1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <trace/events/qdisc.h> 31 #include <trace/events/net.h> 32 #include <net/xfrm.h> 33 34 /* Qdisc to use by default */ 35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 36 EXPORT_SYMBOL(default_qdisc_ops); 37 38 static void qdisc_maybe_clear_missed(struct Qdisc *q, 39 const struct netdev_queue *txq) 40 { 41 clear_bit(__QDISC_STATE_MISSED, &q->state); 42 43 /* Make sure the below netif_xmit_frozen_or_stopped() 44 * checking happens after clearing STATE_MISSED. 45 */ 46 smp_mb__after_atomic(); 47 48 /* Checking netif_xmit_frozen_or_stopped() again to 49 * make sure STATE_MISSED is set if the STATE_MISSED 50 * set by netif_tx_wake_queue()'s rescheduling of 51 * net_tx_action() is cleared by the above clear_bit(). 52 */ 53 if (!netif_xmit_frozen_or_stopped(txq)) 54 set_bit(__QDISC_STATE_MISSED, &q->state); 55 else 56 set_bit(__QDISC_STATE_DRAINING, &q->state); 57 } 58 59 /* Main transmission queue. */ 60 61 /* Modifications to data participating in scheduling must be protected with 62 * qdisc_lock(qdisc) spinlock. 63 * 64 * The idea is the following: 65 * - enqueue, dequeue are serialized via qdisc root lock 66 * - ingress filtering is also serialized via qdisc root lock 67 * - updates to tree and tree walking are only done under the rtnl mutex. 68 */ 69 70 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 71 72 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 73 { 74 const struct netdev_queue *txq = q->dev_queue; 75 spinlock_t *lock = NULL; 76 struct sk_buff *skb; 77 78 if (q->flags & TCQ_F_NOLOCK) { 79 lock = qdisc_lock(q); 80 spin_lock(lock); 81 } 82 83 skb = skb_peek(&q->skb_bad_txq); 84 if (skb) { 85 /* check the reason of requeuing without tx lock first */ 86 txq = skb_get_tx_queue(txq->dev, skb); 87 if (!netif_xmit_frozen_or_stopped(txq)) { 88 skb = __skb_dequeue(&q->skb_bad_txq); 89 if (qdisc_is_percpu_stats(q)) { 90 qdisc_qstats_cpu_backlog_dec(q, skb); 91 qdisc_qstats_cpu_qlen_dec(q); 92 } else { 93 qdisc_qstats_backlog_dec(q, skb); 94 q->q.qlen--; 95 } 96 } else { 97 skb = SKB_XOFF_MAGIC; 98 qdisc_maybe_clear_missed(q, txq); 99 } 100 } 101 102 if (lock) 103 spin_unlock(lock); 104 105 return skb; 106 } 107 108 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 109 { 110 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 111 112 if (unlikely(skb)) 113 skb = __skb_dequeue_bad_txq(q); 114 115 return skb; 116 } 117 118 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 119 struct sk_buff *skb) 120 { 121 spinlock_t *lock = NULL; 122 123 if (q->flags & TCQ_F_NOLOCK) { 124 lock = qdisc_lock(q); 125 spin_lock(lock); 126 } 127 128 __skb_queue_tail(&q->skb_bad_txq, skb); 129 130 if (qdisc_is_percpu_stats(q)) { 131 qdisc_qstats_cpu_backlog_inc(q, skb); 132 qdisc_qstats_cpu_qlen_inc(q); 133 } else { 134 qdisc_qstats_backlog_inc(q, skb); 135 q->q.qlen++; 136 } 137 138 if (lock) 139 spin_unlock(lock); 140 } 141 142 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 143 { 144 spinlock_t *lock = NULL; 145 146 if (q->flags & TCQ_F_NOLOCK) { 147 lock = qdisc_lock(q); 148 spin_lock(lock); 149 } 150 151 while (skb) { 152 struct sk_buff *next = skb->next; 153 154 __skb_queue_tail(&q->gso_skb, skb); 155 156 /* it's still part of the queue */ 157 if (qdisc_is_percpu_stats(q)) { 158 qdisc_qstats_cpu_requeues_inc(q); 159 qdisc_qstats_cpu_backlog_inc(q, skb); 160 qdisc_qstats_cpu_qlen_inc(q); 161 } else { 162 q->qstats.requeues++; 163 qdisc_qstats_backlog_inc(q, skb); 164 q->q.qlen++; 165 } 166 167 skb = next; 168 } 169 170 if (lock) { 171 spin_unlock(lock); 172 set_bit(__QDISC_STATE_MISSED, &q->state); 173 } else { 174 __netif_schedule(q); 175 } 176 } 177 178 static void try_bulk_dequeue_skb(struct Qdisc *q, 179 struct sk_buff *skb, 180 const struct netdev_queue *txq, 181 int *packets) 182 { 183 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 184 185 while (bytelimit > 0) { 186 struct sk_buff *nskb = q->dequeue(q); 187 188 if (!nskb) 189 break; 190 191 bytelimit -= nskb->len; /* covers GSO len */ 192 skb->next = nskb; 193 skb = nskb; 194 (*packets)++; /* GSO counts as one pkt */ 195 } 196 skb_mark_not_on_list(skb); 197 } 198 199 /* This variant of try_bulk_dequeue_skb() makes sure 200 * all skbs in the chain are for the same txq 201 */ 202 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 203 struct sk_buff *skb, 204 int *packets) 205 { 206 int mapping = skb_get_queue_mapping(skb); 207 struct sk_buff *nskb; 208 int cnt = 0; 209 210 do { 211 nskb = q->dequeue(q); 212 if (!nskb) 213 break; 214 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 215 qdisc_enqueue_skb_bad_txq(q, nskb); 216 break; 217 } 218 skb->next = nskb; 219 skb = nskb; 220 } while (++cnt < 8); 221 (*packets) += cnt; 222 skb_mark_not_on_list(skb); 223 } 224 225 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 226 * A requeued skb (via q->gso_skb) can also be a SKB list. 227 */ 228 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 229 int *packets) 230 { 231 const struct netdev_queue *txq = q->dev_queue; 232 struct sk_buff *skb = NULL; 233 234 *packets = 1; 235 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 236 spinlock_t *lock = NULL; 237 238 if (q->flags & TCQ_F_NOLOCK) { 239 lock = qdisc_lock(q); 240 spin_lock(lock); 241 } 242 243 skb = skb_peek(&q->gso_skb); 244 245 /* skb may be null if another cpu pulls gso_skb off in between 246 * empty check and lock. 247 */ 248 if (!skb) { 249 if (lock) 250 spin_unlock(lock); 251 goto validate; 252 } 253 254 /* skb in gso_skb were already validated */ 255 *validate = false; 256 if (xfrm_offload(skb)) 257 *validate = true; 258 /* check the reason of requeuing without tx lock first */ 259 txq = skb_get_tx_queue(txq->dev, skb); 260 if (!netif_xmit_frozen_or_stopped(txq)) { 261 skb = __skb_dequeue(&q->gso_skb); 262 if (qdisc_is_percpu_stats(q)) { 263 qdisc_qstats_cpu_backlog_dec(q, skb); 264 qdisc_qstats_cpu_qlen_dec(q); 265 } else { 266 qdisc_qstats_backlog_dec(q, skb); 267 q->q.qlen--; 268 } 269 } else { 270 skb = NULL; 271 qdisc_maybe_clear_missed(q, txq); 272 } 273 if (lock) 274 spin_unlock(lock); 275 goto trace; 276 } 277 validate: 278 *validate = true; 279 280 if ((q->flags & TCQ_F_ONETXQUEUE) && 281 netif_xmit_frozen_or_stopped(txq)) { 282 qdisc_maybe_clear_missed(q, txq); 283 return skb; 284 } 285 286 skb = qdisc_dequeue_skb_bad_txq(q); 287 if (unlikely(skb)) { 288 if (skb == SKB_XOFF_MAGIC) 289 return NULL; 290 goto bulk; 291 } 292 skb = q->dequeue(q); 293 if (skb) { 294 bulk: 295 if (qdisc_may_bulk(q)) 296 try_bulk_dequeue_skb(q, skb, txq, packets); 297 else 298 try_bulk_dequeue_skb_slow(q, skb, packets); 299 } 300 trace: 301 trace_qdisc_dequeue(q, txq, *packets, skb); 302 return skb; 303 } 304 305 /* 306 * Transmit possibly several skbs, and handle the return status as 307 * required. Owning qdisc running bit guarantees that only one CPU 308 * can execute this function. 309 * 310 * Returns to the caller: 311 * false - hardware queue frozen backoff 312 * true - feel free to send more pkts 313 */ 314 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 315 struct net_device *dev, struct netdev_queue *txq, 316 spinlock_t *root_lock, bool validate) 317 { 318 int ret = NETDEV_TX_BUSY; 319 bool again = false; 320 321 /* And release qdisc */ 322 if (root_lock) 323 spin_unlock(root_lock); 324 325 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 326 if (validate) 327 skb = validate_xmit_skb_list(skb, dev, &again); 328 329 #ifdef CONFIG_XFRM_OFFLOAD 330 if (unlikely(again)) { 331 if (root_lock) 332 spin_lock(root_lock); 333 334 dev_requeue_skb(skb, q); 335 return false; 336 } 337 #endif 338 339 if (likely(skb)) { 340 HARD_TX_LOCK(dev, txq, smp_processor_id()); 341 if (!netif_xmit_frozen_or_stopped(txq)) 342 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 343 else 344 qdisc_maybe_clear_missed(q, txq); 345 346 HARD_TX_UNLOCK(dev, txq); 347 } else { 348 if (root_lock) 349 spin_lock(root_lock); 350 return true; 351 } 352 353 if (root_lock) 354 spin_lock(root_lock); 355 356 if (!dev_xmit_complete(ret)) { 357 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 358 if (unlikely(ret != NETDEV_TX_BUSY)) 359 net_warn_ratelimited("BUG %s code %d qlen %d\n", 360 dev->name, ret, q->q.qlen); 361 362 dev_requeue_skb(skb, q); 363 return false; 364 } 365 366 return true; 367 } 368 369 /* 370 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 371 * 372 * running seqcount guarantees only one CPU can process 373 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 374 * this queue. 375 * 376 * netif_tx_lock serializes accesses to device driver. 377 * 378 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 379 * if one is grabbed, another must be free. 380 * 381 * Note, that this procedure can be called by a watchdog timer 382 * 383 * Returns to the caller: 384 * 0 - queue is empty or throttled. 385 * >0 - queue is not empty. 386 * 387 */ 388 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 389 { 390 spinlock_t *root_lock = NULL; 391 struct netdev_queue *txq; 392 struct net_device *dev; 393 struct sk_buff *skb; 394 bool validate; 395 396 /* Dequeue packet */ 397 skb = dequeue_skb(q, &validate, packets); 398 if (unlikely(!skb)) 399 return false; 400 401 if (!(q->flags & TCQ_F_NOLOCK)) 402 root_lock = qdisc_lock(q); 403 404 dev = qdisc_dev(q); 405 txq = skb_get_tx_queue(dev, skb); 406 407 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 408 } 409 410 void __qdisc_run(struct Qdisc *q) 411 { 412 int quota = dev_tx_weight; 413 int packets; 414 415 while (qdisc_restart(q, &packets)) { 416 quota -= packets; 417 if (quota <= 0) { 418 if (q->flags & TCQ_F_NOLOCK) 419 set_bit(__QDISC_STATE_MISSED, &q->state); 420 else 421 __netif_schedule(q); 422 423 break; 424 } 425 } 426 } 427 428 unsigned long dev_trans_start(struct net_device *dev) 429 { 430 unsigned long val, res; 431 unsigned int i; 432 433 if (is_vlan_dev(dev)) 434 dev = vlan_dev_real_dev(dev); 435 else if (netif_is_macvlan(dev)) 436 dev = macvlan_dev_real_dev(dev); 437 res = netdev_get_tx_queue(dev, 0)->trans_start; 438 for (i = 1; i < dev->num_tx_queues; i++) { 439 val = netdev_get_tx_queue(dev, i)->trans_start; 