1 /* 2 * net/sched/sch_netem.c Network emulator 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License. 8 * 9 * Many of the algorithms and ideas for this came from 10 * NIST Net which is not copyrighted. 11 * 12 * Authors: Stephen Hemminger <shemminger@osdl.org> 13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro> 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/kernel.h> 21 #include <linux/errno.h> 22 #include <linux/skbuff.h> 23 #include <linux/vmalloc.h> 24 #include <linux/rtnetlink.h> 25 #include <linux/reciprocal_div.h> 26 #include <linux/rbtree.h> 27 28 #include <net/netlink.h> 29 #include <net/pkt_sched.h> 30 #include <net/inet_ecn.h> 31 32 #define VERSION "1.3" 33 34 /* Network Emulation Queuing algorithm. 35 ==================================== 36 37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based 38 Network Emulation Tool 39 [2] Luigi Rizzo, DummyNet for FreeBSD 40 41 ---------------------------------------------------------------- 42 43 This started out as a simple way to delay outgoing packets to 44 test TCP but has grown to include most of the functionality 45 of a full blown network emulator like NISTnet. It can delay 46 packets and add random jitter (and correlation). The random 47 distribution can be loaded from a table as well to provide 48 normal, Pareto, or experimental curves. Packet loss, 49 duplication, and reordering can also be emulated. 50 51 This qdisc does not do classification that can be handled in 52 layering other disciplines. It does not need to do bandwidth 53 control either since that can be handled by using token 54 bucket or other rate control. 55 56 Correlated Loss Generator models 57 58 Added generation of correlated loss according to the 59 "Gilbert-Elliot" model, a 4-state markov model. 60 61 References: 62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG 63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general 64 and intuitive loss model for packet networks and its implementation 65 in the Netem module in the Linux kernel", available in [1] 66 67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it 68 Fabio Ludovici <fabio.ludovici at yahoo.it> 69 */ 70 71 struct netem_sched_data { 72 /* internal t(ime)fifo qdisc uses t_root and sch->limit */ 73 struct rb_root t_root; 74 75 /* optional qdisc for classful handling (NULL at netem init) */ 76 struct Qdisc *qdisc; 77 78 struct qdisc_watchdog watchdog; 79 80 psched_tdiff_t latency; 81 psched_tdiff_t jitter; 82 83 u32 loss; 84 u32 ecn; 85 u32 limit; 86 u32 counter; 87 u32 gap; 88 u32 duplicate; 89 u32 reorder; 90 u32 corrupt; 91 u64 rate; 92 s32 packet_overhead; 93 u32 cell_size; 94 struct reciprocal_value cell_size_reciprocal; 95 s32 cell_overhead; 96 97 struct crndstate { 98 u32 last; 99 u32 rho; 100 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor; 101 102 struct disttable { 103 u32 size; 104 s16 table[0]; 105 } *delay_dist; 106 107 enum { 108 CLG_RANDOM, 109 CLG_4_STATES, 110 CLG_GILB_ELL, 111 } loss_model; 112 113 enum { 114 TX_IN_GAP_PERIOD = 1, 115 TX_IN_BURST_PERIOD, 116 LOST_IN_GAP_PERIOD, 117 LOST_IN_BURST_PERIOD, 118 } _4_state_model; 119 120 enum { 121 GOOD_STATE = 1, 122 BAD_STATE, 123 } GE_state_model; 124 125 /* Correlated Loss Generation models */ 126 struct clgstate { 127 /* state of the Markov chain */ 128 u8 state; 129 130 /* 4-states and Gilbert-Elliot models */ 131 u32 a1; /* p13 for 4-states or p for GE */ 132 u32 a2; /* p31 for 4-states or r for GE */ 133 u32 a3; /* p32 for 4-states or h for GE */ 134 u32 a4; /* p14 for 4-states or 1-k for GE */ 135 u32 a5; /* p23 used only in 4-states */ 136 } clg; 137 138 }; 139 140 /* Time stamp put into socket buffer control block 141 * Only valid when skbs are in our internal t(ime)fifo queue. 