1 /* 2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net> 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 2 7 * of the License, or (at your option) any later version. 8 * 9 * 2003-10-17 - Ported from altq 10 */ 11 /* 12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved. 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation is hereby granted (including for commercial or 16 * for-profit use), provided that both the copyright notice and this 17 * permission notice appear in all copies of the software, derivative 18 * works, or modified versions, and any portions thereof. 19 * 20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF 21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS 22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED 23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 33 * DAMAGE. 34 * 35 * Carnegie Mellon encourages (but does not require) users of this 36 * software to return any improvements or extensions that they make, 37 * and to grant Carnegie Mellon the rights to redistribute these 38 * changes without encumbrance. 39 */ 40 /* 41 * H-FSC is described in Proceedings of SIGCOMM'97, 42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing, 43 * Real-Time and Priority Service" 44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng. 45 * 46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing. 47 * when a class has an upperlimit, the fit-time is computed from the 48 * upperlimit service curve. the link-sharing scheduler does not schedule 49 * a class whose fit-time exceeds the current time. 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/types.h> 55 #include <linux/errno.h> 56 #include <linux/jiffies.h> 57 #include <linux/compiler.h> 58 #include <linux/spinlock.h> 59 #include <linux/skbuff.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/timer.h> 63 #include <linux/list.h> 64 #include <linux/rbtree.h> 65 #include <linux/init.h> 66 #include <linux/netdevice.h> 67 #include <linux/rtnetlink.h> 68 #include <linux/pkt_sched.h> 69 #include <net/pkt_sched.h> 70 #include <net/pkt_cls.h> 71 #include <asm/system.h> 72 #include <asm/div64.h> 73 74 #define HFSC_DEBUG 1 75 76 /* 77 * kernel internal service curve representation: 78 * coordinates are given by 64 bit unsigned integers. 79 * x-axis: unit is clock count. 80 * y-axis: unit is byte. 81 * 82 * The service curve parameters are converted to the internal 83 * representation. The slope values are scaled to avoid overflow. 84 * the inverse slope values as well as the y-projection of the 1st 85 * segment are kept in order to to avoid 64-bit divide operations 86 * that are expensive on 32-bit architectures. 87 */ 88 89 struct internal_sc 90 { 91 u64 sm1; /* scaled slope of the 1st segment */ 92 u64 ism1; /* scaled inverse-slope of the 1st segment */ 93 u64 dx; /* the x-projection of the 1st segment */ 94 u64 dy; /* the y-projection of the 1st segment */ 95 u64 sm2; /* scaled slope of the 2nd segment */ 96 u64 ism2; /* scaled inverse-slope of the 2nd segment */ 97 }; 98 99 /* runtime service curve */ 100 struct runtime_sc 101 { 102 u64 x; /* current starting position on x-axis */ 103 u64 y; /* current starting position on y-axis */ 104 u64 sm1; /* scaled slope of the 1st segment */ 105 u64 ism1; /* scaled inverse-slope of the 1st segment */ 106 u64 dx; /* the x-projection of the 1st segment */ 107 u64 dy; /* the y-projection of the 1st segment */ 108 u64 sm2; /* scaled slope of the 2nd segment */ 109 u64 ism2; /* scaled inverse-slope of the 2nd segment */ 110 }; 111 112 enum hfsc_class_flags 113 { 114 HFSC_RSC = 0x1, 115 HFSC_FSC = 0x2, 116 HFSC_USC = 0x4 117 }; 118 119 struct hfsc_class 120 { 121 u32 classid; /* class id */ 122 unsigned int refcnt; /* usage count */ 123 124 struct gnet_stats_basic bstats; 125 struct gnet_stats_queue qstats; 126 struct gnet_stats_rate_est rate_est; 127 spinlock_t *stats_lock; 128 unsigned int level; /* class level in hierarchy */ 129 struct tcf_proto *filter_list; /* filter list */ 130 unsigned int filter_cnt; /* filter count */ 131 132 struct hfsc_sched *sched; /* scheduler data */ 133 struct hfsc_class *cl_parent; /* parent class */ 134 struct list_head siblings; /* sibling classes */ 135 struct list_head children; /* child classes */ 136 struct Qdisc *qdisc; /* leaf qdisc */ 137 138 struct rb_node el_node; /* qdisc's eligible tree member */ 139 struct rb_root vt_tree; /* active children sorted by cl_vt */ 140 struct rb_node vt_node; /* parent's vt_tree member */ 141 struct rb_root cf_tree; /* active children sorted by cl_f */ 142 struct rb_node cf_node; /* parent's cf_heap member */ 143 struct list_head hlist; /* hash list member */ 144 struct list_head dlist; /* drop list member */ 145 146 u64 cl_total; /* total work in bytes */ 147 u64 cl_cumul; /* cumulative work in bytes done by 148 real-time criteria */ 149 150 u64 cl_d; /* deadline*/ 151 u64 cl_e; /* eligible time */ 152 u64 cl_vt; /* virtual time */ 153 u64 cl_f; /* time when this class will fit for 154 link-sharing, max(myf, cfmin) */ 155 u64 cl_myf; /* my fit-time (calculated from this 156 class's own upperlimit curve) */ 157 u64 cl_myfadj; /* my fit-time adjustment (to cancel 158 history dependence) */ 159 u64 cl_cfmin; /* earliest children's fit-time (used 160 with cl_myf to obtain cl_f) */ 161 u64 cl_cvtmin; /* minimal virtual time among the 162 children fit for link-sharing 163 (monotonic within a period) */ 164 u64 cl_vtadj; /* intra-period cumulative vt 165 adjustment */ 166 u64 cl_vtoff; /* inter-period cumulative vt offset */ 167 u64 cl_cvtmax; /* max child's vt in the last period */ 168 u64 cl_cvtoff; /* cumulative cvtmax of all periods */ 169 u64 cl_pcvtoff; /* parent's cvtoff at initalization 170 time */ 171 172 struct internal_sc cl_rsc; /* internal real-time service curve */ 173 struct internal_sc cl_fsc; /* internal fair service curve */ 174 struct internal_sc cl_usc; /* internal upperlimit service curve */ 175 struct runtime_sc cl_deadline; /* deadline curve */ 176 struct runtime_sc cl_eligible; /* eligible curve */ 177 struct runtime_sc cl_virtual; /* virtual curve */ 178 struct runtime_sc cl_ulimit; /* upperlimit curve */ 179 180 unsigned long cl_flags; /* which curves are valid */ 181 unsigned long cl_vtperiod; /* vt period sequence number */ 182 unsigned long cl_parentperiod;/* parent's vt period sequence number*/ 183 unsigned long cl_nactive; /* number of active children */ 184 }; 185 186 #define HFSC_HSIZE 16 187 188 struct hfsc_sched 189 { 190 u16 defcls; /* default class id */ 191 struct hfsc_class root; /* root class */ 192 struct list_head clhash[HFSC_HSIZE]; /* class hash */ 193 struct rb_root eligible; /* eligible tree */ 194 struct list_head droplist; /* active leaf class list (for 195 dropping) */ 196 struct sk_buff_head requeue; /* requeued packet */ 197 struct timer_list wd_timer; /* watchdog timer */ 198 }; 199 200 /* 201 * macros 202 */ 203 #ifdef CONFIG_NET_SCH_CLK_GETTIMEOFDAY 204 #include <linux/time.h> 205 #undef PSCHED_GET_TIME 206 #define PSCHED_GET_TIME(stamp) \ 207 do { \ 208 struct timeval tv; \ 209 do_gettimeofday(&tv); \ 210 (stamp) = 1ULL * USEC_PER_SEC * tv.tv_sec + tv.tv_usec; \ 211 } while (0) 212 #endif 213 214 #if HFSC_DEBUG 215 #define ASSERT(cond) \ 216 do { \ 217 if (unlikely(!(cond))) \ 218 printk("assertion %s failed at %s:%i (%s)\n", \ 219 #cond, __FILE__, __LINE__, __FUNCTION__); \ 220 } while (0) 221 #else 222 #define ASSERT(cond) 223 #endif /* HFSC_DEBUG */ 224 225 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */ 226 227 228 /* 229 * eligible tree holds backlogged classes being sorted by their eligible times. 230 * there is one eligible tree per hfsc instance. 231 */ 232 233 static void 234 eltree_insert(struct hfsc_class *cl) 235 { 236 struct rb_node **p = &cl->sched->eligible.rb_node; 237 struct rb_node *parent = NULL; 238 struct hfsc_class *cl1; 239 240 while (*p != NULL) { 241 parent = *p; 242 cl1 = rb_entry(parent, struct hfsc_class, el_node); 243 if (cl->cl_e >= cl1->cl_e) 244 p = &parent->rb_right; 245 else 246 p = &parent->rb_left; 247 } 248 rb_link_node(&cl->el_node, parent, p); 249 rb_insert_color(&cl->el_node, &cl->sched->eligible); 250 } 251 252 static inline void 253 eltree_remove(struct hfsc_class *cl) 254 { 255 rb_erase(&cl->el_node, &cl->sched->eligible); 256 } 257 258 static inline void 259 eltree_update(struct hfsc_class *cl) 260 { 261 eltree_remove(cl); 262 eltree_insert(cl); 263 } 264 265 /* find the class with the minimum deadline among the eligible classes */ 266 static inline struct hfsc_class * 267 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time) 268 { 269 struct hfsc_class *p, *cl = NULL; 270 struct rb_node *n; 271 272 for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) { 273 p = rb_entry(n, struct hfsc_class, el_node); 274 if (p->cl_e > cur_time) 275 break; 276 if (cl == NULL || p->cl_d < cl->cl_d) 277 cl = p; 278 } 279 return cl; 280 } 281 282 /* find the class with minimum eligible time among the eligible classes */ 283 static inline struct hfsc_class * 284 eltree_get_minel(struct hfsc_sched *q) 285 { 286 struct rb_node *n; 287 288 n = rb_first(&q->eligible); 289 if (n == NULL) 290 return NULL; 291 return rb_entry(n, struct hfsc_class, el_node); 292 } 293 294 /* 295 * vttree holds holds backlogged child classes being sorted by their virtual 296 * time. each intermediate class has one vttree. 297 */ 298 static void 299 vttree_insert(struct hfsc_class *cl) 300 { 301 struct rb_node **p = &cl->cl_parent->vt_tree.rb_node; 302 struct rb_node *parent = NULL; 303 struct hfsc_class *cl1; 304 305 while (*p != NULL) { 306 parent = *p; 307 cl1 = rb_entry(parent, struct hfsc_class, vt_node); 308 if (cl->cl_vt >= cl1->cl_vt) 309 p = &parent->rb_right; 310 else 311 p = &parent->rb_left; 312 } 313 rb_link_node(&cl->vt_node, parent, p); 314 rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree); 315 } 316 317 static inline void 318 vttree_remove(struct hfsc_class *cl) 319 { 320 rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree); 321 } 322 323 static inline void 324 vttree_update(struct hfsc_class *cl) 325 { 326 vttree_remove(cl); 327 vttree_insert(cl); 328 } 329 330 static inline struct hfsc_class * 331 vttree_firstfit(struct hfsc_class *cl, u64 cur_time) 332 { 333 struct hfsc_class *p; 334 struct rb_node *n; 335 336 for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) { 337 p = rb_entry(n, struct hfsc_class, vt_node); 338 if (p->cl_f <= cur_time) 339 return p; 340 } 341 return NULL; 342 } 343 344 /* 345 * get the leaf class with the minimum vt in the hierarchy 346 */ 347 static struct hfsc_class * 348 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time) 349 { 350 /* if root-class's cfmin is bigger than cur_time nothing to do */ 351 if (cl->cl_cfmin > cur_time) 352 return NULL; 353 354 while (cl->level > 0) { 355 cl = vttree_firstfit(cl, cur_time); 356 if (cl == NULL) 357 return NULL; 358 /* 359 * update parent's cl_cvtmin. 360 */ 361 if (cl->cl_parent->cl_cvtmin < cl->cl_vt) 362 cl->cl_parent->cl_cvtmin = cl->cl_vt; 363 } 364 return cl; 365 } 366 367 static void 368 cftree_insert(struct hfsc_class *cl) 369 { 370 struct rb_node **p = &cl->cl_parent->cf_tree.rb_node; 371 struct rb_node *parent = NULL; 372 struct hfsc_class *cl1; 373 374 while (*p != NULL) { 375 parent = *p; 376 cl1 = rb_entry(parent, struct hfsc_class, cf_node); 377 if (cl->cl_f >= cl1->cl_f) 378 p = &parent->rb_right; 379 else 380 p = &parent->rb_left; 381 } 382 rb_link_node(&cl->cf_node, parent, p); 383 rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree); 384 } 385 386 static inline void 387 cftree_remove(struct hfsc_class *cl) 388 { 389 rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree); 390 } 391 392 static inline void 393 cftree_update(struct hfsc_class *cl) 394 { 395 cftree_remove(cl); 396 cftree_insert(cl); 397 } 398 399 /* 400 * service curve support functions 401 * 402 * external service curve parameters 403 * m: bps 404 * d: us 405 * internal service curve parameters 406 * sm: (bytes/psched_us) << SM_SHIFT 407 * ism: (psched_us/byte) << ISM_SHIFT 408 * dx: psched_us 409 * 410 * Clock source resolution (CONFIG_NET_SCH_CLK_*) 411 * JIFFIES: for 48<=HZ<=1534 resolution is between 0.63us and 1.27us. 412 * CPU: resolution is between 0.5us and 1us. 413 * GETTIMEOFDAY: resolution is exactly 1us. 414 * 415 * sm and ism are scaled in order to keep effective digits. 