440 if (val && time_after(val, res)) 441 res = val; 442 } 443 444 return res; 445 } 446 EXPORT_SYMBOL(dev_trans_start); 447 448 static void dev_watchdog(struct timer_list *t) 449 { 450 struct net_device *dev = from_timer(dev, t, watchdog_timer); 451 452 netif_tx_lock(dev); 453 if (!qdisc_tx_is_noop(dev)) { 454 if (netif_device_present(dev) && 455 netif_running(dev) && 456 netif_carrier_ok(dev)) { 457 int some_queue_timedout = 0; 458 unsigned int i; 459 unsigned long trans_start; 460 461 for (i = 0; i < dev->num_tx_queues; i++) { 462 struct netdev_queue *txq; 463 464 txq = netdev_get_tx_queue(dev, i); 465 trans_start = txq->trans_start; 466 if (netif_xmit_stopped(txq) && 467 time_after(jiffies, (trans_start + 468 dev->watchdog_timeo))) { 469 some_queue_timedout = 1; 470 txq->trans_timeout++; 471 break; 472 } 473 } 474 475 if (some_queue_timedout) { 476 trace_net_dev_xmit_timeout(dev, i); 477 WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n", 478 dev->name, netdev_drivername(dev), i); 479 dev->netdev_ops->ndo_tx_timeout(dev, i); 480 } 481 if (!mod_timer(&dev->watchdog_timer, 482 round_jiffies(jiffies + 483 dev->watchdog_timeo))) 484 dev_hold(dev); 485 } 486 } 487 netif_tx_unlock(dev); 488 489 dev_put(dev); 490 } 491 492 void __netdev_watchdog_up(struct net_device *dev) 493 { 494 if (dev->netdev_ops->ndo_tx_timeout) { 495 if (dev->watchdog_timeo <= 0) 496 dev->watchdog_timeo = 5*HZ; 497 if (!mod_timer(&dev->watchdog_timer, 498 round_jiffies(jiffies + dev->watchdog_timeo))) 499 dev_hold(dev); 500 } 501 } 502 EXPORT_SYMBOL_GPL(__netdev_watchdog_up); 503 504 static void dev_watchdog_up(struct net_device *dev) 505 { 506 __netdev_watchdog_up(dev); 507 } 508 509 static void dev_watchdog_down(struct net_device *dev) 510 { 511 netif_tx_lock_bh(dev); 512 if (del_timer(&dev->watchdog_timer)) 513 dev_put(dev); 514 netif_tx_unlock_bh(dev); 515 } 516 517 /** 518 * netif_carrier_on - set carrier 519 * @dev: network device 520 * 521 * Device has detected acquisition of carrier. 522 */ 523 void netif_carrier_on(struct net_device *dev) 524 { 525 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 526 if (dev->reg_state == NETREG_UNINITIALIZED) 527 return; 528 atomic_inc(&dev->carrier_up_count); 529 linkwatch_fire_event(dev); 530 if (netif_running(dev)) 531 __netdev_watchdog_up(dev); 532 } 533 } 534 EXPORT_SYMBOL(netif_carrier_on); 535 536 /** 537 * netif_carrier_off - clear carrier 538 * @dev: network device 539 * 540 * Device has detected loss of carrier. 541 */ 542 void netif_carrier_off(struct net_device *dev) 543 { 544 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 545 if (dev->reg_state == NETREG_UNINITIALIZED) 546 return; 547 atomic_inc(&dev->carrier_down_count); 548 linkwatch_fire_event(dev); 549 } 550 } 551 EXPORT_SYMBOL(netif_carrier_off); 552 553 /** 554 * netif_carrier_event - report carrier state event 555 * @dev: network device 556 * 557 * Device has detected a carrier event but the carrier state wasn't changed. 558 * Use in drivers when querying carrier state asynchronously, to avoid missing 559 * events (link flaps) if link recovers before it's queried. 560 */ 561 void netif_carrier_event(struct net_device *dev) 562 { 563 if (dev->reg_state == NETREG_UNINITIALIZED) 564 return; 565 atomic_inc(&dev->carrier_up_count); 566 atomic_inc(&dev->carrier_down_count); 567 linkwatch_fire_event(dev); 568 } 569 EXPORT_SYMBOL_GPL(netif_carrier_event); 570 571 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 572 under all circumstances. It is difficult to invent anything faster or 573 cheaper. 574 */ 575 576 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 577 struct sk_buff **to_free) 578 { 579 __qdisc_drop(skb, to_free); 580 return NET_XMIT_CN; 581 } 582 583 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 584 { 585 return NULL; 586 } 587 588 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 589 .id = "noop", 590 .priv_size = 0, 591 .enqueue = noop_enqueue, 592 .dequeue = noop_dequeue, 593 .peek = noop_dequeue, 594 .owner = THIS_MODULE, 595 }; 596 597 static struct netdev_queue noop_netdev_queue = { 598 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 599 .qdisc_sleeping = &noop_qdisc, 600 }; 601 602 struct Qdisc noop_qdisc = { 603 .enqueue = noop_enqueue, 604 .dequeue = noop_dequeue, 605 .flags = TCQ_F_BUILTIN, 606 .ops = &noop_qdisc_ops, 607 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 608 .dev_queue = &noop_netdev_queue, 609 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 610 .gso_skb = { 611 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 612 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 613 .qlen = 0, 614 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 615 }, 616 .skb_bad_txq = { 617 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 618 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 619 .qlen = 0, 620 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 621 }, 622 }; 623 EXPORT_SYMBOL(noop_qdisc); 624 625 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 626 struct netlink_ext_ack *extack) 627 { 628 /* register_qdisc() assigns a default of noop_enqueue if unset, 629 * but __dev_queue_xmit() treats noqueue only as such 630 * if this is NULL - so clear it here. */ 631 qdisc->enqueue = NULL; 632 return 0; 633 } 634 635 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 636 .id = "noqueue", 637 .priv_size = 0, 638 .init = noqueue_init, 639 .enqueue = noop_enqueue, 640 .dequeue = noop_dequeue, 641 .peek = noop_dequeue, 642 .owner = THIS_MODULE, 643 }; 644 645 static const u8 prio2band[TC_PRIO_MAX + 1] = { 646 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 647 }; 648 649 /* 3-band FIFO queue: old style, but should be a bit faster than 650 generic prio+fifo combination. 