xref: /linux/net/sched/sch_hfsc.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * 2003-10-17 - Ported from altq
10  */
11 /*
12  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
13  *
14  * Permission to use, copy, modify, and distribute this software and
15  * its documentation is hereby granted (including for commercial or
16  * for-profit use), provided that both the copyright notice and this
17  * permission notice appear in all copies of the software, derivative
18  * works, or modified versions, and any portions thereof.
19  *
20  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
22  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33  * DAMAGE.
34  *
35  * Carnegie Mellon encourages (but does not require) users of this
36  * software to return any improvements or extensions that they make,
37  * and to grant Carnegie Mellon the rights to redistribute these
38  * changes without encumbrance.
39  */
40 /*
41  * H-FSC is described in Proceedings of SIGCOMM'97,
42  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43  * Real-Time and Priority Service"
44  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
45  *
46  * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47  * when a class has an upperlimit, the fit-time is computed from the
48  * upperlimit service curve.  the link-sharing scheduler does not schedule
49  * a class whose fit-time exceeds the current time.
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/errno.h>
56 #include <linux/jiffies.h>
57 #include <linux/compiler.h>
58 #include <linux/spinlock.h>
59 #include <linux/skbuff.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/timer.h>
63 #include <linux/list.h>
64 #include <linux/rbtree.h>
65 #include <linux/init.h>
66 #include <linux/netdevice.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/pkt_sched.h>
69 #include <net/pkt_sched.h>
70 #include <net/pkt_cls.h>
71 #include <asm/system.h>
72 #include <asm/div64.h>
73 
74 #define HFSC_DEBUG 1
75 
76 /*
77  * kernel internal service curve representation:
78  *   coordinates are given by 64 bit unsigned integers.
79  *   x-axis: unit is clock count.
80  *   y-axis: unit is byte.
81  *
82  *   The service curve parameters are converted to the internal
83  *   representation. The slope values are scaled to avoid overflow.
84  *   the inverse slope values as well as the y-projection of the 1st
85  *   segment are kept in order to to avoid 64-bit divide operations
86  *   that are expensive on 32-bit architectures.
87  */
88 
89 struct internal_sc
90 {
91 	u64	sm1;	/* scaled slope of the 1st segment */
92 	u64	ism1;	/* scaled inverse-slope of the 1st segment */
93 	u64	dx;	/* the x-projection of the 1st segment */
94 	u64	dy;	/* the y-projection of the 1st segment */
95 	u64	sm2;	/* scaled slope of the 2nd segment */
96 	u64	ism2;	/* scaled inverse-slope of the 2nd segment */
97 };
98 
99 /* runtime service curve */
100 struct runtime_sc
101 {
102 	u64	x;	/* current starting position on x-axis */
103 	u64	y;	/* current starting position on y-axis */
104 	u64	sm1;	/* scaled slope of the 1st segment */
105 	u64	ism1;	/* scaled inverse-slope of the 1st segment */
106 	u64	dx;	/* the x-projection of the 1st segment */
107 	u64	dy;	/* the y-projection of the 1st segment */
108 	u64	sm2;	/* scaled slope of the 2nd segment */
109 	u64	ism2;	/* scaled inverse-slope of the 2nd segment */
110 };
111 
112 enum hfsc_class_flags
113 {
114 	HFSC_RSC = 0x1,
115 	HFSC_FSC = 0x2,
116 	HFSC_USC = 0x4
117 };
118 
119 struct hfsc_class
120 {
121 	u32		classid;	/* class id */
122 	unsigned int	refcnt;		/* usage count */
123 
124 	struct gnet_stats_basic bstats;
125 	struct gnet_stats_queue qstats;
126 	struct gnet_stats_rate_est rate_est;
127 	spinlock_t	*stats_lock;
128 	unsigned int	level;		/* class level in hierarchy */
129 	struct tcf_proto *filter_list;	/* filter list */
130 	unsigned int	filter_cnt;	/* filter count */
131 
132 	struct hfsc_sched *sched;	/* scheduler data */
133 	struct hfsc_class *cl_parent;	/* parent class */
134 	struct list_head siblings;	/* sibling classes */
135 	struct list_head children;	/* child classes */
136 	struct Qdisc	*qdisc;		/* leaf qdisc */
137 
138 	struct rb_node el_node;		/* qdisc's eligible tree member */
139 	struct rb_root vt_tree;		/* active children sorted by cl_vt */
140 	struct rb_node vt_node;		/* parent's vt_tree member */
141 	struct rb_root cf_tree;		/* active children sorted by cl_f */
142 	struct rb_node cf_node;		/* parent's cf_heap member */
143 	struct list_head hlist;		/* hash list member */
144 	struct list_head dlist;		/* drop list member */
145 
146 	u64	cl_total;		/* total work in bytes */
147 	u64	cl_cumul;		/* cumulative work in bytes done by
148 					   real-time criteria */
149 
150 	u64 	cl_d;			/* deadline*/
151 	u64 	cl_e;			/* eligible time */
152 	u64	cl_vt;			/* virtual time */
153 	u64	cl_f;			/* time when this class will fit for
154 					   link-sharing, max(myf, cfmin) */
155 	u64	cl_myf;			/* my fit-time (calculated from this
156 					   class's own upperlimit curve) */
157 	u64	cl_myfadj;		/* my fit-time adjustment (to cancel
158 					   history dependence) */
159 	u64	cl_cfmin;		/* earliest children's fit-time (used
160 					   with cl_myf to obtain cl_f) */
161 	u64	cl_cvtmin;		/* minimal virtual time among the
162 					   children fit for link-sharing
163 					   (monotonic within a period) */
164 	u64	cl_vtadj;		/* intra-period cumulative vt
165 					   adjustment */
166 	u64	cl_vtoff;		/* inter-period cumulative vt offset */
167 	u64	cl_cvtmax;		/* max child's vt in the last period */
168 	u64	cl_cvtoff;		/* cumulative cvtmax of all periods */
169 	u64	cl_pcvtoff;		/* parent's cvtoff at initalization
170 					   time */
171 
172 	struct internal_sc cl_rsc;	/* internal real-time service curve */
173 	struct internal_sc cl_fsc;	/* internal fair service curve */
174 	struct internal_sc cl_usc;	/* internal upperlimit service curve */
175 	struct runtime_sc cl_deadline;	/* deadline curve */
176 	struct runtime_sc cl_eligible;	/* eligible curve */
177 	struct runtime_sc cl_virtual;	/* virtual curve */
178 	struct runtime_sc cl_ulimit;	/* upperlimit curve */
179 
180 	unsigned long	cl_flags;	/* which curves are valid */
181 	unsigned long	cl_vtperiod;	/* vt period sequence number */
182 	unsigned long	cl_parentperiod;/* parent's vt period sequence number*/
183 	unsigned long	cl_nactive;	/* number of active children */
184 };
185 
186 #define HFSC_HSIZE	16
187 
188 struct hfsc_sched
189 {
190 	u16	defcls;				/* default class id */
191 	struct hfsc_class root;			/* root class */
192 	struct list_head clhash[HFSC_HSIZE];	/* class hash */
193 	struct rb_root eligible;		/* eligible tree */
194 	struct list_head droplist;		/* active leaf class list (for
195 						   dropping) */
196 	struct sk_buff_head requeue;		/* requeued packet */
197 	struct timer_list wd_timer;		/* watchdog timer */
198 };
199 
200 /*
201  * macros
202  */
203 #ifdef CONFIG_NET_SCH_CLK_GETTIMEOFDAY
204 #include <linux/time.h>
205 #undef PSCHED_GET_TIME
206 #define PSCHED_GET_TIME(stamp)						\
207 do {									\
208 	struct timeval tv;						\
209 	do_gettimeofday(&tv);						\
210 	(stamp) = 1ULL * USEC_PER_SEC * tv.tv_sec + tv.tv_usec;		\
211 } while (0)
212 #endif
213 
214 #if HFSC_DEBUG
215 #define ASSERT(cond)							\
216 do {									\
217 	if (unlikely(!(cond)))						\
218 		printk("assertion %s failed at %s:%i (%s)\n",		\
219 		       #cond, __FILE__, __LINE__, __FUNCTION__);	\
220 } while (0)
221 #else
222 #define ASSERT(cond)
223 #endif /* HFSC_DEBUG */
224 
225 #define	HT_INFINITY	0xffffffffffffffffULL	/* infinite time value */
226 
227 
228 /*
229  * eligible tree holds backlogged classes being sorted by their eligible times.