416 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective 417 * digits in decimal using the following table. 418 * 419 * Note: We can afford the additional accuracy (altq hfsc keeps at most 420 * 3 effective digits) thanks to the fact that linux clock is bounded 421 * much more tightly. 422 * 423 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps 424 * ------------+------------------------------------------------------- 425 * bytes/0.5us 6.25e-3 62.5e-3 625e-3 6250e-e 62500e-3 426 * bytes/us 12.5e-3 125e-3 1250e-3 12500e-3 125000e-3 427 * bytes/1.27us 15.875e-3 158.75e-3 1587.5e-3 15875e-3 158750e-3 428 * 429 * 0.5us/byte 160 16 1.6 0.16 0.016 430 * us/byte 80 8 0.8 0.08 0.008 431 * 1.27us/byte 63 6.3 0.63 0.063 0.0063 432 */ 433 #define SM_SHIFT 20 434 #define ISM_SHIFT 18 435 436 #define SM_MASK ((1ULL << SM_SHIFT) - 1) 437 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1) 438 439 static inline u64 440 seg_x2y(u64 x, u64 sm) 441 { 442 u64 y; 443 444 /* 445 * compute 446 * y = x * sm >> SM_SHIFT 447 * but divide it for the upper and lower bits to avoid overflow 448 */ 449 y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT); 450 return y; 451 } 452 453 static inline u64 454 seg_y2x(u64 y, u64 ism) 455 { 456 u64 x; 457 458 if (y == 0) 459 x = 0; 460 else if (ism == HT_INFINITY) 461 x = HT_INFINITY; 462 else { 463 x = (y >> ISM_SHIFT) * ism 464 + (((y & ISM_MASK) * ism) >> ISM_SHIFT); 465 } 466 return x; 467 } 468 469 /* Convert m (bps) into sm (bytes/psched us) */ 470 static u64 471 m2sm(u32 m) 472 { 473 u64 sm; 474 475 sm = ((u64)m << SM_SHIFT); 476 sm += PSCHED_JIFFIE2US(HZ) - 1; 477 do_div(sm, PSCHED_JIFFIE2US(HZ)); 478 return sm; 479 } 480 481 /* convert m (bps) into ism (psched us/byte) */ 482 static u64 483 m2ism(u32 m) 484 { 485 u64 ism; 486 487 if (m == 0) 488 ism = HT_INFINITY; 489 else { 490 ism = ((u64)PSCHED_JIFFIE2US(HZ) << ISM_SHIFT); 491 ism += m - 1; 492 do_div(ism, m); 493 } 494 return ism; 495 } 496 497 /* convert d (us) into dx (psched us) */ 498 static u64 499 d2dx(u32 d) 500 { 501 u64 dx; 502 503 dx = ((u64)d * PSCHED_JIFFIE2US(HZ)); 504 dx += USEC_PER_SEC - 1; 505 do_div(dx, USEC_PER_SEC); 506 return dx; 507 } 508 509 /* convert sm (bytes/psched us) into m (bps) */ 510 static u32 511 sm2m(u64 sm) 512 { 513 u64 m; 514 515 m = (sm * PSCHED_JIFFIE2US(HZ)) >> SM_SHIFT; 516 return (u32)m; 517 } 518 519 /* convert dx (psched us) into d (us) */ 520 static u32 521 dx2d(u64 dx) 522 { 523 u64 d; 524 525 d = dx * USEC_PER_SEC; 526 do_div(d, PSCHED_JIFFIE2US(HZ)); 527 return (u32)d; 528 } 529 530 static void 531 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc) 532 { 533 isc->sm1 = m2sm(sc->m1); 534 isc->ism1 = m2ism(sc->m1); 535 isc->dx = d2dx(sc->d); 536 isc->dy = seg_x2y(isc->dx, isc->sm1); 537 isc->sm2 = m2sm(sc->m2); 538 isc->ism2 = m2ism(sc->m2); 539 } 540 541 /* 542 * initialize the runtime service curve with the given internal 543 * service curve starting at (x, y). 544 */ 545 static void 546 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) 547 { 548 rtsc->x = x; 549 rtsc->y = y; 550 rtsc->sm1 = isc->sm1; 551 rtsc->ism1 = isc->ism1; 552 rtsc->dx = isc->dx; 553 rtsc->dy = isc->dy; 554 rtsc->sm2 = isc->sm2; 555 rtsc->ism2 = isc->ism2; 556 } 557 558 /* 559 * calculate the y-projection of the runtime service curve by the 560 * given x-projection value 561 */ 562 static u64 563 rtsc_y2x(struct runtime_sc *rtsc, u64 y) 564 { 565 u64 x; 566 567 if (y < rtsc->y) 568 x = rtsc->x; 569 else if (y <= rtsc->y + rtsc->dy) { 570 /* x belongs to the 1st segment */ 571 if (rtsc->dy == 0) 572 x = rtsc->x + rtsc->dx; 573 else 574 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1); 575 } else { 576 /* x belongs to the 2nd segment */ 577 x = rtsc->x + rtsc->dx 578 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2); 579 } 580 return x; 581 } 582 583 static u64 584 rtsc_x2y(struct runtime_sc *rtsc, u64 x) 585 { 586 u64 y; 587 588 if (x <= rtsc->x) 589 y = rtsc->y; 590 else if (x <= rtsc->x + rtsc->dx) 591 /* y belongs to the 1st segment */ 592 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1); 593 else 594 /* y belongs to the 2nd segment */ 595 y = rtsc->y + rtsc->dy 596 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2); 597 return y; 598 } 599 600 /* 601 * update the runtime service curve by taking the minimum of the current 602 * runtime service curve and the service curve starting at (x, y). 603 */ 604 static void 605 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) 606 { 607 u64 y1, y2, dx, dy; 608 u32 dsm; 609 610 if (isc->sm1 <= isc->sm2) { 611 /* service curve is convex */ 612 y1 = rtsc_x2y(rtsc, x); 613 if (y1 < y) 614 /* the current rtsc is smaller */ 615 return; 616 rtsc->x = x; 617 rtsc->y = y; 618 return; 619 } 620 621 /* 622 * service curve is concave 623 * compute the two y values of the current rtsc 624 * y1: at x 625 * y2: at (x + dx) 626 */ 627 y1 = rtsc_x2y(rtsc, x); 628 if (y1 <= y) { 629 /* rtsc is below isc, no change to rtsc */ 630 return; 631 } 632 633 y2 = rtsc_x2y(rtsc, x + isc->dx); 634 if (y2 >= y + isc->dy) { 635 /* rtsc is above isc, replace rtsc by isc */ 636 rtsc->x = x; 637 rtsc->y = y; 638 rtsc->dx = isc->dx; 639 rtsc->dy = isc->dy; 640 return; 641 } 642 643 /* 644 * the two curves intersect 645 * compute the offsets (dx, dy) using the reverse 646 * function of seg_x2y() 647 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y) 648 */ 649 dx = (y1 - y) << SM_SHIFT; 650 dsm = isc->sm1 - isc->sm2; 651 do_div(dx, dsm); 652 /* 653 * check if (x, y1) belongs to the 1st segment of rtsc. 654 * if so, add the offset. 