1 /* 2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net> 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 2 7 * of the License, or (at your option) any later version. 8 * 9 * 2003-10-17 - Ported from altq 10 */ 11 /* 12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved. 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation is hereby granted (including for commercial or 16 * for-profit use), provided that both the copyright notice and this 17 * permission notice appear in all copies of the software, derivative 18 * works, or modified versions, and any portions thereof. 19 * 20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF 21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS 22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED 23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 33 * DAMAGE. 34 * 35 * Carnegie Mellon encourages (but does not require) users of this 36 * software to return any improvements or extensions that they make, 37 * and to grant Carnegie Mellon the rights to redistribute these 38 * changes without encumbrance. 39 */ 40 /* 41 * H-FSC is described in Proceedings of SIGCOMM'97, 42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing, 43 * Real-Time and Priority Service" 44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng. 45 * 46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing. 47 * when a class has an upperlimit, the fit-time is computed from the 48 * upperlimit service curve. the link-sharing scheduler does not schedule 49 * a class whose fit-time exceeds the current time. 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/types.h> 55 #include <linux/errno.h> 56 #include <linux/compiler.h> 57 #include <linux/spinlock.h> 58 #include <linux/skbuff.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/list.h> 62 #include <linux/rbtree.h> 63 #include <linux/init.h> 64 #include <linux/rtnetlink.h> 65 #include <linux/pkt_sched.h> 66 #include <net/netlink.h> 67 #include <net/pkt_sched.h> 68 #include <net/pkt_cls.h> 69 #include <asm/div64.h> 70 71 /* 72 * kernel internal service curve representation: 73 * coordinates are given by 64 bit unsigned integers. 74 * x-axis: unit is clock count. 75 * y-axis: unit is byte. 76 * 77 * The service curve parameters are converted to the internal 78 * representation. The slope values are scaled to avoid overflow. 79 * the inverse slope values as well as the y-projection of the 1st 80 * segment are kept in order to avoid 64-bit divide operations 81 * that are expensive on 32-bit architectures. 82 */ 83 84 struct internal_sc { 85 u64 sm1; /* scaled slope of the 1st segment */ 86 u64 ism1; /* scaled inverse-slope of the 1st segment */ 87 u64 dx; /* the x-projection of the 1st segment */ 88 u64 dy; /* the y-projection of the 1st segment */ 89 u64 sm2; /* scaled slope of the 2nd segment */ 90 u64 ism2; /* scaled inverse-slope of the 2nd segment */ 91 }; 92 93 /* runtime service curve */ 94 struct runtime_sc { 95 u64 x; /* current starting position on x-axis */ 96 u64 y; /* current starting position on y-axis */ 97 u64 sm1; /* scaled slope of the 1st segment */ 98 u64 ism1; /* scaled inverse-slope of the 1st segment */ 99 u64 dx; /* the x-projection of the 1st segment */ 100 u64 dy; /* the y-projection of the 1st segment */ 101 u64 sm2; /* scaled slope of the 2nd segment */ 102 u64 ism2; /* scaled inverse-slope of the 2nd segment */ 103 }; 104 105 enum hfsc_class_flags { 106 HFSC_RSC = 0x1, 107 HFSC_FSC = 0x2, 108 HFSC_USC = 0x4 109 }; 110 111 struct hfsc_class { 112 struct Qdisc_class_common cl_common; 113 unsigned int refcnt; /* usage count */ 114 115 struct gnet_stats_basic_packed bstats; 116 struct gnet_stats_queue qstats; 117 struct gnet_stats_rate_est64 rate_est; 118 unsigned int level; /* class level in hierarchy */ 119 struct tcf_proto __rcu *filter_list; /* filter list */ 120 unsigned int filter_cnt; /* filter count */ 121 122 struct hfsc_sched *sched; /* scheduler data */ 123 struct hfsc_class *cl_parent; /* parent class */ 124 struct list_head siblings; /* sibling classes */ 125 struct list_head children; /* child classes */ 126 struct Qdisc *qdisc; /* leaf qdisc */ 127 128 struct rb_node el_node; /* qdisc's eligible tree member */ 129 struct rb_root vt_tree; /* active children sorted by cl_vt */ 130 struct rb_node vt_node; /* parent's vt_tree member */ 131 struct rb_root cf_tree; /* active children sorted by cl_f */ 132 struct rb_node cf_node; /* parent's cf_heap member */ 133 struct list_head dlist; /* drop list member */ 134 135 u64 cl_total; /* total work in bytes */ 136 u64 cl_cumul; /* cumulative work in bytes done by 137 real-time criteria */ 138 139 u64 cl_d; /* deadline*/ 140 u64 cl_e; /* eligible time */ 141 u64 cl_vt; /* virtual time */ 142 u64 cl_f; /* time when this class will fit for 143 link-sharing, max(myf, cfmin) */ 144 u64 cl_myf; /* my fit-time (calculated from this 145 class's own upperlimit curve) */ 146 u64 cl_myfadj; /* my fit-time adjustment (to cancel 147 history dependence) */ 148 u64 cl_cfmin; /* earliest children's fit-time (used 149 with cl_myf to obtain cl_f) */ 150 u64 cl_cvtmin; /* minimal virtual time among the 151 children fit for link-sharing 152 (monotonic within a period) */ 153 u64 cl_vtadj; /* intra-period cumulative vt 154 adjustment */ 155 u64 cl_vtoff; /* inter-period cumulative vt offset */ 156 u64 cl_cvtmax; /* max child's vt in the last period */ 157 u64 cl_cvtoff; /* cumulative cvtmax of all periods */ 158 u64 cl_pcvtoff; /* parent's cvtoff at initialization 159 time */ 160 161 struct internal_sc cl_rsc; /* internal real-time service curve */ 162 struct internal_sc cl_fsc; /* internal fair service curve */ 163 struct internal_sc cl_usc; /* internal upperlimit service