230  * there is one eligible tree per hfsc instance.
231  */
232 
233 static void
234 eltree_insert(struct hfsc_class *cl)
235 {
236 	struct rb_node **p = &cl->sched->eligible.rb_node;
237 	struct rb_node *parent = NULL;
238 	struct hfsc_class *cl1;
239 
240 	while (*p != NULL) {
241 		parent = *p;
242 		cl1 = rb_entry(parent, struct hfsc_class, el_node);
243 		if (cl->cl_e >= cl1->cl_e)
244 			p = &parent->rb_right;
245 		else
246 			p = &parent->rb_left;
247 	}
248 	rb_link_node(&cl->el_node, parent, p);
249 	rb_insert_color(&cl->el_node, &cl->sched->eligible);
250 }
251 
252 static inline void
253 eltree_remove(struct hfsc_class *cl)
254 {
255 	rb_erase(&cl->el_node, &cl->sched->eligible);
256 }
257 
258 static inline void
259 eltree_update(struct hfsc_class *cl)
260 {
261 	eltree_remove(cl);
262 	eltree_insert(cl);
263 }
264 
265 /* find the class with the minimum deadline among the eligible classes */
266 static inline struct hfsc_class *
267 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
268 {
269 	struct hfsc_class *p, *cl = NULL;
270 	struct rb_node *n;
271 
272 	for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
273 		p = rb_entry(n, struct hfsc_class, el_node);
274 		if (p->cl_e > cur_time)
275 			break;
276 		if (cl == NULL || p->cl_d < cl->cl_d)
277 			cl = p;
278 	}
279 	return cl;
280 }
281 
282 /* find the class with minimum eligible time among the eligible classes */
283 static inline struct hfsc_class *
284 eltree_get_minel(struct hfsc_sched *q)
285 {
286 	struct rb_node *n;
287 
288 	n = rb_first(&q->eligible);
289 	if (n == NULL)
290 		return NULL;
291 	return rb_entry(n, struct hfsc_class, el_node);
292 }
293 
294 /*
295  * vttree holds holds backlogged child classes being sorted by their virtual
296  * time. each intermediate class has one vttree.
297  */
298 static void
299 vttree_insert(struct hfsc_class *cl)
300 {
301 	struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
302 	struct rb_node *parent = NULL;
303 	struct hfsc_class *cl1;
304 
305 	while (*p != NULL) {
306 		parent = *p;
307 		cl1 = rb_entry(parent, struct hfsc_class, vt_node);
308 		if (cl->cl_vt >= cl1->cl_vt)
309 			p = &parent->rb_right;
310 		else
311 			p = &parent->rb_left;
312 	}
313 	rb_link_node(&cl->vt_node, parent, p);
314 	rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
315 }
316 
317 static inline void
318 vttree_remove(struct hfsc_class *cl)
319 {
320 	rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
321 }
322 
323 static inline void
324 vttree_update(struct hfsc_class *cl)
325 {
326 	vttree_remove(cl);
327 	vttree_insert(cl);
328 }
329 
330 static inline struct hfsc_class *
331 vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
332 {
333 	struct hfsc_class *p;
334 	struct rb_node *n;
335 
336 	for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
337 		p = rb_entry(n, struct hfsc_class, vt_node);
338 		if (p->cl_f <= cur_time)
339 			return p;
340 	}
341 	return NULL;
342 }
343 
344 /*
345  * get the leaf class with the minimum vt in the hierarchy
346  */
347 static struct hfsc_class *
348 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
349 {
350 	/* if root-class's cfmin is bigger than cur_time nothing to do */
351 	if (cl->cl_cfmin > cur_time)
352 		return NULL;
353 
354 	while (cl->level > 0) {
355 		cl = vttree_firstfit(cl, cur_time);
356 		if (cl == NULL)
357 			return NULL;
358 		/*
359 		 * update parent's cl_cvtmin.
360 		 */
361 		if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
362 			cl->cl_parent->cl_cvtmin = cl->cl_vt;
363 	}
364 	return cl;
365 }
366 
367 static void
368 cftree_insert(struct hfsc_class *cl)
369 {
370 	struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
371 	struct rb_node *parent = NULL;
372 	struct hfsc_class *cl1;
373 
374 	while (*p != NULL) {
375 		parent = *p;
376 		cl1 = rb_entry(parent, struct hfsc_class, cf_node);
377 		if (cl->cl_f >= cl1->cl_f)
378 			p = &parent->rb_right;
379 		else
380 			p = &parent->rb_left;
381 	}
382 	rb_link_node(&cl->cf_node, parent, p);
383 	rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
384 }
385 
386 static inline void
387 cftree_remove(struct hfsc_class *cl)
388 {
389 	rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
390 }
391 
392 static inline void
393 cftree_update(struct hfsc_class *cl)
394 {
395 	cftree_remove(cl);
396 	cftree_insert(cl);
397 }
398 
399 /*
400  * service curve support functions
401  *
402  *  external service curve parameters
403  *	m: bps
404  *	d: us
405  *  internal service curve parameters
406  *	sm: (bytes/psched_us) << SM_SHIFT
407  *	ism: (psched_us/byte) << ISM_SHIFT
408  *	dx: psched_us
409  *
410  * Clock source resolution (CONFIG_NET_SCH_CLK_*)
411  *  JIFFIES: for 48<=HZ<=1534 resolution is between 0.63us and 1.27us.
412  *  CPU: resolution is between 0.5us and 1us.
413  *  GETTIMEOFDAY: resolution is exactly 1us.
414  *
415  * sm and ism are scaled in order to keep effective digits.
416  * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
417  * digits in decimal using the following table.
418  *
419  * Note: We can afford the additional accuracy (altq hfsc keeps at most
420  * 3 effective digits) thanks to the fact that linux clock is bounded
421  * much more tightly.
