xref: /linux/net/sched/sch_hhf.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /* net/sched/sch_hhf.c		Heavy-Hitter Filter (HHF)
2  *
3  * Copyright (C) 2013 Terry Lam <vtlam@google.com>
4  * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com>
5  */
6 
7 #include <linux/jhash.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/skbuff.h>
11 #include <linux/vmalloc.h>
12 #include <net/flow_keys.h>
13 #include <net/pkt_sched.h>
14 #include <net/sock.h>
15 
16 /*	Heavy-Hitter Filter (HHF)
17  *
18  * Principles :
19  * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter
20  * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified
21  * as heavy-hitter, it is immediately switched to the heavy-hitter bucket.
22  * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler,
23  * in which the heavy-hitter bucket is served with less weight.
24  * In other words, non-heavy-hitters (e.g., short bursts of critical traffic)
25  * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have
26  * higher share of bandwidth.
27  *
28  * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the
29  * following paper:
30  * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and
31  * Accounting", in ACM SIGCOMM, 2002.
32  *
33  * Conceptually, a multi-stage filter comprises k independent hash functions
34  * and k counter arrays. Packets are indexed into k counter arrays by k hash
35  * functions, respectively. The counters are then increased by the packet sizes.
36  * Therefore,
37  *    - For a heavy-hitter flow: *all* of its k array counters must be large.
38  *    - For a non-heavy-hitter flow: some of its k array counters can be large
39  *      due to hash collision with other small flows; however, with high
40  *      probability, not *all* k counters are large.
41  *
42  * By the design of the multi-stage filter algorithm, the false negative rate
43  * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is
44  * susceptible to false positives (non-heavy-hitters mistakenly classified as
45  * heavy-hitters).
46  * Therefore, we also implement the following optimizations to reduce false
47  * positives by avoiding unnecessary increment of the counter values:
48  *    - Optimization O1: once a heavy-hitter is identified, its bytes are not
49  *        accounted in the array counters. This technique is called "shielding"
50  *        in Section 3.3.1 of [EV02].
51  *    - Optimization O2: conservative update of counters
52  *                       (Section 3.3.2 of [EV02]),
53  *        New counter value = max {old counter value,
54  *                                 smallest counter value + packet bytes}
55  *
56  * Finally, we refresh the counters periodically since otherwise the counter
57  * values will keep accumulating.
58  *
59  * Once a flow is classified as heavy-hitter, we also save its per-flow state
60  * in an exact-matching flow table so that its subsequent packets can be
61  * dispatched to the heavy-hitter bucket accordingly.
62  *
63  *
64  * At a high level, this qdisc works as follows:
65  * Given a packet p:
66  *   - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching
67  *     heavy-hitter flow table, denoted table T, then send p to the heavy-hitter
68  *     bucket.
69  *   - Otherwise, forward p to the multi-stage filter, denoted filter F
70  *        + If F decides that p belongs to a non-heavy-hitter flow, then send p
71  *          to the non-heavy-hitter bucket.
72  *        + Otherwise, if F decides that p belongs to a new heavy-hitter flow,
73  *          then set up a new flow entry for the flow-id of p in the table T and
74  *          send p to the heavy-hitter bucket.
75  *
76  * In this implementation:
77  *   - T is a fixed-size hash-table with 1024 entries. Hash collision is
78  *     resolved by linked-list chaining.
79  *   - F has four counter arrays, each array containing 1024 32-bit counters.
80  *     That means 4 * 1024 * 32 bits = 16KB of memory.
81  *   - Since each array in F contains 1024 counters, 10 bits are sufficient to
82  *     index into each array.
83  *     Hence, instead of having four hash functions, we chop the 32-bit
84  *     skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is
85  *     computed as XOR sum of those three chunks.
86  *   - We need to clear the counter arrays periodically; however, directly
87  *     memsetting 16KB of memory can lead to cache eviction and unwanted delay.
88  *     So by representing each counter by a valid bit, we only need to reset
89  *     4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory.