curve */ 164 struct runtime_sc cl_deadline; /* deadline curve */ 165 struct runtime_sc cl_eligible; /* eligible curve */ 166 struct runtime_sc cl_virtual; /* virtual curve */ 167 struct runtime_sc cl_ulimit; /* upperlimit curve */ 168 169 unsigned long cl_flags; /* which curves are valid */ 170 unsigned long cl_vtperiod; /* vt period sequence number */ 171 unsigned long cl_parentperiod;/* parent's vt period sequence number*/ 172 unsigned long cl_nactive; /* number of active children */ 173 }; 174 175 struct hfsc_sched { 176 u16 defcls; /* default class id */ 177 struct hfsc_class root; /* root class */ 178 struct Qdisc_class_hash clhash; /* class hash */ 179 struct rb_root eligible; /* eligible tree */ 180 struct list_head droplist; /* active leaf class list (for 181 dropping) */ 182 struct qdisc_watchdog watchdog; /* watchdog timer */ 183 }; 184 185 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */ 186 187 188 /* 189 * eligible tree holds backlogged classes being sorted by their eligible times. 190 * there is one eligible tree per hfsc instance. 191 */ 192 193 static void 194 eltree_insert(struct hfsc_class *cl) 195 { 196 struct rb_node **p = &cl->sched->eligible.rb_node; 197 struct rb_node *parent = NULL; 198 struct hfsc_class *cl1; 199 200 while (*p != NULL) { 201 parent = *p; 202 cl1 = rb_entry(parent, struct hfsc_class, el_node); 203 if (cl->cl_e >= cl1->cl_e) 204 p = &parent->rb_right; 205 else 206 p = &parent->rb_left; 207 } 208 rb_link_node(&cl->el_node, parent, p); 209 rb_insert_color(&cl->el_node, &cl->sched->eligible); 210 } 211 212 static inline void 213 eltree_remove(struct hfsc_class *cl) 214 { 215 rb_erase(&cl->el_node, &cl->sched->eligible); 216 } 217 218 static inline void 219 eltree_update(struct hfsc_class *cl) 220 { 221 eltree_remove(cl); 222 eltree_insert(cl); 223 } 224 225 /* find the class with the minimum deadline among the eligible classes */ 226 static inline struct hfsc_class * 227 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time) 228 { 229 struct hfsc_class *p, *cl = NULL; 230 struct rb_node *n; 231 232 for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) { 233 p = rb_entry(n, struct hfsc_class, el_node); 234 if (p->cl_e > cur_time) 235 break; 236 if (cl == NULL || p->cl_d < cl->cl_d) 237 cl = p; 238 } 239 return cl; 240 } 241 242 /* find the class with minimum eligible time among the eligible classes */ 243 static inline struct hfsc_class * 244 eltree_get_minel(struct hfsc_sched *q) 245 { 246 struct rb_node *n; 247 248 n = rb_first(&q->eligible); 249 if (n == NULL) 250 return NULL; 251 return rb_entry(n, struct hfsc_class, el_node); 252 } 253 254 /* 255 * vttree holds holds backlogged child classes being sorted by their virtual 256 * time. each intermediate class has one vttree. 257 */ 258 static void 259 vttree_insert(struct hfsc_class *cl) 260 { 261 struct rb_node **p = &cl->cl_parent->vt_tree.rb_node; 262 struct rb_node *parent = NULL; 263 struct hfsc_class *cl1; 264 265 while (*p != NULL) { 266 parent = *p; 267 cl1 = rb_entry(parent, struct hfsc_class, vt_node); 268 if (cl->cl_vt >= cl1->cl_vt) 269 p = &parent->rb_right; 270 else 271 p = &parent->rb_left; 272 } 273 rb_link_node(&cl->vt_node, parent, p); 274 rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree); 275 } 276 277 static inline void 278 vttree_remove(struct hfsc_class *cl) 279 { 280 rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree); 281 } 282 283 static inline void 284 vttree_update(struct hfsc_class *cl) 285 { 286 vttree_remove(cl); 287 vttree_insert(cl); 288 } 289 290 static inline struct hfsc_class * 291 vttree_firstfit(struct hfsc_class *cl, u64 cur_time) 292 { 293 struct hfsc_class *p; 294 struct rb_node *n; 295 296 for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) { 297 p = rb_entry(n, struct hfsc_class, vt_node); 298 if (p->cl_f <= cur_time) 299 return p; 300 } 301 return NULL; 302 } 303 304 /* 305 * get the leaf class with the minimum vt in the hierarchy 306 */ 307 static struct hfsc_class * 308 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time) 309 { 310 /* if root-class's cfmin is bigger than cur_time nothing to do */ 311 if (cl->cl_cfmin > cur_time) 312 return NULL; 313 314 while (cl->level > 0) { 315 cl = vttree_firstfit(cl, cur_time); 316 if (cl == NULL) 317 return NULL; 318 /* 319 * update parent's cl_cvtmin. 320 */ 321 if (cl->cl_parent->cl_cvtmin < cl->cl_vt) 322 cl->cl_parent->cl_cvtmin = cl->cl_vt; 323 } 324 return cl; 325 } 326 327 static void 328 cftree_insert(struct hfsc_class *cl) 329 { 330 struct rb_node **p = &cl->cl_parent->cf_tree.rb_node; 331 struct rb_node *parent = NULL; 332 struct hfsc_class *cl1; 333 334 while (*p != NULL) { 335 parent = *p; 336 cl1 = rb_entry(parent, struct hfsc_class, cf_node); 337 if (cl->cl_f >= cl1->cl_f) 338 p = &parent->rb_right; 339 else 340 p = &parent->rb_left; 341 } 342 rb_link_node(&cl->cf_node, parent, p); 343 rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree); 344 } 345 346 static inline void 347 cftree_remove(struct hfsc_class *cl) 348 { 349 rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree); 350 } 351 352 static inline void 353 cftree_update(struct hfsc_class *cl) 354 { 355 cftree_remove(cl); 356 cftree_insert(cl); 357 } 358 359 /* 360 * service curve support functions 361 * 362 * external service curve parameters 363 * m: bps 364 * d: us 365 * internal service curve parameters 366 * sm: (bytes/psched_us) << SM_SHIFT 367 * ism: (psched_us/byte) << ISM_SHIFT 368 * dx: psched_us 369 * 370 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us. 371 * 372 * sm and ism are scaled in order to keep effective digits. 373 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective 374 * digits in decimal using the following table. 