422  *
423  *  bits/sec      100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
424  *  ------------+-------------------------------------------------------
425  *  bytes/0.5us   6.25e-3    62.5e-3    625e-3     6250e-e    62500e-3
426  *  bytes/us      12.5e-3    125e-3     1250e-3    12500e-3   125000e-3
427  *  bytes/1.27us  15.875e-3  158.75e-3  1587.5e-3  15875e-3   158750e-3
428  *
429  *  0.5us/byte    160        16         1.6        0.16       0.016
430  *  us/byte       80         8          0.8        0.08       0.008
431  *  1.27us/byte   63         6.3        0.63       0.063      0.0063
432  */
433 #define	SM_SHIFT	20
434 #define	ISM_SHIFT	18
435 
436 #define	SM_MASK		((1ULL << SM_SHIFT) - 1)
437 #define	ISM_MASK	((1ULL << ISM_SHIFT) - 1)
438 
439 static inline u64
440 seg_x2y(u64 x, u64 sm)
441 {
442 	u64 y;
443 
444 	/*
445 	 * compute
446 	 *	y = x * sm >> SM_SHIFT
447 	 * but divide it for the upper and lower bits to avoid overflow
448 	 */
449 	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
450 	return y;
451 }
452 
453 static inline u64
454 seg_y2x(u64 y, u64 ism)
455 {
456 	u64 x;
457 
458 	if (y == 0)
459 		x = 0;
460 	else if (ism == HT_INFINITY)
461 		x = HT_INFINITY;
462 	else {
463 		x = (y >> ISM_SHIFT) * ism
464 		    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
465 	}
466 	return x;
467 }
468 
469 /* Convert m (bps) into sm (bytes/psched us) */
470 static u64
471 m2sm(u32 m)
472 {
473 	u64 sm;
474 
475 	sm = ((u64)m << SM_SHIFT);
476 	sm += PSCHED_JIFFIE2US(HZ) - 1;
477 	do_div(sm, PSCHED_JIFFIE2US(HZ));
478 	return sm;
479 }
480 
481 /* convert m (bps) into ism (psched us/byte) */
482 static u64
483 m2ism(u32 m)
484 {
485 	u64 ism;
486 
487 	if (m == 0)
488 		ism = HT_INFINITY;
489 	else {
490 		ism = ((u64)PSCHED_JIFFIE2US(HZ) << ISM_SHIFT);
491 		ism += m - 1;
492 		do_div(ism, m);
493 	}
494 	return ism;
495 }
496 
497 /* convert d (us) into dx (psched us) */
498 static u64
499 d2dx(u32 d)
500 {
501 	u64 dx;
502 
503 	dx = ((u64)d * PSCHED_JIFFIE2US(HZ));
504 	dx += USEC_PER_SEC - 1;
505 	do_div(dx, USEC_PER_SEC);
506 	return dx;
507 }
508 
509 /* convert sm (bytes/psched us) into m (bps) */
510 static u32
511 sm2m(u64 sm)
512 {
513 	u64 m;
514 
515 	m = (sm * PSCHED_JIFFIE2US(HZ)) >> SM_SHIFT;
516 	return (u32)m;
517 }
518 
519 /* convert dx (psched us) into d (us) */
520 static u32
521 dx2d(u64 dx)
522 {
523 	u64 d;
524 
525 	d = dx * USEC_PER_SEC;
526 	do_div(d, PSCHED_JIFFIE2US(HZ));
527 	return (u32)d;
528 }
529 
530 static void
531 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
532 {
533 	isc->sm1  = m2sm(sc->m1);
534 	isc->ism1 = m2ism(sc->m1);
535 	isc->dx   = d2dx(sc->d);
536 	isc->dy   = seg_x2y(isc->dx, isc->sm1);
537 	isc->sm2  = m2sm(sc->m2);
538 	isc->ism2 = m2ism(sc->m2);
539 }
540 
541 /*
542  * initialize the runtime service curve with the given internal
543  * service curve starting at (x, y).
544  */
545 static void
546 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
547 {
548 	rtsc->x	   = x;
549 	rtsc->y    = y;
550 	rtsc->sm1  = isc->sm1;
551 	rtsc->ism1 = isc->ism1;
552 	rtsc->dx   = isc->dx;
553 	rtsc->dy   = isc->dy;
554 	rtsc->sm2  = isc->sm2;
555 	rtsc->ism2 = isc->ism2;
556 }
557 
558 /*
559  * calculate the y-projection of the runtime service curve by the
560  * given x-projection value
561  */
562 static u64
563 rtsc_y2x(struct runtime_sc *rtsc, u64 y)
564 {
565 	u64 x;
566 
567 	if (y < rtsc->y)
568 		x = rtsc->x;
569 	else if (y <= rtsc->y + rtsc->dy) {
570 		/* x belongs to the 1st segment */
571 		if (rtsc->dy == 0)
572 			x = rtsc->x + rtsc->dx;
573 		else
574 			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
575 	} else {
576 		/* x belongs to the 2nd segment */
577 		x = rtsc->x + rtsc->dx
578 		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
579 	}
580 	return x;
581 }
582 
583 static u64
584 rtsc_x2y(struct runtime_sc *rtsc, u64 x)
585 {
586 	u64 y;
587 
588 	if (x <= rtsc->x)
589 		y = rtsc->y;
590 	else if (x <= rtsc->x + rtsc->dx)
591 		/* y belongs to the 1st segment */
592 		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
593 	else
594 		/* y belongs to the 2nd segment */
595 		y = rtsc->y + rtsc->dy
596 		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
597 	return y;
598 }
599 
600 /*
601  * update the runtime service curve by taking the minimum of the current
602  * runtime service curve and the service curve starting at (x, y).
603  */
604 static void
605 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
606 {
607 	u64 y1, y2, dx, dy;
608 	u32 dsm;
609 
610 	if (isc->sm1 <= isc->sm2) {
611 		/* service curve is convex */
612 		y1 = rtsc_x2y(rtsc, x);
613 		if (y1 < y)
614 			/* the current rtsc is smaller */
615 			return;
616 		rtsc->x = x;
617 		rtsc->y = y;
618 		return;
619 	}
620 
621 	/*
622 	 * service curve is concave
623 	 * compute the two y values of the current rtsc
624 	 *	y1: at x
625 	 *	y2: at (x + dx)
626 	 */
627 	y1 = rtsc_x2y(rtsc, x);
628 	if (y1 <= y) {
629 		/* rtsc is below isc, no change to rtsc */
630 		return;
631 	}
632 
633 	y2 = rtsc_x2y(rtsc, x + isc->dx);
634 	if (y2 >= y + isc->dy) {
635 		/* rtsc is above isc, replace rtsc by isc */
636 		rtsc->x = x;
637 		rtsc->y = y;
638 		rtsc->dx = isc->dx;
639 		rtsc->dy = isc->dy;
640 		return;
641 	}
642 
643 	/*
644 	 * the two curves intersect
645 	 * compute the offsets (dx, dy) using the reverse
646 	 * function of seg_x2y()
647 	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
648 	 */
649 	dx = (y1 - y) << SM_SHIFT;
650 	dsm = isc->sm1 - isc->sm2;
651 	do_div(dx, dsm);
652 	/*
653 	 * check if (x, y1) belongs to the 1st segment of rtsc.
654 	 * if so, add the offset.
655 	 */
656 	if (rtsc->x + rtsc->dx > x)
657 		dx += rtsc->x + rtsc->dx - x;
658 	dy = seg_x2y(dx, isc->sm1);
659 
660 	rtsc->x = x;
661 	rtsc->y = y;
662 	rtsc->dx = dx;
663 	rtsc->dy = dy;
664 	return;
665 }
666 
667 static void
668 init_ed(struct hfsc_class *cl, unsigned int next_len)
669 {
670 	u64 cur_time;
671 
672 	PSCHED_GET_TIME(cur_time);
673 
674 	/* update the deadline curve */
675 	rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
676 
677 	/*
678 	 * update the eligible curve.
679 	 * for concave, it is equal to the deadline curve.
680 	 * for convex, it is a linear curve with slope m2.