90  *   - The Deficit Round Robin engine is taken from fq_codel implementation
91  *     (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to
92  *     fq_codel_flow in fq_codel implementation.
93  *
94  */
95 
96 /* Non-configurable parameters */
97 #define HH_FLOWS_CNT	 1024  /* number of entries in exact-matching table T */
98 #define HHF_ARRAYS_CNT	 4     /* number of arrays in multi-stage filter F */
99 #define HHF_ARRAYS_LEN	 1024  /* number of counters in each array of F */
100 #define HHF_BIT_MASK_LEN 10    /* masking 10 bits */
101 #define HHF_BIT_MASK	 0x3FF /* bitmask of 10 bits */
102 
103 #define WDRR_BUCKET_CNT  2     /* two buckets for Weighted DRR */
104 enum wdrr_bucket_idx {
105 	WDRR_BUCKET_FOR_HH	= 0, /* bucket id for heavy-hitters */
106 	WDRR_BUCKET_FOR_NON_HH	= 1  /* bucket id for non-heavy-hitters */
107 };
108 
109 #define hhf_time_before(a, b)	\
110 	(typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0))
111 
112 /* Heavy-hitter per-flow state */
113 struct hh_flow_state {
114 	u32		 hash_id;	/* hash of flow-id (e.g. TCP 5-tuple) */
115 	u32		 hit_timestamp;	/* last time heavy-hitter was seen */
116 	struct list_head flowchain;	/* chaining under hash collision */
117 };
118 
119 /* Weighted Deficit Round Robin (WDRR) scheduler */
120 struct wdrr_bucket {
121 	struct sk_buff	  *head;
122 	struct sk_buff	  *tail;
123 	struct list_head  bucketchain;
124 	int		  deficit;
125 };
126 
127 struct hhf_sched_data {
128 	struct wdrr_bucket buckets[WDRR_BUCKET_CNT];
129 	u32		   perturbation;   /* hash perturbation */
130 	u32		   quantum;        /* psched_mtu(qdisc_dev(sch)); */
131 	u32		   drop_overlimit; /* number of times max qdisc packet
132 					    * limit was hit
133 					    */
134 	struct list_head   *hh_flows;       /* table T (currently active HHs) */
135 	u32		   hh_flows_limit;            /* max active HH allocs */
136 	u32		   hh_flows_overlimit; /* num of disallowed HH allocs */
137 	u32		   hh_flows_total_cnt;          /* total admitted HHs */
138 	u32		   hh_flows_current_cnt;        /* total current HHs  */
139 	u32		   *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */
140 	u32		   hhf_arrays_reset_timestamp;  /* last time hhf_arrays
141 							 * was reset
142 							 */
143 	unsigned long	   *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits
144 							     * of hhf_arrays
145 							     */
146 	/* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */
147 	struct list_head   new_buckets; /* list of new buckets */
148 	struct list_head   old_buckets; /* list of old buckets */
149 
150 	/* Configurable HHF parameters */
151 	u32		   hhf_reset_timeout; /* interval to reset counter
152 					       * arrays in filter F
153 					       * (default 40ms)
154 					       */
155 	u32		   hhf_admit_bytes;   /* counter thresh to classify as
156 					       * HH (default 128KB).
157 					       * With these default values,
158 					       * 128KB / 40ms = 25 Mbps
159 					       * i.e., we expect to capture HHs
160 					       * sending > 25 Mbps.
161 					       */
162 	u32		   hhf_evict_timeout; /* aging threshold to evict idle
163 					       * HHs out of table T. This should
164 					       * be large enough to avoid
165 					       * reordering during HH eviction.