142 */ 143 struct netem_skb_cb { 144 psched_time_t time_to_send; 145 ktime_t tstamp_save; 146 }; 147 148 /* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp 149 * to hold a rb_node structure. 150 * 151 * If struct sk_buff layout is changed, the following checks will complain. 152 */ 153 static struct rb_node *netem_rb_node(struct sk_buff *skb) 154 { 155 BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0); 156 BUILD_BUG_ON(offsetof(struct sk_buff, prev) != 157 offsetof(struct sk_buff, next) + sizeof(skb->next)); 158 BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) != 159 offsetof(struct sk_buff, prev) + sizeof(skb->prev)); 160 BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) + 161 sizeof(skb->prev) + 162 sizeof(skb->tstamp)); 163 return (struct rb_node *)&skb->next; 164 } 165 166 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb) 167 { 168 return (struct sk_buff *)rb; 169 } 170 171 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb) 172 { 173 /* we assume we can use skb next/prev/tstamp as storage for rb_node */ 174 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb)); 175 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data; 176 } 177 178 /* init_crandom - initialize correlated random number generator 179 * Use entropy source for initial seed. 180 */ 181 static void init_crandom(struct crndstate *state, unsigned long rho) 182 { 183 state->rho = rho; 184 state->last = prandom_u32(); 185 } 186 187 /* get_crandom - correlated random number generator 188 * Next number depends on last value. 189 * rho is scaled to avoid floating point. 190 */ 191 static u32 get_crandom(struct crndstate *state) 192 { 193 u64 value, rho; 194 unsigned long answer; 195 196 if (state->rho == 0) /* no correlation */ 197 return prandom_u32(); 198 199 value = prandom_u32(); 200 rho = (u64)state->rho + 1; 201 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32; 202 state->last = answer; 203 return answer; 204 } 205 206 /* loss_4state - 4-state model loss generator 207 * Generates losses according to the 4-state Markov chain adopted in 208 * the GI (General and Intuitive) loss model. 209 */ 210 static bool loss_4state(struct netem_sched_data *q) 211 { 212 struct clgstate *clg = &q->clg; 213 u32 rnd = prandom_u32(); 214 215 /* 216 * Makes a comparison between rnd and the transition 217 * probabilities outgoing from the current state, then decides the 218 * next state and if the next packet has to be transmitted or lost. 219 * The four states correspond to: 220 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period 221 * LOST_IN_BURST_PERIOD => isolated losses within a gap period 222 * LOST_IN_GAP_PERIOD => lost packets within a burst period 223 * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period 224 */ 225 switch (clg->state) { 226 case TX_IN_GAP_PERIOD: 227 if (rnd < clg->a4) { 228 clg->state = LOST_IN_BURST_PERIOD; 229 return true; 230 } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) { 231 clg->state = LOST_IN_GAP_PERIOD; 232 return true; 233 } else if (clg->a1 + clg->a4 < rnd) { 234 clg->state = TX_IN_GAP_PERIOD; 235 } 236 237 break; 238 case TX_IN_BURST_PERIOD: 239 if (rnd < clg->a5) { 240 clg->state = LOST_IN_GAP_PERIOD; 241 return true; 242 } else { 243 clg->state = TX_IN_BURST_PERIOD; 244 } 245 246 break; 247 case LOST_IN_GAP_PERIOD: 248 if (rnd < clg->a3) 249 clg->state = TX_IN_BURST_PERIOD; 250 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) { 251 clg->state = TX_IN_GAP_PERIOD; 252 } else if (clg->a2 + clg->a3 < rnd) { 253 clg->state = LOST_IN_GAP_PERIOD; 254 return true; 255 } 256 break; 257 case LOST_IN_BURST_PERIOD: 258 clg->state = TX_IN_GAP_PERIOD; 259 break; 