681 	 */
682 	cl->cl_eligible = cl->cl_deadline;
683 	if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
684 		cl->cl_eligible.dx = 0;
685 		cl->cl_eligible.dy = 0;
686 	}
687 
688 	/* compute e and d */
689 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
690 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
691 
692 	eltree_insert(cl);
693 }
694 
695 static void
696 update_ed(struct hfsc_class *cl, unsigned int next_len)
697 {
698 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
699 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
700 
701 	eltree_update(cl);
702 }
703 
704 static inline void
705 update_d(struct hfsc_class *cl, unsigned int next_len)
706 {
707 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
708 }
709 
710 static inline void
711 update_cfmin(struct hfsc_class *cl)
712 {
713 	struct rb_node *n = rb_first(&cl->cf_tree);
714 	struct hfsc_class *p;
715 
716 	if (n == NULL) {
717 		cl->cl_cfmin = 0;
718 		return;
719 	}
720 	p = rb_entry(n, struct hfsc_class, cf_node);
721 	cl->cl_cfmin = p->cl_f;
722 }
723 
724 static void
725 init_vf(struct hfsc_class *cl, unsigned int len)
726 {
727 	struct hfsc_class *max_cl;
728 	struct rb_node *n;
729 	u64 vt, f, cur_time;
730 	int go_active;
731 
732 	cur_time = 0;
733 	go_active = 1;
734 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
735 		if (go_active && cl->cl_nactive++ == 0)
736 			go_active = 1;
737 		else
738 			go_active = 0;
739 
740 		if (go_active) {
741 			n = rb_last(&cl->cl_parent->vt_tree);
742 			if (n != NULL) {
743 				max_cl = rb_entry(n, struct hfsc_class,vt_node);
744 				/*
745 				 * set vt to the average of the min and max
746 				 * classes.  if the parent's period didn't
747 				 * change, don't decrease vt of the class.
748 				 */
749 				vt = max_cl->cl_vt;
750 				if (cl->cl_parent->cl_cvtmin != 0)
751 					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
752 
753 				if (cl->cl_parent->cl_vtperiod !=
754 				    cl->cl_parentperiod || vt > cl->cl_vt)
755 					cl->cl_vt = vt;
756 			} else {
757 				/*
758 				 * first child for a new parent backlog period.
759 				 * add parent's cvtmax to cvtoff to make a new
760 				 * vt (vtoff + vt) larger than the vt in the
761 				 * last period for all children.
762 				 */
763 				vt = cl->cl_parent->cl_cvtmax;
764 				cl->cl_parent->cl_cvtoff += vt;
765 				cl->cl_parent->cl_cvtmax = 0;
766 				cl->cl_parent->cl_cvtmin = 0;
767 				cl->cl_vt = 0;
768 			}
769 
770 			cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
771 							cl->cl_pcvtoff;
772 
773 			/* update the virtual curve */
774 			vt = cl->cl_vt + cl->cl_vtoff;
775 			rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
776 			                              cl->cl_total);
777 			if (cl->cl_virtual.x == vt) {
778 				cl->cl_virtual.x -= cl->cl_vtoff;
779 				cl->cl_vtoff = 0;
780 			}
781 			cl->cl_vtadj = 0;
782 
783 			cl->cl_vtperiod++;  /* increment vt period */
784 			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
785 			if (cl->cl_parent->cl_nactive == 0)
786 				cl->cl_parentperiod++;
787 			cl->cl_f = 0;
788 
789 			vttree_insert(cl);
790 			cftree_insert(cl);
791 
792 			if (cl->cl_flags & HFSC_USC) {
793 				/* class has upper limit curve */
794 				if (cur_time == 0)
795 					PSCHED_GET_TIME(cur_time);
796 
797 				/* update the ulimit curve */
798 				rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
799 				         cl->cl_total);
800 				/* compute myf */
801 				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
802 				                      cl->cl_total);
803 				cl->cl_myfadj = 0;
804 			}
805 		}
806 
807 		f = max(cl->cl_myf, cl->cl_cfmin);
808 		if (f != cl->cl_f) {
809 			cl->cl_f = f;
810 			cftree_update(cl);
811 			update_cfmin(cl->cl_parent);
812 		}
813 	}
814 }
815 
816 static void
817 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
818 {
819 	u64 f; /* , myf_bound, delta; */
820 	int go_passive = 0;
821 
822 	if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
823 		go_passive = 1;
824 
825 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
826 		cl->cl_total += len;
827 
828 		if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
829 			continue;
830 
831 		if (go_passive && --cl->cl_nactive == 0)
832 			go_passive = 1;
833 		else
834 			go_passive = 0;
835 
836 		if (go_passive) {
837 			/* no more active child, going passive */
838 
839 			/* update cvtmax of the parent class */
840 			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
841 				cl->cl_parent->cl_cvtmax = cl->cl_vt;
842 
843 			/* remove this class from the vt tree */
844 			vttree_remove(cl);
845 
846 			cftree_remove(cl);
847 			update_cfmin(cl->cl_parent);
848 
849 			continue;
850 		}
851 
852 		/*
853 		 * update vt and f
854 		 */
855 		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
856 		            - cl->cl_vtoff + cl->cl_vtadj;
857 
858 		/*
859 		 * if vt of the class is smaller than cvtmin,
860 		 * the class was skipped in the past due to non-fit.
861 		 * if so, we need to adjust vtadj.
862 		 */
863 		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
864 			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
865 			cl->cl_vt = cl->cl_parent->cl_cvtmin;
866 		}
867 
868 		/* update the vt tree */
869 		vttree_update(cl);
870 
871 		if (cl->cl_flags & HFSC_USC) {
872 			cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
873 			                                      cl->cl_total);
874 #if 0
875 			/*
876 			 * This code causes classes to stay way under their
877 			 * limit when multiple classes are used at gigabit
878 			 * speed. needs investigation. -kaber
879 			 */
880 			/*
881 			 * if myf lags behind by more than one clock tick
882 			 * from the current time, adjust myfadj to prevent
883 			 * a rate-limited class from going greedy.
884 			 * in a steady state under rate-limiting, myf
885 			 * fluctuates within one clock tick.
886 			 */
887 			myf_bound = cur_time - PSCHED_JIFFIE2US(1);
888 			if (cl->cl_myf < myf_bound) {
889 				delta = cur_time - cl->cl_myf;
890 				cl->cl_myfadj += delta;
891 				cl->cl_myf += delta;
892 			}
893 #endif
894 		}
895 
896 		f = max(cl->cl_myf, cl->cl_cfmin);
897 		if (f != cl->cl_f) {
898 			cl->cl_f = f;
899 			cftree_update(cl);
900 			update_cfmin(cl->cl_parent);
901 		}
902 	}
903 }
904 
905 static void
906 set_active(struct hfsc_class *cl, unsigned int len)
907 {
908 	if (cl->cl_flags & HFSC_RSC)
909 		init_ed(cl, len);
910 	if (cl->cl_flags & HFSC_FSC)
911 		init_vf(cl, len);
912 
913 	list_add_tail(&cl->dlist, &cl->sched->droplist);
914 }
915 
916 static void
917 set_passive(struct hfsc_class *cl)
918 {
919 	if (cl->cl_flags & HFSC_RSC)
920 		eltree_remove(cl);
921 
922 	list_del(&cl->dlist);
923 
924 	/*
925 	 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
926 	 * needs to be called explicitly to remove a class from vttree.
927 	 */
928 }
929 
930 /*
931  * hack to get length of first packet in queue.
