xref: /linux/net/sched/sch_hhf.c (revision f788bb2fb915a79eae0a160580766ba52984d61f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* net/sched/sch_hhf.c		Heavy-Hitter Filter (HHF)
3  *
4  * Copyright (C) 2013 Terry Lam <vtlam@google.com>
5  * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com>
6  */
7 
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/skbuff.h>
11 #include <linux/vmalloc.h>
12 #include <linux/siphash.h>
13 #include <net/pkt_sched.h>
14 #include <net/sock.h>
15 
16 /*	Heavy-Hitter Filter (HHF)
17  *
18  * Principles :
19  * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter
20  * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified
21  * as heavy-hitter, it is immediately switched to the heavy-hitter bucket.
22  * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler,
23  * in which the heavy-hitter bucket is served with less weight.
24  * In other words, non-heavy-hitters (e.g., short bursts of critical traffic)
25  * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have
26  * higher share of bandwidth.
27  *
28  * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the
29  * following paper:
30  * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and
31  * Accounting", in ACM SIGCOMM, 2002.
32  *
33  * Conceptually, a multi-stage filter comprises k independent hash functions
34  * and k counter arrays. Packets are indexed into k counter arrays by k hash
35  * functions, respectively. The counters are then increased by the packet sizes.
36  * Therefore,
37  *    - For a heavy-hitter flow: *all* of its k array counters must be large.
38  *    - For a non-heavy-hitter flow: some of its k array counters can be large
39  *      due to hash collision with other small flows; however, with high
40  *      probability, not *all* k counters are large.
41  *
42  * By the design of the multi-stage filter algorithm, the false negative rate
43  * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is
44  * susceptible to false positives (non-heavy-hitters mistakenly classified as
45  * heavy-hitters).
46  * Therefore, we also implement the following optimizations to reduce false
47  * positives by avoiding unnecessary increment of the counter values:
48  *    - Optimization O1: once a heavy-hitter is identified, its bytes are not
49  *        accounted in the array counters. This technique is called "shielding"
50  *        in Section 3.3.1 of [EV02].
51  *    - Optimization O2: conservative update of counters
52  *                       (Section 3.3.2 of [EV02]),
53  *        New counter value = max {old counter value,
54  *                                 smallest counter value + packet bytes}
55  *
56  * Finally, we refresh the counters periodically since otherwise the counter
57  * values will keep accumulating.
58  *
59  * Once a flow is classified as heavy-hitter, we also save its per-flow state
60  * in an exact-matching flow table so that its subsequent packets can be
61  * dispatched to the heavy-hitter bucket accordingly.
62  *
63  *
64  * At a high level, this qdisc works as follows:
65  * Given a packet p:
66  *   - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching
67  *     heavy-hitter flow table, denoted table T, then send p to the heavy-hitter
68  *     bucket.
69  *   - Otherwise, forward p to the multi-stage filter, denoted filter F
70  *        + If F decides that p belongs to a non-heavy-hitter flow, then send p
71  *          to the non-heavy-hitter bucket.
72  *        + Otherwise, if F decides that p belongs to a new heavy-hitter flow,
73  *          then set up a new flow entry for the flow-id of p in the table T and
74  *          send p to the heavy-hitter bucket.
75  *
76  * In this implementation:
77  *   - T is a fixed-size hash-table with 1024 entries. Hash collision is
78  *     resolved by linked-list chaining.
79  *   - F has four counter arrays, each array containing 1024 32-bit counters.
80  *     That means 4 * 1024 * 32 bits = 16KB of memory.
81  *   - Since each array in F contains 1024 counters, 10 bits are sufficient to
82  *     index into each array.
83  *     Hence, instead of having four hash functions, we chop the 32-bit
84  *     skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is
85  *     computed as XOR sum of those three chunks.
86  *   - We need to clear the counter arrays periodically; however, directly
87  *     memsetting 16KB of memory can lead to cache eviction and unwanted delay.
88  *     So by representing each counter by a valid bit, we only need to reset
89  *     4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory.
