(netem_module_exit)
1167 MODULE_LICENSE("GPL");
1168