651 */ 652 653 #define PFIFO_FAST_BANDS 3 654 655 /* 656 * Private data for a pfifo_fast scheduler containing: 657 * - rings for priority bands 658 */ 659 struct pfifo_fast_priv { 660 struct skb_array q[PFIFO_FAST_BANDS]; 661 }; 662 663 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 664 int band) 665 { 666 return &priv->q[band]; 667 } 668 669 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 670 struct sk_buff **to_free) 671 { 672 int band = prio2band[skb->priority & TC_PRIO_MAX]; 673 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 674 struct skb_array *q = band2list(priv, band); 675 unsigned int pkt_len = qdisc_pkt_len(skb); 676 int err; 677 678 err = skb_array_produce(q, skb); 679 680 if (unlikely(err)) { 681 if (qdisc_is_percpu_stats(qdisc)) 682 return qdisc_drop_cpu(skb, qdisc, to_free); 683 else 684 return qdisc_drop(skb, qdisc, to_free); 685 } 686 687 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 688 return NET_XMIT_SUCCESS; 689 } 690 691 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 692 { 693 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 694 struct sk_buff *skb = NULL; 695 bool need_retry = true; 696 int band; 697 698 retry: 699 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 700 struct skb_array *q = band2list(priv, band); 701 702 if (__skb_array_empty(q)) 703 continue; 704 705 skb = __skb_array_consume(q); 706 } 707 if (likely(skb)) { 708 qdisc_update_stats_at_dequeue(qdisc, skb); 709 } else if (need_retry && 710 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) { 711 /* Delay clearing the STATE_MISSED here to reduce 712 * the overhead of the second spin_trylock() in 713 * qdisc_run_begin() and __netif_schedule() calling 714 * in qdisc_run_end(). 715 */ 716 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 717 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 718 719 /* Make sure dequeuing happens after clearing 720 * STATE_MISSED. 721 */ 722 smp_mb__after_atomic(); 723 724 need_retry = false; 725 726 goto retry; 727 } 728 729 return skb; 730 } 731 732 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 733 { 734 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 735 struct sk_buff *skb = NULL; 736 int band; 737 738 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 739 struct skb_array *q = band2list(priv, band); 740 741 skb = __skb_array_peek(q); 742 } 743 744 return skb; 745 } 746 747 static void pfifo_fast_reset(struct Qdisc *qdisc) 748 { 749 int i, band; 750 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 751 752 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 753 struct skb_array *q = band2list(priv, band); 754 struct sk_buff *skb; 755 756 /* NULL ring is possible if destroy path is due to a failed 757 * skb_array_init() in pfifo_fast_init() case. 758 */ 759 if (!q->ring.queue) 760 continue; 761 762 while ((skb = __skb_array_consume(q)) != NULL) 763 kfree_skb(skb); 764 } 765 766 if (qdisc_is_percpu_stats(qdisc)) { 767 for_each_possible_cpu(i) { 768 struct gnet_stats_queue *q; 769 770 q = per_cpu_ptr(qdisc->cpu_qstats, i); 771 q->backlog = 0; 772 q->qlen = 0; 773 } 774 } 775 } 776 777 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 778 { 779 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 780 781 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); 782 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 783 goto nla_put_failure; 784 return skb->len; 785 786 nla_put_failure: 787 return -1; 788 } 789 790 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 791 struct netlink_ext_ack *extack) 792 { 793 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 794 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 795 int prio; 796 797 /* guard against zero length rings */ 798 if (!qlen) 799 return -EINVAL; 800 801 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 802 struct skb_array *q = band2list(priv, prio); 803 int err; 804 805 err = skb_array_init(q, qlen, GFP_KERNEL); 806 if (err) 807 return -ENOMEM; 808 } 809 810 /* Can by-pass the queue discipline */ 811 qdisc->flags |= TCQ_F_CAN_BYPASS; 812 return 0; 813 } 814 815 static void pfifo_fast_destroy(struct Qdisc *sch) 816 { 817 struct pfifo_fast_priv *priv = qdisc_priv(sch); 818 int prio; 819 820 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 821 struct skb_array *q = band2list(priv, prio); 822 823 /* NULL ring is