90  *   - The Deficit Round Robin engine is taken from fq_codel implementation
91  *     (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to
92  *     fq_codel_flow in fq_codel implementation.
93  *
94  */
95 
96 /* Non-configurable parameters */
97 #define HH_FLOWS_CNT	 1024  /* number of entries in exact-matching table T */
98 #define HHF_ARRAYS_CNT	 4     /* number of arrays in multi-stage filter F */
99 #define HHF_ARRAYS_LEN	 1024  /* number of counters in each array of F */
100 #define HHF_BIT_MASK_LEN 10    /* masking 10 bits */
101 #define HHF_BIT_MASK	 0x3FF /* bitmask of 10 bits */
102 
103 #define WDRR_BUCKET_CNT  2     /* two buckets for Weighted DRR */
104 enum wdrr_bucket_idx {
105 	WDRR_BUCKET_FOR_HH	= 0, /* bucket id for heavy-hitters */
106 	WDRR_BUCKET_FOR_NON_HH	= 1  /* bucket id for non-heavy-hitters */
107 };
108 
109 #define hhf_time_before(a, b)	\
110 	(typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0))
111 
112 /* Heavy-hitter per-flow state */
113 struct hh_flow_state {
114 	u32		 hash_id;	/* hash of flow-id (e.g. TCP 5-tuple) */
115 	u32		 hit_timestamp;	/* last time heavy-hitter was seen */
116 	struct list_head flowchain;	/* chaining under hash collision */
117 };
118 
119 /* Weighted Deficit Round Robin (WDRR) scheduler */
120 struct wdrr_bucket {
121 	struct sk_buff	  *head;
122 	struct sk_buff	  *tail;
123 	struct list_head  bucketchain;
124 	int		  deficit;
125 };
126 
127 struct hhf_sched_data {
128 	struct wdrr_bucket buckets[WDRR_BUCKET_CNT];
129 	siphash_key_t	   perturbation;   /* hash perturbation */
130 	u32		   quantum;        /* psched_mtu(qdisc_dev(sch)); */
131 	u32		   drop_overlimit; /* number of times max qdisc packet
132 					    * limit was hit
133 					    */
134 	struct list_head   *hh_flows;       /* table T (currently active HHs) */
135 	u32		   hh_flows_limit;            /* max active HH allocs */
136 	u32		   hh_flows_overlimit; /* num of disallowed HH allocs */
137 	u32		   hh_flows_total_cnt;          /* total admitted HHs */
138 	u32		   hh_flows_current_cnt;        /* total current HHs  */
139 	u32		   *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */
140 	u32		   hhf_arrays_reset_timestamp;  /* last time hhf_arrays
141 							 * was reset
142 							 */
143 	unsigned long	   *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits
144 							     * of hhf_arrays
145 							     */
146 	/* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */
147 	struct list_head   new_buckets; /* list of new buckets */
148 	struct list_head   old_buckets; /* list of old buckets */
149 
150 	/* Configurable HHF parameters */
151 	u32		   hhf_reset_timeout; /* interval to reset counter
152 					       * arrays in filter F
153 					       * (default 40ms)
154 					       */
155 	u32		   hhf_admit_bytes;   /* counter thresh to classify as
156 					       * HH (default 128KB).
157 					       * With these default values,
158 					       * 128KB / 40ms = 25 Mbps
159 					       * i.e., we expect to capture HHs
160 					       * sending > 25 Mbps.
161 					       */
162 	u32		   hhf_evict_timeout; /* aging threshold to evict idle
163 					       * HHs out of table T. This should
164 					       * be large enough to avoid
165 					       * reordering during HH eviction.
