1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <net/hotdata.h> 31 #include <trace/events/qdisc.h> 32 #include <trace/events/net.h> 33 #include <net/xfrm.h> 34 35 /* Qdisc to use by default */ 36 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 37 EXPORT_SYMBOL(default_qdisc_ops); 38 39 static void qdisc_maybe_clear_missed(struct Qdisc *q, 40 const struct netdev_queue *txq) 41 { 42 clear_bit(__QDISC_STATE_MISSED, &q->state); 43 44 /* Make sure the below netif_xmit_frozen_or_stopped() 45 * checking happens after clearing STATE_MISSED. 46 */ 47 smp_mb__after_atomic(); 48 49 /* Checking netif_xmit_frozen_or_stopped() again to 50 * make sure STATE_MISSED is set if the STATE_MISSED 51 * set by netif_tx_wake_queue()'s rescheduling of 52 * net_tx_action() is cleared by the above clear_bit(). 53 */ 54 if (!netif_xmit_frozen_or_stopped(txq)) 55 set_bit(__QDISC_STATE_MISSED, &q->state); 56 else 57 set_bit(__QDISC_STATE_DRAINING, &q->state); 58 } 59 60 /* Main transmission queue. */ 61 62 /* Modifications to data participating in scheduling must be protected with 63 * qdisc_lock(qdisc) spinlock. 64 * 65 * The idea is the following: 66 * - enqueue, dequeue are serialized via qdisc root lock 67 * - ingress filtering is also serialized via qdisc root lock 68 * - updates to tree and tree walking are only done under the rtnl mutex. 69 */ 70 71 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 72 73 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 74 { 75 const struct netdev_queue *txq = q->dev_queue; 76 spinlock_t *lock = NULL; 77 struct sk_buff *skb; 78 79 if (q->flags & TCQ_F_NOLOCK) { 80 lock = qdisc_lock(q); 81 spin_lock(lock); 82 } 83 84 skb = skb_peek(&q->skb_bad_txq); 85 if (skb) { 86 /* check the reason of requeuing without tx lock first */ 87 txq = skb_get_tx_queue(txq->dev, skb); 88 if (!netif_xmit_frozen_or_stopped(txq)) { 89 skb = __skb_dequeue(&q->skb_bad_txq); 90 if (qdisc_is_percpu_stats(q)) { 91 qdisc_qstats_cpu_backlog_dec(q, skb); 92 qdisc_qstats_cpu_qlen_dec(q); 93 } else { 94 qdisc_qstats_backlog_dec(q, skb); 95 q->q.qlen--; 96 } 97 } else { 98 skb = SKB_XOFF_MAGIC; 99 qdisc_maybe_clear_missed(q, txq); 100 } 101 } 102 103 if (lock) 104 spin_unlock(lock); 105 106 return skb; 107 } 108 109 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 110 { 111 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 112 113 if (unlikely(skb)) 114 skb = __skb_dequeue_bad_txq(q); 115 116 return skb; 117 } 118 119 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 120 struct sk_buff *skb) 121 { 122 spinlock_t *lock = NULL; 123 124 if (q->flags & TCQ_F_NOLOCK) { 125 lock = qdisc_lock(q); 126 spin_lock(lock); 127 } 128 129 __skb_queue_tail(&q->skb_bad_txq, skb); 130 131 if (qdisc_is_percpu_stats(q)) { 132 qdisc_qstats_cpu_backlog_inc(q, skb); 133 qdisc_qstats_cpu_qlen_inc(q); 134 } else { 135 qdisc_qstats_backlog_inc(q, skb); 136 q->q.qlen++; 137 } 138 139 if (lock) 140 spin_unlock(lock); 141 } 142 143 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 144 { 145 spinlock_t *lock = NULL; 146 147 if (q->flags & TCQ_F_NOLOCK) { 148 lock = qdisc_lock(q); 149 spin_lock(lock); 150 } 151 152 while (skb) { 153 struct sk_buff *next = skb->next; 154 155 __skb_queue_tail(&q->gso_skb, skb); 156 157 /* it's still part of the queue */ 158 if (qdisc_is_percpu_stats(q)) { 159 qdisc_qstats_cpu_requeues_inc(q); 160 qdisc_qstats_cpu_backlog_inc(q, skb); 161 qdisc_qstats_cpu_qlen_inc(q); 162 } else { 163 q->qstats.requeues++; 164 qdisc_qstats_backlog_inc(q, skb); 165 q->q.qlen++; 166 } 167 168 skb = next; 169 } 170 171 if (lock) { 172 spin_unlock(lock); 173 set_bit(__QDISC_STATE_MISSED, &q->state); 174 } else { 175 __netif_schedule(q); 176 } 177 } 178 179 static void try_bulk_dequeue_skb(struct Qdisc *q, 180 struct sk_buff *skb, 181 const struct netdev_queue *txq, 182 int *packets) 183 { 184 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 185 186 while (bytelimit > 0) { 187 struct sk_buff *nskb = q->dequeue(q); 188 189 if (!nskb) 190 break; 191 192 bytelimit -= nskb->len; /* covers GSO len */ 193 skb->next = nskb; 194 skb = nskb; 195 (*packets)++; /* GSO counts as one pkt */ 196 } 197 skb_mark_not_on_list(skb); 198 } 199 200 /* This variant of try_bulk_dequeue_skb() makes sure 201 * all skbs in the chain are for the same txq 202 */ 203 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 204 struct sk_buff *skb, 205 int *packets) 206 { 207 int mapping = skb_get_queue_mapping(skb); 208 struct sk_buff *nskb; 209 int cnt = 0; 210 211 do { 212 nskb = q->dequeue(q); 213 if (!nskb) 214 break; 215 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 216 qdisc_enqueue_skb_bad_txq(q, nskb); 217 break; 218 } 219 skb->next = nskb; 220 skb = nskb; 221 } while (++cnt < 8); 222 (*packets) += cnt; 223 skb_mark_not_on_list(skb); 224 } 225 226 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 227 * A requeued skb (via q->gso_skb) can also be a SKB list. 228 */ 229 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 230 int *packets) 231 { 232 const struct netdev_queue *txq = q->dev_queue; 233 struct sk_buff *skb = NULL; 234 235 *packets = 1; 236 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 237 spinlock_t *lock = NULL; 238 239 if (q->flags & TCQ_F_NOLOCK) { 240 lock = qdisc_lock(q); 241 spin_lock(lock); 242 } 243 244 skb = skb_peek(&q->gso_skb); 245 246 /* skb may be null if another cpu pulls gso_skb off in