375 * 376 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps 377 * ------------+------------------------------------------------------- 378 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3 379 * 380 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125 381 * 382 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18. 383 */ 384 #define SM_SHIFT (30 - PSCHED_SHIFT) 385 #define ISM_SHIFT (8 + PSCHED_SHIFT) 386 387 #define SM_MASK ((1ULL << SM_SHIFT) - 1) 388 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1) 389 390 static inline u64 391 seg_x2y(u64 x, u64 sm) 392 { 393 u64 y; 394 395 /* 396 * compute 397 * y = x * sm >> SM_SHIFT 398 * but divide it for the upper and lower bits to avoid overflow 399 */ 400 y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT); 401 return y; 402 } 403 404 static inline u64 405 seg_y2x(u64 y, u64 ism) 406 { 407 u64 x; 408 409 if (y == 0) 410 x = 0; 411 else if (ism == HT_INFINITY) 412 x = HT_INFINITY; 413 else { 414 x = (y >> ISM_SHIFT) * ism 415 + (((y & ISM_MASK) * ism) >> ISM_SHIFT); 416 } 417 return x; 418 } 419 420 /* Convert m (bps) into sm (bytes/psched us) */ 421 static u64 422 m2sm(u32 m) 423 { 424 u64 sm; 425 426 sm = ((u64)m << SM_SHIFT); 427 sm += PSCHED_TICKS_PER_SEC - 1; 428 do_div(sm, PSCHED_TICKS_PER_SEC); 429 return sm; 430 } 431 432 /* convert m (bps) into ism (psched us/byte) */ 433 static u64 434 m2ism(u32 m) 435 { 436 u64 ism; 437 438 if (m == 0) 439 ism = HT_INFINITY; 440 else { 441 ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT); 442 ism += m - 1; 443 do_div(ism, m); 444 } 445 return ism; 446 } 447 448 /* convert d (us) into dx (psched us) */ 449 static u64 450 d2dx(u32 d) 451 { 452 u64 dx; 453 454 dx = ((u64)d * PSCHED_TICKS_PER_SEC); 455 dx += USEC_PER_SEC - 1; 456 do_div(dx, USEC_PER_SEC); 457 return dx; 458 } 459 460 /* convert sm (bytes/psched us) into m (bps) */ 461 static u32 462 sm2m(u64 sm) 463 { 464 u64 m; 465 466 m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT; 467 return (u32)m; 468 } 469 470 /* convert dx (psched us) into d (us) */ 471 static u32 472 dx2d(u64 dx) 473 { 474 u64 d; 475 476 d = dx * USEC_PER_SEC; 477 do_div(d, PSCHED_TICKS_PER_SEC); 478 return (u32)d; 479 } 480 481 static void 482 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc) 483 { 484 isc->sm1 = m2sm(sc->m1); 485 isc->ism1 = m2ism(sc->m1); 486 isc->dx = d2dx(sc->d); 487 isc->dy = seg_x2y(isc->dx, isc->sm1); 488 isc->sm2 = m2sm(sc->m2); 489 isc->ism2 = m2ism(sc->m2); 490 } 491 492 /* 493 * initialize the runtime service curve with the given internal 494 * service curve starting at (x, y). 495 */ 496 static void 497 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) 498 { 499 rtsc->x = x; 500 rtsc->y = y; 501 rtsc->sm1 = isc->sm1; 502 rtsc->ism1 = isc->ism1; 503 rtsc->dx = isc->dx; 504 rtsc->dy = isc->dy; 505 rtsc->sm2 = isc->sm2; 506 rtsc->ism2 = isc->ism2; 507 } 508 509 /* 510 * calculate the y-projection of the runtime service curve by the 511 * given x-projection value 512 */ 513 static u64 514 rtsc_y2x(struct runtime_sc *rtsc, u64 y) 515 { 516 u64 x; 517 518 if (y < rtsc->y) 519 x = rtsc->x; 520 else if (y <= rtsc->y + rtsc->dy) { 521 /* x belongs to the 1st segment */ 522 if (rtsc->dy == 0) 523 x = rtsc->x + rtsc->dx; 524 else 525 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1); 526 } else { 527 /* x belongs to the 2nd segment */ 528 x = rtsc->x + rtsc->dx 529 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2); 530 } 531 return x; 532 } 533 534 static u64 535 rtsc_x2y(struct runtime_sc *rtsc, u64 x) 536 { 537 u64 y; 538 539 if (x <= rtsc->x) 540 y = rtsc->y; 541 else if (x <= rtsc->x + rtsc->dx) 542 /* y belongs to the 1st segment */ 543 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1); 544 else 545 /* y belongs to the 2nd segment */ 546 y = rtsc->y + rtsc->dy 547 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2); 548 return y; 549 } 550 551 /* 552 * update the runtime service curve by taking the minimum of the current 553 * runtime service curve and the service curve starting at (x, y). 554 */ 555 static void 556 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) 557 { 558 u64 y1, y2, dx, dy; 559 u32 dsm; 560 561 if (isc->sm1 <= isc->sm2) { 562 /* service curve is convex */ 563 y1 = rtsc_x2y(rtsc, x); 564 if (y1 < y) 565 /* the current rtsc is smaller */ 566 return; 567 rtsc->x = x; 568 rtsc->y = y; 569 return; 570 } 571 572 /* 573 * service curve is concave 574 * compute the two y values of the current rtsc 575 * y1: at x 576 * y2: at (x + dx) 577 */ 578 y1 = rtsc_x2y(rtsc, x); 579 if (y1 <= y) { 580 /* rtsc is below isc, no change to rtsc */ 581 return; 582 } 583 584 y2 = rtsc_x2y(rtsc, x + isc->dx); 585 if (y2 >= y + isc->dy) { 586 /* rtsc is above isc, replace rtsc by isc */ 587 rtsc->x = x; 588 rtsc->y = y; 589 rtsc->dx = isc->dx; 590 rtsc->dy = isc->dy; 591 return; 592 } 593 594 /* 595 * the two curves intersect 596 * compute the offsets (dx, dy) using the reverse 597 * function of seg_x2y() 598 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y) 599 */ 600 dx = (y1 - y) << SM_SHIFT; 601 dsm = isc->sm1 - isc->sm2; 602 do_div(dx, dsm); 603 /* 604 * check if (x, y1) belongs to the 1st segment of rtsc. 605 * if so, add the offset. 606 */ 607 if (rtsc->x + rtsc->dx > x) 608 dx += rtsc->x + rtsc->dx - x; 609 dy = seg_x2y(dx, isc->sm1); 610 611 rtsc->x = x; 612 rtsc->y = y; 613 rtsc->dx = dx; 614 rtsc->dy = dy; 615 } 616 617 static void 618 init_ed(struct hfsc_class *cl, unsigned int next_len) 619 { 620 u64 cur_time = psched_get_time(); 621 622 /* update the deadline curve */ 623 rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); 624 625 /* 626 * update the eligible curve. 