166 					       * (default 1s)
167 					       */
168 	u32		   hhf_non_hh_weight; /* WDRR weight for non-HHs
169 					       * (default 2,
170 					       *  i.e., non-HH : HH = 2 : 1)
171 					       */
172 };
173 
174 static u32 hhf_time_stamp(void)
175 {
176 	return jiffies;
177 }
178 
179 /* Looks up a heavy-hitter flow in a chaining list of table T. */
180 static struct hh_flow_state *seek_list(const u32 hash,
181 				       struct list_head *head,
182 				       struct hhf_sched_data *q)
183 {
184 	struct hh_flow_state *flow, *next;
185 	u32 now = hhf_time_stamp();
186 
187 	if (list_empty(head))
188 		return NULL;
189 
190 	list_for_each_entry_safe(flow, next, head, flowchain) {
191 		u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
192 
193 		if (hhf_time_before(prev, now)) {
194 			/* Delete expired heavy-hitters, but preserve one entry
195 			 * to avoid kzalloc() when next time this slot is hit.
196 			 */
197 			if (list_is_last(&flow->flowchain, head))
198 				return NULL;
199 			list_del(&flow->flowchain);
200 			kfree(flow);
201 			q->hh_flows_current_cnt--;
202 		} else if (flow->hash_id == hash) {
203 			return flow;
204 		}
205 	}
206 	return NULL;
207 }
208 
209 /* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired
210  * entry or dynamically alloc a new entry.
211  */
212 static struct hh_flow_state *alloc_new_hh(struct list_head *head,
213 					  struct hhf_sched_data *q)
214 {
215 	struct hh_flow_state *flow;
216 	u32 now = hhf_time_stamp();
217 
218 	if (!list_empty(head)) {
219 		/* Find an expired heavy-hitter flow entry. */
220 		list_for_each_entry(flow, head, flowchain) {
221 			u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
222 
223 			if (hhf_time_before(prev, now))
224 				return flow;
225 		}
226 	}
227 
228 	if (q->hh_flows_current_cnt >= q->hh_flows_limit) {
229 		q->hh_flows_overlimit++;
230 		return NULL;
231 	}
232 	/* Create new entry. */
233 	flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC);
234 	if (!flow)
235 		return NULL;
236 
237 	q->hh_flows_current_cnt++;
238 	INIT_LIST_HEAD(&flow->flowchain);
239 	list_add_tail(&flow->flowchain, head);
240 
241 	return flow;
242 }
243 
244 /* Assigns packets to WDRR buckets.  Implements a multi-stage filter to
245  * classify heavy-hitters.
246  */
247 static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch)
248 {
249 	struct hhf_sched_data *q = qdisc_priv(sch);
250 	u32 tmp_hash, hash;
251 	u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos;
252 	struct hh_flow_state *flow;
253 	u32 pkt_len, min_hhf_val;
254 	int i;
255 	u32 prev;
256 	u32 now = hhf_time_stamp();
257 
258 	/* Reset the HHF counter arrays if this is the right time. */
259 	prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout;
260 	if (hhf_time_before(prev, now)) {
261 		for (i = 0; i < HHF_ARRAYS_CNT; i++)
262 			bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN);
263 		q->hhf_arrays_reset_timestamp = now;
264 	}
265 
266 	/* Get hashed flow-id of the skb. */
267 	hash = skb_get_hash_perturb(skb, &q->perturbation);
268 
269 	/* Check if this packet belongs to an already established HH flow. */
270 	flow_pos = hash & HHF_BIT_MASK;
271 	flow = seek_list(hash, &q->hh_flows[flow_pos], q);
272 	if (flow) { /* found its HH flow */
273 		flow->hit_timestamp = now;
274 		return WDRR_BUCKET_FOR_HH;
275 	}
276 
277 	/* Now pass the packet through the multi-stage filter. */
278 	tmp_hash = hash;
279 	xorsum = 0;
280 	for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) {
281 		/* Split the skb_hash into three 10-bit chunks. */
282 		filter_pos[i] = tmp_hash & HHF_BIT_MASK;
283 		xorsum ^= filter_pos[i];
284 		tmp_hash >>= HHF_BIT_MASK_LEN;
285 	}
286 	/* The last chunk is computed as XOR sum of other chunks. */
287 	filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash;
288 
289 	pkt_len = qdisc_pkt_len(skb);
290 	min_hhf_val = ~0U;
291 	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
292 		u32 val;
293 
294 		if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) {
295 			q->hhf_arrays[i][filter_pos[i]] = 0;
296 			__set_bit(filter_pos[i], q->hhf_valid_bits[i]);
297 		}
298 
299 		val = q->hhf_arrays[i][filter_pos[i]] + pkt_len;
300 		if (min_hhf_val > val)
301 			min_hhf_val = val;
302 	}
303 
304 	/* Found a new HH iff all counter values > HH admit threshold. */
305 	if (min_hhf_val > q->hhf_admit_bytes) {
306 		/* Just captured a new heavy-hitter. */
307 		flow = alloc_new_hh(&q->hh_flows[flow_pos], q);
308 		if (!flow) /* memory alloc problem */
309 			return WDRR_BUCKET_FOR_NON_HH;
310 		flow->hash_id = hash;
311 		flow->hit_timestamp = now;
312 		q->hh_flows_total_cnt++;
313 
314 		/* By returning without updating counters in q->hhf_arrays,
315 		 * we implicitly implement "shielding" (see Optimization O1).