655 */ 656 if (rtsc->x + rtsc->dx > x) 657 dx += rtsc->x + rtsc->dx - x; 658 dy = seg_x2y(dx, isc->sm1); 659 660 rtsc->x = x; 661 rtsc->y = y; 662 rtsc->dx = dx; 663 rtsc->dy = dy; 664 return; 665 } 666 667 static void 668 init_ed(struct hfsc_class *cl, unsigned int next_len) 669 { 670 u64 cur_time; 671 672 PSCHED_GET_TIME(cur_time); 673 674 /* update the deadline curve */ 675 rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); 676 677 /* 678 * update the eligible curve. 679 * for concave, it is equal to the deadline curve. 680 * for convex, it is a linear curve with slope m2. 681 */ 682 cl->cl_eligible = cl->cl_deadline; 683 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { 684 cl->cl_eligible.dx = 0; 685 cl->cl_eligible.dy = 0; 686 } 687 688 /* compute e and d */ 689 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); 690 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 691 692 eltree_insert(cl); 693 } 694 695 static void 696 update_ed(struct hfsc_class *cl, unsigned int next_len) 697 { 698 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); 699 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 700 701 eltree_update(cl); 702 } 703 704 static inline void 705 update_d(struct hfsc_class *cl, unsigned int next_len) 706 { 707 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 708 } 709 710 static inline void 711 update_cfmin(struct hfsc_class *cl) 712 { 713 struct rb_node *n = rb_first(&cl->cf_tree); 714 struct hfsc_class *p; 715 716 if (n == NULL) { 717 cl->cl_cfmin = 0; 718 return; 719 } 720 p = rb_entry(n, struct hfsc_class, cf_node); 721 cl->cl_cfmin = p->cl_f; 722 } 723 724 static void 725 init_vf(struct hfsc_class *cl, unsigned int len) 726 { 727 struct hfsc_class *max_cl; 728 struct rb_node *n; 729 u64 vt, f, cur_time; 730 int go_active; 731 732 cur_time = 0; 733 go_active = 1; 734 for (; cl->cl_parent != NULL; cl = cl->cl_parent) { 735 if (go_active && cl->cl_nactive++ == 0) 736 go_active = 1; 737 else 738 go_active = 0; 739 740 if (go_active) { 741 n = rb_last(&cl->cl_parent->vt_tree); 742 if (n != NULL) { 743 max_cl = rb_entry(n, struct hfsc_class,vt_node); 744 /* 745 * set vt to the average of the min and max 746 * classes. if the parent's period didn't 747 * change, don't decrease vt of the class. 748 */ 749 vt = max_cl->cl_vt; 750 if (cl->cl_parent->cl_cvtmin != 0) 751 vt = (cl->cl_parent->cl_cvtmin + vt)/2; 752 753 if (cl->cl_parent->cl_vtperiod != 754 cl->cl_parentperiod || vt > cl->cl_vt) 755 cl->cl_vt = vt; 756 } else { 757 /* 758 * first child for a new parent backlog period. 759 * add parent's cvtmax to cvtoff to make a new 760 * vt (vtoff + vt) larger than the vt in the 761 * last period for all children. 762 */ 763 vt = cl->cl_parent->cl_cvtmax; 764 cl->cl_parent->cl_cvtoff += vt; 765 cl->cl_parent->cl_cvtmax = 0; 766 cl->cl_parent->cl_cvtmin = 0; 767 cl->cl_vt = 0; 768 } 769 770 cl->cl_vtoff = cl->cl_parent->cl_cvtoff - 771 cl->cl_pcvtoff; 772 773 /* update the virtual curve */ 774 vt = cl->cl_vt + cl->cl_vtoff; 775 rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt, 776 cl->cl_total); 777 if (cl->cl_virtual.x == vt) { 778 cl->cl_virtual.x -= cl->cl_vtoff; 779 cl->cl_vtoff = 0; 780 } 781 cl->cl_vtadj = 0; 782 783 cl->cl_vtperiod++; /* increment vt period */ 784 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod; 785 if (cl->cl_parent->cl_nactive == 0) 786 cl->cl_parentperiod++; 787 cl->cl_f = 0; 788 789 vttree_insert(cl); 790 cftree_insert(cl); 791 792 if (cl->cl_flags & HFSC_USC) { 793 /* class has upper limit curve */ 794 if (cur_time == 0) 795 PSCHED_GET_TIME(cur_time); 796 797 /* update the ulimit curve */ 798 rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time, 799 cl->cl_total); 800 /* compute myf */ 801 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, 802 cl->cl_total); 803 cl->cl_myfadj = 0; 804 } 805 } 806 807 f = max(cl->cl_myf, cl->cl_cfmin); 808 if (f != cl->cl_f) { 809 cl->cl_f = f; 810 cftree_update(cl); 811 update_cfmin(cl->cl_parent); 812 } 813 } 814 } 815 816 static void 817 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time) 818 { 819 u64 f; /* , myf_bound, delta; */ 820 int go_passive = 0; 821 822 if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC) 823 go_passive = 1; 824 825 for (; cl->cl_parent != NULL; cl = cl->cl_parent) { 826 cl->cl_total += len; 827 828 if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0) 829 continue; 830 831 if (go_passive && --cl->cl_nactive == 0) 832 go_passive = 1; 833 else 834 go_passive = 0; 835 836 if (go_passive) { 837 /* no more active child, going passive */ 838 839 /* update cvtmax of the parent class */ 840 if (cl->cl_vt > cl->cl_parent->cl_cvtmax) 841 cl->cl_parent->cl_cvtmax = cl->cl_vt; 842 843 /* remove this class from the vt tree */ 844 vttree_remove(cl); 845 846 cftree_remove(cl); 847 update_cfmin(cl->cl_parent); 848 849 continue; 850 } 851 852 /* 853 * update vt and f 854 */ 855 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) 856 - cl->cl_vtoff + cl->cl_vtadj; 857 858 /* 859 * if vt of the class is smaller than cvtmin, 860 * the class was skipped in the past due to non-fit. 861 * if so, we need to adjust vtadj. 862 */ 863 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) { 864 cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt; 865 cl->cl_vt = cl->cl_parent->cl_cvtmin; 866 } 867 868 /* update the vt tree */ 869 vttree_update(cl); 870 871 if (cl->cl_flags & HFSC_USC) { 872 cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit, 873 cl->cl_total); 874 #if 0 875 /* 876 * This code causes classes to stay way under their 877 * limit when multiple classes are used at gigabit 878 * speed. needs investigation. -kaber 879 */ 880 /* 881 * if myf lags behind by more than one clock tick 882 * from the current time, adjust myfadj to prevent 883 * a rate-limited class from going greedy. 