260 } 261 262 return false; 263 } 264 265 /* loss_gilb_ell - Gilbert-Elliot model loss generator 266 * Generates losses according to the Gilbert-Elliot loss model or 267 * its special cases (Gilbert or Simple Gilbert) 268 * 269 * Makes a comparison between random number and the transition 270 * probabilities outgoing from the current state, then decides the 271 * next state. A second random number is extracted and the comparison 272 * with the loss probability of the current state decides if the next 273 * packet will be transmitted or lost. 274 */ 275 static bool loss_gilb_ell(struct netem_sched_data *q) 276 { 277 struct clgstate *clg = &q->clg; 278 279 switch (clg->state) { 280 case GOOD_STATE: 281 if (prandom_u32() < clg->a1) 282 clg->state = BAD_STATE; 283 if (prandom_u32() < clg->a4) 284 return true; 285 break; 286 case BAD_STATE: 287 if (prandom_u32() < clg->a2) 288 clg->state = GOOD_STATE; 289 if (prandom_u32() > clg->a3) 290 return true; 291 } 292 293 return false; 294 } 295 296 static bool loss_event(struct netem_sched_data *q) 297 { 298 switch (q->loss_model) { 299 case CLG_RANDOM: 300 /* Random packet drop 0 => none, ~0 => all */ 301 return q->loss && q->loss >= get_crandom(&q->loss_cor); 302 303 case CLG_4_STATES: 304 /* 4state loss model algorithm (used also for GI model) 305 * Extracts a value from the markov 4 state loss generator, 306 * if it is 1 drops a packet and if needed writes the event in 307 * the kernel logs 308 */ 309 return loss_4state(q); 310 311 case CLG_GILB_ELL: 312 /* Gilbert-Elliot loss model algorithm 313 * Extracts a value from the Gilbert-Elliot loss generator, 314 * if it is 1 drops a packet and if needed writes the event in 315 * the kernel logs 316 */ 317 return loss_gilb_ell(q); 318 } 319 320 return false; /* not reached */ 321 } 322 323 324 /* tabledist - return a pseudo-randomly distributed value with mean mu and 325 * std deviation sigma. Uses table lookup to approximate the desired 326 * distribution, and a uniformly-distributed pseudo-random source. 327 */ 328 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma, 329 struct crndstate *state, 330 const struct disttable *dist) 331 { 332 psched_tdiff_t x; 333 long t; 334 u32 rnd; 335 336 if (sigma == 0) 337 return mu; 338 339 rnd = get_crandom(state); 340 341 /* default uniform distribution */ 342 if (dist == NULL) 343 return (rnd % (2*sigma)) - sigma + mu; 344 345 t = dist->table[rnd % dist->size]; 346 x = (sigma % NETEM_DIST_SCALE) * t; 347 if (x >= 0) 348 x += NETEM_DIST_SCALE/2; 349 else 350 x -= NETEM_DIST_SCALE/2; 351 352 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu; 353 } 354 355 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q) 356 { 357 u64 ticks; 358 359 len += q->packet_overhead; 360 361 if (q->cell_size) { 362 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal); 363 364 if (len > cells * q->cell_size) /* extra cell needed for remainder */ 365 cells++; 366 len = cells * (q->cell_size + q->cell_overhead); 367 } 368 369 ticks = (u64)len * NSEC_PER_SEC; 370 371 do_div(ticks, q->rate); 372 return PSCHED_NS2TICKS(ticks); 373 } 374 375 static void tfifo_reset(struct Qdisc *sch) 376 { 377 struct netem_sched_data *q = qdisc_priv(sch); 378 struct rb_node *p; 379 380 while ((p = rb_first(&q->t_root))) { 381 struct sk_buff *skb = netem_rb_to_skb(p); 382 383 rb_erase(p, &q->t_root); 384 skb->next = NULL; 385 skb->prev = NULL; 386 kfree_skb(skb); 387 } 388 } 389 390 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch) 391 { 392 struct netem_sched_data *q = qdisc_priv(sch); 393 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send; 394 struct rb_node **p = &q->t_root.rb_node, *parent = NULL; 395 396 while (*p) { 397 struct sk_buff *skb; 398 399 parent = *p; 400 skb = netem_rb_to_skb(parent); 401 if (tnext >= netem_skb_cb(skb)->time_to_send) 402 p = &parent->rb_right; 403 else 404 p = &parent->rb_left; 405 } 406 rb_link_node(netem_rb_node(nskb), parent, p); 407 rb_insert_color(netem_rb_node(nskb), &q->t_root); 408 sch->q.qlen++; 409 } 410 411 /* 412 * Insert one skb into qdisc. 