possible if destroy path is due to a failed 824 * skb_array_init() in pfifo_fast_init() case. 825 */ 826 if (!q->ring.queue) 827 continue; 828 /* Destroy ring but no need to kfree_skb because a call to 829 * pfifo_fast_reset() has already done that work. 830 */ 831 ptr_ring_cleanup(&q->ring, NULL); 832 } 833 } 834 835 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 836 unsigned int new_len) 837 { 838 struct pfifo_fast_priv *priv = qdisc_priv(sch); 839 struct skb_array *bands[PFIFO_FAST_BANDS]; 840 int prio; 841 842 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 843 struct skb_array *q = band2list(priv, prio); 844 845 bands[prio] = q; 846 } 847 848 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, 849 GFP_KERNEL); 850 } 851 852 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 853 .id = "pfifo_fast", 854 .priv_size = sizeof(struct pfifo_fast_priv), 855 .enqueue = pfifo_fast_enqueue, 856 .dequeue = pfifo_fast_dequeue, 857 .peek = pfifo_fast_peek, 858 .init = pfifo_fast_init, 859 .destroy = pfifo_fast_destroy, 860 .reset = pfifo_fast_reset, 861 .dump = pfifo_fast_dump, 862 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 863 .owner = THIS_MODULE, 864 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 865 }; 866 EXPORT_SYMBOL(pfifo_fast_ops); 867 868 static struct lock_class_key qdisc_tx_busylock; 869 870 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 871 const struct Qdisc_ops *ops, 872 struct netlink_ext_ack *extack) 873 { 874 struct Qdisc *sch; 875 unsigned int size = sizeof(*sch) + ops->priv_size; 876 int err = -ENOBUFS; 877 struct net_device *dev; 878 879 if (!dev_queue) { 880 NL_SET_ERR_MSG(extack, "No device queue given"); 881 err = -EINVAL; 882 goto errout; 883 } 884 885 dev = dev_queue->dev; 886 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 887 888 if (!sch) 889 goto errout; 890 __skb_queue_head_init(&sch->gso_skb); 891 __skb_queue_head_init(&sch->skb_bad_txq); 892 qdisc_skb_head_init(&sch->q); 893 gnet_stats_basic_sync_init(&sch->bstats); 894 spin_lock_init(&sch->q.lock); 895 896 if (ops->static_flags & TCQ_F_CPUSTATS) { 897 sch->cpu_bstats = 898 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync); 899 if (!sch->cpu_bstats) 900 goto errout1; 901 902 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 903 if (!sch->cpu_qstats) { 904 free_percpu(sch->cpu_bstats); 905 goto errout1; 906 } 907 } 908 909 spin_lock_init(&sch->busylock); 910 lockdep_set_class(&sch->busylock, 911 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 912 913 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 914 spin_lock_init(&sch->seqlock); 915 lockdep_set_class(&sch->seqlock, 916 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 917 918 sch->ops = ops; 919 sch->flags = ops->static_flags; 920 sch->enqueue = ops->enqueue; 921 sch->dequeue = ops->dequeue; 922 sch->dev_queue = dev_queue; 923 dev_hold(dev); 924 refcount_set(&sch->refcnt, 1); 925 926 return sch; 927 errout1: 928 kfree(sch); 929 errout: 930 return ERR_PTR(err); 931 } 932 933 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 934 const struct Qdisc_ops *ops, 935 unsigned int parentid, 936 struct netlink_ext_ack *extack) 937 { 938 struct Qdisc *sch; 939 940 if (!try_module_get(ops->owner)) { 941 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 942 return NULL; 943 } 944 945 sch = qdisc_alloc(dev_queue, ops, extack); 946 if (IS_ERR(sch)) { 947 module_put(ops->owner); 948 return NULL; 949 } 950 sch->parent = parentid; 951 952 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 953 trace_qdisc_create(ops, dev_queue->dev, parentid); 954 return sch; 955 } 956 957 qdisc_put(sch); 958 return NULL; 959 } 960 EXPORT_SYMBOL(qdisc_create_dflt); 961 962 /* Under qdisc_lock(qdisc) and BH! */ 963 964 void qdisc_reset(struct Qdisc *qdisc) 965 { 966 const struct Qdisc_ops *ops = qdisc->ops; 967 struct sk_buff *skb, *tmp; 968 969 trace_qdisc_reset(qdisc); 970 971 if (ops->reset) 972 ops->reset(qdisc); 973 974 skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) { 975 __skb_unlink(skb, &qdisc->gso_skb); 976 kfree_skb_list(skb); 977 } 978 979 skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) { 980 __skb_unlink(skb, &qdisc->skb_bad_txq); 981 kfree_skb_list(skb); 982 } 983 984 qdisc->q.qlen = 0; 985 qdisc->qstats.backlog = 0; 986 } 987 EXPORT_SYMBOL(qdisc_reset); 988 989 void qdisc_free(struct Qdisc *qdisc) 990 { 991 if (qdisc_is_percpu_stats(qdisc)) { 992 free_percpu(qdisc->cpu_bstats); 993 free_percpu(qdisc->cpu_qstats); 994 } 995 996 kfree(qdisc); 997 } 998 999 static void qdisc_free_cb(struct rcu_head *head) 1000 { 1001 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 1002 1003 qdisc_free(q); 1004 } 1005 1006 static void qdisc_destroy(struct Qdisc *qdisc) 1007 { 1008 const struct Qdisc_ops *ops = qdisc->ops; 1009 1010 #ifdef CONFIG_NET_SCHED 1011 qdisc_hash_del(qdisc); 1012 1013 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1014 #endif 1015 gen_kill_estimator(&qdisc->rate_est); 1016 1017 qdisc_reset(qdisc); 1018 1019 if (ops->destroy) 1020 ops->destroy(qdisc); 1021 