932  */
933 static unsigned int
934 qdisc_peek_len(struct Qdisc *sch)
935 {
936 	struct sk_buff *skb;
937 	unsigned int len;
938 
939 	skb = sch->dequeue(sch);
940 	if (skb == NULL) {
941 		if (net_ratelimit())
942 			printk("qdisc_peek_len: non work-conserving qdisc ?\n");
943 		return 0;
944 	}
945 	len = skb->len;
946 	if (unlikely(sch->ops->requeue(skb, sch) != NET_XMIT_SUCCESS)) {
947 		if (net_ratelimit())
948 			printk("qdisc_peek_len: failed to requeue\n");
949 		return 0;
950 	}
951 	return len;
952 }
953 
954 static void
955 hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
956 {
957 	unsigned int len = cl->qdisc->q.qlen;
958 
959 	qdisc_reset(cl->qdisc);
960 	if (len > 0) {
961 		update_vf(cl, 0, 0);
962 		set_passive(cl);
963 		sch->q.qlen -= len;
964 	}
965 }
966 
967 static void
968 hfsc_adjust_levels(struct hfsc_class *cl)
969 {
970 	struct hfsc_class *p;
971 	unsigned int level;
972 
973 	do {
974 		level = 0;
975 		list_for_each_entry(p, &cl->children, siblings) {
976 			if (p->level >= level)
977 				level = p->level + 1;
978 		}
979 		cl->level = level;
980 	} while ((cl = cl->cl_parent) != NULL);
981 }
982 
983 static inline unsigned int
984 hfsc_hash(u32 h)
985 {
986 	h ^= h >> 8;
987 	h ^= h >> 4;
988 
989 	return h & (HFSC_HSIZE - 1);
990 }
991 
992 static inline struct hfsc_class *
993 hfsc_find_class(u32 classid, struct Qdisc *sch)
994 {
995 	struct hfsc_sched *q = qdisc_priv(sch);
996 	struct hfsc_class *cl;
997 
998 	list_for_each_entry(cl, &q->clhash[hfsc_hash(classid)], hlist) {
999 		if (cl->classid == classid)
1000 			return cl;
1001 	}
1002 	return NULL;
1003 }
1004 
1005 static void
1006 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
1007                 u64 cur_time)
1008 {
1009 	sc2isc(rsc, &cl->cl_rsc);
1010 	rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
1011 	cl->cl_eligible = cl->cl_deadline;
1012 	if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
1013 		cl->cl_eligible.dx = 0;
1014 		cl->cl_eligible.dy = 0;
1015 	}
1016 	cl->cl_flags |= HFSC_RSC;
1017 }
1018 
1019 static void
1020 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
1021 {
1022 	sc2isc(fsc, &cl->cl_fsc);
1023 	rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
1024 	cl->cl_flags |= HFSC_FSC;
1025 }
1026 
1027 static void
1028 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
1029                 u64 cur_time)
1030 {
1031 	sc2isc(usc, &cl->cl_usc);
1032 	rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
1033 	cl->cl_flags |= HFSC_USC;
1034 }
1035 
1036 static int
1037 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
1038                   struct rtattr **tca, unsigned long *arg)
1039 {
1040 	struct hfsc_sched *q = qdisc_priv(sch);
1041 	struct hfsc_class *cl = (struct hfsc_class *)*arg;
1042 	struct hfsc_class *parent = NULL;
1043 	struct rtattr *opt = tca[TCA_OPTIONS-1];
1044 	struct rtattr *tb[TCA_HFSC_MAX];
1045 	struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
1046 	u64 cur_time;
1047 
1048 	if (opt == NULL || rtattr_parse_nested(tb, TCA_HFSC_MAX, opt))
1049 		return -EINVAL;
1050 
1051 	if (tb[TCA_HFSC_RSC-1]) {
1052 		if (RTA_PAYLOAD(tb[TCA_HFSC_RSC-1]) < sizeof(*rsc))
1053 			return -EINVAL;
1054 		rsc = RTA_DATA(tb[TCA_HFSC_RSC-1]);
1055 		if (rsc->m1 == 0 && rsc->m2 == 0)
1056 			rsc = NULL;
1057 	}
1058 
1059 	if (tb[TCA_HFSC_FSC-1]) {
1060 		if (RTA_PAYLOAD(tb[TCA_HFSC_FSC-1]) < sizeof(*fsc))
1061 			return -EINVAL;
1062 		fsc = RTA_DATA(tb[TCA_HFSC_FSC-1]);
1063 		if (fsc->m1 == 0 && fsc->m2 == 0)
1064 			fsc = NULL;
1065 	}
1066 
1067 	if (tb[TCA_HFSC_USC-1]) {
1068 		if (RTA_PAYLOAD(tb[TCA_HFSC_USC-1]) < sizeof(*usc))
1069 			return -EINVAL;
1070 		usc = RTA_DATA(tb[TCA_HFSC_USC-1]);
1071 		if (usc->m1 == 0 && usc->m2 == 0)
1072 			usc = NULL;
1073 	}
1074 
1075 	if (cl != NULL) {
1076 		if (parentid) {
1077 			if (cl->cl_parent && cl->cl_parent->classid != parentid)
1078 				return -EINVAL;
1079 			if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
1080 				return -EINVAL;
1081 		}
1082 		PSCHED_GET_TIME(cur_time);
1083 
1084 		sch_tree_lock(sch);
1085 		if (rsc != NULL)
1086 			hfsc_change_rsc(cl, rsc, cur_time);
1087 		if (fsc != NULL)
1088 			hfsc_change_fsc(cl, fsc);
1089 		if (usc != NULL)
1090 			hfsc_change_usc(cl, usc, cur_time);
1091 
1092 		if (cl->qdisc->q.qlen != 0) {
1093 			if (cl->cl_flags & HFSC_RSC)
1094 				update_ed(cl, qdisc_peek_len(cl->qdisc));
1095 			if (cl->cl_flags & HFSC_FSC)
1096 				update_vf(cl, 0, cur_time);
1097 		}
1098 		sch_tree_unlock(sch);
1099 
1100 #ifdef CONFIG_NET_ESTIMATOR
1101 		if (tca[TCA_RATE-1])
1102 			gen_replace_estimator(&cl->bstats, &cl->rate_est,
1103 				cl->stats_lock, tca[TCA_RATE-1]);
1104 #endif
1105 		return 0;
1106 	}
1107 
1108 	if (parentid == TC_H_ROOT)
1109 		return -EEXIST;
1110 
1111 	parent = &q->root;
1112 	if (parentid) {
1113 		parent = hfsc_find_class(parentid, sch);
1114 		if (parent == NULL)
1115 			return -ENOENT;
1116 	}
1117 
1118 	if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1119 		return -EINVAL;
1120 	if (hfsc_find_class(classid, sch))
1121 		return -EEXIST;
1122 
1123 	if (rsc == NULL && fsc == NULL)
1124 		return -EINVAL;
1125 
1126 	cl = kmalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1127 	if (cl == NULL)
1128 		return -ENOBUFS;
1129 	memset(cl, 0, sizeof(struct hfsc_class));
1130 
1131 	if (rsc != NULL)
1132 		hfsc_change_rsc(cl, rsc, 0);
1133 	if (fsc != NULL)
1134 		hfsc_change_fsc(cl, fsc);
1135 	if (usc != NULL)
1136 		hfsc_change_usc(cl, usc, 0);
1137 
1138 	cl->refcnt    = 1;
1139 	cl->classid   = classid;
1140 	cl->sched     = q;
1141 	cl->cl_parent = parent;
1142 	cl->qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops);
1143 	if (cl->qdisc == NULL)
1144 		cl->qdisc = &noop_qdisc;
1145 	cl->stats_lock = &sch->dev->queue_lock;
1146 	INIT_LIST_HEAD(&cl->children);
1147 	cl->vt_tree = RB_ROOT;
1148 	cl->cf_tree = RB_ROOT;
1149 
1150 	sch_tree_lock(sch);