between 247 * empty check and lock. 248 */ 249 if (!skb) { 250 if (lock) 251 spin_unlock(lock); 252 goto validate; 253 } 254 255 /* skb in gso_skb were already validated */ 256 *validate = false; 257 if (xfrm_offload(skb)) 258 *validate = true; 259 /* check the reason of requeuing without tx lock first */ 260 txq = skb_get_tx_queue(txq->dev, skb); 261 if (!netif_xmit_frozen_or_stopped(txq)) { 262 skb = __skb_dequeue(&q->gso_skb); 263 if (qdisc_is_percpu_stats(q)) { 264 qdisc_qstats_cpu_backlog_dec(q, skb); 265 qdisc_qstats_cpu_qlen_dec(q); 266 } else { 267 qdisc_qstats_backlog_dec(q, skb); 268 q->q.qlen--; 269 } 270 } else { 271 skb = NULL; 272 qdisc_maybe_clear_missed(q, txq); 273 } 274 if (lock) 275 spin_unlock(lock); 276 goto trace; 277 } 278 validate: 279 *validate = true; 280 281 if ((q->flags & TCQ_F_ONETXQUEUE) && 282 netif_xmit_frozen_or_stopped(txq)) { 283 qdisc_maybe_clear_missed(q, txq); 284 return skb; 285 } 286 287 skb = qdisc_dequeue_skb_bad_txq(q); 288 if (unlikely(skb)) { 289 if (skb == SKB_XOFF_MAGIC) 290 return NULL; 291 goto bulk; 292 } 293 skb = q->dequeue(q); 294 if (skb) { 295 bulk: 296 if (qdisc_may_bulk(q)) 297 try_bulk_dequeue_skb(q, skb, txq, packets); 298 else 299 try_bulk_dequeue_skb_slow(q, skb, packets); 300 } 301 trace: 302 trace_qdisc_dequeue(q, txq, *packets, skb); 303 return skb; 304 } 305 306 /* 307 * Transmit possibly several skbs, and handle the return status as 308 * required. Owning qdisc running bit guarantees that only one CPU 309 * can execute this function. 310 * 311 * Returns to the caller: 312 * false - hardware queue frozen backoff 313 * true - feel free to send more pkts 314 */ 315 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 316 struct net_device *dev, struct netdev_queue *txq, 317 spinlock_t *root_lock, bool validate) 318 { 319 int ret = NETDEV_TX_BUSY; 320 bool again = false; 321 322 /* And release qdisc */ 323 if (root_lock) 324 spin_unlock(root_lock); 325 326 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 327 if (validate) 328 skb = validate_xmit_skb_list(skb, dev, &again); 329 330 #ifdef CONFIG_XFRM_OFFLOAD 331 if (unlikely(again)) { 332 if (root_lock) 333 spin_lock(root_lock); 334 335 dev_requeue_skb(skb, q); 336 return false; 337 } 338 #endif 339 340 if (likely(skb)) { 341 HARD_TX_LOCK(dev, txq, smp_processor_id()); 342 if (!netif_xmit_frozen_or_stopped(txq)) 343 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 344 else 345 qdisc_maybe_clear_missed(q, txq); 346 347 HARD_TX_UNLOCK(dev, txq); 348 } else { 349 if (root_lock) 350 spin_lock(root_lock); 351 return true; 352 } 353 354 if (root_lock) 355 spin_lock(root_lock); 356 357 if (!dev_xmit_complete(ret)) { 358 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 359 if (unlikely(ret != NETDEV_TX_BUSY)) 360 net_warn_ratelimited("BUG %s code %d qlen %d\n", 361 dev->name, ret, q->q.qlen); 362 363 dev_requeue_skb(skb, q); 364 return false; 365 } 366 367 return true; 368 } 369 370 /* 371 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 372 * 373 * running seqcount guarantees only one CPU can process 374 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 375 * this queue. 376 * 377 * netif_tx_lock serializes accesses to device driver. 378 * 379 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 380 * if one is grabbed, another must be free. 381 * 382 * Note, that this procedure can be called by a watchdog timer 383 * 384 * Returns to the caller: 385 * 0 - queue is empty or throttled. 386 * >0 - queue is not empty. 387 * 388 */ 389 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 390 { 391 spinlock_t *root_lock = NULL; 392 struct netdev_queue *txq; 393 struct net_device *dev; 394 struct sk_buff *skb; 395 bool validate; 396 397 /* Dequeue packet */ 398 skb = dequeue_skb(q, &validate, packets); 399 if (unlikely(!skb)) 400 return false; 401 402 if (!(q->flags & TCQ_F_NOLOCK)) 403 root_lock = qdisc_lock(q); 404 405 dev = qdisc_dev(q); 406 txq = skb_get_tx_queue(dev, skb); 407 408 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 409 } 410 411 void __qdisc_run(struct Qdisc *q) 412 { 413 int quota = READ_ONCE(net_hotdata.dev_tx_weight); 414 int packets; 415 416 while (qdisc_restart(q, &packets)) { 417 quota -= packets; 418 if (quota <= 0) { 419 if (q->flags & TCQ_F_NOLOCK) 420 set_bit(__QDISC_STATE_MISSED, &q->state); 421 else 422 __netif_schedule(q); 423 424 break; 425 } 426 } 427 } 428 429 unsigned long dev_trans_start(struct net_device *dev) 430 { 431 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start); 432 unsigned long val; 433 unsigned int i; 434 435 for (i = 1; i < dev->num_tx_queues; i++) { 436 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start); 437 if (val && time_after(val, res)) 438 res = val; 439 } 440 441 return res; 442 } 443 EXPORT_SYMBOL(dev_trans_start); 444 445 static void netif_freeze_queues(struct net_device *dev) 446 { 447 unsigned int i; 448 int cpu; 449 450 cpu = smp_processor_id(); 451 for (i = 0; i < dev->num_tx_queues; i++) { 452 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 453 454 /* We are the only thread of execution doing a 455 * freeze, but we have to grab the _xmit_lock in 456 * order to synchronize with threads which are in 457 * the ->hard_start_xmit() handler and already 458 * checked the frozen bit. 459 */ 460 __netif_tx_lock(txq, cpu); 461 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 462 __netif_tx_unlock(txq); 463 } 464 } 465 466 void netif_tx_lock(struct net_device *dev) 467 { 468 spin_lock(&dev->tx_global_lock); 469 netif_freeze_queues(dev); 470 } 471 EXPORT_SYMBOL(netif_tx_lock); 472 473 static void netif_unfreeze_queues(struct net_device *dev) 474 { 475 unsigned int i; 476 477 for (i = 0; i < dev->num_tx_queues; i++) { 478 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 479 480 /* No need to grab the _xmit_lock here. If the 481 * queue is not stopped for another reason, we 482 * force a schedule. 