627 * for concave, it is equal to the deadline curve. 628 * for convex, it is a linear curve with slope m2. 629 */ 630 cl->cl_eligible = cl->cl_deadline; 631 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { 632 cl->cl_eligible.dx = 0; 633 cl->cl_eligible.dy = 0; 634 } 635 636 /* compute e and d */ 637 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); 638 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 639 640 eltree_insert(cl); 641 } 642 643 static void 644 update_ed(struct hfsc_class *cl, unsigned int next_len) 645 { 646 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); 647 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 648 649 eltree_update(cl); 650 } 651 652 static inline void 653 update_d(struct hfsc_class *cl, unsigned int next_len) 654 { 655 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 656 } 657 658 static inline void 659 update_cfmin(struct hfsc_class *cl) 660 { 661 struct rb_node *n = rb_first(&cl->cf_tree); 662 struct hfsc_class *p; 663 664 if (n == NULL) { 665 cl->cl_cfmin = 0; 666 return; 667 } 668 p = rb_entry(n, struct hfsc_class, cf_node); 669 cl->cl_cfmin = p->cl_f; 670 } 671 672 static void 673 init_vf(struct hfsc_class *cl, unsigned int len) 674 { 675 struct hfsc_class *max_cl; 676 struct rb_node *n; 677 u64 vt, f, cur_time; 678 int go_active; 679 680 cur_time = 0; 681 go_active = 1; 682 for (; cl->cl_parent != NULL; cl = cl->cl_parent) { 683 if (go_active && cl->cl_nactive++ == 0) 684 go_active = 1; 685 else 686 go_active = 0; 687 688 if (go_active) { 689 n = rb_last(&cl->cl_parent->vt_tree); 690 if (n != NULL) { 691 max_cl = rb_entry(n, struct hfsc_class, vt_node); 692 /* 693 * set vt to the average of the min and max 694 * classes. if the parent's period didn't 695 * change, don't decrease vt of the class. 696 */ 697 vt = max_cl->cl_vt; 698 if (cl->cl_parent->cl_cvtmin != 0) 699 vt = (cl->cl_parent->cl_cvtmin + vt)/2; 700 701 if (cl->cl_parent->cl_vtperiod != 702 cl->cl_parentperiod || vt > cl->cl_vt) 703 cl->cl_vt = vt; 704 } else { 705 /* 706 * first child for a new parent backlog period. 707 * add parent's cvtmax to cvtoff to make a new 708 * vt (vtoff + vt) larger than the vt in the 709 * last period for all children. 710 */ 711 vt = cl->cl_parent->cl_cvtmax; 712 cl->cl_parent->cl_cvtoff += vt; 713 cl->cl_parent->cl_cvtmax = 0; 714 cl->cl_parent->cl_cvtmin = 0; 715 cl->cl_vt = 0; 716 } 717 718 cl->cl_vtoff = cl->cl_parent->cl_cvtoff - 719 cl->cl_pcvtoff; 720 721 /* update the virtual curve */ 722 vt = cl->cl_vt + cl->cl_vtoff; 723 rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt, 724 cl->cl_total); 725 if (cl->cl_virtual.x == vt) { 726 cl->cl_virtual.x -= cl->cl_vtoff; 727 cl->cl_vtoff = 0; 728 } 729 cl->cl_vtadj = 0; 730 731 cl->cl_vtperiod++; /* increment vt period */ 732 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod; 733 if (cl->cl_parent->cl_nactive == 0) 734 cl->cl_parentperiod++; 735 cl->cl_f = 0; 736 737 vttree_insert(cl); 738 cftree_insert(cl); 739 740 if (cl->cl_flags & HFSC_USC) { 741 /* class has upper limit curve */ 742 if (cur_time == 0) 743 cur_time = psched_get_time(); 744 745 /* update the ulimit curve */ 746 rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time, 747 cl->cl_total); 748 /* compute myf */ 749 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, 750 cl->cl_total); 751 cl->cl_myfadj = 0; 752 } 753 } 754 755 f = max(cl->cl_myf, cl->cl_cfmin); 756 if (f != cl->cl_f) { 757 cl->cl_f = f; 758 cftree_update(cl); 759 } 760 update_cfmin(cl->cl_parent); 761 } 762 } 763 764 static void 765 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time) 766 { 767 u64 f; /* , myf_bound, delta; */ 768 int go_passive = 0; 769 770 if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC) 771 go_passive = 1; 772 773 for (; cl->cl_parent != NULL; cl = cl->cl_parent) { 774 cl->cl_total += len; 775 776 if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0) 777 continue; 778 779 if (go_passive && --cl->cl_nactive == 0) 780 go_passive = 1; 781 else 782 go_passive = 0; 783 784 if (go_passive) { 785 /* no more active child, going passive */ 786 787 /* update cvtmax of the parent class */ 788 if (cl->cl_vt > cl->cl_parent->cl_cvtmax) 789 cl->cl_parent->cl_cvtmax = cl->cl_vt; 790 791 /* remove this class from the vt tree */ 792 vttree_remove(cl); 793 794 cftree_remove(cl); 795 update_cfmin(cl->cl_parent); 796 797 continue; 798 } 799 800 /* 801 * update vt and f 802 */ 803 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) 804 - cl->cl_vtoff + cl->cl_vtadj; 805 806 /* 807 * if vt of the class is smaller than cvtmin, 808 * the class was skipped in the past due to non-fit. 809 * if so, we need to adjust vtadj. 810 */ 811 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) { 812 cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt; 813 cl->cl_vt = cl->cl_parent->cl_cvtmin; 814 } 815 816 /* update the vt tree */ 817 vttree_update(cl); 818 819 if (cl->cl_flags & HFSC_USC) { 820 cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit, 821 cl->cl_total); 822 #if 0 823 /* 824 * This code causes classes to stay way under their 825 * limit when multiple classes are used at gigabit 826 * speed. needs investigation. -kaber 827 */ 828 /* 829 * if myf lags behind by more than one clock tick 830 * from the current time, adjust myfadj to prevent 831 * a rate-limited class from going greedy. 