1151 	list_add_tail(&cl->hlist, &q->clhash[hfsc_hash(classid)]);
1152 	list_add_tail(&cl->siblings, &parent->children);
1153 	if (parent->level == 0)
1154 		hfsc_purge_queue(sch, parent);
1155 	hfsc_adjust_levels(parent);
1156 	cl->cl_pcvtoff = parent->cl_cvtoff;
1157 	sch_tree_unlock(sch);
1158 
1159 #ifdef CONFIG_NET_ESTIMATOR
1160 	if (tca[TCA_RATE-1])
1161 		gen_new_estimator(&cl->bstats, &cl->rate_est,
1162 			cl->stats_lock, tca[TCA_RATE-1]);
1163 #endif
1164 	*arg = (unsigned long)cl;
1165 	return 0;
1166 }
1167 
1168 static void
1169 hfsc_destroy_filters(struct tcf_proto **fl)
1170 {
1171 	struct tcf_proto *tp;
1172 
1173 	while ((tp = *fl) != NULL) {
1174 		*fl = tp->next;
1175 		tcf_destroy(tp);
1176 	}
1177 }
1178 
1179 static void
1180 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1181 {
1182 	struct hfsc_sched *q = qdisc_priv(sch);
1183 
1184 	hfsc_destroy_filters(&cl->filter_list);
1185 	qdisc_destroy(cl->qdisc);
1186 #ifdef CONFIG_NET_ESTIMATOR
1187 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
1188 #endif
1189 	if (cl != &q->root)
1190 		kfree(cl);
1191 }
1192 
1193 static int
1194 hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
1195 {
1196 	struct hfsc_sched *q = qdisc_priv(sch);
1197 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1198 
1199 	if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
1200 		return -EBUSY;
1201 
1202 	sch_tree_lock(sch);
1203 
1204 	list_del(&cl->hlist);
1205 	list_del(&cl->siblings);
1206 	hfsc_adjust_levels(cl->cl_parent);
1207 	hfsc_purge_queue(sch, cl);
1208 	if (--cl->refcnt == 0)
1209 		hfsc_destroy_class(sch, cl);
1210 
1211 	sch_tree_unlock(sch);
1212 	return 0;
1213 }
1214 
1215 static struct hfsc_class *
1216 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1217 {
1218 	struct hfsc_sched *q = qdisc_priv(sch);
1219 	struct hfsc_class *cl;
1220 	struct tcf_result res;
1221 	struct tcf_proto *tcf;
1222 	int result;
1223 
1224 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1225 	    (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1226 		if (cl->level == 0)
1227 			return cl;
1228 
1229 	*qerr = NET_XMIT_BYPASS;
1230 	tcf = q->root.filter_list;
1231 	while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) {
1232 #ifdef CONFIG_NET_CLS_ACT
1233 		switch (result) {
1234 		case TC_ACT_QUEUED:
1235 		case TC_ACT_STOLEN:
1236 			*qerr = NET_XMIT_SUCCESS;
1237 		case TC_ACT_SHOT:
1238 			return NULL;
1239 		}
1240 #elif defined(CONFIG_NET_CLS_POLICE)
1241 		if (result == TC_POLICE_SHOT)
1242 			return NULL;
1243 #endif
1244 		if ((cl = (struct hfsc_class *)res.class) == NULL) {
1245 			if ((cl = hfsc_find_class(res.classid, sch)) == NULL)
1246 				break; /* filter selected invalid classid */
1247 		}
1248 
1249 		if (cl->level == 0)
1250 			return cl; /* hit leaf class */
1251 
1252 		/* apply inner filter chain */
1253 		tcf = cl->filter_list;
1254 	}
1255 
1256 	/* classification failed, try default class */
1257 	cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
1258 	if (cl == NULL || cl->level > 0)
1259 		return NULL;
1260 
1261 	return cl;
1262 }
1263 
1264 static int
1265 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1266                  struct Qdisc **old)
1267 {
1268 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1269 
1270 	if (cl == NULL)
1271 		return -ENOENT;
1272 	if (cl->level > 0)
1273 		return -EINVAL;
1274 	if (new == NULL) {
1275 		new = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops);
1276 		if (new == NULL)
1277 			new = &noop_qdisc;
1278 	}
1279 
1280 	sch_tree_lock(sch);
1281 	hfsc_purge_queue(sch, cl);
1282 	*old = xchg(&cl->qdisc, new);
1283 	sch_tree_unlock(sch);
1284 	return 0;
1285 }
1286 
1287 static struct Qdisc *
1288 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1289 {
1290 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1291 
1292 	if (cl != NULL && cl->level == 0)
1293 		return cl->qdisc;
1294 
1295 	return NULL;
1296 }
1297 
1298 static unsigned long
1299 hfsc_get_class(struct Qdisc *sch, u32 classid)
1300 {
1301 	struct hfsc_class *cl = hfsc_find_class(classid, sch);
1302 
1303 	if (cl != NULL)
1304 		cl->refcnt++;
1305 
1306 	return (unsigned long)cl;
1307 }
1308 
1309 static void
1310 hfsc_put_class(struct Qdisc *sch, unsigned long arg)
1311 {
1312 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1313 
1314 	if (--cl->refcnt == 0)
1315 		hfsc_destroy_class(sch, cl);
1316 }
1317 
1318 static unsigned long
1319 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1320 {
1321 	struct hfsc_class *p = (struct hfsc_class *)parent;
1322 	struct hfsc_class *cl = hfsc_find_class(classid, sch);
1323 
1324 	if (cl != NULL) {
1325 		if (p != NULL && p->level <= cl->level)
1326 			return 0;
1327 		cl->filter_cnt++;
1328 	}
1329 
1330 	return (unsigned long)cl;
1331 }
1332 
1333 static void
1334 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1335 {
1336 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1337 
1338 	cl->filter_cnt--;
1339 }
1340 
1341 static struct tcf_proto **
1342 hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
1343 {
1344 	struct hfsc_sched *q = qdisc_priv(sch);
1345 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1346 
1347 	if (cl == NULL)
1348 		cl = &q->root;
1349 
1350 	return &cl->filter_list;
1351 }
1352 
1353 static int
1354 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1355 {
1356 	struct tc_service_curve tsc;
1357 
1358 	tsc.m1 = sm2m(sc->sm1);
1359 	tsc.d  = dx2d(sc->dx);
1360 	tsc.m2 = sm2m(sc->sm2);
1361 	RTA_PUT(skb, attr, sizeof(tsc), &tsc);
1362 
1363 	return skb->len;
1364 
1365  rtattr_failure:
1366 	return -1;
1367 }
1368 
1369 static inline int
1370 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1371 {
1372 	if ((cl->cl_flags & HFSC_RSC) &&
1373 	    (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1374 		goto rtattr_failure;
1375 
1376 	if ((cl->cl_flags & HFSC_FSC) &&