483 */ 484 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 485 netif_schedule_queue(txq); 486 } 487 } 488 489 void netif_tx_unlock(struct net_device *dev) 490 { 491 netif_unfreeze_queues(dev); 492 spin_unlock(&dev->tx_global_lock); 493 } 494 EXPORT_SYMBOL(netif_tx_unlock); 495 496 static void dev_watchdog(struct timer_list *t) 497 { 498 struct net_device *dev = from_timer(dev, t, watchdog_timer); 499 bool release = true; 500 501 spin_lock(&dev->tx_global_lock); 502 if (!qdisc_tx_is_noop(dev)) { 503 if (netif_device_present(dev) && 504 netif_running(dev) && 505 netif_carrier_ok(dev)) { 506 unsigned int timedout_ms = 0; 507 unsigned int i; 508 unsigned long trans_start; 509 unsigned long oldest_start = jiffies; 510 511 for (i = 0; i < dev->num_tx_queues; i++) { 512 struct netdev_queue *txq; 513 514 txq = netdev_get_tx_queue(dev, i); 515 if (!netif_xmit_stopped(txq)) 516 continue; 517 518 /* Paired with WRITE_ONCE() + smp_mb...() in 519 * netdev_tx_sent_queue() and netif_tx_stop_queue(). 520 */ 521 smp_mb(); 522 trans_start = READ_ONCE(txq->trans_start); 523 524 if (time_after(jiffies, trans_start + dev->watchdog_timeo)) { 525 timedout_ms = jiffies_to_msecs(jiffies - trans_start); 526 atomic_long_inc(&txq->trans_timeout); 527 break; 528 } 529 if (time_after(oldest_start, trans_start)) 530 oldest_start = trans_start; 531 } 532 533 if (unlikely(timedout_ms)) { 534 trace_net_dev_xmit_timeout(dev, i); 535 netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n", 536 raw_smp_processor_id(), 537 i, timedout_ms); 538 netif_freeze_queues(dev); 539 dev->netdev_ops->ndo_tx_timeout(dev, i); 540 netif_unfreeze_queues(dev); 541 } 542 if (!mod_timer(&dev->watchdog_timer, 543 round_jiffies(oldest_start + 544 dev->watchdog_timeo))) 545 release = false; 546 } 547 } 548 spin_unlock(&dev->tx_global_lock); 549 550 if (release) 551 netdev_put(dev, &dev->watchdog_dev_tracker); 552 } 553 554 void netdev_watchdog_up(struct net_device *dev) 555 { 556 if (!dev->netdev_ops->ndo_tx_timeout) 557 return; 558 if (dev->watchdog_timeo <= 0) 559 dev->watchdog_timeo = 5*HZ; 560 if (!mod_timer(&dev->watchdog_timer, 561 round_jiffies(jiffies + dev->watchdog_timeo))) 562 netdev_hold(dev, &dev->watchdog_dev_tracker, 563 GFP_ATOMIC); 564 } 565 EXPORT_SYMBOL_GPL(netdev_watchdog_up); 566 567 static void netdev_watchdog_down(struct net_device *dev) 568 { 569 netif_tx_lock_bh(dev); 570 if (del_timer(&dev->watchdog_timer)) 571 netdev_put(dev, &dev->watchdog_dev_tracker); 572 netif_tx_unlock_bh(dev); 573 } 574 575 /** 576 * netif_carrier_on - set carrier 577 * @dev: network device 578 * 579 * Device has detected acquisition of carrier. 580 */ 581 void netif_carrier_on(struct net_device *dev) 582 { 583 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 584 if (dev->reg_state == NETREG_UNINITIALIZED) 585 return; 586 atomic_inc(&dev->carrier_up_count); 587 linkwatch_fire_event(dev); 588 if (netif_running(dev)) 589 netdev_watchdog_up(dev); 590 } 591 } 592 EXPORT_SYMBOL(netif_carrier_on); 593 594 /** 595 * netif_carrier_off - clear carrier 596 * @dev: network device 597 * 598 * Device has detected loss of carrier. 599 */ 600 void netif_carrier_off(struct net_device *dev) 601 { 602 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 603 if (dev->reg_state == NETREG_UNINITIALIZED) 604 return; 605 atomic_inc(&dev->carrier_down_count); 606 linkwatch_fire_event(dev); 607 } 608 } 609 EXPORT_SYMBOL(netif_carrier_off); 610 611 /** 612 * netif_carrier_event - report carrier state event 613 * @dev: network device 614 * 615 * Device has detected a carrier event but the carrier state wasn't changed. 616 * Use in drivers when querying carrier state asynchronously, to avoid missing 617 * events (link flaps) if link recovers before it's queried. 618 */ 619 void netif_carrier_event(struct net_device *dev) 620 { 621 if (dev->reg_state == NETREG_UNINITIALIZED) 622 return; 623 atomic_inc(&dev->carrier_up_count); 624 atomic_inc(&dev->carrier_down_count); 625 linkwatch_fire_event(dev); 626 } 627 EXPORT_SYMBOL_GPL(netif_carrier_event); 628 629 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 630 under all circumstances. It is difficult to invent anything faster or 631 cheaper. 