1022 module_put(ops->owner); 1023 dev_put(qdisc_dev(qdisc)); 1024 1025 trace_qdisc_destroy(qdisc); 1026 1027 call_rcu(&qdisc->rcu, qdisc_free_cb); 1028 } 1029 1030 void qdisc_put(struct Qdisc *qdisc) 1031 { 1032 if (!qdisc) 1033 return; 1034 1035 if (qdisc->flags & TCQ_F_BUILTIN || 1036 !refcount_dec_and_test(&qdisc->refcnt)) 1037 return; 1038 1039 qdisc_destroy(qdisc); 1040 } 1041 EXPORT_SYMBOL(qdisc_put); 1042 1043 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1044 * Intended to be used as optimization, this function only takes rtnl lock if 1045 * qdisc reference counter reached zero. 1046 */ 1047 1048 void qdisc_put_unlocked(struct Qdisc *qdisc) 1049 { 1050 if (qdisc->flags & TCQ_F_BUILTIN || 1051 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1052 return; 1053 1054 qdisc_destroy(qdisc); 1055 rtnl_unlock(); 1056 } 1057 EXPORT_SYMBOL(qdisc_put_unlocked); 1058 1059 /* Attach toplevel qdisc to device queue. */ 1060 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1061 struct Qdisc *qdisc) 1062 { 1063 struct Qdisc *oqdisc = dev_queue->qdisc_sleeping; 1064 spinlock_t *root_lock; 1065 1066 root_lock = qdisc_lock(oqdisc); 1067 spin_lock_bh(root_lock); 1068 1069 /* ... and graft new one */ 1070 if (qdisc == NULL) 1071 qdisc = &noop_qdisc; 1072 dev_queue->qdisc_sleeping = qdisc; 1073 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1074 1075 spin_unlock_bh(root_lock); 1076 1077 return oqdisc; 1078 } 1079 EXPORT_SYMBOL(dev_graft_qdisc); 1080 1081 static void attach_one_default_qdisc(struct net_device *dev, 1082 struct netdev_queue *dev_queue, 1083 void *_unused) 1084 { 1085 struct Qdisc *qdisc; 1086 const struct Qdisc_ops *ops = default_qdisc_ops; 1087 1088 if (dev->priv_flags & IFF_NO_QUEUE) 1089 ops = &noqueue_qdisc_ops; 1090 else if(dev->type == ARPHRD_CAN) 1091 ops = &pfifo_fast_ops; 1092 1093 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1094 if (!qdisc) 1095 return; 1096 1097 if (!netif_is_multiqueue(dev)) 1098 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1099 dev_queue->qdisc_sleeping = qdisc; 1100 } 1101 1102 static void attach_default_qdiscs(struct net_device *dev) 1103 { 1104 struct netdev_queue *txq; 1105 struct Qdisc *qdisc; 1106 1107 txq = netdev_get_tx_queue(dev, 0); 1108 1109 if (!netif_is_multiqueue(dev) || 1110 dev->priv_flags & IFF_NO_QUEUE) { 1111 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1112 dev->qdisc = txq->qdisc_sleeping; 1113 qdisc_refcount_inc(dev->qdisc); 1114 } else { 1115 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1116 if (qdisc) { 1117 dev->qdisc = qdisc; 1118 qdisc->ops->attach(qdisc); 1119 } 1120 } 1121 1122 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1123 if (dev->qdisc == &noop_qdisc) { 1124 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1125 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1126 dev->priv_flags |= IFF_NO_QUEUE; 1127 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1128 dev->qdisc = txq->qdisc_sleeping; 1129 qdisc_refcount_inc(dev->qdisc); 1130 dev->priv_flags ^= IFF_NO_QUEUE; 1131 } 1132 1133 #ifdef CONFIG_NET_SCHED 1134 if (dev->qdisc != &noop_qdisc) 1135 qdisc_hash_add(dev->qdisc, false); 1136 #endif 1137 } 1138 1139 static void transition_one_qdisc(struct net_device *dev, 1140 struct netdev_queue *dev_queue, 1141 void *_need_watchdog) 1142 { 1143 struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping; 1144 int *need_watchdog_p = _need_watchdog; 1145 1146 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1147 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1148 1149 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1150 if (need_watchdog_p) { 1151 dev_queue->trans_start = 0; 1152 *need_watchdog_p = 1; 1153 } 1154 } 1155 1156 void dev_activate(struct net_device *dev) 1157 { 1158 int need_watchdog; 1159 1160 /* No queueing discipline is attached to device; 1161 * create default one for devices, which need queueing 1162 * and noqueue_qdisc for virtual interfaces 1163 */ 1164 1165 if (dev->qdisc == &noop_qdisc) 1166 attach_default_qdiscs(dev); 1167 1168 if (!netif_carrier_ok(dev)) 1169 /* Delay activation until next carrier-on event */ 1170 return; 1171 1172 need_watchdog = 0; 1173 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1174 if (dev_ingress_queue(dev)) 1175 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1176 1177 if (need_watchdog) { 1178 netif_trans_update(dev); 1179 dev_watchdog_up(dev); 1180 } 1181 } 1182 EXPORT_SYMBOL(dev_activate); 1183 1184 static void qdisc_deactivate(struct Qdisc *qdisc) 1185 { 1186 if (qdisc->flags & TCQ_F_BUILTIN) 1187 return; 1188 1189 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1190 } 1191 1192 static void dev_deactivate_queue(struct net_device *dev, 1193 struct netdev_queue *dev_queue, 1194 void *_qdisc_default) 1195 { 1196 struct Qdisc *qdisc_default = _qdisc_default; 1197 struct Qdisc *qdisc; 1198 1199 qdisc = rtnl_dereference(dev_queue->qdisc); 1200 if (qdisc) { 1201 qdisc_deactivate(qdisc); 1202 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1203 } 1204 } 1205 1206 static