884 * in a steady state under rate-limiting, myf 885 * fluctuates within one clock tick. 886 */ 887 myf_bound = cur_time - PSCHED_JIFFIE2US(1); 888 if (cl->cl_myf < myf_bound) { 889 delta = cur_time - cl->cl_myf; 890 cl->cl_myfadj += delta; 891 cl->cl_myf += delta; 892 } 893 #endif 894 } 895 896 f = max(cl->cl_myf, cl->cl_cfmin); 897 if (f != cl->cl_f) { 898 cl->cl_f = f; 899 cftree_update(cl); 900 update_cfmin(cl->cl_parent); 901 } 902 } 903 } 904 905 static void 906 set_active(struct hfsc_class *cl, unsigned int len) 907 { 908 if (cl->cl_flags & HFSC_RSC) 909 init_ed(cl, len); 910 if (cl->cl_flags & HFSC_FSC) 911 init_vf(cl, len); 912 913 list_add_tail(&cl->dlist, &cl->sched->droplist); 914 } 915 916 static void 917 set_passive(struct hfsc_class *cl) 918 { 919 if (cl->cl_flags & HFSC_RSC) 920 eltree_remove(cl); 921 922 list_del(&cl->dlist); 923 924 /* 925 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0) 926 * needs to be called explicitly to remove a class from vttree. 927 */ 928 } 929 930 /* 931 * hack to get length of first packet in queue. 932 */ 933 static unsigned int 934 qdisc_peek_len(struct Qdisc *sch) 935 { 936 struct sk_buff *skb; 937 unsigned int len; 938 939 skb = sch->dequeue(sch); 940 if (skb == NULL) { 941 if (net_ratelimit()) 942 printk("qdisc_peek_len: non work-conserving qdisc ?\n"); 943 return 0; 944 } 945 len = skb->len; 946 if (unlikely(sch->ops->requeue(skb, sch) != NET_XMIT_SUCCESS)) { 947 if (net_ratelimit()) 948 printk("qdisc_peek_len: failed to requeue\n"); 949 return 0; 950 } 951 return len; 952 } 953 954 static void 955 hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl) 956 { 957 unsigned int len = cl->qdisc->q.qlen; 958 959 qdisc_reset(cl->qdisc); 960 if (len > 0) { 961 update_vf(cl, 0, 0); 962 set_passive(cl); 963 sch->q.qlen -= len; 964 } 965 } 966 967 static void 968 hfsc_adjust_levels(struct hfsc_class *cl) 969 { 970 struct hfsc_class *p; 971 unsigned int level; 972 973 do { 974 level = 0; 975 list_for_each_entry(p, &cl->children, siblings) { 976 if (p->level >= level) 977 level = p->level + 1; 978 } 979 cl->level = level; 980 } while ((cl = cl->cl_parent) != NULL); 981 } 982 983 static inline unsigned int 984 hfsc_hash(u32 h) 985 { 986 h ^= h >> 8; 987 h ^= h >> 4; 988 989 return h & (HFSC_HSIZE - 1); 990 } 991 992 static inline struct hfsc_class * 993 hfsc_find_class(u32 classid, struct Qdisc *sch) 994 { 995 struct hfsc_sched *q = qdisc_priv(sch); 996 struct hfsc_class *cl; 997 998 list_for_each_entry(cl, &q->clhash[hfsc_hash(classid)], hlist) { 999 if (cl->classid == classid) 1000 return cl; 1001 } 1002 return NULL; 1003 } 1004 1005 static void 1006 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc, 1007 u64 cur_time) 1008 { 1009 sc2isc(rsc, &cl->cl_rsc); 1010 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); 1011 cl->cl_eligible = cl->cl_deadline; 1012 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { 1013 cl->cl_eligible.dx = 0; 1014 cl->cl_eligible.dy = 0; 1015 } 1016 cl->cl_flags |= HFSC_RSC; 1017 } 1018 1019 static void 1020 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc) 1021 { 1022 sc2isc(fsc, &cl->cl_fsc); 1023 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total); 1024 cl->cl_flags |= HFSC_FSC; 1025 } 1026 1027 static void 1028 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc, 1029 u64 cur_time) 1030 { 1031 sc2isc(usc, &cl->cl_usc); 1032 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total); 1033 cl->cl_flags |= HFSC_USC; 1034 } 1035 1036 static int 1037 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 1038 struct rtattr **tca, unsigned long *arg) 1039 { 1040 struct hfsc_sched *q = qdisc_priv(sch); 1041 struct hfsc_class *cl = (struct hfsc_class *)*arg; 1042 struct hfsc_class *parent = NULL; 1043 struct rtattr *opt = tca[TCA_OPTIONS-1]; 1044 struct rtattr *tb[TCA_HFSC_MAX]; 1045 struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL; 1046 u64 cur_time; 1047 1048 if (opt == NULL || rtattr_parse_nested(tb, TCA_HFSC_MAX, opt)) 1049 return -EINVAL; 1050 1051 if (tb[TCA_HFSC_RSC-1]) { 1052 if (RTA_PAYLOAD(tb[TCA_HFSC_RSC-1]) < sizeof(*rsc)) 1053 return -EINVAL; 1054 rsc = RTA_DATA(tb[TCA_HFSC_RSC-1]); 1055 if (rsc->m1 == 0 && rsc->m2 == 0) 1056 rsc = NULL; 1057 } 1058 1059 if (tb[TCA_HFSC_FSC-1]) { 1060 if (RTA_PAYLOAD(tb[TCA_HFSC_FSC-1]) < sizeof(*fsc)) 1061 return -EINVAL; 1062 fsc = RTA_DATA(tb[TCA_HFSC_FSC-1]); 1063 if (fsc->m1 == 0 && fsc->m2 == 0) 1064 fsc = NULL; 1065 } 1066 1067 if (tb[TCA_HFSC_USC-1]) { 1068 if (RTA_PAYLOAD(tb[TCA_HFSC_USC-1]) < sizeof(*usc)) 1069 return -EINVAL; 1070 usc = RTA_DATA(tb[TCA_HFSC_USC-1]); 1071 if (usc->m1 == 0 && usc->m2 == 0) 1072 usc = NULL; 1073 } 1074 1075 if (cl != NULL) { 1076 if (parentid) { 1077 if (cl->cl_parent && cl->cl_parent->classid != parentid) 1078 return -EINVAL; 1079 if (cl->cl_parent == NULL && parentid != TC_H_ROOT) 1080 return -EINVAL; 1081 } 1082 PSCHED_GET_TIME(cur_time); 1083 1084 sch_tree_lock(sch); 1085 if (rsc != NULL) 1086 hfsc_change_rsc(cl, rsc, cur_time); 1087 if (fsc != NULL) 1088 hfsc_change_fsc(cl, fsc); 1089 if (usc != NULL) 1090 hfsc_change_usc(cl, usc, cur_time); 1091 1092 if (cl->qdisc->q.qlen != 0) { 1093 if (cl->cl_flags & HFSC_RSC) 1094 update_ed(cl, qdisc_peek_len(cl->qdisc)); 1095 if (cl->cl_flags & HFSC_FSC) 1096 update_vf(cl, 0, cur_time); 1097 } 1098 sch_tree_unlock(sch); 1099 1100 #ifdef CONFIG_NET_ESTIMATOR 1101 if (tca[TCA_RATE-1]) 1102 gen_replace_estimator(&cl->bstats, &cl->rate_est, 1103 cl->stats_lock, tca[TCA_RATE-1]); 1104 #endif 1105 return 0; 1106 } 1107 1108 if (parentid == TC_H_ROOT) 1109 return -EEXIST; 1110 1111 parent = &q->root; 1112 if (parentid) { 1113 parent = hfsc_find_class(parentid, sch); 1114 if (parent == NULL) 1115 return -ENOENT; 1116 } 1117 1118 if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0) 