413 * Note: parent depends on return value to account for queue length. 414 * NET_XMIT_DROP: queue length didn't change. 415 * NET_XMIT_SUCCESS: one skb was queued. 416 */ 417 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch) 418 { 419 struct netem_sched_data *q = qdisc_priv(sch); 420 /* We don't fill cb now as skb_unshare() may invalidate it */ 421 struct netem_skb_cb *cb; 422 struct sk_buff *skb2; 423 int count = 1; 424 425 /* Random duplication */ 426 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor)) 427 ++count; 428 429 /* Drop packet? */ 430 if (loss_event(q)) { 431 if (q->ecn && INET_ECN_set_ce(skb)) 432 qdisc_qstats_drop(sch); /* mark packet */ 433 else 434 --count; 435 } 436 if (count == 0) { 437 qdisc_qstats_drop(sch); 438 kfree_skb(skb); 439 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 440 } 441 442 /* If a delay is expected, orphan the skb. (orphaning usually takes 443 * place at TX completion time, so _before_ the link transit delay) 444 */ 445 if (q->latency || q->jitter) 446 skb_orphan_partial(skb); 447 448 /* 449 * If we need to duplicate packet, then re-insert at top of the 450 * qdisc tree, since parent queuer expects that only one 451 * skb will be queued. 452 */ 453 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) { 454 struct Qdisc *rootq = qdisc_root(sch); 455 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */ 456 q->duplicate = 0; 457 458 qdisc_enqueue_root(skb2, rootq); 459 q->duplicate = dupsave; 460 } 461 462 /* 463 * Randomized packet corruption. 464 * Make copy if needed since we are modifying 465 * If packet is going to be hardware checksummed, then 466 * do it now in software before we mangle it. 467 */ 468 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) { 469 if (!(skb = skb_unshare(skb, GFP_ATOMIC)) || 470 (skb->ip_summed == CHECKSUM_PARTIAL && 471 skb_checksum_help(skb))) 472 return qdisc_drop(skb, sch); 473 474 skb->data[prandom_u32() % skb_headlen(skb)] ^= 475 1<<(prandom_u32() % 8); 476 } 477 478 if (unlikely(skb_queue_len(&sch->q) >= sch->limit)) 479 return qdisc_reshape_fail(skb, sch); 480 481 qdisc_qstats_backlog_inc(sch, skb); 482 483 cb = netem_skb_cb(skb); 484 if (q->gap == 0 || /* not doing reordering */ 485 q->counter < q->gap - 1 || /* inside last reordering gap */ 486 q->reorder < get_crandom(&q->reorder_cor)) { 487 psched_time_t now; 488 psched_tdiff_t delay; 489 490 delay = tabledist(q->latency, q->jitter, 491 &q->delay_cor, q->delay_dist); 492 493 now = psched_get_time(); 494 495 if (q->rate) { 496 struct sk_buff *last; 497 498 if (!skb_queue_empty(&sch->q)) 499 last = skb_peek_tail(&sch->q); 500 else 501 last = netem_rb_to_skb(rb_last(&q->t_root)); 502 if (last) { 503 /* 504 * Last packet in queue is reference point (now), 505 * calculate this time bonus and subtract 506 * from delay. 507 */ 508 delay -= netem_skb_cb(last)->time_to_send - now; 509 delay = max_t(psched_tdiff_t, 0, delay); 510 now = netem_skb_cb(last)->time_to_send; 511 } 512 513 delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q); 514 } 515 516 cb->time_to_send = now + delay; 517 cb->tstamp_save = skb->tstamp; 518 ++q->counter; 519 tfifo_enqueue(skb, sch); 520 } else { 521 /* 522 * Do re-ordering by putting one out of N packets at the front 523 * of the queue. 