832 * in a steady state under rate-limiting, myf 833 * fluctuates within one clock tick. 834 */ 835 myf_bound = cur_time - PSCHED_JIFFIE2US(1); 836 if (cl->cl_myf < myf_bound) { 837 delta = cur_time - cl->cl_myf; 838 cl->cl_myfadj += delta; 839 cl->cl_myf += delta; 840 } 841 #endif 842 } 843 844 f = max(cl->cl_myf, cl->cl_cfmin); 845 if (f != cl->cl_f) { 846 cl->cl_f = f; 847 cftree_update(cl); 848 update_cfmin(cl->cl_parent); 849 } 850 } 851 } 852 853 static void 854 set_active(struct hfsc_class *cl, unsigned int len) 855 { 856 if (cl->cl_flags & HFSC_RSC) 857 init_ed(cl, len); 858 if (cl->cl_flags & HFSC_FSC) 859 init_vf(cl, len); 860 861 list_add_tail(&cl->dlist, &cl->sched->droplist); 862 } 863 864 static void 865 set_passive(struct hfsc_class *cl) 866 { 867 if (cl->cl_flags & HFSC_RSC) 868 eltree_remove(cl); 869 870 list_del(&cl->dlist); 871 872 /* 873 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0) 874 * needs to be called explicitly to remove a class from vttree. 875 */ 876 } 877 878 static unsigned int 879 qdisc_peek_len(struct Qdisc *sch) 880 { 881 struct sk_buff *skb; 882 unsigned int len; 883 884 skb = sch->ops->peek(sch); 885 if (skb == NULL) { 886 qdisc_warn_nonwc("qdisc_peek_len", sch); 887 return 0; 888 } 889 len = qdisc_pkt_len(skb); 890 891 return len; 892 } 893 894 static void 895 hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl) 896 { 897 unsigned int len = cl->qdisc->q.qlen; 898 899 qdisc_reset(cl->qdisc); 900 qdisc_tree_decrease_qlen(cl->qdisc, len); 901 } 902 903 static void 904 hfsc_adjust_levels(struct hfsc_class *cl) 905 { 906 struct hfsc_class *p; 907 unsigned int level; 908 909 do { 910 level = 0; 911 list_for_each_entry(p, &cl->children, siblings) { 912 if (p->level >= level) 913 level = p->level + 1; 914 } 915 cl->level = level; 916 } while ((cl = cl->cl_parent) != NULL); 917 } 918 919 static inline struct hfsc_class * 920 hfsc_find_class(u32 classid, struct Qdisc *sch) 921 { 922 struct hfsc_sched *q = qdisc_priv(sch); 923 struct Qdisc_class_common *clc; 924 925 clc = qdisc_class_find(&q->clhash, classid); 926 if (clc == NULL) 927 return NULL; 928 return container_of(clc, struct hfsc_class, cl_common); 929 } 930 931 static void 932 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc, 933 u64 cur_time) 934 { 935 sc2isc(rsc, &cl->cl_rsc); 936 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); 937 cl->cl_eligible = cl->cl_deadline; 938 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { 939 cl->cl_eligible.dx = 0; 940 cl->cl_eligible.dy = 0; 941 } 942 cl->cl_flags |= HFSC_RSC; 943 } 944 945 static void 946 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc) 947 { 948 sc2isc(fsc, &cl->cl_fsc); 949 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total); 950 cl->cl_flags |= HFSC_FSC; 951 } 952 953 static void 954 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc, 955 u64 cur_time) 956 { 957 sc2isc(usc, &cl->cl_usc); 958 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total); 959 cl->cl_flags |= HFSC_USC; 960 } 961 962 static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = { 963 [TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) }, 964 [TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) }, 965 [TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) }, 966 }; 967 968 static int 969 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 970 struct nlattr **tca, unsigned long *arg) 971 { 972 struct hfsc_sched *q = qdisc_priv(sch); 973 struct hfsc_class *cl = (struct hfsc_class *)*arg; 974 struct hfsc_class *parent = NULL; 975 struct nlattr *opt = tca[TCA_OPTIONS]; 976 struct nlattr *tb[TCA_HFSC_MAX + 1]; 977 struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL; 978 u64 cur_time; 979 int err; 980 981 if (opt == NULL) 982 return -EINVAL; 983 984 err = nla_parse_nested(tb, TCA_HFSC_MAX, opt, hfsc_policy); 985 if (err < 0) 986 return err; 987 988 if (tb[TCA_HFSC_RSC]) { 989 rsc = nla_data(tb[TCA_HFSC_RSC]); 990 if (rsc->m1 == 0 && rsc->m2 == 0) 991 rsc = NULL; 992 } 993 994 if (tb[TCA_HFSC_FSC]) { 995 fsc = nla_data(tb[TCA_HFSC_FSC]); 996 if (fsc->m1 == 0 && fsc->m2 == 0) 997 fsc = NULL; 998 } 999 1000 if (tb[TCA_HFSC_USC]) { 1001 usc = nla_data(tb[TCA_HFSC_USC]); 1002 if (usc->m1 == 0 && usc->m2 == 0) 1003 usc = NULL; 1004 } 1005 1006 if (cl != NULL) { 1007 if (parentid) { 1008 if (cl->cl_parent && 1009 cl->cl_parent->cl_common.classid != parentid) 1010 return -EINVAL; 1011 if (cl->cl_parent == NULL && parentid != TC_H_ROOT) 1012 return -EINVAL; 1013 } 1014 cur_time = psched_get_time(); 1015 1016 if (tca[TCA_RATE]) { 1017 spinlock_t *lock = qdisc_root_sleeping_lock(sch); 1018 1019 err = gen_replace_estimator(&cl->bstats, NULL, 1020 &cl->rate_est, 1021 lock, 1022 tca[TCA_RATE]); 1023 if (err) 1024 return err; 1025 } 1026 1027 sch_tree_lock(sch); 1028 if (rsc != NULL) 1029 hfsc_change_rsc(cl, rsc, cur_time); 1030 if (fsc != NULL) 1031 hfsc_change_fsc(cl, fsc); 1032 if (usc != NULL) 1033 hfsc_change_usc(cl, usc, cur_time); 1034 1035 if (cl->qdisc->q.qlen != 0) { 1036 if (cl->cl_flags & HFSC_RSC) 1037 update_ed(cl, qdisc_peek_len(cl->qdisc)); 1038 if (cl->cl_flags & HFSC_FSC) 1039 update_vf(cl, 0, cur_time); 1040 } 1041 sch_tree_unlock(sch); 1042 1043 return 0; 1044 } 1045 1046 if (parentid == TC_H_ROOT) 1047 return -EEXIST; 1048 1049 parent = &q->root; 1050 if (parentid) { 1051 parent = hfsc_find_class(parentid, sch); 1052 if (parent == NULL) 1053 return -ENOENT; 1054 } 1055 1056 if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0) 1057 return -EINVAL; 1058 if (hfsc_find_class(classid, sch)) 1059 return -EEXIST; 1060 1061 if (rsc == NULL && fsc == NULL) 1062 return -EINVAL; 1063 1064 cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL); 1065 if (cl == NULL) 1066 return -ENOBUFS; 1067 1068 if (tca[TCA_RATE]) { 1069 err = gen_new_estimator(&cl->bstats, NULL, &cl->rate_est, 1070 qdisc_root_sleeping_lock(sch), 1071 tca[TCA_RATE]); 1072 if (err) { 1073 kfree(cl); 1074 return err; 1075 } 1076 } 1077 1078 if (rsc != NULL) 1079 hfsc_change_rsc(cl, rsc, 0); 1080 if (fsc != NULL) 1081 hfsc_change_fsc(cl, fsc); 1082 if (usc != NULL) 1083 hfsc_change_usc(cl, usc, 0); 1084 1085 cl->cl_common.classid = classid; 1086 cl->refcnt = 1; 1087 cl->sched = q; 1088 cl->cl_parent = parent; 1089 cl->qdisc = qdisc_create_dflt(sch->dev_queue, 1090 &pfifo_qdisc_ops, classid); 1091 if (cl->qdisc == NULL) 1092 cl->qdisc = &noop_qdisc; 1093 INIT_LIST_HEAD(&cl->children); 1094 cl->vt_tree = RB_ROOT; 1095 cl->cf_tree = RB_ROOT; 1096 1097 sch_tree_lock(sch); 1098 qdisc_class_hash_insert(&q->clhash, &cl->cl_common); 1099 list_add_tail(&cl->siblings, &parent->children); 1100 if (parent->level == 0) 1101 hfsc_purge_queue(sch, parent); 1102 hfsc_adjust_levels(parent); 1103 cl->cl_pcvtoff = parent->cl_cvtoff; 1104 sch_tree_unlock(sch); 1105 1106 qdisc_class_hash_grow(sch, &q->clhash); 1107 1108 *arg = (unsigned long)cl; 1109 return 0; 1110 } 1111 1112 static void 1113 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl) 1114 { 1115 struct hfsc_sched *q = qdisc_priv(sch); 1116 1117 tcf_destroy_chain(&cl->filter_list); 1118 qdisc_destroy(cl->qdisc); 1119 gen_kill_estimator(&cl->bstats, &cl->rate_est); 1120 if (cl != &q->root) 1121 kfree(cl); 1122 } 1123 1124 static int 1125 hfsc_delete_class(struct Qdisc *sch, unsigned long arg) 1126 { 1127 struct hfsc_sched *q = qdisc_priv(sch); 1128 struct hfsc_class *cl = (struct hfsc_class *)arg; 1129 1130 if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root) 1131 return -EBUSY; 1132 1133 sch_tree_lock(sch); 1134 1135 list_del(&cl->siblings); 1136 hfsc_adjust_levels(cl->cl_parent); 1137 1138 hfsc_purge_queue(sch, cl); 1139 qdisc_class_hash_remove(&q->clhash, &cl->cl_common); 1140 1141 BUG_ON(--cl->refcnt == 0); 1142 /* 1143 * This shouldn't happen: we "hold" one cops->get() when called 1144 * from tc_ctl_tclass; the destroy method is done from cops->put(). 1145 */ 1146 1147 sch_tree_unlock(sch); 1148 return 0; 1149 } 1150 1151 static struct hfsc_class * 1152 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) 1153 { 1154 struct hfsc_sched *q = qdisc_priv(sch); 1155 struct hfsc_class *head, *cl; 1156 struct tcf_result res; 1157 struct tcf_proto *tcf; 1158 int result; 1159 1160 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 && 1161 (cl = hfsc_find_class(skb->priority, sch)) != NULL) 1162 if (cl->level == 0) 1163 return cl; 1164 1165 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 1166 head = &q->root; 1167 tcf = rcu_dereference_bh(q->root.filter_list); 1168 while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) { 1169 #ifdef CONFIG_NET_CLS_ACT 1170 switch (result) { 1171 case TC_ACT_QUEUED: 1172 case TC_ACT_STOLEN: 1173 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 1174 case TC_ACT_SHOT: 1175 return NULL; 1176 } 1177 #endif 1178 cl = (struct hfsc_class *)res.class; 1179 if (!cl) { 1180 cl = hfsc_find_class(res.classid, sch); 1181 if (!cl) 1182 break; /* filter selected invalid classid */ 1183 if (cl->level >= head->level) 1184 break; /* filter may only point downwards */ 1185 } 1186 1187 if (cl->level == 0) 1188 return cl; /* hit leaf class */ 1189 1190 /* apply inner filter chain */ 1191 tcf = rcu_dereference_bh(cl->filter_list); 1192 head = cl; 1193 } 1194 1195 /* classification failed, try default class */ 1196 cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch); 1197 if (cl == NULL || cl->level > 0) 1198 return NULL; 1199 1200 return cl; 1201 } 1202 1203 static int 1204 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1205 struct Qdisc **old) 1206 { 1207 struct hfsc_class *cl = (struct hfsc_class *)arg; 1208 1209 if (cl->level > 0) 1210 return -EINVAL; 1211 if (new == NULL) { 1212 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1213 cl->cl_common.classid); 1214 if (new == NULL) 1215 new = &noop_qdisc; 1216 } 1217 1218 sch_tree_lock(sch); 1219 hfsc_purge_queue(sch, cl); 1220 *old = cl->qdisc; 1221 cl->qdisc = new; 1222 sch_tree_unlock(sch); 1223 return 0; 1224 } 1225 1226 static struct Qdisc * 1227 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg) 1228 { 1229 struct hfsc_class *cl = (struct hfsc_class *)arg; 1230 1231 if (cl->level == 0) 1232 return cl->qdisc; 1233 1234 return NULL; 1235 } 1236 1237 static void 1238 hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg) 1239 { 1240 struct hfsc_class *cl = (struct hfsc_class *)arg; 1241 1242 if (cl->qdisc->q.qlen == 0) { 1243 update_vf(cl, 0, 0); 1244 set_passive(cl); 1245 } 1246 } 1247 1248 static unsigned long 1249 hfsc_get_class(struct Qdisc *sch, u32 classid) 1250 { 1251 struct hfsc_class *cl = hfsc_find_class(classid, sch); 1252 1253 if (cl != NULL) 1254 cl->refcnt++; 1255 1256 return (unsigned long)cl; 1257 } 1258 1259 static void 1260 hfsc_put_class(struct Qdisc *sch, unsigned long arg) 1261 { 1262 struct hfsc_class *cl = (struct hfsc_class *)arg; 1263 1264 if (--cl->refcnt == 0) 1265 hfsc_destroy_class(sch, cl); 1266 } 1267 1268 static unsigned long 1269 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid) 1270 { 1271 struct hfsc_class *p = (struct hfsc_class *)parent; 1272 struct hfsc_class *cl = hfsc_find_class(classid, sch); 1273 1274 if (cl != NULL) { 1275 if (p != NULL && p->level <= cl->level) 1276 return 0; 1277 cl->filter_cnt++; 1278 } 1279 1280 return (unsigned long)cl; 1281 } 1282 1283 static void 1284 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg) 1285 { 1286 struct hfsc_class *cl = (struct hfsc_class *)arg; 1287 1288 cl->filter_cnt--; 1289 } 1290 1291 static struct tcf_proto __rcu ** 1292 hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg) 1293 { 1294 struct hfsc_sched *q = qdisc_priv(sch); 1295 struct hfsc_class *cl = (struct hfsc_class *)arg; 1296 1297 if (cl == NULL) 1298 cl = &q->root; 1299 1300 return &cl->filter_list; 1301 } 1302 1303 static int 1304 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc) 