316 		 */
317 		return WDRR_BUCKET_FOR_HH;
318 	}
319 
320 	/* Conservative update of HHF arrays (see Optimization O2). */
321 	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
322 		if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val)
323 			q->hhf_arrays[i][filter_pos[i]] = min_hhf_val;
324 	}
325 	return WDRR_BUCKET_FOR_NON_HH;
326 }
327 
328 /* Removes one skb from head of bucket. */
329 static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket)
330 {
331 	struct sk_buff *skb = bucket->head;
332 
333 	bucket->head = skb->next;
334 	skb_mark_not_on_list(skb);
335 	return skb;
336 }
337 
338 /* Tail-adds skb to bucket. */
339 static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb)
340 {
341 	if (bucket->head == NULL)
342 		bucket->head = skb;
343 	else
344 		bucket->tail->next = skb;
345 	bucket->tail = skb;
346 	skb->next = NULL;
347 }
348 
349 static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free)
350 {
351 	struct hhf_sched_data *q = qdisc_priv(sch);
352 	struct wdrr_bucket *bucket;
353 
354 	/* Always try to drop from heavy-hitters first. */
355 	bucket = &q->buckets[WDRR_BUCKET_FOR_HH];
356 	if (!bucket->head)
357 		bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH];
358 
359 	if (bucket->head) {
360 		struct sk_buff *skb = dequeue_head(bucket);
361 
362 		sch->q.qlen--;
363 		qdisc_qstats_backlog_dec(sch, skb);
364 		qdisc_drop(skb, sch, to_free);
365 	}
366 
367 	/* Return id of the bucket from which the packet was dropped. */
368 	return bucket - q->buckets;
369 }
370 
371 static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
372 		       struct sk_buff **to_free)
373 {
374 	struct hhf_sched_data *q = qdisc_priv(sch);
375 	enum wdrr_bucket_idx idx;
376 	struct wdrr_bucket *bucket;
377 	unsigned int prev_backlog;
378 
379 	idx = hhf_classify(skb, sch);
380 
381 	bucket = &q->buckets[idx];
382 	bucket_add(bucket, skb);
383 	qdisc_qstats_backlog_inc(sch, skb);
384 
385 	if (list_empty(&bucket->bucketchain)) {
386 		unsigned int weight;
387 
388 		/* The logic of new_buckets vs. old_buckets is the same as
389 		 * new_flows vs. old_flows in the implementation of fq_codel,
390 		 * i.e., short bursts of non-HHs should have strict priority.
391 		 */
392 		if (idx == WDRR_BUCKET_FOR_HH) {
393 			/* Always move heavy-hitters to old bucket. */
394 			weight = 1;
395 			list_add_tail(&bucket->bucketchain, &q->old_buckets);
396 		} else {
397 			weight = q->hhf_non_hh_weight;
398 			list_add_tail(&bucket->bucketchain, &q->new_buckets);
399 		}
400 		bucket->deficit = weight * q->quantum;
401 	}
402 	if (++sch->q.qlen <= sch->limit)
403 		return NET_XMIT_SUCCESS;
404 
405 	prev_backlog = sch->qstats.backlog;
406 	q->drop_overlimit++;
407 	/* Return Congestion Notification only if we dropped a packet from this
408 	 * bucket.