void dev_reset_queue(struct net_device *dev, 1207 struct netdev_queue *dev_queue, 1208 void *_unused) 1209 { 1210 struct Qdisc *qdisc; 1211 bool nolock; 1212 1213 qdisc = dev_queue->qdisc_sleeping; 1214 if (!qdisc) 1215 return; 1216 1217 nolock = qdisc->flags & TCQ_F_NOLOCK; 1218 1219 if (nolock) 1220 spin_lock_bh(&qdisc->seqlock); 1221 spin_lock_bh(qdisc_lock(qdisc)); 1222 1223 qdisc_reset(qdisc); 1224 1225 spin_unlock_bh(qdisc_lock(qdisc)); 1226 if (nolock) { 1227 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1228 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 1229 spin_unlock_bh(&qdisc->seqlock); 1230 } 1231 } 1232 1233 static bool some_qdisc_is_busy(struct net_device *dev) 1234 { 1235 unsigned int i; 1236 1237 for (i = 0; i < dev->num_tx_queues; i++) { 1238 struct netdev_queue *dev_queue; 1239 spinlock_t *root_lock; 1240 struct Qdisc *q; 1241 int val; 1242 1243 dev_queue = netdev_get_tx_queue(dev, i); 1244 q = dev_queue->qdisc_sleeping; 1245 1246 root_lock = qdisc_lock(q); 1247 spin_lock_bh(root_lock); 1248 1249 val = (qdisc_is_running(q) || 1250 test_bit(__QDISC_STATE_SCHED, &q->state)); 1251 1252 spin_unlock_bh(root_lock); 1253 1254 if (val) 1255 return true; 1256 } 1257 return false; 1258 } 1259 1260 /** 1261 * dev_deactivate_many - deactivate transmissions on several devices 1262 * @head: list of devices to deactivate 1263 * 1264 * This function returns only when all outstanding transmissions 1265 * have completed, unless all devices are in dismantle phase. 1266 */ 1267 void dev_deactivate_many(struct list_head *head) 1268 { 1269 struct net_device *dev; 1270 1271 list_for_each_entry(dev, head, close_list) { 1272 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1273 &noop_qdisc); 1274 if (dev_ingress_queue(dev)) 1275 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1276 &noop_qdisc); 1277 1278 dev_watchdog_down(dev); 1279 } 1280 1281 /* Wait for outstanding qdisc-less dev_queue_xmit calls or 1282 * outstanding qdisc enqueuing calls. 1283 * This is avoided if all devices are in dismantle phase : 1284 * Caller will call synchronize_net() for us 1285 */ 1286 synchronize_net(); 1287 1288 list_for_each_entry(dev, head, close_list) { 1289 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1290 1291 if (dev_ingress_queue(dev)) 1292 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1293 } 1294 1295 /* Wait for outstanding qdisc_run calls. */ 1296 list_for_each_entry(dev, head, close_list) { 1297 while (some_qdisc_is_busy(dev)) { 1298 /* wait_event() would avoid this sleep-loop but would 1299 * require expensive checks in the fast paths of packet 1300 * processing which isn't worth it. 1301 */ 1302 schedule_timeout_uninterruptible(1); 1303 } 1304 } 1305 } 1306 1307 void dev_deactivate(struct net_device *dev) 1308 { 1309 LIST_HEAD(single); 1310 1311 list_add(&dev->close_list, &single); 1312 dev_deactivate_many(&single); 1313 list_del(&single); 1314 } 1315 EXPORT_SYMBOL(dev_deactivate); 1316 1317 static int qdisc_change_tx_queue_len(struct net_device *dev, 1318 struct netdev_queue *dev_queue) 1319 { 1320 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1321 const struct Qdisc_ops *ops = qdisc->ops; 1322 1323 if (ops->change_tx_queue_len) 1324 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1325 return 0; 1326 } 1327 1328 void dev_qdisc_change_real_num_tx(struct net_device *dev, 1329 unsigned int new_real_tx) 1330 { 1331 struct Qdisc *qdisc = dev->qdisc; 1332 1333 if (qdisc->ops->change_real_num_tx) 1334 qdisc->ops->change_real_num_tx(qdisc, new_real_tx); 1335 } 1336 1337 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx) 1338 { 1339 #ifdef CONFIG_NET_SCHED 1340 struct net_device *dev = qdisc_dev(sch); 1341 struct Qdisc *qdisc; 1342 unsigned int i; 1343 1344 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) { 1345 qdisc = netdev_get_tx_queue(dev, i)->qdisc_sleeping; 1346 /* Only update the default qdiscs we created, 1347 * qdiscs with handles are always hashed. 1348 */ 1349 if (qdisc != &noop_qdisc && !qdisc->handle) 1350 qdisc_hash_del(qdisc); 1351 } 1352 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) { 1353 qdisc = netdev_get_tx_queue(dev, i)->qdisc_sleeping; 1354 if (qdisc != &noop_qdisc && !qdisc->handle) 1355 qdisc_hash_add(qdisc, false); 1356 } 1357 #endif 1358 } 1359 EXPORT_SYMBOL(mq_change_real_num_tx); 1360 1361 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1362 { 1363 bool up = dev->flags & IFF_UP; 1364 unsigned int i; 1365 int ret = 0; 1366 1367 if (up) 1368 dev_deactivate(dev); 1369 1370 for (i = 0; i < dev->num_tx_queues; i++) { 1371 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1372 1373 /* TODO: revert changes on a partial failure */ 1374 if (ret) 1375 break; 1376 } 1377 1378 if (up) 1379 dev_activate(dev); 1380 return ret; 1381 } 1382 1383 static void dev_init_scheduler_queue(struct net_device *dev, 1384 struct netdev_queue *dev_queue, 1385 void *_qdisc) 1386 { 1387 struct Qdisc *qdisc = _qdisc; 1388 1389 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1390 dev_queue->qdisc_sleeping = qdisc; 