1305 { 1306 struct tc_service_curve tsc; 1307 1308 tsc.m1 = sm2m(sc->sm1); 1309 tsc.d = dx2d(sc->dx); 1310 tsc.m2 = sm2m(sc->sm2); 1311 if (nla_put(skb, attr, sizeof(tsc), &tsc)) 1312 goto nla_put_failure; 1313 1314 return skb->len; 1315 1316 nla_put_failure: 1317 return -1; 1318 } 1319 1320 static int 1321 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl) 1322 { 1323 if ((cl->cl_flags & HFSC_RSC) && 1324 (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0)) 1325 goto nla_put_failure; 1326 1327 if ((cl->cl_flags & HFSC_FSC) && 1328 (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0)) 1329 goto nla_put_failure; 1330 1331 if ((cl->cl_flags & HFSC_USC) && 1332 (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0)) 1333 goto nla_put_failure; 1334 1335 return skb->len; 1336 1337 nla_put_failure: 1338 return -1; 1339 } 1340 1341 static int 1342 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb, 1343 struct tcmsg *tcm) 1344 { 1345 struct hfsc_class *cl = (struct hfsc_class *)arg; 1346 struct nlattr *nest; 1347 1348 tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid : 1349 TC_H_ROOT; 1350 tcm->tcm_handle = cl->cl_common.classid; 1351 if (cl->level == 0) 1352 tcm->tcm_info = cl->qdisc->handle; 1353 1354 nest = nla_nest_start(skb, TCA_OPTIONS); 1355 if (nest == NULL) 1356 goto nla_put_failure; 1357 if (hfsc_dump_curves(skb, cl) < 0) 1358 goto nla_put_failure; 1359 return nla_nest_end(skb, nest); 1360 1361 nla_put_failure: 1362 nla_nest_cancel(skb, nest); 1363 return -EMSGSIZE; 1364 } 1365 1366 static int 1367 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg, 1368 struct gnet_dump *d) 1369 { 1370 struct hfsc_class *cl = (struct hfsc_class *)arg; 1371 struct tc_hfsc_stats xstats; 1372 1373 cl->qstats.backlog = cl->qdisc->qstats.backlog; 1374 xstats.level = cl->level; 1375 xstats.period = cl->cl_vtperiod; 1376 xstats.work = cl->cl_total; 1377 xstats.rtwork = cl->cl_cumul; 1378 1379 if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 || 1380 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 || 1381 gnet_stats_copy_queue(d, NULL, &cl->qstats, cl->qdisc->q.qlen) < 0) 1382 return -1; 1383 1384 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 1385 } 1386 1387 1388 1389 static void 1390 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1391 { 1392 struct hfsc_sched *q = qdisc_priv(sch); 1393 struct hfsc_class *cl; 1394 unsigned int i; 1395 1396 if (arg->stop) 1397 return; 1398 1399 for (i = 0; i < q->clhash.hashsize; i++) { 1400 hlist_for_each_entry(cl, &q->clhash.hash[i], 1401 cl_common.hnode) { 1402 if (arg->count < arg->skip) { 1403 arg->count++; 1404 continue; 1405 } 1406 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 1407 arg->stop = 1; 1408 return; 1409 } 1410 arg->count++; 1411 } 1412 } 1413 } 1414 1415 static void 1416 hfsc_schedule_watchdog(struct Qdisc *sch) 1417 { 1418 struct hfsc_sched *q = qdisc_priv(sch); 1419 struct hfsc_class *cl; 1420 u64 next_time = 0; 1421 1422 cl = eltree_get_minel(q); 1423 if (cl) 1424 next_time = cl->cl_e; 1425 if (q->root.cl_cfmin != 0) { 1426 if (next_time == 0 || next_time > q->root.cl_cfmin) 1427 next_time = q->root.cl_cfmin; 1428 } 1429 WARN_ON(next_time == 0); 1430 qdisc_watchdog_schedule(&q->watchdog, next_time); 1431 } 1432 1433 static int 1434 hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt) 1435 { 1436 struct hfsc_sched *q = qdisc_priv(sch); 1437 struct tc_hfsc_qopt *qopt; 1438 int err; 1439 1440 if (opt == NULL || nla_len(opt) < sizeof(*qopt)) 1441 return -EINVAL; 1442 qopt = nla_data(opt); 1443 1444 q->defcls = qopt->defcls; 1445 err = qdisc_class_hash_init(&q->clhash); 1446 if (err < 0) 1447 return err; 1448 q->eligible = RB_ROOT; 1449 INIT_LIST_HEAD(&q->droplist); 1450 1451 q->root.cl_common.classid = sch->handle; 1452 q->root.refcnt = 1; 1453 q->root.sched = q; 1454 q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1455 sch->handle); 1456 if (q->root.qdisc == NULL) 1457 q->root.qdisc = &noop_qdisc; 1458 INIT_LIST_HEAD(&q->root.children); 1459 q->root.vt_tree = RB_ROOT; 1460 q->root.cf_tree = RB_ROOT; 1461 1462 qdisc_class_hash_insert(&q->clhash, &q->root.cl_common); 1463 qdisc_class_hash_grow(sch, &q->clhash); 1464 1465 qdisc_watchdog_init(&q->watchdog, sch); 1466 1467 return 0; 1468 } 1469 1470 static int 1471 hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt) 1472 { 1473 struct hfsc_sched *q = qdisc_priv(sch); 1474 struct tc_hfsc_qopt *qopt; 1475 1476 if (opt == NULL || nla_len(opt) < sizeof(*qopt)) 1477 return -EINVAL; 1478 qopt = nla_data(opt); 1479 1480 sch_tree_lock(sch); 1481 q->defcls = qopt->defcls; 1482 sch_tree_unlock(sch); 1483 1484 return 0; 1485 } 1486 1487 static void 1488 hfsc_reset_class(struct hfsc_class *cl) 1489 { 1490 cl->cl_total = 0; 1491 cl->cl_cumul = 0; 1492 cl->cl_d = 0; 1493 cl->cl_e = 0; 1494 cl->cl_vt = 0; 1495 cl->cl_vtadj = 0; 1496 cl->cl_vtoff = 0; 1497 cl->cl_cvtmin = 0; 1498 cl->cl_cvtmax = 0; 1499 cl->cl_cvtoff = 0; 1500 cl->cl_pcvtoff = 0; 1501 cl->cl_vtperiod = 0; 1502 cl->cl_parentperiod = 0; 1503 cl->cl_f = 0; 1504 cl->cl_myf = 0; 1505 cl->cl_myfadj = 0; 1506 cl->cl_cfmin = 0; 1507 cl->cl_nactive = 0; 1508 1509 cl->vt_tree = RB_ROOT; 1510 cl->cf_tree = RB_ROOT; 1511 qdisc_reset(cl->qdisc); 1512 1513 if (cl->cl_flags & HFSC_RSC) 1514 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0); 1515 if (cl->cl_flags & HFSC_FSC) 1516 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0); 1517 if (cl->cl_flags & HFSC_USC) 1518 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0); 1519 } 1520 1521 static void 1522 hfsc_reset_qdisc(struct Qdisc *sch) 1523 { 1524 struct hfsc_sched *q = qdisc_priv(sch); 1525 struct hfsc_class *cl; 1526 unsigned int i; 1527 1528 for (i = 0; i < q->clhash.hashsize; i++) { 1529 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) 1530 hfsc_reset_class(cl); 1531 } 1532 q->eligible = RB_ROOT; 1533 INIT_LIST_HEAD(&q->droplist); 1534 qdisc_watchdog_cancel(&q->watchdog); 1535 sch->q.qlen = 0; 1536 } 1537 1538 static void 1539 hfsc_destroy_qdisc(struct Qdisc *sch) 1540 { 1541 struct hfsc_sched *q = qdisc_priv(sch); 1542 struct hlist_node *next; 1543 struct hfsc_class *cl; 1544 unsigned int i; 1545 1546 for (i = 0; i < q->clhash.hashsize; i++) { 1547 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) 1548 tcf_destroy_chain(&cl->filter_list); 1549 } 1550 for (i = 0; i < q->clhash.hashsize; i++) { 1551 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1552 cl_common.hnode) 1553 hfsc_destroy_class(sch, cl); 1554 } 1555 qdisc_class_hash_destroy(&q->clhash); 1556 qdisc_watchdog_cancel(&q->watchdog); 1557 } 1558 1559 static int 1560 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb) 1561 { 1562 struct hfsc_sched *q = qdisc_priv(sch); 1563 unsigned char *b = skb_tail_pointer(skb); 1564 struct tc_hfsc_qopt qopt; 1565 struct hfsc_class *cl; 1566 unsigned int i; 1567 1568 sch->qstats.backlog = 0; 1569 for (i = 0; i < q->clhash.hashsize; i++) { 1570 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) 1571 sch->qstats.backlog += cl->qdisc->qstats.backlog; 1572 } 1573 1574 qopt.defcls = q->defcls; 1575 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) 1576 goto nla_put_failure; 1577 return skb->len; 1578 1579 nla_put_failure: 1580 nlmsg_trim(skb, b); 1581 return -1; 1582 } 1583 1584 static int 1585 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch) 1586 { 1587 struct hfsc_class *cl; 1588 int uninitialized_var(err); 1589 1590 cl = hfsc_classify(skb, sch, &err); 1591 if (cl == NULL) { 1592 if (err & __NET_XMIT_BYPASS) 1593 qdisc_qstats_drop(sch); 1594 kfree_skb(skb); 1595 return err; 1596 } 1597 1598 err = qdisc_enqueue(skb, cl->qdisc); 1599 if (unlikely(err != NET_XMIT_SUCCESS)) { 1600 if (net_xmit_drop_count(err)) { 1601 cl->qstats.drops++; 1602 qdisc_qstats_drop(sch); 1603 } 1604 return err; 1605 } 1606 1607 if (cl->qdisc->q.qlen == 1) 1608 set_active(cl, qdisc_pkt_len(skb)); 1609 1610 sch->q.qlen++; 1611 1612 return NET_XMIT_SUCCESS; 1613 } 1614 1615 static struct sk_buff * 1616 hfsc_dequeue(struct Qdisc *sch) 1617 { 1618 struct hfsc_sched *q = qdisc_priv(sch); 1619 struct hfsc_class *cl; 1620 struct sk_buff *skb; 1621 u64 cur_time; 1622 unsigned int next_len; 1623 int realtime = 0; 1624 1625 if (sch->q.qlen == 0) 1626 return NULL; 1627 1628 cur_time = psched_get_time(); 1629 1630 /* 1631 * if there are eligible classes, use real-time criteria. 1632 * find the class with the minimum deadline among 1633 * the eligible classes. 1634 */ 1635 cl = eltree_get_mindl(q, cur_time); 1636 if (cl) { 1637 realtime = 1; 1638 } else { 1639 /* 1640 * use link-sharing criteria 1641 * get the class with the minimum vt in the hierarchy 1642 */ 1643 cl = vttree_get_minvt(&q->root, cur_time); 1644 if (cl == NULL) { 1645 qdisc_qstats_overlimit(sch); 1646 hfsc_schedule_watchdog(sch); 1647 return NULL; 1648 } 1649 } 1650 1651 skb = qdisc_dequeue_peeked(cl->qdisc); 1652 if (skb == NULL) { 1653 qdisc_warn_nonwc("HFSC", cl->qdisc); 1654 return NULL; 1655 } 1656 1657 bstats_update(&cl->bstats, skb); 1658 update_vf(cl, qdisc_pkt_len(skb), cur_time); 1659 if (realtime) 1660 cl->cl_cumul += qdisc_pkt_len(skb); 1661 1662 if (cl->qdisc->q.qlen != 0) { 1663 if (cl->cl_flags & HFSC_RSC) { 1664 /* update ed */ 1665 next_len = qdisc_peek_len(cl->qdisc); 1666 if (realtime) 1667 update_ed(cl, next_len); 1668 else 1669 update_d(cl, next_len); 1670 } 1671 } else { 1672 /* the class becomes passive */ 1673 set_passive(cl); 1674 } 1675 1676 qdisc_unthrottled(sch); 1677 qdisc_bstats_update(sch, skb); 1678 sch->q.qlen--; 1679 1680 return skb; 1681 } 1682 1683 static unsigned int 1684 hfsc_drop(struct Qdisc *sch) 1685 { 1686 struct hfsc_sched *q = qdisc_priv(sch); 1687 struct hfsc_class *cl; 1688 unsigned int len; 1689 1690 list_for_each_entry(cl, &q->droplist, dlist) { 1691 if (cl->qdisc->ops->drop != NULL && 1692 (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) { 1693 if (cl->qdisc->q.qlen == 0) { 1694 update_vf(cl, 0, 0); 1695 set_passive(cl); 1696 } else { 1697 list_move_tail(&cl->dlist, &q->droplist); 1698 } 1699 cl->qstats.drops++; 1700 qdisc_qstats_drop(sch); 1701 sch->q.qlen--; 1702 return len; 1703 } 1704 } 1705 return 0; 1706 } 1707 1708 static const struct Qdisc_class_ops hfsc_class_ops = { 1709 .change = hfsc_change_class, 1710 .delete = hfsc_delete_class, 1711 .graft = hfsc_graft_class, 1712 .leaf = hfsc_class_leaf, 1713 .qlen_notify = hfsc_qlen_notify, 1714 .get = hfsc_get_class, 1715 .put = hfsc_put_class, 1716 .bind_tcf = hfsc_bind_tcf, 1717 .unbind_tcf = hfsc_unbind_tcf, 1718 .tcf_chain = hfsc_tcf_chain, 1719 .dump = hfsc_dump_class, 1720 .dump_stats = hfsc_dump_class_stats, 1721 .walk = hfsc_walk 1722 }; 1723 1724 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = { 1725 .id = "hfsc", 1726 .init = hfsc_init_qdisc, 1727 .change = hfsc_change_qdisc, 1728 .reset = hfsc_reset_qdisc, 1729 .destroy = hfsc_destroy_qdisc, 1730 .dump = hfsc_dump_qdisc, 1731 .enqueue = hfsc_enqueue, 1732 .dequeue = hfsc_dequeue, 1733 .peek = qdisc_peek_dequeued, 1734 .drop = hfsc_drop, 1735 .cl_ops = &hfsc_class_ops, 1736 .priv_size = sizeof(struct hfsc_sched), 1737 .owner = THIS_MODULE 1738 }; 1739 1740 static int __init 1741 hfsc_init(void) 1742 { 1743 return register_qdisc(&hfsc_qdisc_ops); 1744 } 1745 1746 static void __exit 1747 hfsc_cleanup(void) 1748 { 1749 unregister_qdisc(&hfsc_qdisc_ops); 1750 } 1751 1752 MODULE_LICENSE("GPL"); 1753 module_init(hfsc_init); 1754 module_exit(hfsc_cleanup); 1755