524 */ 525 cb->time_to_send = psched_get_time(); 526 q->counter = 0; 527 528 __skb_queue_head(&sch->q, skb); 529 sch->qstats.requeues++; 530 } 531 532 return NET_XMIT_SUCCESS; 533 } 534 535 static unsigned int netem_drop(struct Qdisc *sch) 536 { 537 struct netem_sched_data *q = qdisc_priv(sch); 538 unsigned int len; 539 540 len = qdisc_queue_drop(sch); 541 542 if (!len) { 543 struct rb_node *p = rb_first(&q->t_root); 544 545 if (p) { 546 struct sk_buff *skb = netem_rb_to_skb(p); 547 548 rb_erase(p, &q->t_root); 549 sch->q.qlen--; 550 skb->next = NULL; 551 skb->prev = NULL; 552 qdisc_qstats_backlog_dec(sch, skb); 553 kfree_skb(skb); 554 } 555 } 556 if (!len && q->qdisc && q->qdisc->ops->drop) 557 len = q->qdisc->ops->drop(q->qdisc); 558 if (len) 559 qdisc_qstats_drop(sch); 560 561 return len; 562 } 563 564 static struct sk_buff *netem_dequeue(struct Qdisc *sch) 565 { 566 struct netem_sched_data *q = qdisc_priv(sch); 567 struct sk_buff *skb; 568 struct rb_node *p; 569 570 if (qdisc_is_throttled(sch)) 571 return NULL; 572 573 tfifo_dequeue: 574 skb = __skb_dequeue(&sch->q); 575 if (skb) { 576 deliver: 577 qdisc_qstats_backlog_dec(sch, skb); 578 qdisc_unthrottled(sch); 579 qdisc_bstats_update(sch, skb); 580 return skb; 581 } 582 p = rb_first(&q->t_root); 583 if (p) { 584 psched_time_t time_to_send; 585 586 skb = netem_rb_to_skb(p); 587 588 /* if more time remaining? */ 589 time_to_send = netem_skb_cb(skb)->time_to_send; 590 if (time_to_send <= psched_get_time()) { 591 rb_erase(p, &q->t_root); 592 593 sch->q.qlen--; 594 skb->next = NULL; 595 skb->prev = NULL; 596 skb->tstamp = netem_skb_cb(skb)->tstamp_save; 597 598 #ifdef CONFIG_NET_CLS_ACT 599 /* 600 * If it's at ingress let's pretend the delay is 601 * from the network (tstamp will be updated). 602 */ 603 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS) 604 skb->tstamp.tv64 = 0; 605 #endif 606 607 if (q->qdisc) { 608 int err = qdisc_enqueue(skb, q->qdisc); 609 610 if (unlikely(err != NET_XMIT_SUCCESS)) { 611 if (net_xmit_drop_count(err)) { 612 qdisc_qstats_drop(sch); 613 qdisc_tree_decrease_qlen(sch, 1); 614 } 615 } 616 goto tfifo_dequeue; 617 } 618 goto deliver; 619 } 620 621 if (q->qdisc) { 622 skb = q->qdisc->ops->dequeue(q->qdisc); 623 if (skb) 624 goto deliver; 625 } 626 qdisc_watchdog_schedule(&q->watchdog, time_to_send); 627 } 628 629 if (q->qdisc) { 630 skb = q->qdisc->ops->dequeue(q->qdisc); 631 if (skb) 632 goto deliver; 633 } 634 return NULL; 635 } 636 637 static void netem_reset(struct Qdisc *sch) 638 { 639 struct netem_sched_data *q = qdisc_priv(sch); 640 641 qdisc_reset_queue(sch); 642 tfifo_reset(sch); 643 if (q->qdisc) 644 qdisc_reset(q->qdisc); 645 qdisc_watchdog_cancel(&q->watchdog); 646 } 647 648 static void dist_free(struct disttable *d) 649 { 650 kvfree(d); 651 } 652 653 /* 654 * Distribution data is a variable size payload containing 655 * signed 16 bit values. 656 */ 657 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr) 658 { 659 struct netem_sched_data *q = qdisc_priv(sch); 660 size_t n = nla_len(attr)/sizeof(__s16); 661 const __s16 *data = nla_data(attr); 662 spinlock_t *root_lock; 663 struct disttable *d; 664 int i; 665 size_t s; 666 667 if (n > NETEM_DIST_MAX) 668 return -EINVAL; 669 670 s = sizeof(struct disttable) + n * sizeof(s16); 671 d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN); 672 if (!d) 673 d = vmalloc(s); 674 if (!d) 675 return -ENOMEM; 676 677 d->size = n; 678 for (i = 0; i < n; i++) 679 d->table[i] = data[i]; 680 681 root_lock = qdisc_root_sleeping_lock(sch); 682 683 spin_lock_bh(root_lock); 684 swap(q->delay_dist, d); 685 spin_unlock_bh(root_lock); 686 687 dist_free(d); 688 return 0; 689 } 690 691 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr) 692 { 693 const struct tc_netem_corr *c = nla_data(attr); 