1119 return -EINVAL; 1120 if (hfsc_find_class(classid, sch)) 1121 return -EEXIST; 1122 1123 if (rsc == NULL && fsc == NULL) 1124 return -EINVAL; 1125 1126 cl = kmalloc(sizeof(struct hfsc_class), GFP_KERNEL); 1127 if (cl == NULL) 1128 return -ENOBUFS; 1129 memset(cl, 0, sizeof(struct hfsc_class)); 1130 1131 if (rsc != NULL) 1132 hfsc_change_rsc(cl, rsc, 0); 1133 if (fsc != NULL) 1134 hfsc_change_fsc(cl, fsc); 1135 if (usc != NULL) 1136 hfsc_change_usc(cl, usc, 0); 1137 1138 cl->refcnt = 1; 1139 cl->classid = classid; 1140 cl->sched = q; 1141 cl->cl_parent = parent; 1142 cl->qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops); 1143 if (cl->qdisc == NULL) 1144 cl->qdisc = &noop_qdisc; 1145 cl->stats_lock = &sch->dev->queue_lock; 1146 INIT_LIST_HEAD(&cl->children); 1147 cl->vt_tree = RB_ROOT; 1148 cl->cf_tree = RB_ROOT; 1149 1150 sch_tree_lock(sch); 1151 list_add_tail(&cl->hlist, &q->clhash[hfsc_hash(classid)]); 1152 list_add_tail(&cl->siblings, &parent->children); 1153 if (parent->level == 0) 1154 hfsc_purge_queue(sch, parent); 1155 hfsc_adjust_levels(parent); 1156 cl->cl_pcvtoff = parent->cl_cvtoff; 1157 sch_tree_unlock(sch); 1158 1159 #ifdef CONFIG_NET_ESTIMATOR 1160 if (tca[TCA_RATE-1]) 1161 gen_new_estimator(&cl->bstats, &cl->rate_est, 1162 cl->stats_lock, tca[TCA_RATE-1]); 1163 #endif 1164 *arg = (unsigned long)cl; 1165 return 0; 1166 } 1167 1168 static void 1169 hfsc_destroy_filters(struct tcf_proto **fl) 1170 { 1171 struct tcf_proto *tp; 1172 1173 while ((tp = *fl) != NULL) { 1174 *fl = tp->next; 1175 tcf_destroy(tp); 1176 } 1177 } 1178 1179 static void 1180 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl) 1181 { 1182 struct hfsc_sched *q = qdisc_priv(sch); 1183 1184 hfsc_destroy_filters(&cl->filter_list); 1185 qdisc_destroy(cl->qdisc); 1186 #ifdef CONFIG_NET_ESTIMATOR 1187 gen_kill_estimator(&cl->bstats, &cl->rate_est); 1188 #endif 1189 if (cl != &q->root) 1190 kfree(cl); 1191 } 1192 1193 static int 1194 hfsc_delete_class(struct Qdisc *sch, unsigned long arg) 1195 { 1196 struct hfsc_sched *q = qdisc_priv(sch); 1197 struct hfsc_class *cl = (struct hfsc_class *)arg; 1198 1199 if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root) 1200 return -EBUSY; 1201 1202 sch_tree_lock(sch); 1203 1204 list_del(&cl->hlist); 1205 list_del(&cl->siblings); 1206 hfsc_adjust_levels(cl->cl_parent); 1207 hfsc_purge_queue(sch, cl); 1208 if (--cl->refcnt == 0) 1209 hfsc_destroy_class(sch, cl); 1210 1211 sch_tree_unlock(sch); 1212 return 0; 1213 } 1214 1215 static struct hfsc_class * 1216 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) 1217 { 1218 struct hfsc_sched *q = qdisc_priv(sch); 1219 struct hfsc_class *cl; 1220 struct tcf_result res; 1221 struct tcf_proto *tcf; 1222 int result; 1223 1224 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 && 1225 (cl = hfsc_find_class(skb->priority, sch)) != NULL) 1226 if (cl->level == 0) 1227 return cl; 1228 1229 *qerr = NET_XMIT_BYPASS; 1230 tcf = q->root.filter_list; 1231 while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) { 1232 #ifdef CONFIG_NET_CLS_ACT 1233 switch (result) { 1234 case TC_ACT_QUEUED: 1235 case TC_ACT_STOLEN: 1236 *qerr = NET_XMIT_SUCCESS; 1237 case TC_ACT_SHOT: 1238 return NULL; 1239 } 1240 #elif defined(CONFIG_NET_CLS_POLICE) 1241 if (result == TC_POLICE_SHOT) 1242 return NULL; 1243 #endif 1244 if ((cl = (struct hfsc_class *)res.class) == NULL) { 1245 if ((cl = hfsc_find_class(res.classid, sch)) == NULL) 1246 break; /* filter selected invalid classid */ 1247 } 1248 1249 if (cl->level == 0) 1250 return cl; /* hit leaf class */ 1251 1252 /* apply inner filter chain */ 1253 tcf = cl->filter_list; 1254 } 1255 1256 /* classification failed, try default class */ 1257 cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch); 1258 if (cl == NULL || cl->level > 0) 1259 return NULL; 1260 1261 return cl; 1262 } 1263 1264 static int 1265 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1266 struct Qdisc **old) 1267 { 1268 struct hfsc_class *cl = (struct hfsc_class *)arg; 1269 1270 if (cl == NULL) 1271 return -ENOENT; 1272 if (cl->level > 0) 1273 return -EINVAL; 1274 if (new == NULL) { 1275 new = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops); 1276 if (new == NULL) 1277 new = &noop_qdisc; 1278 } 1279 1280 sch_tree_lock(sch); 1281 hfsc_purge_queue(sch, cl); 1282 *old = xchg(&cl->qdisc, new); 1283 sch_tree_unlock(sch); 1284 return 0; 1285 } 1286 1287 static struct Qdisc * 1288 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg) 1289 { 1290 struct hfsc_class *cl = (struct hfsc_class *)arg; 1291 1292 if (cl != NULL && cl->level == 0) 1293 return cl->qdisc; 1294 1295 return NULL; 1296 } 1297 1298 static unsigned long 1299 hfsc_get_class(struct Qdisc *sch, u32 classid) 1300 { 1301 struct hfsc_class *cl = hfsc_find_class(classid, sch); 1302 1303 if (cl != NULL) 1304 cl->refcnt++; 1305 1306 return (unsigned long)cl; 1307 } 1308 1309 static void 1310 hfsc_put_class(struct Qdisc *sch, unsigned long arg) 1311 { 1312 struct hfsc_class *cl = (struct hfsc_class *)arg; 1313 1314 if (--cl->refcnt == 0) 1315 hfsc_destroy_class(sch, cl); 1316 } 1317 1318 static unsigned long 1319 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid) 1320 { 1321 struct hfsc_class *p = (struct hfsc_class *)parent; 1322 struct hfsc_class *cl = hfsc_find_class(classid, sch); 1323 1324 if (cl != NULL) { 1325 if (p != NULL && p->level <= cl->level) 1326 return 0; 1327 cl->filter_cnt++; 1328 } 1329 1330 return (unsigned long)cl; 1331 } 1332 1333 static void 1334 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg) 1335 { 1336 struct hfsc_class *cl = (struct hfsc_class *)arg; 1337 1338 cl->filter_cnt--; 1339 } 1340 1341 static struct tcf_proto ** 1342 hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg) 1343 { 1344 struct hfsc_sched *q = qdisc_priv(sch); 1345 struct hfsc_class *cl = (struct hfsc_class *)arg; 1346 1347 if (cl == NULL) 1348 cl = &q->root; 1349 1350 