632 */ 633 634 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 635 struct sk_buff **to_free) 636 { 637 dev_core_stats_tx_dropped_inc(skb->dev); 638 __qdisc_drop(skb, to_free); 639 return NET_XMIT_CN; 640 } 641 642 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 643 { 644 return NULL; 645 } 646 647 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 648 .id = "noop", 649 .priv_size = 0, 650 .enqueue = noop_enqueue, 651 .dequeue = noop_dequeue, 652 .peek = noop_dequeue, 653 .owner = THIS_MODULE, 654 }; 655 656 static struct netdev_queue noop_netdev_queue = { 657 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 658 RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc), 659 }; 660 661 struct Qdisc noop_qdisc = { 662 .enqueue = noop_enqueue, 663 .dequeue = noop_dequeue, 664 .flags = TCQ_F_BUILTIN, 665 .ops = &noop_qdisc_ops, 666 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 667 .dev_queue = &noop_netdev_queue, 668 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 669 .gso_skb = { 670 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 671 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 672 .qlen = 0, 673 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 674 }, 675 .skb_bad_txq = { 676 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 677 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 678 .qlen = 0, 679 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 680 }, 681 .owner = -1, 682 }; 683 EXPORT_SYMBOL(noop_qdisc); 684 685 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 686 struct netlink_ext_ack *extack) 687 { 688 /* register_qdisc() assigns a default of noop_enqueue if unset, 689 * but __dev_queue_xmit() treats noqueue only as such 690 * if this is NULL - so clear it here. */ 691 qdisc->enqueue = NULL; 692 return 0; 693 } 694 695 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 696 .id = "noqueue", 697 .priv_size = 0, 698 .init = noqueue_init, 699 .enqueue = noop_enqueue, 700 .dequeue = noop_dequeue, 701 .peek = noop_dequeue, 702 .owner = THIS_MODULE, 703 }; 704 705 const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = { 706 1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 707 }; 708 EXPORT_SYMBOL(sch_default_prio2band); 709 710 /* 3-band FIFO queue: old style, but should be a bit faster than 711 generic prio+fifo combination. 712 */ 713 714 #define PFIFO_FAST_BANDS 3 715 716 /* 717 * Private data for a pfifo_fast scheduler containing: 718 * - rings for priority bands 719 */ 720 struct pfifo_fast_priv { 721 struct skb_array q[PFIFO_FAST_BANDS]; 722 }; 723 724 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 725 int band) 726 { 727 return &priv->q[band]; 728 } 729 730 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 731 struct sk_buff **to_free) 732 { 733 int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX]; 734 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 735 struct skb_array *q = band2list(priv, band); 736 unsigned int pkt_len = qdisc_pkt_len(skb); 737 int err; 738 739 err = skb_array_produce(q, skb); 740 741 if (unlikely(err)) { 742 if (qdisc_is_percpu_stats(qdisc)) 743 return qdisc_drop_cpu(skb, qdisc, to_free); 744 else 745 return qdisc_drop(skb, qdisc, to_free); 746 } 747 748 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 749 return NET_XMIT_SUCCESS; 750 } 751 752 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 753 { 754 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 755 struct sk_buff *skb = NULL; 756 bool need_retry = true; 757 int band; 758 759 retry: 760 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 761 struct skb_array *q = band2list(priv, band); 762 763 if (__skb_array_empty(q)) 764 continue; 765 766 skb = __skb_array_consume(q); 767 } 768 if (likely(skb)) { 769 qdisc_update_stats_at_dequeue(qdisc, skb); 770 } else if (need_retry && 771 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) { 772 /* Delay clearing the STATE_MISSED here to reduce 773 * the overhead of the second spin_trylock() in 774 * qdisc_run_begin() and __netif_schedule() calling 775 * in qdisc_run_end(). 776 */ 777 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 778 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 779 780 /* Make sure dequeuing happens after clearing 781 * STATE_MISSED. 782 */ 783 smp_mb__after_atomic(); 784 785 need_retry = false; 786 787 goto retry; 788 } 789 790 return skb; 791 } 792 793 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 794 { 795 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 796 struct sk_buff *skb = NULL; 797 int band; 798 799 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 800 struct skb_array *q = band2list(priv, band); 801 802 skb = __skb_array_peek(q); 803 } 804 805 return skb; 806 } 807 808 static void pfifo_fast_reset(struct Qdisc *qdisc) 809 { 810 int i, band; 811 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 812 813 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 814 struct skb_array *q = band2list(priv, band); 815 struct sk_buff *skb; 816 817 /* NULL ring is possible if destroy path is due to a failed 818 * skb_array_init() in pfifo_fast_init() case. 819 */ 820 if (!q->ring.queue) 821 continue; 822 823 while ((skb = __skb_array_consume(q)) != NULL) 824 kfree_skb(skb); 825 } 826 827 if (qdisc_is_percpu_stats(qdisc)) { 828 for_each_possible_cpu(i) { 829 struct gnet_stats_queue *q; 830 831 q = per_cpu_ptr(qdisc->cpu_qstats, i); 832 q->backlog = 0; 833 q->qlen = 0; 834 } 835 } 836 } 837 838 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 839 { 840 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 841 842 memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1); 843 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 844 goto nla_put_failure; 845 return skb->len; 846 847 nla_put_failure: 848 return -1; 849 } 850 851 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 852 struct netlink_ext_ack *extack) 853 { 854 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 855 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 856 int prio; 857 858 /* guard against zero length