409 	 */
410 	if (hhf_drop(sch, to_free) == idx)
411 		return NET_XMIT_CN;
412 
413 	/* As we dropped a packet, better let upper stack know this. */
414 	qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog);
415 	return NET_XMIT_SUCCESS;
416 }
417 
418 static struct sk_buff *hhf_dequeue(struct Qdisc *sch)
419 {
420 	struct hhf_sched_data *q = qdisc_priv(sch);
421 	struct sk_buff *skb = NULL;
422 	struct wdrr_bucket *bucket;
423 	struct list_head *head;
424 
425 begin:
426 	head = &q->new_buckets;
427 	if (list_empty(head)) {
428 		head = &q->old_buckets;
429 		if (list_empty(head))
430 			return NULL;
431 	}
432 	bucket = list_first_entry(head, struct wdrr_bucket, bucketchain);
433 
434 	if (bucket->deficit <= 0) {
435 		int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ?
436 			      1 : q->hhf_non_hh_weight;
437 
438 		bucket->deficit += weight * q->quantum;
439 		list_move_tail(&bucket->bucketchain, &q->old_buckets);
440 		goto begin;
441 	}
442 
443 	if (bucket->head) {
444 		skb = dequeue_head(bucket);
445 		sch->q.qlen--;
446 		qdisc_qstats_backlog_dec(sch, skb);
447 	}
448 
449 	if (!skb) {
450 		/* Force a pass through old_buckets to prevent starvation. */
451 		if ((head == &q->new_buckets) && !list_empty(&q->old_buckets))
452 			list_move_tail(&bucket->bucketchain, &q->old_buckets);
453 		else
454 			list_del_init(&bucket->bucketchain);
455 		goto begin;
456 	}
457 	qdisc_bstats_update(sch, skb);
458 	bucket->deficit -= qdisc_pkt_len(skb);
459 
460 	return skb;
461 }
462 
463 static void hhf_reset(struct Qdisc *sch)
464 {
465 	struct sk_buff *skb;
466 
467 	while ((skb = hhf_dequeue(sch)) != NULL)
468 		rtnl_kfree_skbs(skb, skb);
469 }
470 
471 static void hhf_destroy(struct Qdisc *sch)
472 {
473 	int i;
474 	struct hhf_sched_data *q = qdisc_priv(sch);
475 
476 	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
477 		kvfree(q->hhf_arrays[i]);
478 		kvfree(q->hhf_valid_bits[i]);
479 	}
480 
481 	if (!q->hh_flows)
482 		return;
483 
484 	for (i = 0; i < HH_FLOWS_CNT; i++) {
485 		struct hh_flow_state *flow, *next;
486 		struct list_head *head = &q->hh_flows[i];
487 
488 		if (list_empty(head))
489 			continue;
490 		list_for_each_entry_safe(flow, next, head, flowchain) {
491 			list_del(&flow->flowchain);
492 			kfree(flow);
493 		}
494 	}
495 	kvfree(q->hh_flows);
496 }
497 
498 static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = {
499 	[TCA_HHF_BACKLOG_LIMIT]	 = { .type = NLA_U32 },
500 	[TCA_HHF_QUANTUM]	 = { .type = NLA_U32 },
501 	[TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 },
502 	[TCA_HHF_RESET_TIMEOUT]	 = { .type = NLA_U32 },
503 	[TCA_HHF_ADMIT_BYTES]	 = { .type = NLA_U32 },
504 	[TCA_HHF_EVICT_TIMEOUT]	 = { .type = NLA_U32 },
505 	[TCA_HHF_NON_HH_WEIGHT]	 = { .type = NLA_U32 },
506 };
507 
508 static int hhf_change(struct Qdisc *sch, struct nlattr *opt,
509 		      struct netlink_ext_ack *extack)
510 {
511 	struct hhf_sched_data *q = qdisc_priv(sch);
512 	struct nlattr *tb[TCA_HHF_MAX + 1];
513 	unsigned int qlen, prev_backlog;
514 	int err;
515 	u64 non_hh_quantum;
516 	u32 new_quantum = q->quantum;
517 	u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight;
518 
519 	if (!opt)
520 		return -EINVAL;