166 					       * (default 1s)
167 					       */
168 	u32		   hhf_non_hh_weight; /* WDRR weight for non-HHs
169 					       * (default 2,
170 					       *  i.e., non-HH : HH = 2 : 1)
171 					       */
172 };
173 
174 static u32 hhf_time_stamp(void)
175 {
176 	return jiffies;
177 }
178 
179 static unsigned int skb_hash(const struct hhf_sched_data *q,
180 			     const struct sk_buff *skb)
181 {
182 	struct flow_keys keys;
183 	unsigned int hash;
184 
185 	if (skb->sk && skb->sk->sk_hash)
186 		return skb->sk->sk_hash;
187 
188 	skb_flow_dissect(skb, &keys);
189 	hash = jhash_3words((__force u32)keys.dst,
190 			    (__force u32)keys.src ^ keys.ip_proto,
191 			    (__force u32)keys.ports, q->perturbation);
192 	return hash;
193 }
194 
195 /* Looks up a heavy-hitter flow in a chaining list of table T. */
196 static struct hh_flow_state *seek_list(const u32 hash,
197 				       struct list_head *head,
198 				       struct hhf_sched_data *q)
199 {
200 	struct hh_flow_state *flow, *next;
201 	u32 now = hhf_time_stamp();
202 
203 	if (list_empty(head))
204 		return NULL;
205 
206 	list_for_each_entry_safe(flow, next, head, flowchain) {
207 		u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
208 
209 		if (hhf_time_before(prev, now)) {
210 			/* Delete expired heavy-hitters, but preserve one entry
211 			 * to avoid kzalloc() when next time this slot is hit.
212 			 */
213 			if (list_is_last(&flow->flowchain, head))
214 				return NULL;
215 			list_del(&flow->flowchain);
216 			kfree(flow);
217 			q->hh_flows_current_cnt--;
218 		} else if (flow->hash_id == hash) {
219 			return flow;
220 		}
221 	}
222 	return NULL;
223 }
224 
225 /* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired
226  * entry or dynamically alloc a new entry.
227  */
228 static struct hh_flow_state *alloc_new_hh(struct list_head *head,
229 					  struct hhf_sched_data *q)
230 {
231 	struct hh_flow_state *flow;
232 	u32 now = hhf_time_stamp();
233 
234 	if (!list_empty(head)) {
235 		/* Find an expired heavy-hitter flow entry. */
236 		list_for_each_entry(flow, head, flowchain) {
237 			u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
238 
239 			if (hhf_time_before(prev, now))
240 				return flow;
241 		}
242 	}
243 
244 	if (q->hh_flows_current_cnt >= q->hh_flows_limit) {
245 		q->hh_flows_overlimit++;
246 		return NULL;
247 	}
248 	/* Create new entry. */
249 	flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC);
250 	if (!flow)
251 		return NULL;
252 
253 	q->hh_flows_current_cnt++;
254 	INIT_LIST_HEAD(&flow->flowchain);
255 	list_add_tail(&flow->flowchain, head);
256 
257 	return flow;
258 }
259 
260 /* Assigns packets to WDRR buckets.  Implements a multi-stage filter to
261  * classify heavy-hitters.
262  */
263 static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch)
264 {
265 	struct hhf_sched_data *q = qdisc_priv(sch);
266 	u32 tmp_hash, hash;
267 	u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos;
268 	struct hh_flow_state *flow;
269 	u32 pkt_len, min_hhf_val;
270 	int i;
271 	u32 prev;
272 	u32 now = hhf_time_stamp();
273 
274 	/* Reset the HHF counter arrays if this is the right time. */
275 	prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout;
276 	if (hhf_time_before(prev, now)) {
277 		for (i = 0; i < HHF_ARRAYS_CNT; i++)
278 			bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN);
279 		q->hhf_arrays_reset_timestamp = now;
280 	}
281 
282 	/* Get hashed flow-id of the skb. */
283 	hash = skb_hash(q, skb);
284 
285 	/* Check if this packet belongs to an already established HH flow. */
286 	flow_pos = hash & HHF_BIT_MASK;
287 	flow = seek_list(hash, &q->hh_flows[flow_pos], q);
288 	if (flow) { /* found its HH flow */