return &cl->filter_list; 1351 } 1352 1353 static int 1354 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc) 1355 { 1356 struct tc_service_curve tsc; 1357 1358 tsc.m1 = sm2m(sc->sm1); 1359 tsc.d = dx2d(sc->dx); 1360 tsc.m2 = sm2m(sc->sm2); 1361 RTA_PUT(skb, attr, sizeof(tsc), &tsc); 1362 1363 return skb->len; 1364 1365 rtattr_failure: 1366 return -1; 1367 } 1368 1369 static inline int 1370 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl) 1371 { 1372 if ((cl->cl_flags & HFSC_RSC) && 1373 (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0)) 1374 goto rtattr_failure; 1375 1376 if ((cl->cl_flags & HFSC_FSC) && 1377 (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0)) 1378 goto rtattr_failure; 1379 1380 if ((cl->cl_flags & HFSC_USC) && 1381 (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0)) 1382 goto rtattr_failure; 1383 1384 return skb->len; 1385 1386 rtattr_failure: 1387 return -1; 1388 } 1389 1390 static int 1391 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb, 1392 struct tcmsg *tcm) 1393 { 1394 struct hfsc_class *cl = (struct hfsc_class *)arg; 1395 unsigned char *b = skb->tail; 1396 struct rtattr *rta = (struct rtattr *)b; 1397 1398 tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->classid : TC_H_ROOT; 1399 tcm->tcm_handle = cl->classid; 1400 if (cl->level == 0) 1401 tcm->tcm_info = cl->qdisc->handle; 1402 1403 RTA_PUT(skb, TCA_OPTIONS, 0, NULL); 1404 if (hfsc_dump_curves(skb, cl) < 0) 1405 goto rtattr_failure; 1406 rta->rta_len = skb->tail - b; 1407 return skb->len; 1408 1409 rtattr_failure: 1410 skb_trim(skb, b - skb->data); 1411 return -1; 1412 } 1413 1414 static int 1415 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg, 1416 struct gnet_dump *d) 1417 { 1418 struct hfsc_class *cl = (struct hfsc_class *)arg; 1419 struct tc_hfsc_stats xstats; 1420 1421 cl->qstats.qlen = cl->qdisc->q.qlen; 1422 xstats.level = cl->level; 1423 xstats.period = cl->cl_vtperiod; 1424 xstats.work = cl->cl_total; 1425 xstats.rtwork = cl->cl_cumul; 1426 1427 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || 1428 #ifdef CONFIG_NET_ESTIMATOR 1429 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 1430 #endif 1431 gnet_stats_copy_queue(d, &cl->qstats) < 0) 1432 return -1; 1433 1434 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 1435 } 1436 1437 1438 1439 static void 1440 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1441 { 1442 struct hfsc_sched *q = qdisc_priv(sch); 1443 struct hfsc_class *cl; 1444 unsigned int i; 1445 1446 if (arg->stop) 1447 return; 1448 1449 for (i = 0; i < HFSC_HSIZE; i++) { 1450 list_for_each_entry(cl, &q->clhash[i], hlist) { 1451 if (arg->count < arg->skip) { 1452 arg->count++; 1453 continue; 1454 } 1455 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 1456 arg->stop = 1; 1457 return; 1458 } 1459 arg->count++; 1460 } 1461 } 1462 } 1463 1464 static void 1465 hfsc_watchdog(unsigned long arg) 1466 { 1467 struct Qdisc *sch = (struct Qdisc *)arg; 1468 1469 sch->flags &= ~TCQ_F_THROTTLED; 1470 netif_schedule(sch->dev); 1471 } 1472 1473 static void 1474 hfsc_schedule_watchdog(struct Qdisc *sch, u64 cur_time) 1475 { 1476 struct hfsc_sched *q = qdisc_priv(sch); 1477 struct hfsc_class *cl; 1478 u64 next_time = 0; 1479 long delay; 1480 1481 if ((cl = eltree_get_minel(q)) != NULL) 1482 next_time = cl->cl_e; 1483 if (q->root.cl_cfmin != 0) { 1484 if (next_time == 0 || next_time > q->root.cl_cfmin) 1485 next_time = q->root.cl_cfmin; 1486 } 1487 ASSERT(next_time != 0); 1488 delay = next_time - cur_time; 1489 delay = PSCHED_US2JIFFIE(delay); 1490 1491 sch->flags |= TCQ_F_THROTTLED; 1492 mod_timer(&q->wd_timer, jiffies + delay); 1493 } 1494 1495 static int 1496 hfsc_init_qdisc(struct Qdisc *sch, struct rtattr *opt) 1497 { 1498 struct hfsc_sched *q = qdisc_priv(sch); 1499 struct tc_hfsc_qopt *qopt; 1500 unsigned int i; 1501 1502 if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt)) 1503 return -EINVAL; 1504 qopt = RTA_DATA(opt); 1505 1506 sch->stats_lock = &sch->dev->queue_lock; 1507 1508 q->defcls = qopt->defcls; 1509 for (i = 0; i < HFSC_HSIZE; i++) 1510 INIT_LIST_HEAD(&q->clhash[i]); 1511 q->eligible = RB_ROOT; 1512 INIT_LIST_HEAD(&q->droplist); 1513 skb_queue_head_init(&q->requeue); 1514 1515 q->root.refcnt = 1; 1516 q->root.classid = sch->handle; 1517 q->root.sched = q; 1518 q->root.qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops); 1519 if (q->root.qdisc == NULL) 1520 q->root.qdisc = &noop_qdisc; 1521 q->root.stats_lock = &sch->dev->queue_lock; 1522 INIT_LIST_HEAD(&q->root.children); 1523 q->root.vt_tree = RB_ROOT; 1524 q->root.cf_tree = RB_ROOT; 1525 1526 list_add(&q->root.hlist, &q->clhash[hfsc_hash(q->root.classid)]); 1527 1528 init_timer(&q->wd_timer); 1529 q->wd_timer.function = hfsc_watchdog; 1530 q->wd_timer.data = (unsigned long)sch; 1531 1532 return 0; 1533 } 1534 1535 static int 1536 hfsc_change_qdisc(struct Qdisc *sch, struct rtattr *opt) 1537 { 1538 struct hfsc_sched *q = qdisc_priv(sch); 1539 struct tc_hfsc_qopt *qopt; 1540 1541 if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt)) 1542 return -EINVAL; 1543 qopt = RTA_DATA(opt); 1544 1545 sch_tree_lock(sch); 1546 q->defcls = qopt->defcls; 1547 sch_tree_unlock(sch); 1548 1549 return 0; 1550 } 1551 1552 static void 1553 hfsc_reset_class(struct hfsc_class *cl) 1554 { 1555 cl->cl_total = 0; 1556 cl->cl_cumul = 0; 1557 cl->cl_d = 0; 1558 cl->cl_e = 0; 1559 cl->cl_vt = 0; 1560 cl->cl_vtadj = 0; 1561 cl->cl_vtoff = 0; 1562 cl->cl_cvtmin = 0; 1563 cl->cl_cvtmax = 0; 1564 cl->cl_cvtoff = 0; 1565 cl->cl_pcvtoff = 0; 1566 cl->cl_vtperiod = 0; 1567 cl->cl_parentperiod = 0; 1568 cl->cl_f = 0; 1569 cl->cl_myf = 0; 1570 cl->cl_myfadj = 0; 1571 cl->cl_cfmin = 0; 1572 cl->cl_nactive = 0; 1573 1574 cl->vt_tree = RB_ROOT; 1575 cl->cf_tree = RB_ROOT; 1576 qdisc_reset(cl->qdisc); 1577 1578 if (cl->cl_flags & HFSC_RSC) 1579 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0); 1580 if (cl->cl_flags & HFSC_FSC) 