521 
522 	err = nla_parse_nested_deprecated(tb, TCA_HHF_MAX, opt, hhf_policy,
523 					  NULL);
524 	if (err < 0)
525 		return err;
526 
527 	if (tb[TCA_HHF_QUANTUM])
528 		new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]);
529 
530 	if (tb[TCA_HHF_NON_HH_WEIGHT])
531 		new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]);
532 
533 	non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight;
534 	if (non_hh_quantum == 0 || non_hh_quantum > INT_MAX)
535 		return -EINVAL;
536 
537 	sch_tree_lock(sch);
538 
539 	if (tb[TCA_HHF_BACKLOG_LIMIT])
540 		sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]);
541 
542 	q->quantum = new_quantum;
543 	q->hhf_non_hh_weight = new_hhf_non_hh_weight;
544 
545 	if (tb[TCA_HHF_HH_FLOWS_LIMIT])
546 		q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]);
547 
548 	if (tb[TCA_HHF_RESET_TIMEOUT]) {
549 		u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]);
550 
551 		q->hhf_reset_timeout = usecs_to_jiffies(us);
552 	}
553 
554 	if (tb[TCA_HHF_ADMIT_BYTES])
555 		q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]);
556 
557 	if (tb[TCA_HHF_EVICT_TIMEOUT]) {
558 		u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]);
559 
560 		q->hhf_evict_timeout = usecs_to_jiffies(us);
561 	}
562 
563 	qlen = sch->q.qlen;
564 	prev_backlog = sch->qstats.backlog;
565 	while (sch->q.qlen > sch->limit) {
566 		struct sk_buff *skb = hhf_dequeue(sch);
567 
568 		rtnl_kfree_skbs(skb, skb);
569 	}
570 	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen,
571 				  prev_backlog - sch->qstats.backlog);
572 
573 	sch_tree_unlock(sch);
574 	return 0;
575 }
576 
577 static int hhf_init(struct Qdisc *sch, struct nlattr *opt,
578 		    struct netlink_ext_ack *extack)
579 {
580 	struct hhf_sched_data *q = qdisc_priv(sch);
581 	int i;
582 
583 	sch->limit = 1000;
584 	q->quantum = psched_mtu(qdisc_dev(sch));
585 	get_random_bytes(&q->perturbation, sizeof(q->perturbation));
586 	INIT_LIST_HEAD(&q->new_buckets);
587 	INIT_LIST_HEAD(&q->old_buckets);
588 
589 	/* Configurable HHF parameters */
590 	q->hhf_reset_timeout = HZ / 25; /* 40  ms */
591 	q->hhf_admit_bytes = 131072;    /* 128 KB */
592 	q->hhf_evict_timeout = HZ;      /* 1  sec */
593 	q->hhf_non_hh_weight = 2;
594 
595 	if (opt) {
596 		int err = hhf_change(sch, opt, extack);
597 
598 		if (err)
599 			return err;
600 	}
601 
602 	if (!q->hh_flows) {
603 		/* Initialize heavy-hitter flow table. */
604 		q->hh_flows = kvcalloc(HH_FLOWS_CNT, sizeof(struct list_head),
605 				       GFP_KERNEL);
606 		if (!q->hh_flows)
607 			return -ENOMEM;
608 		for (i = 0; i < HH_FLOWS_CNT; i++)
609 			INIT_LIST_HEAD(&q->hh_flows[i]);
610 
611 		/* Cap max active HHs at twice len of hh_flows table. */
612 		q->hh_flows_limit = 2 * HH_FLOWS_CNT;
613 		q->hh_flows_overlimit = 0;
614 		q->hh_flows_total_cnt = 0;
615 		q->hh_flows_current_cnt = 0;
616 
617 		/* Initialize heavy-hitter filter arrays. */
618 		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
619 			q->hhf_arrays[i] = kvcalloc(HHF_ARRAYS_LEN,
620 						    sizeof(u32),
621 						    GFP_KERNEL);
622 			if (!q->hhf_arrays[i]) {
623 				/* Note: hhf_destroy() will be called
624 				 * by our caller.