289 		flow->hit_timestamp = now;
290 		return WDRR_BUCKET_FOR_HH;
291 	}
292 
293 	/* Now pass the packet through the multi-stage filter. */
294 	tmp_hash = hash;
295 	xorsum = 0;
296 	for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) {
297 		/* Split the skb_hash into three 10-bit chunks. */
298 		filter_pos[i] = tmp_hash & HHF_BIT_MASK;
299 		xorsum ^= filter_pos[i];
300 		tmp_hash >>= HHF_BIT_MASK_LEN;
301 	}
302 	/* The last chunk is computed as XOR sum of other chunks. */
303 	filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash;
304 
305 	pkt_len = qdisc_pkt_len(skb);
306 	min_hhf_val = ~0U;
307 	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
308 		u32 val;
309 
310 		if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) {
311 			q->hhf_arrays[i][filter_pos[i]] = 0;
312 			__set_bit(filter_pos[i], q->hhf_valid_bits[i]);
313 		}
314 
315 		val = q->hhf_arrays[i][filter_pos[i]] + pkt_len;
316 		if (min_hhf_val > val)
317 			min_hhf_val = val;
318 	}
319 
320 	/* Found a new HH iff all counter values > HH admit threshold. */
321 	if (min_hhf_val > q->hhf_admit_bytes) {
322 		/* Just captured a new heavy-hitter. */
323 		flow = alloc_new_hh(&q->hh_flows[flow_pos], q);
324 		if (!flow) /* memory alloc problem */
325 			return WDRR_BUCKET_FOR_NON_HH;
326 		flow->hash_id = hash;
327 		flow->hit_timestamp = now;
328 		q->hh_flows_total_cnt++;
329 
330 		/* By returning without updating counters in q->hhf_arrays,
331 		 * we implicitly implement "shielding" (see Optimization O1).
332 		 */
333 		return WDRR_BUCKET_FOR_HH;
334 	}
335 
336 	/* Conservative update of HHF arrays (see Optimization O2). */
337 	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
338 		if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val)
339 			q->hhf_arrays[i][filter_pos[i]] = min_hhf_val;
340 	}
341 	return WDRR_BUCKET_FOR_NON_HH;
342 }
343 
344 /* Removes one skb from head of bucket. */
345 static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket)
346 {
347 	struct sk_buff *skb = bucket->head;
348 
349 	bucket->head = skb->next;
350 	skb->next = NULL;
351 	return skb;
352 }
353 
354 /* Tail-adds skb to bucket. */
355 static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb)
356 {
357 	if (bucket->head == NULL)
358 		bucket->head = skb;
359 	else
360 		bucket->tail->next = skb;
361 	bucket->tail = skb;
362 	skb->next = NULL;
363 }
364 
365 static unsigned int hhf_drop(struct Qdisc *sch)
366 {
367 	struct hhf_sched_data *q = qdisc_priv(sch);
368 	struct wdrr_bucket *bucket;
369 
370 	/* Always try to drop from heavy-hitters first. */
371 	bucket = &q->buckets[WDRR_BUCKET_FOR_HH];
372 	if (!bucket->head)
373 		bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH];
374 
375 	if (bucket->head) {
376 		struct sk_buff *skb = dequeue_head(bucket);
377 
378 		sch->q.qlen--;
379 		qdisc_qstats_drop(sch);
380 		qdisc_qstats_backlog_dec(sch, skb);
381 		kfree_skb(skb);
382 	}
383 
384 	/* Return id of the bucket from which the packet was dropped. */
385 	return bucket - q->buckets;
386 }
387 
388 static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
389 {
390 	struct hhf_sched_data *q = qdisc_priv(sch);
391 	enum wdrr_bucket_idx idx;
392 	struct wdrr_bucket *bucket;
393 
394 	idx = hhf_classify(skb, sch);
395 
396 	bucket = &q->buckets[idx];
397 	bucket_add(bucket, skb);
398 	qdisc_qstats_backlog_inc(sch, skb);
399 
400 	if (list_empty(&bucket->bucketchain)) {
401 		unsigned int weight;
402 
403 		/* The logic of new_buckets vs. old_buckets is the same as
404 		 * new_flows vs. old_flows in the implementation of fq_codel,
405 		 * i.e., short bursts of non-HHs should have strict priority.