1391 } 1392 1393 void dev_init_scheduler(struct net_device *dev) 1394 { 1395 dev->qdisc = &noop_qdisc; 1396 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1397 if (dev_ingress_queue(dev)) 1398 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1399 1400 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1401 } 1402 1403 static void shutdown_scheduler_queue(struct net_device *dev, 1404 struct netdev_queue *dev_queue, 1405 void *_qdisc_default) 1406 { 1407 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1408 struct Qdisc *qdisc_default = _qdisc_default; 1409 1410 if (qdisc) { 1411 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1412 dev_queue->qdisc_sleeping = qdisc_default; 1413 1414 qdisc_put(qdisc); 1415 } 1416 } 1417 1418 void dev_shutdown(struct net_device *dev) 1419 { 1420 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1421 if (dev_ingress_queue(dev)) 1422 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1423 qdisc_put(dev->qdisc); 1424 dev->qdisc = &noop_qdisc; 1425 1426 WARN_ON(timer_pending(&dev->watchdog_timer)); 1427 } 1428 1429 /** 1430 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1431 * @rate: Rate to compute reciprocal division values of 1432 * @mult: Multiplier for reciprocal division 1433 * @shift: Shift for reciprocal division 1434 * 1435 * The multiplier and shift for reciprocal division by rate are stored 1436 * in mult and shift. 1437 * 1438 * The deal here is to replace a divide by a reciprocal one 1439 * in fast path (a reciprocal divide is a multiply and a shift) 1440 * 1441 * Normal formula would be : 1442 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1443 * 1444 * We compute mult/shift to use instead : 1445 * time_in_ns = (len * mult) >> shift; 1446 * 1447 * We try to get the highest possible mult value for accuracy, 1448 * but have to make sure no overflows will ever happen. 1449 * 1450 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1451 */ 1452 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1453 { 1454 u64 factor = NSEC_PER_SEC; 1455 1456 *mult = 1; 1457 *shift = 0; 1458 1459 if (rate <= 0) 1460 return; 1461 1462 for (;;) { 1463 *mult = div64_u64(factor, rate); 1464 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1465 break; 1466 factor <<= 1; 1467 (*shift)++; 1468 } 1469 } 1470 1471 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1472 const struct tc_ratespec *conf, 1473 u64 rate64) 1474 { 1475 memset(r, 0, sizeof(*r)); 1476 r->overhead = conf->overhead; 1477 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1478 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1479 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1480 } 1481 EXPORT_SYMBOL(psched_ratecfg_precompute); 1482 1483 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1484 { 1485 r->rate_pkts_ps = pktrate64; 1486 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1487 } 1488 EXPORT_SYMBOL(psched_ppscfg_precompute); 1489 1490 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1491 struct tcf_proto *tp_head) 1492 { 1493 /* Protected with chain0->filter_chain_lock. 1494 * Can't access chain directly because tp_head can be NULL. 1495 */ 1496 struct mini_Qdisc *miniq_old = 1497 rcu_dereference_protected(*miniqp->p_miniq, 1); 1498 struct mini_Qdisc *miniq; 1499 1500 if (!tp_head) { 1501 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1502 } else { 1503 miniq = miniq_old != &miniqp->miniq1 ? 1504 &miniqp->miniq1 : &miniqp->miniq2; 1505 1506 /* We need to make sure that readers won't see the miniq 1507 * we are about to modify. So ensure that at least one RCU 1508 * grace period has elapsed since the miniq was made 1509 * inactive. 1510 */ 1511 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1512 cond_synchronize_rcu(miniq->rcu_state); 1513 else if (!poll_state_synchronize_rcu(miniq->rcu_state)) 1514 synchronize_rcu_expedited(); 1515 1516 miniq->filter_list = tp_head; 1517 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1518 } 1519 1520 if (miniq_old) 1521 /* This is counterpart of the rcu sync above. We need to 1522 * block potential new user of miniq_old until all readers 1523 * are not seeing it. 1524 */ 1525 miniq_old->rcu_state = start_poll_synchronize_rcu(); 1526 } 1527 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1528 1529 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1530 struct tcf_block *block) 1531 { 1532 miniqp->miniq1.block = block; 1533 miniqp->miniq2.block = block; 1534 } 1535 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1536 1537 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1538 struct mini_Qdisc __rcu **p_miniq) 1539 { 1540 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1541 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1542 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1543 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1544 miniqp->miniq1.rcu_state = get_state_synchronize_rcu(); 1545 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state; 1546 miniqp->p_miniq = p_miniq; 1547 } 1548 EXPORT_SYMBOL(mini_qdisc_pair_init); 1549