694 695 init_crandom(&q->delay_cor, c->delay_corr); 696 init_crandom(&q->loss_cor, c->loss_corr); 697 init_crandom(&q->dup_cor, c->dup_corr); 698 } 699 700 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr) 701 { 702 const struct tc_netem_reorder *r = nla_data(attr); 703 704 q->reorder = r->probability; 705 init_crandom(&q->reorder_cor, r->correlation); 706 } 707 708 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr) 709 { 710 const struct tc_netem_corrupt *r = nla_data(attr); 711 712 q->corrupt = r->probability; 713 init_crandom(&q->corrupt_cor, r->correlation); 714 } 715 716 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr) 717 { 718 const struct tc_netem_rate *r = nla_data(attr); 719 720 q->rate = r->rate; 721 q->packet_overhead = r->packet_overhead; 722 q->cell_size = r->cell_size; 723 q->cell_overhead = r->cell_overhead; 724 if (q->cell_size) 725 q->cell_size_reciprocal = reciprocal_value(q->cell_size); 726 else 727 q->cell_size_reciprocal = (struct reciprocal_value) { 0 }; 728 } 729 730 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr) 731 { 732 const struct nlattr *la; 733 int rem; 734 735 nla_for_each_nested(la, attr, rem) { 736 u16 type = nla_type(la); 737 738 switch (type) { 739 case NETEM_LOSS_GI: { 740 const struct tc_netem_gimodel *gi = nla_data(la); 741 742 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) { 743 pr_info("netem: incorrect gi model size\n"); 744 return -EINVAL; 745 } 746 747 q->loss_model = CLG_4_STATES; 748 749 q->clg.state = TX_IN_GAP_PERIOD; 750 q->clg.a1 = gi->p13; 751 q->clg.a2 = gi->p31; 752 q->clg.a3 = gi->p32; 753 q->clg.a4 = gi->p14; 754 q->clg.a5 = gi->p23; 755 break; 756 } 757 758 case NETEM_LOSS_GE: { 759 const struct tc_netem_gemodel *ge = nla_data(la); 760 761 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) { 762 pr_info("netem: incorrect ge model size\n"); 763 return -EINVAL; 764 } 765 766 q->loss_model = CLG_GILB_ELL; 767 q->clg.state = GOOD_STATE; 768 q->clg.a1 = ge->p; 769 q->clg.a2 = ge->r; 770 q->clg.a3 = ge->h; 771 q->clg.a4 = ge->k1; 772 break; 773 } 774 775 default: 776 pr_info("netem: unknown loss type %u\n", type); 777 return -EINVAL; 778 } 779 } 780 781 return 0; 782 } 783 784 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = { 785 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) }, 786 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) }, 787 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) }, 788 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) }, 789 [TCA_NETEM_LOSS] = { .type = NLA_NESTED }, 790 [TCA_NETEM_ECN] = { .type = NLA_U32 }, 791 [TCA_NETEM_RATE64] = { .type = NLA_U64 }, 792 }; 793 794 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla, 795 const struct nla_policy *policy, int len) 796 { 797 int nested_len = nla_len(nla) - NLA_ALIGN(len); 798 799 if (nested_len < 0) { 800 pr_info("netem: invalid attributes len %d\n", nested_len); 801 return -EINVAL; 802 } 803 804 if (nested_len >= nla_attr_size(0)) 805 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len), 806 nested_len, policy); 807 808 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); 809 return 0; 810 } 811 812 /* Parse netlink message to set options */ 813 static int netem_change(struct Qdisc *sch, struct nlattr *opt) 814 { 815 struct netem_sched_data *q = qdisc_priv(sch); 816 struct nlattr *tb[TCA_NETEM_MAX + 1]; 817 struct tc_netem_qopt *qopt; 818 struct clgstate old_clg; 819 int old_loss_model = CLG_RANDOM; 820 int ret; 821 822 if (opt == NULL) 823 return -EINVAL; 824 825 qopt = nla_data(opt); 826 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt)); 827 if (ret < 0) 828 return ret; 829 830 /* backup q->clg and q->loss_model */ 831 old_clg = q->clg; 