625 				 */
626 				return -ENOMEM;
627 			}
628 		}
629 		q->hhf_arrays_reset_timestamp = hhf_time_stamp();
630 
631 		/* Initialize valid bits of heavy-hitter filter arrays. */
632 		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
633 			q->hhf_valid_bits[i] = kvzalloc(HHF_ARRAYS_LEN /
634 							  BITS_PER_BYTE, GFP_KERNEL);
635 			if (!q->hhf_valid_bits[i]) {
636 				/* Note: hhf_destroy() will be called
637 				 * by our caller.
638 				 */
639 				return -ENOMEM;
640 			}
641 		}
642 
643 		/* Initialize Weighted DRR buckets. */
644 		for (i = 0; i < WDRR_BUCKET_CNT; i++) {
645 			struct wdrr_bucket *bucket = q->buckets + i;
646 
647 			INIT_LIST_HEAD(&bucket->bucketchain);
648 		}
649 	}
650 
651 	return 0;
652 }
653 
654 static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb)
655 {
656 	struct hhf_sched_data *q = qdisc_priv(sch);
657 	struct nlattr *opts;
658 
659 	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
660 	if (opts == NULL)
661 		goto nla_put_failure;
662 
663 	if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) ||
664 	    nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) ||
665 	    nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) ||
666 	    nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT,
667 			jiffies_to_usecs(q->hhf_reset_timeout)) ||
668 	    nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) ||
669 	    nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT,
670 			jiffies_to_usecs(q->hhf_evict_timeout)) ||
671 	    nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight))
672 		goto nla_put_failure;
673 
674 	return nla_nest_end(skb, opts);
675 
676 nla_put_failure:
677 	return -1;
678 }
679 
680 static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
681 {
682 	struct hhf_sched_data *q = qdisc_priv(sch);
683 	struct tc_hhf_xstats st = {
684 		.drop_overlimit = q->drop_overlimit,
685 		.hh_overlimit	= q->hh_flows_overlimit,
686 		.hh_tot_count	= q->hh_flows_total_cnt,
687 		.hh_cur_count	= q->hh_flows_current_cnt,
688 	};
689 
690 	return gnet_stats_copy_app(d, &st, sizeof(st));
691 }
692 
693 static struct Qdisc_ops hhf_qdisc_ops __read_mostly = {
694 	.id		=	"hhf",
695 	.priv_size	=	sizeof(struct hhf_sched_data),
696 
697 	.enqueue	=	hhf_enqueue,
698 	.dequeue	=	hhf_dequeue,
699 	.peek		=	qdisc_peek_dequeued,
700 	.init		=	hhf_init,
701 	.reset		=	hhf_reset,
702 	.destroy	=	hhf_destroy,
703 	.change		=	hhf_change,
704 	.dump		=	hhf_dump,
705 	.dump_stats	=	hhf_dump_stats,
706 	.owner		=	THIS_MODULE,
707 };
708 
709 static int __init hhf_module_init(void)
710 {
711 	return register_qdisc(&hhf_qdisc_ops);
712 }
713 
714 static void __exit hhf_module_exit(void)
715 {
716 	unregister_qdisc(&hhf_qdisc_ops);
717 }
718 
719 module_init(hhf_module_init)
720 module_exit(hhf_module_exit)
721 MODULE_AUTHOR("Terry Lam");
722 MODULE_AUTHOR("Nandita Dukkipati");
723 MODULE_LICENSE("GPL");
724 MODULE_DESCRIPTION("Heavy-Hitter Filter (HHF)");
725