rings */ 859 if (!qlen) 860 return -EINVAL; 861 862 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 863 struct skb_array *q = band2list(priv, prio); 864 int err; 865 866 err = skb_array_init(q, qlen, GFP_KERNEL); 867 if (err) 868 return -ENOMEM; 869 } 870 871 /* Can by-pass the queue discipline */ 872 qdisc->flags |= TCQ_F_CAN_BYPASS; 873 return 0; 874 } 875 876 static void pfifo_fast_destroy(struct Qdisc *sch) 877 { 878 struct pfifo_fast_priv *priv = qdisc_priv(sch); 879 int prio; 880 881 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 882 struct skb_array *q = band2list(priv, prio); 883 884 /* NULL ring is possible if destroy path is due to a failed 885 * skb_array_init() in pfifo_fast_init() case. 886 */ 887 if (!q->ring.queue) 888 continue; 889 /* Destroy ring but no need to kfree_skb because a call to 890 * pfifo_fast_reset() has already done that work. 891 */ 892 ptr_ring_cleanup(&q->ring, NULL); 893 } 894 } 895 896 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 897 unsigned int new_len) 898 { 899 struct pfifo_fast_priv *priv = qdisc_priv(sch); 900 struct skb_array *bands[PFIFO_FAST_BANDS]; 901 int prio; 902 903 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 904 struct skb_array *q = band2list(priv, prio); 905 906 bands[prio] = q; 907 } 908 909 return skb_array_resize_multiple_bh(bands, PFIFO_FAST_BANDS, new_len, 910 GFP_KERNEL); 911 } 912 913 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 914 .id = "pfifo_fast", 915 .priv_size = sizeof(struct pfifo_fast_priv), 916 .enqueue = pfifo_fast_enqueue, 917 .dequeue = pfifo_fast_dequeue, 918 .peek = pfifo_fast_peek, 919 .init = pfifo_fast_init, 920 .destroy = pfifo_fast_destroy, 921 .reset = pfifo_fast_reset, 922 .dump = pfifo_fast_dump, 923 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 924 .owner = THIS_MODULE, 925 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 926 }; 927 EXPORT_SYMBOL(pfifo_fast_ops); 928 929 static struct lock_class_key qdisc_tx_busylock; 930 931 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 932 const struct Qdisc_ops *ops, 933 struct netlink_ext_ack *extack) 934 { 935 struct Qdisc *sch; 936 unsigned int size = sizeof(*sch) + ops->priv_size; 937 int err = -ENOBUFS; 938 struct net_device *dev; 939 940 if (!dev_queue) { 941 NL_SET_ERR_MSG(extack, "No device queue given"); 942 err = -EINVAL; 943 goto errout; 944 } 945 946 dev = dev_queue->dev; 947 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 948 949 if (!sch) 950 goto errout; 951 __skb_queue_head_init(&sch->gso_skb); 952 __skb_queue_head_init(&sch->skb_bad_txq); 953 gnet_stats_basic_sync_init(&sch->bstats); 954 lockdep_register_key(&sch->root_lock_key); 955 spin_lock_init(&sch->q.lock); 956 lockdep_set_class(&sch->q.lock, &sch->root_lock_key); 957 958 if (ops->static_flags & TCQ_F_CPUSTATS) { 959 sch->cpu_bstats = 960 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync); 961 if (!sch->cpu_bstats) 962 goto errout1; 963 964 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 965 if (!sch->cpu_qstats) { 966 free_percpu(sch->cpu_bstats); 967 goto errout1; 968 } 969 } 970 971 spin_lock_init(&sch->busylock); 972 lockdep_set_class(&sch->busylock, 973 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 974 975 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 976 spin_lock_init(&sch->seqlock); 977 lockdep_set_class(&sch->seqlock, 978 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 979 980 sch->ops = ops; 981 sch->flags = ops->static_flags; 982 sch->enqueue = ops->enqueue; 983 sch->dequeue = ops->dequeue; 984 sch->dev_queue = dev_queue; 985 sch->owner = -1; 986 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL); 987 refcount_set(&sch->refcnt, 1); 988 989 return sch; 990 errout1: 991 lockdep_unregister_key(&sch->root_lock_key); 992 kfree(sch); 993 errout: 994 return ERR_PTR(err); 995 } 996 997 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 998 const struct Qdisc_ops *ops, 999 unsigned int parentid, 1000 struct netlink_ext_ack *extack) 1001 { 1002 struct Qdisc *sch; 1003 1004 if (!try_module_get(ops->owner)) { 1005 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 1006 return NULL; 1007 } 1008 1009 sch = qdisc_alloc(dev_queue, ops, extack); 1010 if (IS_ERR(sch)) { 1011 module_put(ops->owner); 1012 return NULL; 1013 } 1014 sch->parent = parentid; 1015 1016 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 1017 trace_qdisc_create(ops, dev_queue->dev, parentid); 1018 return sch; 1019 } 1020 1021 qdisc_put(sch); 1022 return NULL; 1023 } 1024 EXPORT_SYMBOL(qdisc_create_dflt); 1025 1026 /* Under qdisc_lock(qdisc) and BH! */ 1027 1028 void qdisc_reset(struct Qdisc *qdisc) 1029 { 1030 const struct Qdisc_ops *ops = qdisc->ops; 1031 1032 trace_qdisc_reset(qdisc); 1033 1034 if (ops->reset) 1035 ops->reset(qdisc); 1036 1037 __skb_queue_purge(&qdisc->gso_skb); 1038 __skb_queue_purge(&qdisc->skb_bad_txq); 1039 1040 qdisc->q.qlen = 0; 1041 qdisc->qstats.backlog = 0; 1042 } 1043 EXPORT_SYMBOL(qdisc_reset); 1044 1045 void qdisc_free(struct Qdisc *qdisc) 1046 { 1047 if (qdisc_is_percpu_stats(qdisc)) { 1048 free_percpu(qdisc->cpu_bstats); 1049 free_percpu(qdisc->cpu_qstats); 1050 } 1051 1052 kfree(qdisc); 1053 } 1054 1055 static void qdisc_free_cb(struct rcu_head *head) 1056 { 1057 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 1058 1059 qdisc_free(q); 1060 } 1061 1062 static void __qdisc_destroy(struct Qdisc *qdisc) 1063 { 1064 const struct Qdisc_ops *ops = qdisc->ops; 1065 struct net_device *dev = qdisc_dev(qdisc); 1066 1067 #ifdef CONFIG_NET_SCHED 1068 qdisc_hash_del(qdisc); 1069 1070 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1071 #endif 1072 gen_kill_estimator(&qdisc->rate_est); 1073 1074 qdisc_reset(qdisc); 1075 1076 1077 if (ops->destroy) 1078 ops->destroy(qdisc); 1079 1080 lockdep_unregister_key(&qdisc->root_lock_key); 1081 module_put(ops->owner); 1082 netdev_put(dev, &qdisc->dev_tracker); 1083 1084 trace_qdisc_destroy(qdisc); 1085 1086 call_rcu(&qdisc->rcu, qdisc_free_cb); 1087 } 1088 1089 void qdisc_destroy(struct Qdisc *qdisc) 1090 { 1091 if (qdisc->flags & TCQ_F_BUILTIN) 1092 return; 1093 1094 __qdisc_destroy(qdisc); 1095 } 1096 1097 void qdisc_put(struct Qdisc *qdisc) 1098 { 1099 if (!qdisc) 1100 return; 1101 1102 if (qdisc->flags & TCQ_F_BUILTIN || 1103 !refcount_dec_and_test(&qdisc->refcnt)) 1104 return; 1105 1106 __qdisc_destroy(qdisc); 1107 } 1108 EXPORT_SYMBOL(qdisc_put); 1109 1110 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1111 * Intended to be used as optimization, this function only takes rtnl lock if 1112 * qdisc reference counter reached zero. 1113 */ 1114 1115 void qdisc_put_unlocked(struct Qdisc *qdisc) 1116 { 1117 if (qdisc->flags & TCQ_F_BUILTIN || 1118 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1119 return; 1120 1121 __qdisc_destroy(qdisc); 1122 rtnl_unlock(); 1123 } 1124 EXPORT_SYMBOL(qdisc_put_unlocked); 1125 1126 /* Attach toplevel qdisc to device queue. */ 1127 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1128 struct Qdisc *qdisc) 1129 { 1130 struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1131 spinlock_t *root_lock; 1132 1133 root_lock = qdisc_lock(oqdisc); 1134 spin_lock_bh(root_lock); 1135 1136 /* ... and graft new one */ 1137 if (qdisc == NULL) 1138 qdisc = &noop_qdisc; 1139 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1140 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1141 1142 spin_unlock_bh(root_lock); 1143 1144 return oqdisc; 1145 } 1146 EXPORT_SYMBOL(dev_graft_qdisc); 1147 1148 static void shutdown_scheduler_queue(struct net_device *dev, 1149 struct netdev_queue *dev_queue, 1150 void *_qdisc_default) 1151 { 1152 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1153 struct Qdisc *qdisc_default = _qdisc_default; 1154 1155 if (qdisc) { 1156 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1157 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default); 1158 1159 qdisc_put(qdisc); 1160 } 1161 } 1162 1163 static void attach_one_default_qdisc(struct net_device *dev, 1164 struct netdev_queue *dev_queue, 1165 void *_unused) 1166 { 1167 struct Qdisc *qdisc; 1168 const struct Qdisc_ops *ops = default_qdisc_ops; 1169 1170 if (dev->priv_flags & IFF_NO_QUEUE) 1171 ops = &noqueue_qdisc_ops; 1172 else if(dev->type == ARPHRD_CAN) 1173 ops = &pfifo_fast_ops; 1174 1175 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1176 if (!qdisc) 1177 return; 1178 1179 if (!netif_is_multiqueue(dev)) 1180 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1181 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1182 } 1183 1184 static void attach_default_qdiscs(struct net_device *dev) 1185 { 1186 struct netdev_queue *txq; 1187 struct Qdisc *qdisc; 1188 1189 txq = netdev_get_tx_queue(dev, 0); 1190 1191 if (!netif_is_multiqueue(dev) || 1192 dev->priv_flags & IFF_NO_QUEUE) { 1193 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1194 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1195 rcu_assign_pointer(dev->qdisc, qdisc); 1196 qdisc_refcount_inc(qdisc); 1197 } else { 1198 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1199 if (qdisc) { 1200 rcu_assign_pointer(dev->qdisc, qdisc); 1201 qdisc->ops->attach(qdisc); 1202 } 1203 } 1204 qdisc = rtnl_dereference(dev->qdisc); 1205 1206 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1207 if (qdisc == &noop_qdisc) { 1208 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1209 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1210 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1211 dev->priv_flags |= IFF_NO_QUEUE; 1212 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1213 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1214 rcu_assign_pointer(dev->qdisc, qdisc); 1215 qdisc_refcount_inc(qdisc); 1216 dev->priv_flags ^= IFF_NO_QUEUE; 1217 } 1218 1219 #ifdef CONFIG_NET_SCHED 1220 if (qdisc != &noop_qdisc) 1221 qdisc_hash_add(qdisc, false); 1222 #endif 1223 } 1224 1225 static void transition_one_qdisc(struct net_device *dev, 1226 struct netdev_queue *dev_queue, 1227 void *_need_watchdog) 1228 { 1229 struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1230 int *need_watchdog_p = _need_watchdog; 1231 1232 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1233 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1234 1235 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1236 if (need_watchdog_p) { 1237 WRITE_ONCE(dev_queue->trans_start, 0); 1238 *need_watchdog_p = 1; 1239 } 1240 } 1241 1242 void dev_activate(struct net_device *dev) 1243 { 1244 int need_watchdog; 1245 1246 /* No queueing discipline is attached to device; 1247 * create default one for devices, which need queueing 1248 * and noqueue_qdisc for virtual interfaces 1249 */ 1250 1251 if (rtnl_dereference(dev->qdisc) == &noop_qdisc) 1252 attach_default_qdiscs(dev); 1253 1254 if (!netif_carrier_ok(dev)) 1255 /* Delay activation until next carrier-on event */ 1256 return; 1257 1258 need_watchdog = 0; 1259 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1260 if (dev_ingress_queue(dev)) 1261 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1262 1263 if (need_watchdog) { 1264 netif_trans_update(dev); 1265 netdev_watchdog_up(dev); 1266 } 1267 } 1268 EXPORT_SYMBOL(dev_activate); 1269 1270 static void qdisc_deactivate(struct Qdisc *qdisc) 1271 { 1272 if (qdisc->flags & TCQ_F_BUILTIN) 1273 return; 1274 1275 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1276 } 1277 1278 static void dev_deactivate_queue(struct net_device *dev, 1279 struct netdev_queue *dev_queue, 1280 void *_sync_needed) 1281 { 1282 bool *sync_needed = _sync_needed; 1283 struct Qdisc *qdisc; 1284 1285 qdisc = rtnl_dereference(dev_queue->qdisc); 1286 if (qdisc) { 1287 if (qdisc->enqueue) 1288 *sync_needed = true; 1289 qdisc_deactivate(qdisc); 1290 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1291 } 1292 } 1293 1294 static void dev_reset_queue(struct net_device *dev, 1295 struct netdev_queue *dev_queue, 1296 void *_unused) 1297 { 1298 struct Qdisc *qdisc; 1299 bool nolock; 1300 1301 qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1302 if (!qdisc) 1303 return; 1304 1305 nolock = qdisc->flags & TCQ_F_NOLOCK; 1306 1307 if (nolock) 1308 spin_lock_bh(&qdisc->seqlock); 1309 spin_lock_bh(qdisc_lock(qdisc)); 1310 1311 qdisc_reset(qdisc); 1312 1313 spin_unlock_bh(qdisc_lock(qdisc)); 1314 if (nolock) { 1315 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1316 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 1317 spin_unlock_bh(&qdisc->seqlock); 1318 } 1319 } 1320 1321 static bool some_qdisc_is_busy(struct net_device *dev) 1322 { 1323 unsigned int i; 1324 1325 for (i = 0; i < dev->num_tx_queues; i++) { 1326 struct netdev_queue *dev_queue; 1327 spinlock_t *root_lock; 1328 struct Qdisc *q; 1329 int val; 1330 1331 dev_queue = netdev_get_tx_queue(dev, i); 1332 q = rtnl_dereference(dev_queue->qdisc_sleeping); 1333 1334 root_lock = qdisc_lock(q); 1335 spin_lock_bh(root_lock); 1336 1337 val = (qdisc_is_running(q) || 1338 test_bit(__QDISC_STATE_SCHED, &q->state)); 1339 1340 spin_unlock_bh(root_lock); 1341 1342 if (val) 1343 return true; 1344 } 1345 return false; 1346 } 1347 1348 /** 1349 * dev_deactivate_many - deactivate transmissions on several devices 1350 * @head: list of devices to deactivate 1351 * 1352 * This function returns only when all outstanding transmissions 1353 * have completed, unless all devices are in dismantle phase. 1354 */ 1355 void dev_deactivate_many(struct list_head *head) 1356 { 1357 bool sync_needed = false; 1358 struct net_device *dev; 1359 1360 list_for_each_entry(dev, head, close_list) { 1361 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1362 &sync_needed); 1363 if (dev_ingress_queue(dev)) 1364 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1365 &sync_needed); 1366 1367 netdev_watchdog_down(dev); 1368 } 1369 1370 /* Wait for outstanding qdisc enqueuing calls. */ 1371 if (sync_needed) 1372 synchronize_net(); 1373 1374 list_for_each_entry(dev, head, close_list) { 1375 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1376 1377 if (dev_ingress_queue(dev)) 1378 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1379 } 1380 1381 /* Wait for outstanding qdisc_run calls. */ 1382 list_for_each_entry(dev, head, close_list) { 1383 while (some_qdisc_is_busy(dev)) { 1384 /* wait_event() would avoid this sleep-loop but would 1385 * require expensive checks in the fast paths of packet 1386 * processing which isn't worth it. 1387 */ 1388 schedule_timeout_uninterruptible(1); 1389 } 1390 } 1391 } 1392 1393 void dev_deactivate(struct net_device *dev) 1394 { 1395 LIST_HEAD(single); 1396 1397 list_add(&dev->close_list, &single); 1398 dev_deactivate_many(&single); 1399 list_del(&single); 1400 } 1401 EXPORT_SYMBOL(dev_deactivate); 1402 1403 static int qdisc_change_tx_queue_len(struct net_device *dev, 1404 struct netdev_queue *dev_queue) 1405 { 1406 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1407 const struct Qdisc_ops *ops = qdisc->ops; 1408 1409 if (ops->change_tx_queue_len) 1410 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1411 return 0; 1412 } 1413 1414 void dev_qdisc_change_real_num_tx(struct net_device *dev, 1415 unsigned int new_real_tx) 1416 { 1417 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc); 1418 1419 if (qdisc->ops->change_real_num_tx) 1420 qdisc->ops->change_real_num_tx(qdisc, new_real_tx); 1421 } 1422 1423 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx) 1424 { 1425 #ifdef CONFIG_NET_SCHED 1426 struct net_device *dev = qdisc_dev(sch); 1427 struct Qdisc *qdisc; 1428 unsigned int i; 1429 1430 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) { 1431 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1432 /* Only update the default qdiscs we created, 1433 * qdiscs with handles are always hashed. 