832 old_loss_model = q->loss_model; 833 834 if (tb[TCA_NETEM_LOSS]) { 835 ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]); 836 if (ret) { 837 q->loss_model = old_loss_model; 838 return ret; 839 } 840 } else { 841 q->loss_model = CLG_RANDOM; 842 } 843 844 if (tb[TCA_NETEM_DELAY_DIST]) { 845 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]); 846 if (ret) { 847 /* recover clg and loss_model, in case of 848 * q->clg and q->loss_model were modified 849 * in get_loss_clg() 850 */ 851 q->clg = old_clg; 852 q->loss_model = old_loss_model; 853 return ret; 854 } 855 } 856 857 sch->limit = qopt->limit; 858 859 q->latency = qopt->latency; 860 q->jitter = qopt->jitter; 861 q->limit = qopt->limit; 862 q->gap = qopt->gap; 863 q->counter = 0; 864 q->loss = qopt->loss; 865 q->duplicate = qopt->duplicate; 866 867 /* for compatibility with earlier versions. 868 * if gap is set, need to assume 100% probability 869 */ 870 if (q->gap) 871 q->reorder = ~0; 872 873 if (tb[TCA_NETEM_CORR]) 874 get_correlation(q, tb[TCA_NETEM_CORR]); 875 876 if (tb[TCA_NETEM_REORDER]) 877 get_reorder(q, tb[TCA_NETEM_REORDER]); 878 879 if (tb[TCA_NETEM_CORRUPT]) 880 get_corrupt(q, tb[TCA_NETEM_CORRUPT]); 881 882 if (tb[TCA_NETEM_RATE]) 883 get_rate(q, tb[TCA_NETEM_RATE]); 884 885 if (tb[TCA_NETEM_RATE64]) 886 q->rate = max_t(u64, q->rate, 887 nla_get_u64(tb[TCA_NETEM_RATE64])); 888 889 if (tb[TCA_NETEM_ECN]) 890 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]); 891 892 return ret; 893 } 894 895 static int netem_init(struct Qdisc *sch, struct nlattr *opt) 896 { 897 struct netem_sched_data *q = qdisc_priv(sch); 898 int ret; 899 900 if (!opt) 901 return -EINVAL; 902 903 qdisc_watchdog_init(&q->watchdog, sch); 904 905 q->loss_model = CLG_RANDOM; 906 ret = netem_change(sch, opt); 907 if (ret) 908 pr_info("netem: change failed\n"); 909 return ret; 910 } 911 912 static void netem_destroy(struct Qdisc *sch) 913 { 914 struct netem_sched_data *q = qdisc_priv(sch); 915 916 qdisc_watchdog_cancel(&q->watchdog); 917 if (q->qdisc) 918 qdisc_destroy(q->qdisc); 919 dist_free(q->delay_dist); 920 } 921 922 static int dump_loss_model(const struct netem_sched_data *q, 923 struct sk_buff *skb) 924 { 925 struct nlattr *nest; 926 927 nest = nla_nest_start(skb, TCA_NETEM_LOSS); 928 if (nest == NULL) 929 goto nla_put_failure; 930 931 switch (q->loss_model) { 932 case CLG_RANDOM: 933 /* legacy loss model */ 934 nla_nest_cancel(skb, nest); 935 return 0; /* no data */ 936 937 case CLG_4_STATES: { 938 struct tc_netem_gimodel gi = { 939 .p13 = q->clg.a1, 940 .p31 = q->clg.a2, 941 .p32 = q->clg.a3, 942 .p14 = q->clg.a4, 943 .p23 = q->clg.a5, 944 }; 945 946 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi)) 947 goto nla_put_failure; 948 break; 949 } 950 case CLG_GILB_ELL: { 951 struct tc_netem_gemodel ge = { 952 .p = q->clg.a1, 953 .r = q->clg.a2, 954 .h = q->clg.a3, 955 .k1 = q->clg.a4, 956 }; 957 958 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge)) 959 goto nla_put_failure; 960 break; 961 } 962 } 963 964 nla_nest_end(skb, nest); 965 return 0; 966 967 nla_put_failure: 968 nla_nest_cancel(skb, nest); 969 return -1; 970 } 971 972 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb) 973 { 974 const struct netem_sched_data *q = qdisc_priv(sch); 975 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb); 976 struct tc_netem_qopt qopt; 977 struct tc_netem_corr cor; 978 struct tc_netem_reorder reorder; 979 struct tc_netem_corrupt corrupt; 980 struct tc_netem_rate rate; 981 982 qopt.latency = q->latency; 983 qopt.jitter = q->jitter; 984 qopt.limit = q->limit; 985 qopt.loss = q->loss; 986 qopt.gap = q->gap; 987 qopt.duplicate = q->duplicate; 988 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) 