1377 	    (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1378 		goto rtattr_failure;
1379 
1380 	if ((cl->cl_flags & HFSC_USC) &&
1381 	    (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1382 		goto rtattr_failure;
1383 
1384 	return skb->len;
1385 
1386  rtattr_failure:
1387 	return -1;
1388 }
1389 
1390 static int
1391 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1392                 struct tcmsg *tcm)
1393 {
1394 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1395 	unsigned char *b = skb->tail;
1396 	struct rtattr *rta = (struct rtattr *)b;
1397 
1398 	tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->classid : TC_H_ROOT;
1399 	tcm->tcm_handle = cl->classid;
1400 	if (cl->level == 0)
1401 		tcm->tcm_info = cl->qdisc->handle;
1402 
1403 	RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
1404 	if (hfsc_dump_curves(skb, cl) < 0)
1405 		goto rtattr_failure;
1406 	rta->rta_len = skb->tail - b;
1407 	return skb->len;
1408 
1409  rtattr_failure:
1410 	skb_trim(skb, b - skb->data);
1411 	return -1;
1412 }
1413 
1414 static int
1415 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1416 	struct gnet_dump *d)
1417 {
1418 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1419 	struct tc_hfsc_stats xstats;
1420 
1421 	cl->qstats.qlen = cl->qdisc->q.qlen;
1422 	xstats.level   = cl->level;
1423 	xstats.period  = cl->cl_vtperiod;
1424 	xstats.work    = cl->cl_total;
1425 	xstats.rtwork  = cl->cl_cumul;
1426 
1427 	if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
1428 #ifdef CONFIG_NET_ESTIMATOR
1429 	    gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
1430 #endif
1431 	    gnet_stats_copy_queue(d, &cl->qstats) < 0)
1432 		return -1;
1433 
1434 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1435 }
1436 
1437 
1438 
1439 static void
1440 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1441 {
1442 	struct hfsc_sched *q = qdisc_priv(sch);
1443 	struct hfsc_class *cl;
1444 	unsigned int i;
1445 
1446 	if (arg->stop)
1447 		return;
1448 
1449 	for (i = 0; i < HFSC_HSIZE; i++) {
1450 		list_for_each_entry(cl, &q->clhash[i], hlist) {
1451 			if (arg->count < arg->skip) {
1452 				arg->count++;
1453 				continue;
1454 			}
1455 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
1456 				arg->stop = 1;
1457 				return;
1458 			}
1459 			arg->count++;
1460 		}
1461 	}
1462 }
1463 
1464 static void
1465 hfsc_watchdog(unsigned long arg)
1466 {
1467 	struct Qdisc *sch = (struct Qdisc *)arg;
1468 
1469 	sch->flags &= ~TCQ_F_THROTTLED;
1470 	netif_schedule(sch->dev);
1471 }
1472 
1473 static void
1474 hfsc_schedule_watchdog(struct Qdisc *sch, u64 cur_time)
1475 {
1476 	struct hfsc_sched *q = qdisc_priv(sch);
1477 	struct hfsc_class *cl;
1478 	u64 next_time = 0;
1479 	long delay;
1480 
1481 	if ((cl = eltree_get_minel(q)) != NULL)
1482 		next_time = cl->cl_e;
1483 	if (q->root.cl_cfmin != 0) {
1484 		if (next_time == 0 || next_time > q->root.cl_cfmin)
1485 			next_time = q->root.cl_cfmin;
1486 	}
1487 	ASSERT(next_time != 0);
1488 	delay = next_time - cur_time;
1489 	delay = PSCHED_US2JIFFIE(delay);
1490 
1491 	sch->flags |= TCQ_F_THROTTLED;
1492 	mod_timer(&q->wd_timer, jiffies + delay);
1493 }
1494 
1495 static int
1496 hfsc_init_qdisc(struct Qdisc *sch, struct rtattr *opt)
1497 {
1498 	struct hfsc_sched *q = qdisc_priv(sch);
1499 	struct tc_hfsc_qopt *qopt;
1500 	unsigned int i;
1501 
1502 	if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt))
1503 		return -EINVAL;
1504 	qopt = RTA_DATA(opt);
1505 
1506 	sch->stats_lock = &sch->dev->queue_lock;
1507 
1508 	q->defcls = qopt->defcls;
1509 	for (i = 0; i < HFSC_HSIZE; i++)
1510 		INIT_LIST_HEAD(&q->clhash[i]);
1511 	q->eligible = RB_ROOT;
1512 	INIT_LIST_HEAD(&q->droplist);
1513 	skb_queue_head_init(&q->requeue);
1514 
1515 	q->root.refcnt  = 1;
1516 	q->root.classid = sch->handle;
1517 	q->root.sched   = q;
1518 	q->root.qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops);
1519 	if (q->root.qdisc == NULL)
1520 		q->root.qdisc = &noop_qdisc;
1521 	q->root.stats_lock = &sch->dev->queue_lock;
1522 	INIT_LIST_HEAD(&q->root.children);
1523 	q->root.vt_tree = RB_ROOT;
1524 	q->root.cf_tree = RB_ROOT;
1525 
1526 	list_add(&q->root.hlist, &q->clhash[hfsc_hash(q->root.classid)]);
1527 
1528 	init_timer(&q->wd_timer);
1529 	q->wd_timer.function = hfsc_watchdog;
1530 	q->wd_timer.data = (unsigned long)sch;
1531 
1532 	return 0;
1533 }
1534 
1535 static int
1536 hfsc_change_qdisc(struct Qdisc *sch, struct rtattr *opt)
1537 {
1538 	struct hfsc_sched *q = qdisc_priv(sch);
1539 	struct tc_hfsc_qopt *qopt;
1540 
1541 	if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt))
1542 		return -EINVAL;
1543 	qopt = RTA_DATA(opt);
1544 
1545 	sch_tree_lock(sch);
1546 	q->defcls = qopt->defcls;
1547 	sch_tree_unlock(sch);
1548 
1549 	return 0;
1550 }
1551 
1552 static void
1553 hfsc_reset_class(struct hfsc_class *cl)
1554 {
1555 	cl->cl_total        = 0;
1556 	cl->cl_cumul        = 0;
1557 	cl->cl_d            = 0;
1558 	cl->cl_e            = 0;
1559 	cl->cl_vt           = 0;
1560 	cl->cl_vtadj        = 0;
1561 	cl->cl_vtoff        = 0;
1562 	cl->cl_cvtmin       = 0;
1563 	cl->cl_cvtmax       = 0;
1564 	cl->cl_cvtoff       = 0;
1565 	cl->cl_pcvtoff      = 0;
1566 	cl->cl_vtperiod     = 0;
1567 	cl->cl_parentperiod = 0;
1568 	cl->cl_f            = 0;
1569 	cl->cl_myf          = 0;
1570 	cl->cl_myfadj       = 0;
1571 	cl->cl_cfmin        = 0;
1572 	cl->cl_nactive      = 0;
1573 
1574 	cl->vt_tree = RB_ROOT;
1575 	cl->cf_tree = RB_ROOT;
1576 	qdisc_reset(cl->qdisc);
1577 
1578 	if (cl->cl_flags & HFSC_RSC)
1579 		rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1580 	if (cl->cl_flags & HFSC_FSC)
1581 		rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1582 	if (cl->cl_flags & HFSC_USC)
1583 		rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1584 }
1585 
1586 static void
1587 hfsc_reset_qdisc(struct Qdisc *sch)
1588 {
1589 	struct hfsc_sched *q = qdisc_priv(sch);