406 		 */
407 		if (idx == WDRR_BUCKET_FOR_HH) {
408 			/* Always move heavy-hitters to old bucket. */
409 			weight = 1;
410 			list_add_tail(&bucket->bucketchain, &q->old_buckets);
411 		} else {
412 			weight = q->hhf_non_hh_weight;
413 			list_add_tail(&bucket->bucketchain, &q->new_buckets);
414 		}
415 		bucket->deficit = weight * q->quantum;
416 	}
417 	if (++sch->q.qlen <= sch->limit)
418 		return NET_XMIT_SUCCESS;
419 
420 	q->drop_overlimit++;
421 	/* Return Congestion Notification only if we dropped a packet from this
422 	 * bucket.
423 	 */
424 	if (hhf_drop(sch) == idx)
425 		return NET_XMIT_CN;
426 
427 	/* As we dropped a packet, better let upper stack know this. */
428 	qdisc_tree_decrease_qlen(sch, 1);
429 	return NET_XMIT_SUCCESS;
430 }
431 
432 static struct sk_buff *hhf_dequeue(struct Qdisc *sch)
433 {
434 	struct hhf_sched_data *q = qdisc_priv(sch);
435 	struct sk_buff *skb = NULL;
436 	struct wdrr_bucket *bucket;
437 	struct list_head *head;
438 
439 begin:
440 	head = &q->new_buckets;
441 	if (list_empty(head)) {
442 		head = &q->old_buckets;
443 		if (list_empty(head))
444 			return NULL;
445 	}
446 	bucket = list_first_entry(head, struct wdrr_bucket, bucketchain);
447 
448 	if (bucket->deficit <= 0) {
449 		int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ?
450 			      1 : q->hhf_non_hh_weight;
451 
452 		bucket->deficit += weight * q->quantum;
453 		list_move_tail(&bucket->bucketchain, &q->old_buckets);
454 		goto begin;
455 	}
456 
457 	if (bucket->head) {
458 		skb = dequeue_head(bucket);
459 		sch->q.qlen--;
460 		qdisc_qstats_backlog_dec(sch, skb);
461 	}
462 
463 	if (!skb) {
464 		/* Force a pass through old_buckets to prevent starvation. */
465 		if ((head == &q->new_buckets) && !list_empty(&q->old_buckets))
466 			list_move_tail(&bucket->bucketchain, &q->old_buckets);
467 		else
468 			list_del_init(&bucket->bucketchain);
469 		goto begin;
470 	}
471 	qdisc_bstats_update(sch, skb);
472 	bucket->deficit -= qdisc_pkt_len(skb);
473 
474 	return skb;
475 }
476 
477 static void hhf_reset(struct Qdisc *sch)
478 {
479 	struct sk_buff *skb;
480 
481 	while ((skb = hhf_dequeue(sch)) != NULL)
482 		kfree_skb(skb);
483 }
484 
485 static void *hhf_zalloc(size_t sz)
486 {
487 	void *ptr = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
488 
489 	if (!ptr)
490 		ptr = vzalloc(sz);
491 
492 	return ptr;
493 }
494 
495 static void hhf_free(void *addr)
496 {
497 	kvfree(addr);
498 }
499 
500 static void hhf_destroy(struct Qdisc *sch)
501 {
502 	int i;
503 	struct hhf_sched_data *q = qdisc_priv(sch);
504 
505 	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
506 		hhf_free(q->hhf_arrays[i]);
507 		hhf_free(q->hhf_valid_bits[i]);
508 	}
509 
510 	for (i = 0; i < HH_FLOWS_CNT; i++) {
511 		struct hh_flow_state *flow, *next;
512 		struct list_head *head = &q->hh_flows[i];
513 
514 		if (list_empty(head))
515 			continue;
516 		list_for_each_entry_safe(flow, next, head, flowchain) {
517 			list_del(&flow->flowchain);
518 			kfree(flow);
519 		}
520 	}
521 	hhf_free(q->hh_flows);
522 }
523 
524 static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = {
525 	[TCA_HHF_BACKLOG_LIMIT]	 = { .type = NLA_U32 },