1581 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0); 1582 if (cl->cl_flags & HFSC_USC) 1583 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0); 1584 } 1585 1586 static void 1587 hfsc_reset_qdisc(struct Qdisc *sch) 1588 { 1589 struct hfsc_sched *q = qdisc_priv(sch); 1590 struct hfsc_class *cl; 1591 unsigned int i; 1592 1593 for (i = 0; i < HFSC_HSIZE; i++) { 1594 list_for_each_entry(cl, &q->clhash[i], hlist) 1595 hfsc_reset_class(cl); 1596 } 1597 __skb_queue_purge(&q->requeue); 1598 q->eligible = RB_ROOT; 1599 INIT_LIST_HEAD(&q->droplist); 1600 del_timer(&q->wd_timer); 1601 sch->flags &= ~TCQ_F_THROTTLED; 1602 sch->q.qlen = 0; 1603 } 1604 1605 static void 1606 hfsc_destroy_qdisc(struct Qdisc *sch) 1607 { 1608 struct hfsc_sched *q = qdisc_priv(sch); 1609 struct hfsc_class *cl, *next; 1610 unsigned int i; 1611 1612 for (i = 0; i < HFSC_HSIZE; i++) { 1613 list_for_each_entry_safe(cl, next, &q->clhash[i], hlist) 1614 hfsc_destroy_class(sch, cl); 1615 } 1616 __skb_queue_purge(&q->requeue); 1617 del_timer(&q->wd_timer); 1618 } 1619 1620 static int 1621 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb) 1622 { 1623 struct hfsc_sched *q = qdisc_priv(sch); 1624 unsigned char *b = skb->tail; 1625 struct tc_hfsc_qopt qopt; 1626 1627 qopt.defcls = q->defcls; 1628 RTA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt); 1629 return skb->len; 1630 1631 rtattr_failure: 1632 skb_trim(skb, b - skb->data); 1633 return -1; 1634 } 1635 1636 static int 1637 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch) 1638 { 1639 struct hfsc_class *cl; 1640 unsigned int len; 1641 int err; 1642 1643 cl = hfsc_classify(skb, sch, &err); 1644 if (cl == NULL) { 1645 if (err == NET_XMIT_BYPASS) 1646 sch->qstats.drops++; 1647 kfree_skb(skb); 1648 return err; 1649 } 1650 1651 len = skb->len; 1652 err = cl->qdisc->enqueue(skb, cl->qdisc); 1653 if (unlikely(err != NET_XMIT_SUCCESS)) { 1654 cl->qstats.drops++; 1655 sch->qstats.drops++; 1656 return err; 1657 } 1658 1659 if (cl->qdisc->q.qlen == 1) 1660 set_active(cl, len); 1661 1662 cl->bstats.packets++; 1663 cl->bstats.bytes += len; 1664 sch->bstats.packets++; 1665 sch->bstats.bytes += len; 1666 sch->q.qlen++; 1667 1668 return NET_XMIT_SUCCESS; 1669 } 1670 1671 static struct sk_buff * 1672 hfsc_dequeue(struct Qdisc *sch) 1673 { 1674 struct hfsc_sched *q = qdisc_priv(sch); 1675 struct hfsc_class *cl; 1676 struct sk_buff *skb; 1677 u64 cur_time; 1678 unsigned int next_len; 1679 int realtime = 0; 1680 1681 if (sch->q.qlen == 0) 1682 return NULL; 1683 if ((skb = __skb_dequeue(&q->requeue))) 1684 goto out; 1685 1686 PSCHED_GET_TIME(cur_time); 1687 1688 /* 1689 * if there are eligible classes, use real-time criteria. 1690 * find the class with the minimum deadline among 1691 * the eligible classes. 1692 */ 1693 if ((cl = eltree_get_mindl(q, cur_time)) != NULL) { 1694 realtime = 1; 1695 } else { 1696 /* 1697 * use link-sharing criteria 1698 * get the class with the minimum vt in the hierarchy 1699 */ 1700 cl = vttree_get_minvt(&q->root, cur_time); 1701 if (cl == NULL) { 1702 sch->qstats.overlimits++; 1703 hfsc_schedule_watchdog(sch, cur_time); 1704 return NULL; 1705 } 1706 } 1707 1708 skb = cl->qdisc->dequeue(cl->qdisc); 1709 if (skb == NULL) { 1710 if (net_ratelimit()) 1711 printk("HFSC: Non-work-conserving qdisc ?\n"); 1712 return NULL; 1713 } 1714 1715 update_vf(cl, skb->len, cur_time); 1716 if (realtime) 1717 cl->cl_cumul += skb->len; 1718 1719 if (cl->qdisc->q.qlen != 0) { 1720 if (cl->cl_flags & HFSC_RSC) { 1721 /* update ed */ 1722 next_len = qdisc_peek_len(cl->qdisc); 1723 if (realtime) 1724 update_ed(cl, next_len); 1725 else 1726 update_d(cl, next_len); 1727 } 1728 } else { 1729 /* the class becomes passive */ 1730 set_passive(cl); 1731 } 1732 1733 out: 1734 sch->flags &= ~TCQ_F_THROTTLED; 1735 sch->q.qlen--; 1736 1737 return skb; 1738 } 1739 1740 static int 1741 hfsc_requeue(struct sk_buff *skb, struct Qdisc *sch) 1742 { 1743 struct hfsc_sched *q = qdisc_priv(sch); 1744 1745 __skb_queue_head(&q->requeue, skb); 1746 sch->q.qlen++; 1747 sch->qstats.requeues++; 1748 return NET_XMIT_SUCCESS; 1749 } 1750 1751 static unsigned int 1752 hfsc_drop(struct Qdisc *sch) 1753 { 1754 struct hfsc_sched *q = qdisc_priv(sch); 1755 struct hfsc_class *cl; 1756 unsigned int len; 1757 1758 list_for_each_entry(cl, &q->droplist, dlist) { 1759 if (cl->qdisc->ops->drop != NULL && 1760 (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) { 1761 if (cl->qdisc->q.qlen == 0) { 1762 update_vf(cl, 0, 0); 1763 set_passive(cl); 1764 } else { 1765 list_move_tail(&cl->dlist, &q->droplist); 1766 } 1767 cl->qstats.drops++; 1768 sch->qstats.drops++; 1769 sch->q.qlen--; 1770 return len; 1771 } 1772 } 1773 return 0; 1774 } 1775 1776 static struct Qdisc_class_ops hfsc_class_ops = { 1777 .change = hfsc_change_class, 1778 .delete = hfsc_delete_class, 1779 .graft = hfsc_graft_class, 1780 .leaf = hfsc_class_leaf, 1781 .get = hfsc_get_class, 1782 .put = hfsc_put_class, 1783 .bind_tcf = hfsc_bind_tcf, 1784 .unbind_tcf = hfsc_unbind_tcf, 1785 .tcf_chain = hfsc_tcf_chain, 1786 .dump = hfsc_dump_class, 1787 .dump_stats = hfsc_dump_class_stats, 1788 .walk = hfsc_walk 1789 }; 1790 1791 static struct Qdisc_ops hfsc_qdisc_ops = { 1792 .id = "hfsc", 1793 .init = hfsc_init_qdisc, 1794 .change = hfsc_change_qdisc, 1795 .reset = hfsc_reset_qdisc, 1796 .destroy = hfsc_destroy_qdisc, 1797 .dump = hfsc_dump_qdisc, 1798 .enqueue = hfsc_enqueue, 1799 .dequeue = hfsc_dequeue, 1800 .requeue = hfsc_requeue, 1801 .drop = hfsc_drop, 1802 .cl_ops = &hfsc_class_ops, 1803 .priv_size = sizeof(struct hfsc_sched), 1804 .owner = THIS_MODULE 1805 }; 1806 1807 static int __init 1808 hfsc_init(void) 1809 { 1810 return register_qdisc(&hfsc_qdisc_ops); 1811 } 1812 1813 static void __exit 1814 hfsc_cleanup(void) 1815 { 1816 unregister_qdisc(&hfsc_qdisc_ops); 1817 } 1818 1819 MODULE_LICENSE("GPL"); 1820 module_init(hfsc_init); 1821 module_exit(hfsc_cleanup); 1822