1590 	struct hfsc_class *cl;
1591 	unsigned int i;
1592 
1593 	for (i = 0; i < HFSC_HSIZE; i++) {
1594 		list_for_each_entry(cl, &q->clhash[i], hlist)
1595 			hfsc_reset_class(cl);
1596 	}
1597 	__skb_queue_purge(&q->requeue);
1598 	q->eligible = RB_ROOT;
1599 	INIT_LIST_HEAD(&q->droplist);
1600 	del_timer(&q->wd_timer);
1601 	sch->flags &= ~TCQ_F_THROTTLED;
1602 	sch->q.qlen = 0;
1603 }
1604 
1605 static void
1606 hfsc_destroy_qdisc(struct Qdisc *sch)
1607 {
1608 	struct hfsc_sched *q = qdisc_priv(sch);
1609 	struct hfsc_class *cl, *next;
1610 	unsigned int i;
1611 
1612 	for (i = 0; i < HFSC_HSIZE; i++) {
1613 		list_for_each_entry_safe(cl, next, &q->clhash[i], hlist)
1614 			hfsc_destroy_class(sch, cl);
1615 	}
1616 	__skb_queue_purge(&q->requeue);
1617 	del_timer(&q->wd_timer);
1618 }
1619 
1620 static int
1621 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1622 {
1623 	struct hfsc_sched *q = qdisc_priv(sch);
1624 	unsigned char *b = skb->tail;
1625 	struct tc_hfsc_qopt qopt;
1626 
1627 	qopt.defcls = q->defcls;
1628 	RTA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
1629 	return skb->len;
1630 
1631  rtattr_failure:
1632 	skb_trim(skb, b - skb->data);
1633 	return -1;
1634 }
1635 
1636 static int
1637 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1638 {
1639 	struct hfsc_class *cl;
1640 	unsigned int len;
1641 	int err;
1642 
1643 	cl = hfsc_classify(skb, sch, &err);
1644 	if (cl == NULL) {
1645 		if (err == NET_XMIT_BYPASS)
1646 			sch->qstats.drops++;
1647 		kfree_skb(skb);
1648 		return err;
1649 	}
1650 
1651 	len = skb->len;
1652 	err = cl->qdisc->enqueue(skb, cl->qdisc);
1653 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1654 		cl->qstats.drops++;
1655 		sch->qstats.drops++;
1656 		return err;
1657 	}
1658 
1659 	if (cl->qdisc->q.qlen == 1)
1660 		set_active(cl, len);
1661 
1662 	cl->bstats.packets++;
1663 	cl->bstats.bytes += len;
1664 	sch->bstats.packets++;
1665 	sch->bstats.bytes += len;
1666 	sch->q.qlen++;
1667 
1668 	return NET_XMIT_SUCCESS;
1669 }
1670 
1671 static struct sk_buff *
1672 hfsc_dequeue(struct Qdisc *sch)
1673 {
1674 	struct hfsc_sched *q = qdisc_priv(sch);
1675 	struct hfsc_class *cl;
1676 	struct sk_buff *skb;
1677 	u64 cur_time;
1678 	unsigned int next_len;
1679 	int realtime = 0;
1680 
1681 	if (sch->q.qlen == 0)
1682 		return NULL;
1683 	if ((skb = __skb_dequeue(&q->requeue)))
1684 		goto out;
1685 
1686 	PSCHED_GET_TIME(cur_time);
1687 
1688 	/*
1689 	 * if there are eligible classes, use real-time criteria.
1690 	 * find the class with the minimum deadline among
1691 	 * the eligible classes.
1692 	 */
1693 	if ((cl = eltree_get_mindl(q, cur_time)) != NULL) {
1694 		realtime = 1;
1695 	} else {
1696 		/*
1697 		 * use link-sharing criteria
1698 		 * get the class with the minimum vt in the hierarchy
1699 		 */
1700 		cl = vttree_get_minvt(&q->root, cur_time);
1701 		if (cl == NULL) {
1702 			sch->qstats.overlimits++;
1703 			hfsc_schedule_watchdog(sch, cur_time);
1704 			return NULL;
1705 		}
1706 	}
1707 
1708 	skb = cl->qdisc->dequeue(cl->qdisc);
1709 	if (skb == NULL) {
1710 		if (net_ratelimit())
1711 			printk("HFSC: Non-work-conserving qdisc ?\n");
1712 		return NULL;
1713 	}
1714 
1715 	update_vf(cl, skb->len, cur_time);
1716 	if (realtime)
1717 		cl->cl_cumul += skb->len;
1718 
1719 	if (cl->qdisc->q.qlen != 0) {
1720 		if (cl->cl_flags & HFSC_RSC) {
1721 			/* update ed */
1722 			next_len = qdisc_peek_len(cl->qdisc);
1723 			if (realtime)
1724 				update_ed(cl, next_len);
1725 			else
1726 				update_d(cl, next_len);
1727 		}
1728 	} else {
1729 		/* the class becomes passive */
1730 		set_passive(cl);
1731 	}
1732 
1733  out:
1734 	sch->flags &= ~TCQ_F_THROTTLED;
1735 	sch->q.qlen--;
1736 
1737 	return skb;
1738 }
1739 
1740 static int
1741 hfsc_requeue(struct sk_buff *skb, struct Qdisc *sch)
1742 {
1743 	struct hfsc_sched *q = qdisc_priv(sch);
1744 
1745 	__skb_queue_head(&q->requeue, skb);
1746 	sch->q.qlen++;
1747 	sch->qstats.requeues++;
1748 	return NET_XMIT_SUCCESS;
1749 }
1750 
1751 static unsigned int
1752 hfsc_drop(struct Qdisc *sch)
1753 {
1754 	struct hfsc_sched *q = qdisc_priv(sch);
1755 	struct hfsc_class *cl;
1756 	unsigned int len;
1757 
1758 	list_for_each_entry(cl, &q->droplist, dlist) {
1759 		if (cl->qdisc->ops->drop != NULL &&
1760 		    (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) {
1761 			if (cl->qdisc->q.qlen == 0) {
1762 				update_vf(cl, 0, 0);
1763 				set_passive(cl);
1764 			} else {
1765 				list_move_tail(&cl->dlist, &q->droplist);
1766 			}
1767 			cl->qstats.drops++;
1768 			sch->qstats.drops++;
1769 			sch->q.qlen--;
1770 			return len;
1771 		}
1772 	}
1773 	return 0;
1774 }
1775 
1776 static struct Qdisc_class_ops hfsc_class_ops = {
1777 	.change		= hfsc_change_class,
1778 	.delete		= hfsc_delete_class,
1779 	.graft		= hfsc_graft_class,
1780 	.leaf		= hfsc_class_leaf,
1781 	.get		= hfsc_get_class,
1782 	.put		= hfsc_put_class,
1783 	.bind_tcf	= hfsc_bind_tcf,
1784 	.unbind_tcf	= hfsc_unbind_tcf,
1785 	.tcf_chain	= hfsc_tcf_chain,
1786 	.dump		= hfsc_dump_class,
1787 	.dump_stats	= hfsc_dump_class_stats,
1788 	.walk		= hfsc_walk
1789 };
1790 
1791 static struct Qdisc_ops hfsc_qdisc_ops = {
1792 	.id		= "hfsc",
1793 	.init		= hfsc_init_qdisc,
1794 	.change		= hfsc_change_qdisc,
1795 	.reset		= hfsc_reset_qdisc,
1796 	.destroy	= hfsc_destroy_qdisc,
1797 	.dump		= hfsc_dump_qdisc,
1798 	.enqueue	= hfsc_enqueue,
1799 	.dequeue	= hfsc_dequeue,
1800 	.requeue	= hfsc_requeue,
1801 	.drop		= hfsc_drop,
1802 	.cl_ops		= &hfsc_class_ops,
1803 	.priv_size	= sizeof(struct hfsc_sched),
1804 	.owner		= THIS_MODULE
1805 };
1806 
1807 static int __init
1808 hfsc_init(void)
1809 {
1810 	return register_qdisc(&hfsc_qdisc_ops);
1811 }
1812 
1813 static void __exit
1814 hfsc_cleanup(void)
1815 {
1816 	unregister_qdisc(&hfsc_qdisc_ops);
1817 }
1818 
1819 MODULE_LICENSE("GPL");
1820 module_init(hfsc_init);
1821 module_exit(hfsc_cleanup);
1822