526 	[TCA_HHF_QUANTUM]	 = { .type = NLA_U32 },
527 	[TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 },
528 	[TCA_HHF_RESET_TIMEOUT]	 = { .type = NLA_U32 },
529 	[TCA_HHF_ADMIT_BYTES]	 = { .type = NLA_U32 },
530 	[TCA_HHF_EVICT_TIMEOUT]	 = { .type = NLA_U32 },
531 	[TCA_HHF_NON_HH_WEIGHT]	 = { .type = NLA_U32 },
532 };
533 
534 static int hhf_change(struct Qdisc *sch, struct nlattr *opt)
535 {
536 	struct hhf_sched_data *q = qdisc_priv(sch);
537 	struct nlattr *tb[TCA_HHF_MAX + 1];
538 	unsigned int qlen;
539 	int err;
540 	u64 non_hh_quantum;
541 	u32 new_quantum = q->quantum;
542 	u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight;
543 
544 	if (!opt)
545 		return -EINVAL;
546 
547 	err = nla_parse_nested(tb, TCA_HHF_MAX, opt, hhf_policy);
548 	if (err < 0)
549 		return err;
550 
551 	if (tb[TCA_HHF_QUANTUM])
552 		new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]);
553 
554 	if (tb[TCA_HHF_NON_HH_WEIGHT])
555 		new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]);
556 
557 	non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight;
558 	if (non_hh_quantum > INT_MAX)
559 		return -EINVAL;
560 
561 	sch_tree_lock(sch);
562 
563 	if (tb[TCA_HHF_BACKLOG_LIMIT])
564 		sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]);
565 
566 	q->quantum = new_quantum;
567 	q->hhf_non_hh_weight = new_hhf_non_hh_weight;
568 
569 	if (tb[TCA_HHF_HH_FLOWS_LIMIT])
570 		q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]);
571 
572 	if (tb[TCA_HHF_RESET_TIMEOUT]) {
573 		u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]);
574 
575 		q->hhf_reset_timeout = usecs_to_jiffies(us);
576 	}
577 
578 	if (tb[TCA_HHF_ADMIT_BYTES])
579 		q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]);
580 
581 	if (tb[TCA_HHF_EVICT_TIMEOUT]) {
582 		u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]);
583 
584 		q->hhf_evict_timeout = usecs_to_jiffies(us);
585 	}
586 
587 	qlen = sch->q.qlen;
588 	while (sch->q.qlen > sch->limit) {
589 		struct sk_buff *skb = hhf_dequeue(sch);
590 
591 		kfree_skb(skb);
592 	}
593 	qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
594 
595 	sch_tree_unlock(sch);
596 	return 0;
597 }
598 
599 static int hhf_init(struct Qdisc *sch, struct nlattr *opt)
600 {
601 	struct hhf_sched_data *q = qdisc_priv(sch);
602 	int i;
603 
604 	sch->limit = 1000;
605 	q->quantum = psched_mtu(qdisc_dev(sch));
606 	q->perturbation = prandom_u32();
607 	INIT_LIST_HEAD(&q->new_buckets);
608 	INIT_LIST_HEAD(&q->old_buckets);
609 
610 	/* Configurable HHF parameters */
611 	q->hhf_reset_timeout = HZ / 25; /* 40  ms */
612 	q->hhf_admit_bytes = 131072;    /* 128 KB */
613 	q->hhf_evict_timeout = HZ;      /* 1  sec */
614 	q->hhf_non_hh_weight = 2;
615 
616 	if (opt) {
617 		int err = hhf_change(sch, opt);
618 
619 		if (err)
620 			return err;
621 	}
622 
623 	if (!q->hh_flows) {
624 		/* Initialize heavy-hitter flow table. */
625 		q->hh_flows = hhf_zalloc(HH_FLOWS_CNT *
626 					 sizeof(struct list_head));
627 		if (!q->hh_flows)
628 			return -ENOMEM;
629 		for (i = 0; i < HH_FLOWS_CNT; i++)
630 			INIT_LIST_HEAD(&q->hh_flows[i]);
631 
632 		/* Cap max active HHs at twice len of hh_flows table. */
633 		q->hh_flows_limit = 2 * HH_FLOWS_CNT;