989 goto nla_put_failure; 990 991 cor.delay_corr = q->delay_cor.rho; 992 cor.loss_corr = q->loss_cor.rho; 993 cor.dup_corr = q->dup_cor.rho; 994 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor)) 995 goto nla_put_failure; 996 997 reorder.probability = q->reorder; 998 reorder.correlation = q->reorder_cor.rho; 999 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder)) 1000 goto nla_put_failure; 1001 1002 corrupt.probability = q->corrupt; 1003 corrupt.correlation = q->corrupt_cor.rho; 1004 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt)) 1005 goto nla_put_failure; 1006 1007 if (q->rate >= (1ULL << 32)) { 1008 if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate)) 1009 goto nla_put_failure; 1010 rate.rate = ~0U; 1011 } else { 1012 rate.rate = q->rate; 1013 } 1014 rate.packet_overhead = q->packet_overhead; 1015 rate.cell_size = q->cell_size; 1016 rate.cell_overhead = q->cell_overhead; 1017 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate)) 1018 goto nla_put_failure; 1019 1020 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn)) 1021 goto nla_put_failure; 1022 1023 if (dump_loss_model(q, skb) != 0) 1024 goto nla_put_failure; 1025 1026 return nla_nest_end(skb, nla); 1027 1028 nla_put_failure: 1029 nlmsg_trim(skb, nla); 1030 return -1; 1031 } 1032 1033 static int netem_dump_class(struct Qdisc *sch, unsigned long cl, 1034 struct sk_buff *skb, struct tcmsg *tcm) 1035 { 1036 struct netem_sched_data *q = qdisc_priv(sch); 1037 1038 if (cl != 1 || !q->qdisc) /* only one class */ 1039 return -ENOENT; 1040 1041 tcm->tcm_handle |= TC_H_MIN(1); 1042 tcm->tcm_info = q->qdisc->handle; 1043 1044 return 0; 1045 } 1046 1047 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1048 struct Qdisc **old) 1049 { 1050 struct netem_sched_data *q = qdisc_priv(sch); 1051 1052 sch_tree_lock(sch); 1053 *old = q->qdisc; 1054 q->qdisc = new; 1055 if (*old) { 1056 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen); 1057 qdisc_reset(*old); 1058 } 1059 sch_tree_unlock(sch); 1060 1061 return 0; 1062 } 1063 1064 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg) 1065 { 1066 struct netem_sched_data *q = qdisc_priv(sch); 1067 return q->qdisc; 1068 } 1069 1070 static unsigned long netem_get(struct Qdisc *sch, u32 classid) 1071 { 1072 return 1; 1073 } 1074 1075 static void netem_put(struct Qdisc *sch, unsigned long arg) 1076 { 1077 } 1078 1079 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker) 1080 { 1081 if (!walker->stop) { 1082 if (walker->count >= walker->skip) 1083 if (walker->fn(sch, 1, walker) < 0) { 1084 walker->stop = 1; 1085 return; 1086 } 1087 walker->count++; 1088 } 1089 } 1090 1091 static const struct Qdisc_class_ops netem_class_ops = { 1092 .graft = netem_graft, 1093 .leaf = netem_leaf, 1094 .get = netem_get, 1095 .put = netem_put, 1096 .walk = netem_walk, 1097 .dump = netem_dump_class, 1098 }; 1099 1100 static struct Qdisc_ops netem_qdisc_ops __read_mostly = { 1101 .id = "netem", 1102 .cl_ops = &netem_class_ops, 1103 .priv_size = sizeof(struct netem_sched_data), 1104 .enqueue = netem_enqueue, 1105 .dequeue = netem_dequeue, 1106 .peek = qdisc_peek_dequeued, 1107 .drop = netem_drop, 1108 .init = netem_init, 1109 .reset = netem_reset, 1110 .destroy = netem_destroy, 1111 .change = netem_change, 1112 .dump = netem_dump, 1113 .owner = THIS_MODULE, 1114 }; 1115 1116 1117 static int __init netem_module_init(void) 1118 { 1119 pr_info("netem: version " VERSION "\n"); 1120 return register_qdisc(&netem_qdisc_ops); 1121 } 1122 static void __exit netem_module_exit(void) 1123 { 1124 unregister_qdisc(&netem_qdisc_ops); 1125 } 1126 module_init(netem_module_init) 1127 module_exit(netem_module_exit) 1128 MODULE_LICENSE("GPL"); 1129