1434 */ 1435 if (qdisc != &noop_qdisc && !qdisc->handle) 1436 qdisc_hash_del(qdisc); 1437 } 1438 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) { 1439 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1440 if (qdisc != &noop_qdisc && !qdisc->handle) 1441 qdisc_hash_add(qdisc, false); 1442 } 1443 #endif 1444 } 1445 EXPORT_SYMBOL(mq_change_real_num_tx); 1446 1447 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1448 { 1449 bool up = dev->flags & IFF_UP; 1450 unsigned int i; 1451 int ret = 0; 1452 1453 if (up) 1454 dev_deactivate(dev); 1455 1456 for (i = 0; i < dev->num_tx_queues; i++) { 1457 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1458 1459 /* TODO: revert changes on a partial failure */ 1460 if (ret) 1461 break; 1462 } 1463 1464 if (up) 1465 dev_activate(dev); 1466 return ret; 1467 } 1468 1469 static void dev_init_scheduler_queue(struct net_device *dev, 1470 struct netdev_queue *dev_queue, 1471 void *_qdisc) 1472 { 1473 struct Qdisc *qdisc = _qdisc; 1474 1475 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1476 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1477 } 1478 1479 void dev_init_scheduler(struct net_device *dev) 1480 { 1481 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1482 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1483 if (dev_ingress_queue(dev)) 1484 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1485 1486 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1487 } 1488 1489 void dev_shutdown(struct net_device *dev) 1490 { 1491 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1492 if (dev_ingress_queue(dev)) 1493 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1494 qdisc_put(rtnl_dereference(dev->qdisc)); 1495 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1496 1497 WARN_ON(timer_pending(&dev->watchdog_timer)); 1498 } 1499 1500 /** 1501 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1502 * @rate: Rate to compute reciprocal division values of 1503 * @mult: Multiplier for reciprocal division 1504 * @shift: Shift for reciprocal division 1505 * 1506 * The multiplier and shift for reciprocal division by rate are stored 1507 * in mult and shift. 1508 * 1509 * The deal here is to replace a divide by a reciprocal one 1510 * in fast path (a reciprocal divide is a multiply and a shift) 1511 * 1512 * Normal formula would be : 1513 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1514 * 1515 * We compute mult/shift to use instead : 1516 * time_in_ns = (len * mult) >> shift; 1517 * 1518 * We try to get the highest possible mult value for accuracy, 1519 * but have to make sure no overflows will ever happen. 1520 * 1521 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1522 */ 1523 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1524 { 1525 u64 factor = NSEC_PER_SEC; 1526 1527 *mult = 1; 1528 *shift = 0; 1529 1530 if (rate <= 0) 1531 return; 1532 1533 for (;;) { 1534 *mult = div64_u64(factor, rate); 1535 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1536 break; 1537 factor <<= 1; 1538 (*shift)++; 1539 } 1540 } 1541 1542 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1543 const struct tc_ratespec *conf, 1544 u64 rate64) 1545 { 1546 memset(r, 0, sizeof(*r)); 1547 r->overhead = conf->overhead; 1548 r->mpu = conf->mpu; 1549 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1550 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1551 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1552 } 1553 EXPORT_SYMBOL(psched_ratecfg_precompute); 1554 1555 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1556 { 1557 r->rate_pkts_ps = pktrate64; 1558 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1559 } 1560 EXPORT_SYMBOL(psched_ppscfg_precompute); 1561 1562 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1563 struct tcf_proto *tp_head) 1564 { 1565 /* Protected with chain0->filter_chain_lock. 1566 * Can't access chain directly because tp_head can be NULL. 1567 */ 1568 struct mini_Qdisc *miniq_old = 1569 rcu_dereference_protected(*miniqp->p_miniq, 1); 1570 struct mini_Qdisc *miniq; 1571 1572 if (!tp_head) { 1573 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1574 } else { 1575 miniq = miniq_old != &miniqp->miniq1 ? 1576 &miniqp->miniq1 : &miniqp->miniq2; 1577 1578 /* We need to make sure that readers won't see the miniq 1579 * we are about to modify. So ensure that at least one RCU 1580 * grace period has elapsed since the miniq was made 1581 * inactive. 1582 */ 1583 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1584 cond_synchronize_rcu(miniq->rcu_state); 1585 else if (!poll_state_synchronize_rcu(miniq->rcu_state)) 1586 synchronize_rcu_expedited(); 1587 1588 miniq->filter_list = tp_head; 1589 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1590 } 1591 1592 if (miniq_old) 1593 /* This is counterpart of the rcu sync above. We need to 1594 * block potential new user of miniq_old until all readers 1595 * are not seeing it. 1596 */ 1597 miniq_old->rcu_state = start_poll_synchronize_rcu(); 1598 } 1599 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1600 1601 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1602 struct tcf_block *block) 1603 { 1604 miniqp->miniq1.block = block; 1605 miniqp->miniq2.block = block; 1606 } 1607 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1608 1609 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1610 struct mini_Qdisc __rcu **p_miniq) 1611 { 1612 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1613 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1614 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1615 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1616 miniqp->miniq1.rcu_state = get_state_synchronize_rcu(); 1617 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state; 1618 miniqp->p_miniq = p_miniq; 1619 } 1620 EXPORT_SYMBOL(mini_qdisc_pair_init); 1621