634 		q->hh_flows_overlimit = 0;
635 		q->hh_flows_total_cnt = 0;
636 		q->hh_flows_current_cnt = 0;
637 
638 		/* Initialize heavy-hitter filter arrays. */
639 		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
640 			q->hhf_arrays[i] = hhf_zalloc(HHF_ARRAYS_LEN *
641 						      sizeof(u32));
642 			if (!q->hhf_arrays[i]) {
643 				hhf_destroy(sch);
644 				return -ENOMEM;
645 			}
646 		}
647 		q->hhf_arrays_reset_timestamp = hhf_time_stamp();
648 
649 		/* Initialize valid bits of heavy-hitter filter arrays. */
650 		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
651 			q->hhf_valid_bits[i] = hhf_zalloc(HHF_ARRAYS_LEN /
652 							  BITS_PER_BYTE);
653 			if (!q->hhf_valid_bits[i]) {
654 				hhf_destroy(sch);
655 				return -ENOMEM;
656 			}
657 		}
658 
659 		/* Initialize Weighted DRR buckets. */
660 		for (i = 0; i < WDRR_BUCKET_CNT; i++) {
661 			struct wdrr_bucket *bucket = q->buckets + i;
662 
663 			INIT_LIST_HEAD(&bucket->bucketchain);
664 		}
665 	}
666 
667 	return 0;
668 }
669 
670 static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb)
671 {
672 	struct hhf_sched_data *q = qdisc_priv(sch);
673 	struct nlattr *opts;
674 
675 	opts = nla_nest_start(skb, TCA_OPTIONS);
676 	if (opts == NULL)
677 		goto nla_put_failure;
678 
679 	if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) ||
680 	    nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) ||
681 	    nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) ||
682 	    nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT,
683 			jiffies_to_usecs(q->hhf_reset_timeout)) ||
684 	    nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) ||
685 	    nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT,
686 			jiffies_to_usecs(q->hhf_evict_timeout)) ||
687 	    nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight))
688 		goto nla_put_failure;
689 
690 	return nla_nest_end(skb, opts);
691 
692 nla_put_failure:
693 	return -1;
694 }
695 
696 static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
697 {
698 	struct hhf_sched_data *q = qdisc_priv(sch);
699 	struct tc_hhf_xstats st = {
700 		.drop_overlimit = q->drop_overlimit,
701 		.hh_overlimit	= q->hh_flows_overlimit,
702 		.hh_tot_count	= q->hh_flows_total_cnt,
703 		.hh_cur_count	= q->hh_flows_current_cnt,
704 	};
705 
706 	return gnet_stats_copy_app(d, &st, sizeof(st));
707 }
708 
709 static struct Qdisc_ops hhf_qdisc_ops __read_mostly = {
710 	.id		=	"hhf",
711 	.priv_size	=	sizeof(struct hhf_sched_data),
712 
713 	.enqueue	=	hhf_enqueue,
714 	.dequeue	=	hhf_dequeue,
715 	.peek		=	qdisc_peek_dequeued,
716 	.drop		=	hhf_drop,
717 	.init		=	hhf_init,
718 	.reset		=	hhf_reset,
719 	.destroy	=	hhf_destroy,
720 	.change		=	hhf_change,
721 	.dump		=	hhf_dump,
722 	.dump_stats	=	hhf_dump_stats,
723 	.owner		=	THIS_MODULE,
724 };
725 
726 static int __init hhf_module_init(void)
727 {
728 	return register_qdisc(&hhf_qdisc_ops);
729 }
730 
731 static void __exit hhf_module_exit(void)
732 {
733 	unregister_qdisc(&hhf_qdisc_ops);
734 }
735 
736 module_init(hhf_module_init)
737 module_exit(hhf_module_exit)
738 MODULE_AUTHOR("Terry Lam");
739 MODULE_AUTHOR("Nandita Dukkipati");
740 MODULE_LICENSE("GPL");
741